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Light-front time-ordered amplitudes are investigated in the virtual scalar meson production process in
(1þ 1) dimensions using the scalar field model extended from the conventional Wick-Cutkosky model.
There is only one Compton form factor (CFF) in the (1þ 1)-dimensional computation of the virtual meson
production process, and we compute both the real and imaginary parts of the CFF for the entire kinematic
regions of Q2 > 0 and t < 0. We then analyze the contribution of each and every light-front time-ordered
amplitude to the CFF as a function of Q2 and t. In particular, we discuss the significance of the “cat’s ears”
contributions for gauge invariance and the validity of the “handbag dominance” in the formulation of the
generalized parton distribution (GPD) function used typically in the analysis of deeply virtual meson
production processes. We explicitly derive the GPD from the “handbag” light-front time-ordered
amplitudes in the −t=Q2 ≪ 1 limit and verify that the integrations of the GPD over the light-front
longitudinal momentum fraction for the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Efremov-
Radyushkin-Brodsky-Lepage regions correspond to the valence and nonvalence contributions of the
electromagnetic form factor that we have recently reported [Phys. Rev. D 103, 076002 (2021)]. We also
discuss the correspondence of the GPD to the parton distribution function for the analysis of the
deep inelastic lepton-hadron scattering process and the utility of the new light-front longitudinal spatial
variable z̃.

DOI: 10.1103/PhysRevD.105.096014

I. INTRODUCTION

One of the main goals in hadron physics is to understand
the properties and structures of hadrons in terms of quarks
and gluons. Since the elastic electron scattering from the
nucleon unveiled the non-point-like structure of the
nucleon [1], the information on the spatial distributions
of charge and current inside the nucleon has been obtained
from the electromagnetic (EM) form factors. The informa-
tion on the momentum distributions of quarks and gluons
inside nucleons can also be accessed by the parton
distribution functions (PDFs) measured through deep
inelastic scattering (DIS) processes [2].

Since the DIS with the longitudinally polarized beam
and the polarized target proton yielded the surprising result
that the quarks and antiquarks inside the proton carry only
about 30% of the total spin of the proton [3], one of the key
observables to explore the so-called “proton spin puzzle”
has been the set of generalized parton distributions (GPDs)
[4–12]. GPDs describe internal parton structures of the
hadron, unifying the investigation of form factors and
PDFs. In particular, the parton’s orbital angular momentum
contribution to the nucleon spin may be estimated with the
formulation of GPDs. The extraction of GPDs from the
experimental data can be accessed mainly by hard exclusive
electroproduction processes such as the deeply virtual
Compton scattering (DVCS) and the deeply virtual meson
production (DVMP) processes. In these processes, an
electron interacts with a parton from the hadron, e.g.,
the nucleon, by the exchange of a virtual photon, and the
struck parton radiates a real photon (DVCS process) or
hadronizes into a meson (DVMP process) [13–18]. Both
in DVCS and DVMP, the GPD formalism relies on the
“handbag dominance” representing the factorization of the
hard and soft parts in the respective scattering amplitudes.
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Here, the light-front dynamics (LFD) plays an important
role in providing both the skewness ζ and the light-front
(LF) longitudinal momentum fraction x of the parton struck
by the probing virtual photon off the target. It is well known
that the integrals of the leading-twist GPDs in the s- and
u-channel handbag amplitudes of both DVCS and DVMP
processes carry the factorized denominator factors such as
1=ðx − ζÞ and 1=x, respectively.
While the virtual Compton scattering (VCS) process is

coherent with the Bethe-Heitler (BH) process [19], the
virtual meson production (VMP) process does not possess
complications from the involvement of the BH process and
offers a unique way for experimental exploration of the
hadronic structure for the study of quantum chromody-
namics and strong interactions. In particular, the coherent
electroproduction of pseudoscalar (JPC ¼ 0−þ) or scalar
(0þþ) mesons off a scalar target (for example, the 4He
nucleus [20]) provides an excellent experimental terrain
to discuss the fundamental nature of hadrons without
involving much complication from the spin degrees of
freedom. In Ref. [21], two of us discussed the most general
formulation of the differential cross sections for the meson
(0−þ or 0þþ) production processes which involve only one
or two hadronic form factors, respectively, when the target
is a scalar particle. In particular, the beam spin asymmetry
was discussed and our findings from the general formu-
lation were contrasted with respect to the GPD formulation.
In the present article, we investigate the electroproduc-

tion process of a scalar meson off a scalar target, simulating
for example, γ� þ 4He → f0ð980Þ þ 4He, in the one-loop
level of the (1þ 1)-dimensional scalar field model
extended from the conventional Wick-Cutkosky model
[22]. The same scalar field model was previously applied
to the analysis of the longitudinal charge density [23]. As
described in Ref. [23], our model is essentially the (1þ 1)-
dimensional quantum field theoretic model of Sawicki and
Mankiewicz [24,25], which was reinvestigated by several
others [26–30]. In this model, the wave function is obtained
as the solution of the covariant Bethe-Salpeter (BS)
equation in the ladder approximation with a relativistic
version of the contact interactions [26]. The covariant
model wave function is a product of two free single-
particle propagators, the Dirac delta function for the overall
momentum conservation, and a constant vertex function.
Consequently, all our Compton form factor calculations
show various ways of evaluating the Feynman box dia-
grams in the scalar field model taken in the present work.
As the transverse rotations are absent in (1þ 1) dimen-

sions, the advantage of the LFD with the LF time xþ ¼
x0 þ x3 as the evolution parameter is maximized in contrast
to the usual instant form dynamics (IFD) with the ordinary
time x0 as the evolution parameter. In LFD, the individual
xþ-ordered amplitudes contributing to the hadronic form
factor are invariant under the boost, i.e., frame independent,
while the individual x0-ordered amplitudes in IFD are not

invariant under the boost but dependent on the reference
frame. As only one hadronic form factor is involved in
(1þ 1) dimensions for the electroproduction process of a
scalar meson off a scalar target, the analysis may be
regarded relatively simple without involving the beam spin
asymmetry. The extension to the (3þ 1)-dimensional
analysis involves the transverse rotations not kinematical
but dynamical in LFD. One more hadronic form factor
involved in the (3þ 1)-dimensional analysis would lead to
a nonvanishing beam spin asymmetry. As discussed in
Ref. [21], the beam spin asymmetry vanishes trivially in the
GPD formulation for the scalar meson production off the
scalar target unless the chiral-odd GPD is included. This
nontrivial aspect of the (3þ 1)-dimensional extension
deserves a separate further investigation going beyond
the scope of the present work. We note however that the
(1þ 1)-dimensional analysis presented in this work cor-
responds to the (3þ 1)-dimensional analysis in the forward
direction, where the GPD formulation is most applicable. In
this work, we thus focus on analyzing the essential features
of the LFD by benchmarking the (1þ 1)-dimensional
characteristics of the VMP process.
The extraction of the hadronic form factor, the so-called

Compton form factor (CFF), is made by utilizing the
general formulation of the hadronic currents presented in
Ref. [21]. The real and imaginary parts of the CFF are
extracted explicitly. In order to explore the applicability
of the handbag dominance adopted in the GPD formu-
lation, we extract the GPD in the DVMP limit and
verify that the integrations of the GPD over x for
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
(1 > x > ζ) and Efremov-Radyushkin-Brodsky-Lepage
(ERBL) (ζ > x > 0) regions correspond to the respective
valence and nonvalence contributions of the electromag-
netic form factor that we have recently presented in
Ref. [23]. The correspondence of the GPD to the PDF is
also discussed with the new LF longitudinal spatial variable
z̃ ¼ x−pþ recently introduced in Ref. [31]. We then
contrast the CFF obtained from the GPD formulation with
the CFF result from the general formulation of the VMP
process in the present scalar field model.
This article is organized as follows. In Sec. II, we present

the kinematics of the virtual meson production process off
the scalar target. Section III is devoted to the derivation
of the exact form of the CFF in the VMP process within the
one-loop level of the scalar field model in (1þ 1) dimen-
sions. Complete analyses for various LF time-ordered
diagrams involved in the VMP process are presented as
well. In Sec. IV, we extract the GPD, PDF, longitudinal
probability density (LPD) in the LF coordinate space, and
the EM form factor in the DVMP limit. Section V presents
our numerical results for the CFF, GPD, PDF, LPD, and
EM form factor of the scalar target simulating the mass
arrangement of the γ� þ 4He → f0ð980Þ þ 4He process. We
summarize and conclude in Sec. VI.
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II. KINEMATICS

We begin with the kinematics involved in the virtual-
photon scattering off the scalar target (M) for the pro-
duction of the scalar meson (S),

γ�ðqÞ þMðpÞ → Sðq0Þ þMðp0Þ; ð1Þ

where the initial (final) scalar target state is characterized
by the momentum pðp0Þ and the incoming virtual photon
and the outgoing meson by q and q0, respectively. We shall
use the component notation a ¼ ðaþ; a−Þ in (1þ 1)
dimensions and the metric is specified by a� ¼ a0 � a3

and a · b ¼ ðaþb− þ a−bþÞ=2.
Defining the four momentum transfer Δ ¼ p − p0, we

have

p ¼
�
pþ;

M2
T

pþ

�
;

p0 ¼
�
ð1 − ζÞpþ;

1

pþ

�
M2

T −
t
ζ

��
; ð2Þ

and

Δ ¼
�
ζpþ;

t
ζpþ

�
; ð3Þ

where MT is the target mass and ζ ¼ Δþ=pþ is the
skewness parameter describing the asymmetry in plus
momentum. The squared momentum transfer then reads

t ¼ Δ2 ¼ 2p · Δ ¼ −ζ2M2
T=ð1 − ζÞ ≤ 0; ð4Þ

which defines ζ in terms of t as

ζ ¼ 1

2M2
T

�
tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 4tM2

T

q �
; ð5Þ

so that 0 ≤ ζ ≤ 1 is taken. Considering the fact that qþ ≠ 0
in (1þ 1) dimensions, we choose the momenta q and q0 as

q ¼
�
ðμsζ0 − ζÞpþ;

Q2

pþ

�
1

ζ0
þ τ

ζ

��
;

q0 ¼
�
μsζ

0pþ;
Q2

ζ0pþ

�
; ð6Þ

where μs ¼ M2
S=Q

2 and τ ¼ −t=Q2 with q2 ¼ −Q2

and MS being the mass of the produced scalar meson.
It also gives the definition of ζ0 through the relation
with ζ as

ζ0

ζ
¼ 2

1þ μs − τ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ μs þ τÞ2 − 4τ

p ; ð7Þ

where 0 ≤ μsζ
0 < ζ ≤ 1 is taken in deriving Eq. (7) so that

qþ < 0. The Bjorken variable xBj ¼ Q2=ð2p · qÞ is then
given by

xBj ¼
2t

tð1þ μs þ τÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt − 4M2

TÞ½ð1þ μs þ τÞ2 − 4τ�
p :

ð8Þ

The maximum value of xBj for a given value of Q2 is
obtained by the condition that

dxBj
dt

����
t¼tth

¼ 0; ð9Þ

which determines the threshold momentum transfer
squared tthðQ2Þ as

tthðQ2Þ ¼ −
MTðM2

S þQ2Þ
MT þMS

: ð10Þ

This corresponds to the threshold point where momentum
directions of the outgoing target and the produced meson
are swapped in the center-of-momentum frame.
In the deeply virtual limit where Q2 is very large

compared to other scales of M2
T , M

2
S, and jtj, one can

easily find that ζ ≃ xBj; i.e., ζ plays the role of xBj. We also
note that ζ and t are not independent in (1þ 1) dimensions
while they are in general independent of each other in
(3þ 1) dimensions because of the nonzero transverse com-
ponent of Δ. Explicitly, we have t ¼ −ðζ2M2

T þ Δ2⊥Þ=
ð1 − ζÞ in (3þ 1) dimensions [12] where Δ2⊥ is the trans-
verse momentum transfer squared. Defining the skewness
parameters ζ ¼ ζ1þ1 and ζ ¼ ζ3þ1 in (1þ 1) and (3þ 1)
dimensions, respectively, one can obtain the allowed range
of ζ3þ1 as 0 ≤ ζ3þ1 ≤ ζ1þ1 for a fixed value of t. Here, we
note that the limit t → 0 implies ζ1þ1 → 0, while there is
no such correlation between t → 0 and ζ3þ1 → 0 unless
Δ2⊥ → 0 is imposed as well. This indicates that the (1þ 1)-
dimensional computation simulates only the forward
production of the meson in the (3þ 1)-dimensional com-
putations as expected intuitively. As shown in Eq. (4), the
value of −t is also not independent of the target massMT in
the (1þ 1)-dimensional computations. Thus, for a given −t
value, the skewness parameter ζ1þ1 gets smaller as MT
increases. The consequence of such constraint in (1þ 1)
dimensions will be revealed in the comparison of the CFF
between the predictions from the GPD formulation
deduced in the DVMP limit and our exact VMP compu-
tations obtained in the present work. In particular, the
condition that Q2 ≫ M2

T may not be required for the
DVMP limit in the (1þ 1)-dimensional computations
because of the correlation among ζ1þ1, t, and M2

T . This
would then imply that the conditionQ2 ≫ M2

T may also not
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be required for the forward production of mesons in the
(3þ 1)-dimensional computations.

III. MODEL CALCULATIONS FOR VIRTUAL
MESON PRODUCTION

In general, the total scattering amplitude Mμ
tot for scalar

meson production off the scalar target of Eq. (1) is
expressed in terms of two independent CFFs [21] as1

Mμ
tot ¼ ½ðΔ ·qÞqμ−q2Δμ�F 1þ ½ðΔ ·qÞPμ− ðP ·qÞΔμ�F 2

≡AμF 1þBμF 2; ð11Þ

which defines Aμ and Bμ, where P ¼ pþ p0. The EM
current conservation in Eq. (11) is assured by the condition
q ·Mtot ¼ 0. The CFFs are measurable physical quantities
and are related to the GPDs in the deeply virtual kinematic
region, e.g., Q2 ≫ −t. For the VCS process, it is not
possible to distinguish whether the emitted real photon
comes from the loop process in the hadronic sector or from
the scattered electron, i.e., the BH process [19]. However,
the VMP does not have a BH-type process since the scalar
meson cannot be emitted from the electron.
Furthermore, the two CFFs F 1 and F 2 in Eq. (11) are

not linearly independent in (1þ 1) dimensions since the
two covariant vectors Aμ and Bμ are parallel to each other,
i.e., Bμ ¼ cAμ, where the scaling factor c reads

c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt − 4M2

TÞ
M4

S þ 2M2
SðQ2 − tÞ þ ðQ2 þ tÞ2

s
; ð12Þ

for μ ¼ �. This leads us to redefine Mμ
tot in (1þ 1)

dimensions with one CFF as

Mμð1þ1Þ
tot ¼ ½ðΔ · qÞqμ − q2Δμ�F ; ð13Þ

where F ¼ F 1 þ cF 2.
In the following, we shall perform the LF calculations

of Mμð1þ1Þ
tot using the model based on the covariant BS

calculations of (1þ 1)-dimensional scalar field theory.
As the beam spin asymmetry for scalar meson production
is absent in (1þ 1) dimensions because of the singleness
of CFF, we do not need to involve the beam helicity
but just focus on the LF calculations of the covariant
scalar field model. We analyze the detailed structure of
scattering amplitude coming from the loop diagrams
below.

A. Amplitudes from loop diagrams

For simplicity, we assume that the scalar target is made
up of two scalar constituents, Q1 and Q2, with mass
and charge ðmQ1

; eQ1
Þ and ðmQ2

; eQ̄2
Þ, respectively. The

Mandelstam variables are defined as s ¼ ðpþ qÞ2 and
u ¼ ðp − q0Þ2. The loop contribution to the scattering
amplitude Mμ

tot is given by2

Mμ
loop ¼ Mμ

s þMμ
u þMμ

c; ð14Þ

where Mμ
s and Mμ

u are the s- and u-channel amplitudes as
shown in Figs. 1(a) and 1(b), respectively. The diagram
shown in Fig. 1(c) is the diagram of “cat’s ears,” which
we denote as “c-channel” amplitude. The inclusion of the
c-channel amplitude is crucial to satisfy the gauge
invariance.
In the solvable covariant BS model of (1þ 1)-

dimensional scalar field theory, the scattering amplitudes
of the s-, u-, and c-channels in the one-loop approximation
are written as

Mμ
s ¼ ieQ1

N
Z

d2k
ð2πÞ2

ð2kþ qÞμ
NkNkþqNk−ΔDk−p

;

Mμ
u ¼ ieQ1

N
Z

d2k
ð2πÞ2

ð2k − 2q0 þ qÞμ
NkNk−q0Nk−ΔDk−p

;

Mμ
c ¼ −ieQ̄2

N
Z

d2k
ð2πÞ2

ð2k − 2p − qÞμ
NkNk−q0Dk−p−qDk−p

; ð15Þ

where the denominators are coming from the intermediate
scalar propagators shown in Fig. 1. Here, Np1

¼ p2
1 −

m2
Q1

þ iϵ and Dp2
¼ p2

2 −m2
Q2

þ iϵ. The normalization
constant N includes the coupling constants involved in
this reaction. The electric charges satisfy the charge

(a) (b)

(c)

FIG. 1. Relevant Feynman diagrams for the reaction of
γ�ðqÞ þMðpÞ → Sðq0Þ þMðp0Þ. (a) The s-box diagram,
(b) the u-box diagram, and (c) the cat’s ears diagram.

1The two CFFs given by Eq. (13) in Ref. [21] are obtained
from the replacement of F 1 → −ðF1 þ F2Þ and F 2 → −F2 in
Eq. (11). 2From now on, we drop the superscript (1þ 1) in Mμð1þ1Þ

tot .
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conservation, eQ1
þ eQ̄2

¼ eM, where eM is the charge of
the scalar target and eQ̄j

¼ −eQj
.

While one may perform the manifestly covariant calcu-
lations of Eq. (15) using the Feynman parametrization, it
has technical difficulties in analyzing the pole structures
associated with the multidimensional integral of Feynman
parameters. On the other hand, the LF calculations in
(1þ 1) dimensions avoid such difficulties since it involves
only the one-dimensional integral, as we shall show below.
In terms of the LF variables, the s-channel amplitude

Mμ
s in Eq. (15) can be rewritten as

Mμ
s ¼ ieQ1

N

2ð2πÞ2
Z

dkþdk−

Cs

×
2kμ þ qμ

ðk− − k−i Þðk− − k−f Þðk− − k−t Þðk− − k−b Þ
; ð16Þ

where Cs ¼ kþðkþ þ qþÞðkþ − ΔþÞðkþ − pþÞ and

k−i ¼ m2
Q1

kþ
− i

ϵ

kþ
;

k−f ¼ Δ− þ m2
Q1

kþ − Δþ − i
ϵ

kþ − Δþ ;

k−t ¼ −q− þ m2
Q1

kþ þ qþ
− i

ϵ

kþ þ qþ
;

k−b ¼ p− þ m2
Q2

kþ − pþ − i
ϵ

kþ − pþ : ð17Þ

Similar expressions can be obtained for Mμ
u and Mμ

c. The
obtained 12 LF time-ordered diagrams for the scattering
amplitudes (Mμ

s , Mμ
u, Mμ

c) corresponding to ðs; u; cÞ-
channels are depicted in Fig. 2.
For the s-channel amplitudeMμ

s in Eq. (16), the Cauchy
integration over k− gives the three LF time (xþ)-ordered
contributions to the residue calculations, i.e., those coming
from regions S1 (Δþ < kþ < pþ), S2 (−qþ < kþ < Δþ),
and S3 (0 < kþ < −qþ), respectively. There are several
comments in order. We note that qþ in Eq. (6) is chosen to
be qþ < 0 and the region S2 is absent for the μs ¼ 0 limit
as in the case of DVCS. The kinematic region S1
corresponds to the so-called DGLAP region [32–34],
and the other two regions, S2 and S3, correspond to the
so-called ERBL region [35–37]. The DGLAP and ERBL
regions correspond to the valence contribution representing
the particle-number-conserving process and the nonvalence
one representing the particle-number-changing process,
respectively.
In the DGLAP region of S1, where Δþ < kþ < pþ, the

residue is at the pole of k− ¼ k−b , which is placed in
the upper half of the complex k− plane. Therefore, the
Cauchy integration ofMμ

s in Eq. (16) over k− in this region
leads to

Mμ
s;hand ¼ −

eQ1
N

4π

Z
pþ

Δþ
dkþ

2kμb þ qμ

CsðΔk−biÞðΔk−bfÞðΔk−btÞ
;

ð18Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 2. The LF time-ordered diagrams for the scattering amplitudes (Mμ
s ;M

μ
u;M

μ
c) corresponding to the ðs; u; cÞ-channels.
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where kμj ¼ ðkþ; k−j Þ and Δk−jk ¼ k−j − k−k . This amplitude
corresponds to the “handbag” diagram shown in Fig. 2(d)
in the s-channel.
In the ERBL region of S2, where −qþ < kþ < Δþ,

while two poles (k−i ; k
−
t ) are placed in the lower half of the

complex k− plane, the other two poles (k−f ; k
−
b ) lie on the

upper half of the complex k− plane. Taking the two poles
k− ¼ ðk−f ; k−b Þ and using some mathematical manipulations
for the denominators, e.g., 1=ðΔk−fiΔk−fbÞ ¼ −ð1=Δk−biÞ×
ð1=Δk−fi þ 1=Δk−bfÞ, we obtain two different types of LF
time-ordered amplitudes in the S2 region as

Mμ
s;stret ¼

eQ1
N

4π

Z
Δþ

−qþ
dkþ

2kμi þ qμ

CsðΔk−biÞðΔk−fiÞðΔk−ftÞ
;

Mμ
s;open ¼ eQ1

N
4π

Z
Δþ

−qþ
dkþ

2kμb þ qμ

CsðΔk−biÞðΔk−btÞðΔk−ftÞ
; ð19Þ

where Mμ
s;stret and Mμ

s;open correspond to the so-called
“stretched box” and “open diamond” diagrams shown in
Figs. 2(b) and 2(c) in the s-channel, respectively.
In the other ERBL region of S3, where 0 < kþ < −qþ,

the residue is at the pole of k− ¼ k−i , which is placed
in the lower half of the complex k− plane. The Cauchy
integration of Mμ

s in Eq. (16) over k− in the S3 region
leads to

Mμ
s;twist ¼

eQ1
N

4π

Z
−qþ

0

dkþ
2kμi þ qμ

CsðΔk−ibÞðΔk−ifÞðΔk−itÞ
; ð20Þ

which corresponds to what we call the “twisted
stretched box” diagram as shown in Fig. 2(a) in the
s-channel.
Similarly, we can obtain the LF time-ordered amplitudes

for Mμ
u of Figs. 2(e)–2(h) in the u-channel and Mμ

c of
Figs. 2(i)–2(l) in the c-channel. Their explicit expressions
read

Mμ
u;twist ¼

eQ1
N

4π

Z
q0þ

0

dkþ
2kμi − 2q0μ þ qμ

CuðΔk−ifÞðΔk−iuÞðΔk−ibÞ
;

Mμ
u;stret ¼ −

eQ1
N

4π

Z
Δþ

q0þ
dkþ

2kμi − 2q0μ þ qμ

CuðΔk−ibÞðΔk−fiÞðΔk−fuÞ
;

Mμ
u;open ¼ −

eQ1
N

4π

Z
Δþ

q0þ
dkþ

−2kμb þ 2q0μ − qμ

CuðΔk−ubÞðΔk−fuÞðΔk−ibÞ
;

Mμ
u;hand ¼ −

eQ1
N

4π

Z
pþ

Δþ
dkþ

2kμb − 2q0μ þ qμ

CuðΔk−bfÞðΔk−buÞðΔk−biÞ
;

ð21Þ

and

Mμ
cðiÞ ¼ −

eQ̄2
N

4π

Z
q0þ

0

dkþ
2kμi − 2pμ − qμ

CcðΔk−ibÞðΔk−icÞðΔk−iuÞ
;

Mμ
cðjÞ ¼

eQ̄2
N

4π

Z
pþþqþ

q0þ
dkþ

−2kμi þ 2pμ þ qμ

CcðΔk−biÞðΔk−ciÞðΔk−cuÞ
;

Mμ
cðkÞ ¼

eQ̄2
N

4π

Z
pþþqþ

q0þ
dkþ

−2kμb þ 2pμ þ qμ

CcðΔk−biÞðΔk−buÞðΔk−cuÞ
;

Mμ
cðlÞ ¼

eQ̄2
N

4π

Z
pþ

pþþqþ
dkþ

2kμb − 2pμ − qμ

CcðΔk−bcÞðΔk−buÞðΔk−biÞ
; ð22Þ

where Cu ¼ kþðkþ − q0þÞðkþ − ΔþÞðkþ − pþÞ, Cc ¼
kþðkþ − q0þÞðkþ − pþ − qþÞðkþ − pþÞ, and

k−u ¼ q0− þ m2
Q1

kþ − q0þ
− i

ϵ

kþ − q0þ
;

k−c ¼ p− þ q− þ m2
Q2

kþ − pþ − qþ
− i

ϵ

kþ − pþ − qþ
: ð23Þ

B. Amplitudes from effective tree diagrams

For the neural target, where eM ¼ eQ1
þ eQ̄2

¼ 0, the
gauge invariance condition q ·Mμ

tot ¼ 0 is guaranteed
when Mμ

tot ¼ Mμ
loop. However, for the case of a charged

target such as the “helium” nucleus, additional diagrams
called “effective tree” diagrams, where the photon line is
attached to the charged target, are required to ensure the
gauge invariance. The effective tree contribution to the
scattering amplitude is decomposed as

Mμ
ET ¼ Mμ

s;ET þMμ
u;ET; ð24Þ

where the corresponding LF time-ordered diagrams are
presented in Fig. 3. The covariant scattering amplitudes
Mμ

s;ET and Mμ
u;ET are obtained as

Mμ
s;ET ¼

ieMN
ðpþqÞ2−MT

2

Z
d2k
ð2πÞ2

2pμþqμ

NkNk−q0Dk−p−q
;

Mμ
u;ET ¼

ieMN
ðp−q0Þ2 −MT

2

Z
d2k
ð2πÞ2

2pμþqμ− 2q0μ

NkNk−q0Dk−p
: ð25Þ

In the LF calculations, the Cauchy integration over k− in
Eq. (25) gives two LF time-ordered contributions to
the residue calculations. For Mμ

s;ET, one comes from
the valence region ðq0þ < kþ < pþ þ qþÞ as shown in
Fig. 3(a) and the other from the nonvalence region ð0 <
kþ < q0þÞ as shown in Fig. 3(b). In the case ofMμ

u;ET, they
come from the valence region ðq0þ < kþ < pþÞ as shown
in Fig. 3(c) and from the nonvalence region ð0 < kþ < q0þÞ
as shown in Fig. 3(d). In the valence (nonvalence) region
forMμ

s;ET, the residue is at the pole of k
− ¼ k−c ðk−i Þ, which
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is placed in the upper (lower) half of the complex k− plane.
Similarly, in the valence (nonvalence) region forMμ

u;ET, the
residue is at the pole of k− ¼ k−b ðk−i Þ, which is placed in
the upper (lower) half of the complex k− plane. Thus, the
Cauchy integrations of Mμ

sðuÞ;ET over k− lead to

Mμ
s;ET ¼ eMN

4π½ðpþ qÞ2 −MT
2�
�Z

q0þ

0

dkþ
2pμ þ qμ

C0
sðΔk−iuÞðΔk−icÞ

−
Z

pþþqþ

q0þ
dkþ

2pμ þ qμ

C0
sðΔk−ciÞðΔk−cuÞ

	
;

Mμ
u;ET ¼ eM

4π½ðp − q0Þ2 −MT
2�
�Z

q0þ

0

dkþ
2pμ þ qμ − 2q0μ

C0
uðΔk−iuÞðΔk−ibÞ

−
Z

pþ

q0þ
dkþ

2pμ þ qμ − 2q0μ

C0
uðΔk−biÞðΔk−buÞ

	
; ð26Þ

where C0
s ¼ kþðkþ − q0þÞðkþ − pþ − qþÞ and C0

u ¼
kþðkþ − q0þÞðkþ − pþÞ.
It should be noted that the full amplitudes are obtained

by including the exchanged diagrams ðQ1 ↔ Q2Þ in
Figs. 1–3. Although we do not give the corresponding
amplitudes explicitly, their expressions can straightfor-
wardly be obtained from the formulas given above with
the exchange of Q1 ↔ Q2. It should be understood that the
contributions from the exchange of Q1 ↔ Q2 are included
in our numerical computation of the full amplitudes even if
they are not explicitly mentioned. Thus, the total scattering
amplitudes for the neutral and charged targets may be
summarized as

Mμ
neutral ¼ Mμ

loopðQ1; Q2Þ þ ð1 ↔ 2Þ;
Mμ

charged ¼ Mμ
loopðQ1; Q2Þ þMμ

ETðQ1; Q2Þ þ ð1 ↔ 2Þ;
ð27Þ

respectively. The CFF F c for the charged target such as the
helium nucleus is then computed by

FVMP
c ðQ2; tÞ ¼ Mμ

charged

ðΔ · qÞqμ − q2Δμ ; ð28Þ

which is valid for each component (μ ¼ þ;−) of the
current in (1þ 1) dimensions.

IV. DEEPLY VIRTUAL MESON
PRODUCTION LIMIT

In this section, we analyze the amplitude in the DVMP
limit, where Q2 is larger than the other scales, namely,
Q2 ≫ ðM2

T;M
2
S;−tÞ. From Q2 ≫ ðM2

S;−tÞ, we have
ðμs; τÞ → 0, which leads to ζ ¼ ζ0, q− ¼ q0− ¼ Q2=ζpþ,
qþ ¼ −Δþ, and q0þ ¼ 0 from Eqs. (6) and (7).
Furthermore, we also have Δk−bt ¼ Δk−ft ¼ Δk−it ¼ q− in
the energy denominators for the scattering amplitudes
given by Eqs. (18)–(20). However, it should be noted that
the condition Q2 ≫ M2

T is not used here in taking the
DVMP limit.

A. Generalized parton distribution

In the DVMP limit, the time-ordered amplitudes for the
s-channel with μ ¼ þ given by Eqs. (18)–(20) are now
reduced to

MþDVMP
s;hand ¼ eQ1

N
4πq−

Z
pþ

Δþ
dkþ

−2kþ þ Δþ

Csðk−b − k−i Þðk−b − k−f Þ
;

MþDVMP
s;twist ¼ eQ1

N

4πq−

Z
Δþ

0

dkþ
2kþ − Δþ

Csðk−i − k−b Þðk−i − k−f Þ
; ð29Þ

at the leading order in Q2, where we have used qþ ¼ −Δþ.
The kinematic region for both the open diamond and
stretched box diagrams given by Eq. (19) vanishes
in the limit of qþ ¼ −Δþ. Also, the effective tree ampli-
tude MþDVMP

s;ET in Eq. (26) does not contribute in the
DVMP limit.
Similarly, the reduced amplitudes for the u-channel in

the DVMP limit are given by

MþDVMP
u;hand ¼ eQ1

N
4πq−

Z
pþ

Δþ
dkþ

2kþ − Δþ

Cuðk−b − k−i Þðk−b − k−f Þ
;

MþDVMP
u;stret ¼ eQ1

N

4πq−

Z
Δþ

0

dkþ
−2kþ þ Δþ

Cuðk−i − k−b Þðk−i − k−f Þ
ð30Þ

from Eq. (21). Neither the effective tree amplitude
MþDVMP

u;ET in Eq. (26) nor the amplitudes of the cat’s ears
in Eq. (22) contribute in the DVMP limit.
Combining both s- and u-channel amplitudes given by

Eqs. (29) and (30) and using the longitudinal momentum
fraction x ¼ kþ=pþ (0 ≤ x ≤ 1), we obtain the DVMP
amplitude in the leading order of Q2 as the factorized form
of the hard and soft parts given by

(a) (b)

(c) (d)

FIG. 3. The LF time-ordered effective tree diagrams in the
s- and u-channels for a charged target case. (a),(b) The valence
and nonvalence contributions to Mμ

s;ET, respectively, and (c),(d)
the valence and nonvalence contributions to Mμ

u;ET, respectively.
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MþDVMP
sþu ¼ eQ1

ζ

4πQ2

Z
1

0

dx

�
1

x − ζ
−
1

x

�
Hðζ; x; tÞ; ð31Þ

where

Hðζ; x; tÞ ¼


HERBLðζ; x; tÞ; for 0 ≤ x ≤ ζ;

HDGLAPðζ; x; tÞ; for ζ ≤ x ≤ 1
ð32Þ

is identified as the GPD [4–11]. The GPD function
Hðζ; x; tÞ is naturally represented by the sum of the LF
nonvalence contribution to the ERBL (0 ≤ x ≤ ζ) region
and the valence contribution to the DGLAP (ζ ≤ x ≤ 1)
region as shown in Fig. 4.
Respectively, HERBLðζ; x; tÞ and HDGLAPðζ; x; tÞ are

given by

HERBL ¼ N
xðζ − xÞð1 − xÞ

ð2x − ζÞζ
ðM2

T −M2
0Þ
�
tþ ζ2m2

Q1

xðx−ζÞ

� ;

HDGLAP ¼
N

xðx − ζÞð1 − xÞ
ð2x − ζÞð1 − ζÞ

ðM2
T −M2

0ÞðM2
T −M02

0 Þ
; ð33Þ

where

M2
0 ¼

m2
Q1

x
þ m2

Q2

1 − x
; M02

0 ¼ m2
Q1

x0
þ m2

Q2

1 − x0
ð34Þ

with x0 ¼ ðx − ζÞ=ð1 − ζÞ. It can be checked that
HERBLðζ; x; tÞ and HDGLAPðζ; x; tÞ obtained in this model
are continuous and finite at the boundary x ¼ ζ, namely,
HERBLðζ; ζ; tÞ ¼ HDGLAPðζ; ζ; tÞ ¼ Hðζ; ζ; tÞ, which is
written explicitly as

Hðζ; ζ; tÞ ¼ N ζ

ð1 − ζÞm4
Q1

þ ζm2
Q1
½m2

Q2
þ ðζ − 1ÞM2

T �
: ð35Þ

It is related with the imaginary part of the DVMP amplitude
MþDVMP

sþu in Eq. (31). As we have mentioned in Sec. II,

ζ and t are not independent of each other in (1þ 1)
dimensions unlike the (3þ 1)-dimensional case and the
explicit expression in Eq. (35) is given by a function of
ζ only.
In the DVMP limit and at the leading order of Q2, the

contributions from effective tree amplitudes are suppressed
and only the s- and u-channel loop amplitudes contribute.
Effectively, the DVMP results given by MþDVMP

sþu are
independent of the electric charge of the target, whether
it is charged or neutral. Taking into account the corre-
sponding prefactor in Eq. (13) relating the scattering
amplitude to the CFF given by

ðΔ · qÞqþ − q2Δþ ¼ 1

2
Q2ζpþ

�
1þ t

Q2
þ � � �

	
; ð36Þ

we obtain the CFF in the DVMP limit at the leading order
of Q2 denoted by FDVMP as

FDVMPðQ2; tÞ ¼ MþDVMP
sþu

1
2
Q2ζpþ : ð37Þ

In view of the QCD collinear factorization theorem at the
leading twist for the DVMP process [38], the comparison of
FDVMPðQ2; tÞ of Eq. (37) with the exact results F cðQ2; tÞ
of Eq. (28) would be very interesting as it allows us to
explore the valid kinematic region for the GPD formulation
based on the handbag dominance in the leading order of
Q2. We compare the numerical results of F c and the
leading twist FDVMPðQ2; tÞ in Sec. V.

B. Parton distribution functions

In the limit ðζ; tÞ → 0, we have Hð0; x; 0Þ ¼
HDGLAPð0; x; 0Þ≡ qvðxÞ, where

qvðxÞ ¼
2N

xð1 − xÞðM2
T −M2

0Þ2
: ð38Þ

In this limit, HERBLð0; x; 0Þ ¼ 0 and qvðxÞ corresponds to
the ordinary PDF representing the probability to find the
constituent inside the hadron as a function of the momen-
tum fraction x carried by the constituent in the valence
sector. The corresponding LF wave function ψðxÞ of the
target hadron in the momentum space may be written as

ψðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
qvðxÞ

p
; ð39Þ

which satisfies
R
1
0 dxjψðxÞj2 ¼ 1

2

R
1
−1 dyqvðyÞ ¼ 1. We then

obtain the nth moment of qvðxÞ defined by [39]

hyni ¼
Z

1

−1
dy ynqvðyÞ; ð40Þ

where y ¼ 2x − 1.

(a) (b)

FIG. 4. Diagrams for GPDs in different kinematic regions for
the ζ > 0 case. The sum of MþDVMP

s;hand and MþDVMP
u;hand corresponds

to the valence diagram (a) defined in the DGLAP (ζ ≤ x ≤ 1)
region and the sum ofMþDVMP

s;twist andMþDVMP
u;stret corresponds to the

nonvalence diagram (b) defined in the ERBL (0 ≤ x ≤ ζ) region.
The small white blob in the figure represents the nonlocality of
the constituent–gauge-boson vertex.
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Introducing the longitudinally boost-invariant dimen-
sionless LF spatial variable z̃ ¼ pþx−, which is canonically
conjugate to x [31,40,41], the LF wave function ψðz̃Þ in
the LF coordinate space z̃ evaluated at xþ ¼ 0 can be
defined by

ψðz̃Þ ¼ 1ffiffiffiffiffiffi
2π

p
Z

dxψðxÞeik·x ¼ 1ffiffiffiffiffiffi
2π

p
Z

1

0

dxψðxÞeiz̃x=2

ð41Þ

as the Fourier transform of ψðxÞ in (1þ 1) dimensions.
Then, the longitudinal probability density ϱðz̃Þ in the LF
coordinate space z̃ is given by

ϱðz̃Þ ¼ jψðz̃Þj2; ð42Þ

which satisfies
R∞
0 ϱðz̃Þdz̃ ¼ 1. Detailed discussions on the

three-dimensional version of Eq. (41), ϱðz̃;bÞ, which
includes the transverse distance b of the struck constituent
from the transverse center of momentum, were provided in
Refs. [31,40,41].

C. Moments of GPD

In general, the nth moment of the GPD is defined by

Fnðζ; tÞ ¼
Z

1

0

dx
1 − ζ=2

xn−1Hðζ; x; tÞ: ð43Þ

It is well known that the polynomiality conditions [42,43]
for the nth moment of the GPD require that the highest
power of ζ in the polynomial expression of Fnðζ; tÞ should
not be larger than n. These polynomiality conditions are
fundamental properties of the GPD, which follow from the
Lorentz invariance.
The first moment of Hðζ; x; tÞ is related to the EM

form factor FMðtÞ of the target M by the following sum
rule [4–7]:

FMðtÞ ¼
Z

1

0

dx
1 − ζ=2

Hðζ; x; tÞ: ð44Þ

In the (3þ 1)-dimensional analysis, the full result of the
EM form factor (n ¼ 1) should be independent of ζ so that
F1ðζ; tÞ ¼ FMðtÞ since the two variables ζ and t are
independent of each other. However, in (1þ 1) dimensions,
the moment Fnðζ; tÞ should be a function of a single
variable, FnðζÞ or FnðtÞ, since the two variables are
related to each other. For example, ζ ¼ 0 and 1 correspond
to −t ¼ 0 and ∞, respectively. In other words, the interval
of ζ ¼ ½0; 1� covers the entire range of the momentum
transfer squared −t ¼ ½0;∞� in the nth moment of the GPD
in (1þ 1) dimensions. Furthermore, all the moments
vanish at ζ ¼ 1, i.e., Fnðζ ¼ 1Þ ¼ 0, which hinders check-
ing the polynomiality conditions. To circumvent this
hindrance in checking the polynomiality conditions due
to Fnðζ ¼ 1Þ ¼ 0, we redefine the moments as

F̄nðζÞ ¼ FnðζÞ=F1ðζÞ; ð45Þ

so that F̄1ðζÞ is independent of ζ. In Sec. V, we will discuss
how our model calculations for F̄nðζÞ satisfy the poly-
nomiality conditions.
The normalization factor N is fixed by the condition

FMð0Þ ¼ 1 and given by

N ¼ m2
Q1
m2

Q2
ð1 − ω2Þ2

1 − ω2 þ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
Tω

; ð46Þ

where

ω ¼ M2
T −m2

Q2
−m2

Q1

2mQ1
mQ2

; ð47Þ

and

Tω ¼ tan−1
�
mQ2

þmQ1
ω

mQ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
þ tan−1

�
mQ1

þmQ2
ω

mQ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
:

ð48Þ

We note that the EM form factor obtained by using
Eqs. (32)–(33) and Eq. (44) is identical to the form factor
obtained in our previous publication [23] within the same
solvable ϕ3 scalar field model in (1þ 1) dimensions
[24,25,27].

V. NUMERICAL RESULTS

For the numerical computation, we simulate the electro-
production of a scalar meson f0ð980Þ off the scalar target
4He with the electric charge eM ¼ þ2e using the (1þ 1)-
dimensional scalar field theory discussed in the present
work. For our numerical calculations and analyses, we thus
take the target and scalar meson masses as MT ¼ 3.7 GeV
andMS ¼ 0.98 GeV. In this case, the threshold momentum
transfer at Q2 ¼ 0 is given by tthðQ2 ¼ 0Þ ¼ −MTM2

S=
ðMT þMSÞ ≃ −0.76 GeV2. For the constituent mass, we
use the equal mass for both constituents, mQ1

¼
mQ2

¼ 2 GeV, so that the 4He target is a weakly bound
state, as MT < mQ1

þmQ2
but M2

T > m2
Q1

þm2
Q2
.3

However, we will discuss the cases with some variations
of constituent masses as needed for comments. For the
consistency of our numerical analysis, we use the same
normalization constant N given by Eq. (46) for all
physical observables such as the CFF F ðQ2; tÞ, the GPD
Hðζ; x; tÞ, and the EM form factor FMðtÞ throughout the
present work.

3Therefore, we mimic the reaction of f0ð980Þ production off
the 4He targets in (1þ 1) dimensions assuming that the 4He
nucleus is a bound state of two (scalar) deuterons.
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A. CFF in VMP

As we have discussed before, the total scattering
amplitude for a charged target Mμ ¼ Mμ

charged given by
Eq. (27), i.e., the full results without any approximation,
should satisfy the gauge invariance condition q ·M ¼ 0.
Furthermore, since Mμ is in general a complex-valued
function, even for the spacelike region Q2 > 0, the real and
imaginary part of Mμ can be shown to satisfy the gauge
invariance condition separately, i.e., Re½q ·M� ¼ 0 and
Im½q ·M� ¼ 0. We first check numerically whether these
conditions are met by our amplitudes. The solid line of
Fig. 5 shows that the gauge invariance is observed by the
exact amplitude Mμ

charged ¼ Mμ
uþsþcþET for the range of

0 ≤ Q2 ≤ 40 GeV2 at t ¼ tthðQ2 ¼ 0Þ. To estimate the
c-channel contribution, we turn off the c-channel contri-
butions, and the results for the real and imaginary parts of
q ·MuþsþET are plotted by the dashed and dotted lines,
respectively, in Fig. 5. This evidently shows that the
omission of the cat’s ears diagrams violates the Ward
identity. The violation is more serious at the smaller Q2

region, although the degree of deviation weakens at the
larger Q2 region as anticipated.
We then compute the CFF in VMP, FVMP

c ðQ2; tÞ. Shown
in Fig. 6 are the real part, the imaginary part, and themodulus
of the amplitudeFVMP

c obtained fromMþ
charged of Eq. (28) in

the range of 0 ≤ Q2 ≤ 10 GeV2 at t ¼ tthðQ2 ¼ 0Þ≃
−0.7593 GeV2. In order to explore the sensitivity of
FVMP

c ðQ2; tÞ on the constituentmass,wevary the constituent
mass and repeat the computations for mQ1

¼ 1.9, 2.0, and

2.1 GeV, while keeping mQ1
¼ mQ2

.4 The results for
mQ1

¼ 1.9, 2.0, and 2.1 GeV are presented by the dot-
dashed, solid, and dashed lines, respectively. The close
inspection of Fig. 6 leads to the following comments.
(i) The real part has a hump structure, and the peak locates
at the higher values of Q2 with the lesser pronounced hump
structures as the binding energy increases, as shown in
Fig. 6(a). (ii) Themagnitude of the imaginary part gets larger
as the binding energy increases as shown in Fig. 6(b). (iii) As
a result, the hump behavior of jFVMP

c ðQ2; tÞj shown in
Fig. 6(c) appears strong near Q2 ≃ jtthðQ2 ¼ 0Þj for weak
binding energies, but it goes away as the binding energy
increases. Also, there is no hump structure in the
jFVMP

c ðQ2; tÞj for Q2 > jtthðQ2 ¼ 0Þj region and the bind-
ing energy effect is getting smaller as Q2 increases.
The left and right panels of Fig. 7, respectively, show

the three-dimensional and contour plots of Re½FVMP
c �,

Im½FVMP
c �, and jFVMP

c j for the range of 0 ≤ Q2 ≤
20 GeV2 and −2 GeV2 ≤ t ≤ 0. Both the real (top panel)
and imaginary (middle panel) parts are going to zero as
t → 0 regardless of the value of Q2. For jtj≲Q2, the real
part ofFVMP

c shows a gradual crest along the straight line of
jtj ≈Q2, and the imaginary part has a trough located at
jtj ≈Q2. Both the real and imaginary parts rapidly
approach zero as jtj decreases to zero for the small Q2

region from the crest and trough, respectively. The modulus
of the CFF also has a crest around jtj ≈Q2 and gradually
decreases as Q2 increases and jtj decreases.

B. CFF and GPD in the DVMP limit

In the DVMP limit, where Q2 ≫ ðM2
S; jtjÞ but not

explicitly involvingQ2 ≫ M2
T due to the correlation among

ζ1þ1; t and M2
T as discussed in Sec. II, the scattering

amplitude for the scalar meson production from either
the neutral or charged scalar target is reduced to the DVMP
amplitude MþDVMP

sþu . Regardless of neutral or charged
target, the s- and u-channel amplitudes are factorized in
the DVMP limit as discussed in Sec. IVA and MþDVMP

sþu is
given by the factorized form of the hard scattering part and
the soft GPD Hðζ; x; tÞ as shown in Eq. (31). In order to
find the region where the DVMP limit is valid, we compare
the CFF FDVMP in Eq. (37) obtained from MþDVMP

sþu with
the exact solution FVMP

c presented in Fig. 6.
In Fig. 8, we compare FVMP

c (solid lines) and the
leading twist FDVMP (dashed lines) for the range of
0 ≤ Q2 ≤ 10 GeV2. Figures 8(a), 8(c) and 8(b), 8(d) show
(Re½F �, Im½F �), at t ¼ tthðQ2 ¼ 0Þ ≃ −0.7593 GeV2 and
t ¼ −2 GeV2, respectively. There are several points to
comment on the results shown in Fig. 8. (i) While the
exact solution FVMP

c is finite at Q2 ¼ 0 with a hump

0 10 20 30 40
Q

2 
[GeV

2
]

-0.4

-0.3

-0.2

-0.1

0

0.1
q.

M

Re[q.M
(s+u+c+ET)

]=Im[q.M
(s+u+c+ET)

]

Re[q.M
(s+u+ET)

]

Im[q.M
(s+u+ET)

]

m
Q1

 = m
Q2

 = 2 GeV

t ~ - 0.7593 GeV
2

FIG. 5. Role of the c-channel contributions in the gauge
invariance condition of Re½q ·M� and Im½q ·M� for a charged
target. The solid line is for the full amplitude while the dashed and
dotted lines are for the amplitudes without the c-channel
contributions.

4These masses give the binding energy B ¼ mQ1
þmQ2

−MT
in the range of (0.1–0.5) GeV.
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behavior near Q2 ¼ −t, the results of FDVMP obtained at
the leading order of Q2 in the DVMP limit do not have any
hump structure but blow up in the vicinity of Q2 ¼ 0.
(ii) The agreement between FVMP

c and FDVMP can be seen
at the largeQ2 region, but it reaches faster as the smaller −t
value is used. For instance, the VMP and DVMP results
agree for Q2 ≥ 6 GeV2 when −t ≃ 0.7593 GeV2 is fixed.

This indicates that the validity of the GPD handbag
approximation is governed by −t=Q2, but not separately
by −t or by Q2. Figure 8 shows that it is valid in the region
of −t=Q2 ≤ 0.125 with −t ≃ 0.7593 GeV2. On the other
hand, for −t ≃ 2 GeV2, the agreement of the VMP and
DVMP CFFs can be seen at higherQ2, i.e.,Q2 > 10 GeV2,
which corresponds to −t=Q2 ≃ 0.2. To have better agree-
ment for both the real and imaginary parts of the CFF, Q2
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FIG. 7. (Left) Three-dimensional and (right) contour plots for
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should be even larger to get −t=Q2 ≲ 0.1. Therefore, we
find that the GPD handbag approximation can be valid only
for a small value of −t=Q2, although the critical value of
−t=Q2 appears somewhat larger as −t increases in our
(1þ 1)-dimensional results. This indicates that, for realistic
VMP measurements in (3þ 1) dimensions, a very forward
scattering region should be required to invoke the GPD
handbag approximation as the forward scattering region
would allow a very small value of −t. Since −t is not
independent of the target mass MT as shown in Eq. (4) in
(1þ 1) dimensions, the skewness parameter ζ gets smaller
asMT increases for a given −t value. This indicates that the
GPD handbag approximation agrees with the exact VMP
result faster with a larger MT than a smaller MT, which
appears to be the characteristic of the (1þ 1)-dimensional
analysis.
As we have mentioned before, in (1þ 1) dimensions, the

GPDHðζ; x; tÞ given by Eq. (33) is essentially a function of
x and t since ζ and t are related to each other by Eq. (5).

Figure 9 shows the three-dimensional plots of Hðζ; x; tÞ
for two parameter sets, ðmQ1

; mQ2
Þ ¼ ð2; 2Þ GeV and

ðmQ1
; mQ2

Þ ¼ ð1; 3Þ GeV, whose results are presented in
Figs. 9(a) and 9(b), respectively, in the range of 0 ≤ x ≤ 1

and −4 GeV2 ≤ t ≤ 0. The red and green regions corre-
spond to GPDs in the ERBL (0 ≤ x ≤ ζ) and DGLAP
(ζ ≤ x ≤ 1) regions, respectively. The crossover boundaries
(black lines) between the two regions correspond to the
lines x ¼ ζ, i.e., HERBLðζ; ζ; tÞ ¼ HDGLAPðζ; ζ; tÞ. Again t
and ζ are not independent variables in (1þ 1) dimensions.
In the crossover boundary for a given parameter set, the
longitudinal momentum fraction x carried by the struck
constituentQ1 gradually increases as jtj increases. Also, the
peak position of GPD always exists in the DGLAP region.
Comparing the two parameter sets, the value of x at the
peak is found to decrease as the mass ratio mQ1

=mQ2

decreases.

C. PDF and EM form factor

Figure 10 shows the ordinary valence PDF for the helium
target multiplied by x, i.e., xqvðxÞ for three values ofmQ1

¼
mQ2

with MT ¼ 3.7 GeV. The dotted, solid, and dashed
lines in this figure represent the results obtained with
mQ1ð2Þ ¼ 1.9, 2.0, and 2.1 GeV, respectively. Since qvðxÞ in
Eq. (38) is symmetric under the exchange of x → 1 − x for
the case of equal constituent mass, xqvðxÞ is somehow
asymmetric. In Fig. 10, this asymmetric behavior is getting
noticeable as the binding gets stronger.
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FIG. 10. The ordinary valence PDF qvðxÞ of the scalar target
multiplied by x for mQ1

¼ mQ2
¼ 1.9, 2.0, and 2.1 GeV.

FIG. 9. Three-dimensional plots of Hðζ; x; tÞ for two para-
meter sets. (a) ðmQ1

; mQ2
Þ ¼ ð2; 2Þ GeV and (b) ðmQ1

; mQ2
Þ ¼

ð1; 3Þ GeV, in the region of 0 ≤ x ≤ 1 and −4 GeV2 ≤ t ≤ 0.

TABLE I. The nth moments hyni of the parton distribution
function for the scalar target with three constituent mass sets.

mQ1
¼ mQ2

hy1i hy2i hy3i hy4i hy5i hy6i
2.1 GeV 0 0.0884 0 0.0242 0 0.0104
2.0 GeV 0 0.0662 0 0.0155 0 0.0061
1.9 GeV 0 0.0313 0 0.0050 0 0.0016
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The nth moments of qvðxÞ for the scalar target are
summarized in Table I. Since qvðyÞ in Eq. (40) is an even
function of y, the odd-numbered moments vanish. Our
results in Table I show that the heavier the constituent mass
(or equivalently, the larger the binding energy) is, the greater
are the values of the even-numbered moments. This implies
that the shape of the PDF, qvðyÞ, is more narrowly peaked at
y ¼ 0 and more suppressed at the end points ðy ¼ �1Þ as
the binding energy of the scalar target decreases.
Shown in Fig. 11 is the longitudinal probability density

ϱðz̃Þ ¼ jψðz̃Þj2 [see Eqs. (41) and (42)] for the scalar target
with MT ¼ 3.7 GeV in the LF coordinate space of z̃ ¼
x−pþ which is completely Lorentz invariant in (1þ 1)
dimensions. The dot-dashed, solid, and dashed lines
represent the results for mQ1ð2Þ ¼ 1.9, 2.0, and 2.1 GeV,
respectively. In order to clearly show the behavior of the
longitudinal probability density, we plot ϱðz̃Þ in two ways.
In Fig. 11(a), ϱðz̃Þ is shown in the range of 0 ≤ z̃ ≤ 50 in
linear scale. This shows that the more strongly bound state
(mQ1ð2Þ ¼ 2.1 GeV) has a more concentrated distribution
near z̃ ¼ 0 than weakly bound states have. The long-range

behavior of ϱðz̃Þ is shown in Fig. 11(b) that plots the same
function in logarithmic scale for a wider range of z̃. One can
verify that ϱðz̃Þ shows the oscillating behavior for large z̃.
Furthermore, the onset of the oscillation appears earlier,
and the amplitude of the oscillation is larger for the strongly
bound states than the weakly bound states. Our observation
is consistent with those for the pion case reported in
Refs. [31,40,41].
We also investigate the dependence of our results on

the value of the target mass MT . In Fig. 12, we show the
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first three moments F̄nðζ; tÞ≡ F̄nðζÞ ¼ FnðζÞ=F1ðζÞ
(n ¼ 1, 2, 3) of GPD Hðζ; x; tÞ [see Eqs. (43)–(45)]. We
consider a weekly bound state and a strongly bound state.
Presented in Fig. 12(a) are the results for the weakly bound
scalar target with mQ1ð2Þ ¼ 2 GeV and MT ¼ 3.7 GeV,
which is dubbed the “helium” target. For comparison, we
also show in Fig. 12(b) the results for the strongly bound
scalar target with mQ1ð2Þ ¼ 0.25 GeV andMT ¼ 0.14 GeV,
which is dubbed the “pion” target [23]. The black, blue, and
red lines represent F̄1ðζÞ, F̄2ðζÞ, and F̄3ðζÞ, respectively.
The dashed, dotted, and solid lines represent the valence
contributions, the nonvalence contributions, and their sum,
respectively. The valence and nonvalence contributions are
obtained by replacing Hðζ; x; tÞ with HDGLAPðζ; x; tÞ and
HERBLðζ; x; tÞ in Eq. (33), respectively. The moments
shown in Fig. 12 are indeed for the entire spacelike
momentum transfer region since 0 ≤ ζ ≤ 1 corresponds
to 0 ≤ −t ≤ ∞.5 In other words, the skewness parameter ζ
is zero only at t ¼ 0 and the nonvalence contributions
always exist for nonzero skewness (ζ > 0).
Our results presented in Fig. 12 give the following

observations. (i) The first moments, F̄1ðζÞ, given by solid
black lines are defined to be ζ independent while the sum
rule for n ¼ 1 yields the physical EM form factor. (ii) The
redefined higher moments, F̄2ðζÞ and F̄3ðζÞ, satisfy the
polynomiality condition. In the figures, we plot the fitted
F̄2ðζÞ (orange diamonds) and F̄3ðζÞ (green diamonds) by
finding the corresponding polynomials up to the second
order of ζ. (iii) The nonvalence contribution for the weakly
bound helium target does not exceed the valence contri-
bution for the entire momentum transfer region as shown in
Fig. 12(a). However, the nonvalence contribution for the
strongly bound pion is not negligible and indeed takes over
the valence contribution at some points of ζ (or equivalently
−t) as shown in Fig. 12(b). For example, the nonvalence
contribution to the pion EM form factor (n ¼ 1 case) is
greater than the valence one for ζ ≥ 0.8 values.
Finally, we compute the EM form factor FMðtÞ of the

helium target as the first moment of Hðζ; x; tÞ for the
spacelike 0 ≤ −t < 40 GeV2 region, and the results are
given in Fig. 13. The dashed, dotted, and solid lines
represent the valence contributions, the nonvalence con-
tributions, and their sums, respectively. In particular, we
obtain the form factors by taking the plus (þ) and minus
(−) components of the current to examine the valence and
nonvalence contributions in taking different components of
the current while confirming that the sum of the valence and
nonvalence contributions coincide whichever component is
taken. Our results for FMðtÞ shown in Fig. 13(a) are
obtained by using Eqs. (31), (32), and (44) together with

the “þ” component of the current in the DVMP limit,
which is exactly the same as our recent result reported in
Ref. [23] based on the direct calculations of the triangle
diagrams. Although one typically uses the þ current to
compute the form factor FMðtÞ, we compute here FMðtÞ
using the − component of the current as well in our direct
triangle diagram calculation [23]. For comparison, we show
in Fig. 13(b) the EM form factor obtained from the −
component of the current using Eqs. (1) and (2) in
Ref. [23]. All these results confirm that the total EM form
factors are completely the same independent of the adopted
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FIG. 13. Electromagnetic form factor FMðtÞ of the helium
target as the first moment of Hðζ; x; tÞ obtained for
mQ1ð2Þ ¼ 2 GeV. The results are obtained by using (a) the plus
current and (b) the minus current.

5As we showed before, in (1þ 1) dimensions, ζ and t are
related to each other. But the relation depends on the mass. For
example, ζ ¼ 0.5 corresponds to −t ¼ 6.85 GeV2 for the helium
target but it corresponds to −t ¼ 0.01 GeV2 for the pion target.
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component of the current and either the þ or − component
of the current can be used to obtain the EM form factor.
However, the decomposition of the form factor depends on
which component of the current is used for the calculation.
This is apparent as shown in Figs. 13(a) and 13(b), where
one can see that the nonvalence contribution is quite
suppressed for the entire spacelike region when the þ
current is used, while its contribution is not negligible but
even exceeds the valence contribution for jtj≳ 8.5 GeV2

when the − current is used. Furthermore, the nonvalence
contribution for the − current case does not vanish even at
t ¼ 0 while it is zero for the þ current case. Therefore, the
decomposition of the form factor as the valence and
nonvalence contributions depends on which component
of the current is used. It should be interpreted with great
care noting which component of the current is used.

VI. SUMMARY AND CONCLUSION

In the present work, we investigated the light-front
amplitudes of the virtual meson production process off the
scalar target in (1þ 1) dimensions using the scalar field
model. Noting that there is only one CFF in (1þ 1)
dimensions for this process, we obtained the analytic
expressions for all possible LF time-ordered amplitudes
shown in Fig. 2. The obtained LF time-ordered ampli-
tudes are individually boost invariant, and the sum of all
LF time-ordered amplitudes turns out gauge invariant as they
must be.
With the analytic solutions of the amplitudes at hand, we

investigated various quantities, including the CFF, GPD,
PDF, and EM form factor. We first tested the handbag
dominance that has been adopted in the GPD formulation
for the large Q2 region. In particular, we explored the role
of the cat’s ears contributions, which have been typically
ignored.
To quantify the individual contribution of the LF

time-ordered amplitudes, we simulated the typical mass
arrangement of the γ� þ 4He → f0ð980Þ þ 4He process.
Our numerical results showed that the gauge invariance
is largely violated if one neglects the cat’s ears contribution.
In particular, the addition of the cat’s ears contribution
is crucial for the low Q2 region. Although the violation
appears smaller at Q2 > 10–20 GeV2 for the imaginary
part of the total amplitude, it is still noticeable for the real
part even at large Q2 as shown in Fig. 5. This appears to
limit the validity of the handbag dominance to the region of
small −t=Q2 [44]. Our numerical calculations in (1þ 1)
dimensions presented in Fig. 8 show that the handbag
dominance appears limited to the kinematic region
−t=Q2 ≲ 0.1 for its applicability both to the real and
imaginary parts of the CFF. The relaxation of the condition
Q2 ≫ M2

T in reaching the DVMP limit would also apply
only for the forward production of the meson in (3þ 1)
dimensions. Therefore, the direct use of the handbag

dominance in the analyses of the proposed experiments
at JLab [45], where such small values of −t=Q2 are not
reached, may be treacherous necessitating great care taking
into account the higher order −t=Q2 corrections not only
from the kinematic higher twist contributions but also from
the dynamic higher twist GPDs [16,46,47]. In this respect,
the future Electron-Ion Collider project [48] is strongly
called for the proper extraction of GPDs from the precision
experimental data off the nucleon and nuclei targets
focusing on the forward angle.
In our simple (1þ 1)-dimensional model compu-

tations, the limit ðζ; tÞ → 0 of the GPD, Hð0; x; 0Þ ¼
HDGLAPð0; x; 0Þ, provides the PDF, qvðxÞ, which could
be interpreted as the probability of finding the constituent
inside the hadron as a function of the momentum fraction x
carried by the constituent. It is equivalent to the square of
the LF wave function, i.e., qvðxÞ ¼ jψðxÞj2. In (1þ 1)
dimensions, the LF spatial variable z̃ ¼ x−pþ is completely
Lorentz invariant providing an intrinsic longitudinal prob-
ability density ϱðz̃Þ. Our numerical results showed that the
more strongly bound state concentrates the density more at
z̃ ¼ 0 than the less strongly bound states do, which appears
to be consistent with the intuitive understanding of the
bound-state system. The polynomiality condition for the
moments of GPD appears also well satisfied. The GPD sum
rule provided the EM form factor FMðtÞ confirming the
valence and nonvalence contributions that we obtained
previously [23], which corresponded to the GPD contri-
butions from the DGLAP and ERBL regions, respectively.
In the calculation of the electromagnetic properties of

hadrons in the LF formulation, one may use not only the
plus (þ) component but also any other component of the
current as they are supposed to give the identical results.
As shown in Fig. 13, we indeed confirmed that the two
components (þ or −) led to the identical form factor.
However, the decomposition of the form factor into valence
and nonvalence contributions appears quite different
depending on the component of the current used in the
extraction. This indicates that it requires great care in
interpreting the valence and nonvalence contributions to the
form factor.
Our (1þ 1)-dimensional analyses performed in the

present work would be extended to the more realistic
(3þ 1)-dimensional analyses, where the contributions
from the transverse component of the current would be
important. In particular, the two CFFs F 1 and F 2 involved
in the scalar meson production off the scalar target are
independent of each other in (3þ 1) dimensions. Thus, the
investigation of the beam spin asymmetry proportional to
F 1F �

2 − F 2F �
1 for this process would provide a unique

opportunity not only to explore the imaginary part of the
hadronic amplitude in our general formulation but also to
examine the significance of the chiral-odd GPD contribu-
tion in the leading-twist GPD formulation. The work along
this line of thought is currently under way.
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