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3Dipartimento di Fisica, Università di Roma La Sapienza”, Piazzale A. Moro 2, 00185 Rome, Italy
4INFN, Sezione di Roma, Piazzale A. Moro 2, 00185 Rome, Italy

(Received 4 April 2022; accepted 13 April 2022; published 26 April 2022)

The parton distribution of the pion is obtained for the first time from the solution of a dynamical equation
in Minkowski space. The adopted equation is the homogeneous Bethe-Salpeter one with a ladder kernel,
described in terms of (i) constituent quarks and gluons degrees of freedom, and (ii) an extended quark-
gluon vertex. The masses of quark and gluon as well as the interaction-vertex scale have been chosen in a
range suggested by lattice QCD calculations, and calibrated to reproduce both pion mass and decay
constant. In addition to the full parton distribution, we have also calculated the contribution from the light-
front valence wave function, corresponding to the lowest Fock component in the expansion of the pion
state. After applying an evolution with an effective charge and a LO splitting function, a detailed and
inspiring comparison with both the extracted experimental data (with and without resummation effects) and
other recent calculations obtained in different frameworks is presented. Interestingly, in a wide region of
longitudinal-momentum fraction, the parton distribution function receives sizable contributions from the
higher Fock-components of the pion state at the initial scale, while approaching the tail the light-front
valence component dominates, as expected. Moreover, an exponent ∼3 is found suitable for describing the
tail at the scale 5.2 GeV.
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The pion is a cornerstone for understanding the visible
mass of the universe within quantum chromodynamics
(QCD), being the pivotal Goldstone boson state associated
with the dynamical mass generation (see, e.g., Ref. [1]).
Dedicated experimental efforts are planned in the close
future for investigating in detail the pion, and eventually to
reconstruct its 3D image in Minkowski space, by means of
high-luminosity facilities, like the Electron Ion Collider
(EIC) in USA [2], as well the EICc in China [3]. In the
perspective to explore dynamical models incorporating
nonperturbative features of QCD and thus able to gain a
reliable description of hadrons on the light cone, in this
paper we present a calculation of the parton distribution
function (PDF) of the pion and its light-front (LF) valence
component, using for the first time a 0− solution of the
Bethe-Salpeter equation (BSE) [4] in Minkowski space (see
Ref. [5] for a 4D relativistic description of the pion through
the covariant-spectator method). After properly applying an
evolution with an effective charge and a LO splitting
function (ECLO), namely the suggestion proposed in

Ref. [6] (see also Ref. [7] for a detailed analysis of the
QCD running coupling), comparisons with data and
outcomes from other recent calculations, like continuum
QCD [8,9], basis light-front quantization (BLFQ) [10,11]
and lattice QCD (LQCD) [12] are illustrated. It is
worth noticing that within our approach, from the com-
parison between the full PDF and the LF-valence contri-
bution (see below) one can quantitatively assess the pheno-
menological relevance of the higher-Fock components of
the pion state.
In order to achieve our goal, we adopt the framework

already successfully applied to both a 3D investigation of
the pion [13] onto the null-plane and the electromagnetic
form factor [14] (in a very nice agreement with the data and
including also the asymptotic region). Along with ingre-
dients genuinely belonging to the quantum-field theory
realm, we use (i) the Nakanishi integral representation
(NIR) [15] of the Bethe-Salpeter (BS) amplitude (see, e.g.,
Refs [16,17] for a general introduction to the fermionic
case) for obtaining solutions of the Minkowskian BSE, and
(ii) a formalism á la Mandelstam [18] for describing the
interaction between a virtual photon and a bound system,
and eventually calculating the PDF.
In the ladder approximation, the bound-state BS ampli-

tude, Φðk;PÞ, fulfills the following homogeneous integral
equation
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where P is the pion 4-momentum, with P2 ¼ M2, k ¼
ðpq − pq̄Þ=2 the relative 4-momentum, with pqðq̄Þ the off-
shell (anti-) quark momentum, and q ¼ k − k0. The quark-
gluon vertex, ΓνðqÞ, is related to Γ̂νðqÞ by Γ̂νðqÞ ¼
CΓνðqÞC−1, where C ¼ iγ2γ0 is the charge-conjugation
operator. In Eq. (1), the fermion propagator, the gluon
propagator in the Feynman gauge and the extended quark-
gluon vertex (dressed through a simple form factor) are

SðpÞ ¼ i
=p −mþ iϵ

; SμνðqÞ ¼ −i
gμν

q2 − μ2 þ iϵ
;

Γμ ¼ ig
μ2 − Λ2

q2 − Λ2 þ iϵ
γμ; ð2Þ

where g is the coupling constant,m the fermionic mass, μ the
exchanged-boson mass and Λ a scale parameter, introduced
for modeling the color distribution at the interaction vertex.
Noteworthy, the one-gluon exchange should be a viable
approximation according to Ref. [19], where the nonplanar
diagramswere found largelyNc suppressed in bosonic bound
states (with an estimate of their contribution to dynamical
observables less than 5% forNc ¼ 3, even for large binding).
The BS amplitude for a 0− system reads

Φðk;PÞ ¼ S1ðk;PÞϕ1ðk;PÞ þ S2ðk;PÞϕ2ðk;PÞ
þ S3ðk;PÞϕ3ðk;PÞ þ S4ðk;PÞϕ4ðk;PÞ; ð3Þ

where the ϕi’s are scalar functions, and Si’s are Dirac
structures given by [20,21]

S1ðk;PÞ ¼ γ5; S2ðk;PÞ ¼
=P
M

γ5;

S3ðk;PÞ ¼
k · P
M3

=Pγ5 −
1

M
=kγ5;

S4ðk;PÞ ¼
i
M2

σμνPμkνγ5: ð4Þ

The anticommutation rules of the fermionic fields impose
that the functions ϕi are even for i ¼ 1, 2, 4, under the
change k → −k, and odd for i ¼ 3.

The scalar functions ϕiðk;PÞ in (3) can be written in
terms of the NIR as follows

ϕiðk;PÞ ¼
Z

1

−1
dz0

Z
∞

0

dγ0

×
giðγ0; z0; κ2Þ

½k2 þ z0ðP · kÞ − γ0 − κ2 þ iϵ�3 ; ð5Þ

where κ2 ¼ m2 −M2=4, and giðγ0; z0; κ2Þ are the Nakanishi
weight functions (NWFs), that are real and assumed to be
unique, following the uniqueness theorem from Ref. [15].
Remarkably, all the dynamical information one is able to
include in the BS interaction kernel are nonperturbatively
embedded in the NWFs, once the suitable integral equation
is solved.
By inserting Eqs. (3) and (5) in the BSE, Eq. (1), and

then applying a LF projection, i.e., integrating over
k− ¼ k0 − k3, one can formally transform the BSE into a
coupled system of integral equations for the NWFs (see
details in Ref. [17]), that eventually becomes a generalized
eigenvalue problem (GEVP). To carry out the numerical
evaluation, the range of variability of the constituent quark
and gluon effective masses, as well as the scale parameter
Λ ∼ ΛQCD have been chosen as suggested by LQCD
results (see, e.g., Refs. [22–24]), as discussed in detail
in Ref. [13]. In particular, by using (i) m ¼ 255 MeV,
(ii) μ ¼ 637.5 MeV, and (iii) Λ ¼ 306 MeV (the three
values correspond to the set VIII in [13]), one is able to
reproduce the pion mass M ¼ 140 MeV and the PDG
estimation of the decay constant fPDGπ− ¼ 130.50ð1Þð3Þ
ð13Þ MeV [25]. The coupling constant g in the interaction
vertex [see Eq. (2)] is also an outcome of the GEVP, that
yields g2=ð4πÞ ¼ 6.482. This value is in a acceptable
(factor ∼2) agreement with αs=π in the IR domain,
presented in the wide analysis of Ref. [7].
The parton distribution function. Once the NWFs are

numerically calculated, one obtains the full BS amplitude
through Eqs. (5) and (3). After performing the normaliza-
tion in the standard way [26] (see also Refs. [13,14]), one
proceeds to evaluate the pion PDF. The starting point is the
unpolarized transverse-momentum distribution (uTMD),
that adopting the light-cone gauge, Aþ

g ¼ 0, reads in the
frame P⊥ ¼ 0 (see, e.g., Refs. [27,28])

f1ðγ;ξÞ ¼ Nc

4

Z
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where γ ¼ jk⊥j2, ξ ¼ pþ
q =Pþ ¼ ðkþ þ Pþ=2Þ=Pþ. The

uTMD is normalized to 1 given the normalization of the
pion state (see Ref. [29]). Then the PDF is nothing more
than the integral over γ of the uTMD. i.e.,

uðξÞ ¼
Z

∞

0

dγ f1ðγ; ξÞ: ð7Þ

By assuming the charge symmetry (see, e.g., Ref. [30]) and
adopting the Mandelstam framework [18] (see also
Ref. [14] for the pion electromagnetic form factor), that
heuristically amounts to use a dressed quark-pion vertex
(related to the BS amplitude after multiplying by the
fermion propagators), the expression for the uTMD is
given by (see Ref. [29])

f1ðγ;ξÞ¼
1

ð2πÞ4
1

8

×
Z

∞

−∞
dkþδðkþþPþ=2−ξPþÞ

Z
∞
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dk−

Z
2π

0
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×

�
Tr

�
S−1ðk−P=2ÞΦ̄ðk;PÞγ

þ

2
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�

−Tr

�
S−1ðkþP=2ÞΦðk;PÞγ

þ

2
Φ̄ðk;PÞ

��
: ð8Þ

Notice that f1 in Eq. (8) is automatically normalized to 1,
once the BS amplitude is normalized (cfr. Refs. [13] and
[26]), and that the explicit expression of Eq. (8) in terms of
the NWFs is given in Ref. [29].
In summary, our calculation of the PDF is carried out by

using in Eq. (7) the result of Eq. (8) with the BS amplitude
evaluated through Eqs. (5) and (3). The different gauges in
Eq. (6) and in the BSE kernel (at the present stage) raises
the question of the relevance of the Wilson line in Eq. (6),
that reduces to the identity in the light-cone gauge. The
nontrivial challenge of adopting a gluon propagator in the
light-cone gauge will be faced with elsewhere, but one
could reliably surmise a small effect after comparing our
result with the one in Ref. [8], where a Landau gauge has
been adopted (see Fig. 3 for comparison, modulo the very
sharp differences in the approaches).
In addition to the full PDF, for a more deep analysis we

have calculated the LF valence contribution. Within the LF
quantum-field theory illustrated in Refs. [31,32], one
defines the creation and annihilation operators for particles
and antiparticles, with arbitrary spin, onto the null-plane.
Then, the generic LF Fock state is built and, assuming a
tiny mass for the gluon, one can meaningfully expand the
hadron wave function (WF) by using the complete Fock
basis and diagonalize the LF Hamiltonian (see Ref. [33]).
The state with the smallest number of constituents (or with
the lowest number of creation operators applied to the
vacuum) is the valence one, and we call the corresponding
amplitude LF valence WF. Notice that in the literature (see,

e.g., Ref. [6] where a detailed analysis of the issue is
presented and a wealth of related references are given) a
different terminology is adopted, by indicating as valence
WF the full LF-projected BS amplitude, emphasizing in
this way the number of fermionic fields, dressed by QCD
interactions, that are present in the definition of the BS
amplitude itself.
The Fock expansion of the pion state is a very useful

tool, since in the Aþ
g ¼ 0 gauge one can recover a

probabilistic framework, inapplicable to the BS amplitude.
In fact, by summing up the square modulus of each
amplitude present in the Fock expansion, we obtain 1, if
the pion state is normalized. With this in mind, one can
write the contribution to the PDF from the LF-valence WF
as follows (see Ref. [13])

uvalðξÞ ¼
Z

∞

0

dγ
ð4πÞ2 ½jψ↑↓ðγ; zÞj2 þ jψ↑↑ðγ; zÞj2�; ð9Þ

where z ¼ 1–2ξ, ψ↑↓ðγ; zÞ is the antialigned component of
the LF-valenceWF and ψ↑↑ðγ; zÞ the aligned one (of purely
relativistic nature). The probability of the LF-valence WF
reads

Pval¼
Z

1

−1
dz

Z
∞

0

dγ
ð4πÞ2 ½jψ↑↓ðγ;zÞj2þjψ↑↑ðγ;zÞj2�: ð10Þ

In the actual calculation within the Feynman gauge, one
gets Pval ¼ 0.7 for the adopted three parameters [13],
and the remaining probability indicates that 30% of the
normalization comes from Fock-states jqq̄; n gluonsi with
n ¼ 1; 2;…∞.
Results. The full PDF and its LF-valence contribution,

obtained from the BSE evaluated through the NIR approach
and adopting the previously mentioned input parameters,
are shown in Fig. 1, at the initial scale Q0 ¼ 360 MeV.
This key value forQ0 is chosen in agreement to the analysis
of the running coupling that allows us to assign a hadronic
scale from the inflection point of the QCD effective charge
as a function of Q2 (see Refs. [6], where Q0 ¼ 0.330�
0.030 GeV was adopted, and also [7]). In particular, the
actual value allows one to reproduce the LQCD [34] result
for the longitudinal-momentum sum rule (see below).
Some comments on the results in Fig. 1 are in order:

(i) the symmetry of the PDFs, with respect to ξ ¼ 0.5, is
entailed by the charge symmetry, that in turn leads to the
expression of the uTDM in the Mandelstam approach given
by Eq. (8); (ii) for ξ → 1, the amplitude of the lowest Fock
state generates a contribution that completely saturates
uðξÞ; (iii) while the full PDF is normalized to 1, as it
necessarily follows from the standard normalization of the
BS amplitude [13,26], the valence contribution has norm
Pval ¼ 0.7; (iv) the 30% depletion is due to the presence of
the higher Fock-components in the pion state. Let us
remind that the two spin configurations of the quark pair
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contribute to the valence PDF with different probabilities:
P↑↓ ¼ 0.57 and P↑↑ ¼ 0.13, so that one remarkably finds a
weight of ∼25% from purely relativistic effects carried by
the aligned component (see Ref. [13] for more details).
Finally, at the initial scale, the exponent of ð1 − ξÞη0 for
ξ → 1 for the full PDF is η0 ¼ 1.4. An ECLO evolution, as
given in Ref. [6], has been applied to the PDFs in Fig. 1 in
order to compare our results to the E615 data [35]
(measured in Drell-Yan processes), and also taking into
account the reanalysis carried out in both Ref. [36], where
the scale 4.0 GeV of the original experimental data was
suggested to be moved to Q ¼ 5.2 GeV, and Ref. [37],
where resummation effects on the extraction of the pion
PDF were proposed. In particular, Fig. 2 shows the
comparison between (i) the theoretical calculations, full
PDF and valence contribution, evolved to Q ¼ 5.2 GeV,
(ii) the data originally delivered by the E615 Collaboration
(assigned scale 4.0 GeV), and (iii) the experimental data
rescaled, at each ξ, by the ratio between the fit 3 in
Ref. [37], properly evolved to 5.2 GeV, and the E615
experimental data. Noteworthy, the calculations in Ref. [37]
have illustrated at which extent the PDF extraction from the
experimental measurements is affected by the resummation
of the large logarithmic contributions in the partonic
hard-scattering cross sections. It should be pointed out
that the behavior of the evolved ξuðξÞ for ξ → 1 is given by
ð1 − ξÞη5 with η5 ¼ 2.94 (with ξ ∈ ½0.9; 1�), to be com-
pared, e.g., to the value 2.20� 0.64 obtained by using
recent LQCD calculations [12], where the PDF is recon-
structed via Mellin moments, as well as the exponent
2.81� 0.08 reported in Ref. [6]. The low-order Mellin
moments for two scales, Q ¼ 2.0 GeV and 5.2 GeV,
obtained from our pion PDF (after properly evolving

through ECLO) and from the most recent LQCD results
(with mπ ¼ 260 MeV) [12,34] are presented in Table I.
Finally, in Fig. 3, the comparison is carried out with

some recent theoretical outcomes obtained from different
frameworks. The so-called continuum-QCD, based on the
Dyson-Schwinger equation and the BSE, is able to yield the
PDF, via Mellin moments evaluated in Euclidean space. In
particular, we compare with the results presented (i) in
Ref. [6], where the PDF is obtained from the leading-twist
two-particle distribution amplitude (actual calculations are
from Ref. [38]), that depends upon only the antialigned

0 0.25 0.5 0.75 1
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1.5

2

u
( ξ
)

FIG. 1. Pion parton distribution function. Solid line: full
calculation from Eqs. (7) and (8), by using the solution of the
BSE, evaluated through the NIR approach and adopting the
values of the three input parameters m ¼ 255 MeV, μ ¼
637.5 MeV and Λ ¼ 306 MeV (see Ref. [13]). Dashed line:
LF valence contribution, from the valence component of the Fock
expansion of the pion state, Eq. (9) (see Ref. [13]).
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FIG. 2. The distribution function ξuðξÞ in a pion. Solid line: full
calculation [see Eqs. (7) and (8)], obtained from the BS amplitude
solution of the BSE with m ¼ 255 MeV, μ ¼ 637.5 MeV and
Λ ¼ 306 MeV, and evolved from the initial scale Q0 ¼
0.360 GeV to Q ¼ 5.2 GeV (see text). Dashed line: the evolved
LF valence component, Eq. (9). Full dots: experimental data from
Ref. [35]. Full squares: reanalyzed data by using the ratio
between the fit 3 of Ref. [37], evolved to 5.2 GeV, and the
experimental data [35], at each data point, so that the resumma-
tion effects (see text) are accounted for.

TABLE I. Low-order Mellin moments at two scales Q ¼
2.0 GeV and 5.2 GeV. First column: results from our BSE
approach, i.e., by using Eqs. (7) and (8) evolved to the scale
Q ¼ 2.0 GeV from an initial scale Q0 ¼ 0.360 GeV (see text).
Second column: LQCD calculations at Q ¼ 2.0 GeV from
Ref. [34] for hxi, and Ref. [12] for hx2i and hx3i, with the errors
given by statistical and systematic uncertainties added in quad-
rature. Third column: our results evolved to 5.2 GeV. Fourth
column: lattice result, evaluated by using the reconstructed PDF,
as given in Table XI of Ref. [12].

BSE2 LQCD2 BSE5 LQCD5

hxi 0.259 0.261� 0.007 0.221 0.229� 0.008
hx2i 0.105 0.110� 0.014 0.082 0.087� 0.009
hx3i 0.052 0.024� 0.018 0.039 0.042� 0.010
hx4i 0.029 0.021 0.023� 0.009
hx5i 0.018 0.012 0.014� 0.007
hx6i 0.012 0.008 0.009� 0.005
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component of the BS amplitude, and (ii) in Ref. [8], where
the quark vertex is properly dressed [cf. the bare vertex γþ
in Eq. (8)]. Moreover, it is shown the PDF directly
calculated within the BLFQ in Ref. [11,39], and the
PDF recently evaluated in LQCD by the ETM
Collaboration [12], by using the Mellin moments for the
reconstruction. Interestingly, the JAM NLO global fit
analysis [40] largely overlaps the original E615 data
[35]. It is rewarding that our dynamical calculation in
Minkowski space falls in the LQCD band and nicely agrees
on the tail with the recent calculations from both the DSE
approach [6] and the BLFQ one [11,39].

Summary. For the first time, the pion PDF has been
calculated directly in Minkowski space, within a dynami-
cal framework based on the 4D Bethe-Salpeter equation.
We have adopted the Nakanishi integral representation of
the BS amplitude, so that the analytic behavior of the BS
amplitude can be exposed and manipulated, formally
obtaining an equation for the so-called Nakanishi weight
functions from the BSE. At this stage of development
of our technology, only three parameters enter in the
ladder kernel, namely: the masses of quarks and gluon,
and the scale of the extended quark-gluon vertex.
The initial scale of our calculation is fixed at Q0 ¼
0.360 GeV (cfr. Ref. [6]). The comparison with data
and theoretical calculations are very encouraging and
strongly motivates improvements of our approach. In
fact, we are currently working on including a consistent
treatment of quark and gluon self-energies (see, e.g.,
Refs. [41,42]).
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