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We revisit and extend the calculation of the density matrix and entanglement entropy of a color glass
condensate (CGC) by including the leading saturation corrections in the calculation. We show that the
density matrix is diagonal in the quasiparticle basis, where it has the Boltzmann form. The quasiparticles in
a wide interval of momenta behave as massless two-dimensional bosons with the temperature proportional
to the typical semihard scale T ¼ Qs=

ffiffiffiffiffiffiffiffiffiffi
αsNc

p
. Thus, the semihard momentum regionQs < k < Qs=

ffiffiffiffiffiffiffiffiffiffi
αsNc

p
arises as a well-defined intermediate regime between the perturbatively hard momenta and the non-
perturbative soft momenta k < Qs in the CGC description of a hadronic wave function.
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I. INTRODUCTION

Recently, there has been an increased interest in incor-
porating the concepts and methods of quantum information
theory into nuclear and particle physics [1]. In particular,
various aspects of entanglement in application to hadronic
collisions have been considered in [2–8]. A new intriguing
connection between the physics of black holes and
high energy hadrons was formulated in Ref. [9]. In the
context of high energy collisions, various ideas about
possible relevance of entanglement to thermalization and
parton distributions have been discussed in [10–13]. The
entanglement entropy between strongly coupled nonpertu-
bative modes and partonic components of a hadronic wave
function was conjectured to be the origin of the Boltzmann
entropy of particles produced in the collisions.
It was pointed out in [14] that the color glass condensate

(CGC) effective theory provides an explicit and calculable
model of entanglement in a high energy hadronic wave
function. The concept of entanglement implies a partition
of a system into the system of interest and its compliment.
In [14], the soft gluon degrees of freedom were considered
as the system of interest while the valence degrees of

freedom (larger x partons) in the hadron wave function
were treated as the complement. This partition is directly
relevant to measurements of observables at midrapidity
which reflect the properties of the soft gluons. Integrating
out the valence degrees of freedom in the original (pure
state) hadron wave function produces a mixed state density
matrix of the soft gluons. The entropy associated with this
mixed state is the entanglement entropy in question.
Originally, the entanglement entropy between valence

degrees of freedom and soft gluons was calculated in [14]
in the dilute limit, Q2

s=k2 ≪ 1. In the present paper, we
extend this calculation by accounting for saturation effects
in a “mean field” approximation. In addition, we discuss
some properties of the CGC reduced density matrix and the
associated entropy which were not investigated in earlier
work. In particular, we notice that the entropy has a
Boltzmann form. This implies that the associated reduced
density matrix not only can be diagonalized (this, of course,
can always be done, in principle) but also that the
eigenvalues of the density matrix are given by the powers
of the same single number (which in our case is a function
of transverse momentum). In other words, in the appro-
priate basis, the reduced density matrix has a Boltzmann
form albeit with a momentum-dependent effective temper-
ature. We explicitly find this basis by performing a
Bogoliubov transformation from the original free gluon
basis and discuss some interesting properties of the
corresponding quasiparticles. With the benefit of hindsight,
we do not find our results on the Boltzmann form of the
entanglement entropy surprising. At the leading order, the
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hadron wave function is a coherent operator acting on the
soft vacuum. It is given by the exponential of the argument
linear in the creation-annihilation operators. Integrating
the valence degrees of freedom in a Gaussian/McLerran-
Venugopalan leads to a reduced density matrix for the soft
sector, which has a general Gaussian form. A proper
Bogoliubov transformation would thus always lead to a
reduced density matrix with a Boltzmann structure.
We start in Sec. II by reviewing the derivation of [14] while

also providing some technical details. In Sec. III, we discuss
the extension of this calculation by including the saturation
effects. In Sec. IV, we diagonalize the density matrix and give
explicitly its Boltzmann form in the quasiparticle basis. We
conclude with a short discussion in Sec. V.

II. REVIEW: THE ENTANGLEMENT IN THE
COLOR GLASS CONDENSATE

A. The CGC hadron wave function

For an ultrarelativistic proton, a large fraction of the
longitudinal momentum is carried by the valence degrees of
freedom. When boosted, the valence partons radiate gluons
with lower longitudinal momentum which have a relatively
short lifetime. It is then natural to separate the degrees of
freedom according to their longitudinal momentum: the
large longitudinal momentum partons can be treated as
static sources of soft, low longitudinal momentum, gluons.
These degrees of freedom are of course strongly correlated,
and these correlations play an important role for the
phenomenology. For example, triggering on high multi-
plicities at forward rapidities also selects events with high
multiplicity at midrapidity. A less conventional quantity
which measures the correlation strength is the entanglement
entropy—the main focus of this paper.
In the CGC approach, the hadron state vector can be

written in the form

jψi ¼ jsi ⊗ jvi; ð1Þ

where jvi is the state vector characterizing the valence
degrees of freedom and jsi the state in the soft gluon Hilbert
space. The direct product in this equation is not math-
ematically precise, as we alluded to before, since the soft
gluons are sourced by valence degrees of freedom. In CGC,
this is encoded by

jsi ¼ Cj0i; ð2Þ

with the coherent operator

C ¼ exp

�
2i
Z
k
trbiðkÞ½aþi ðkÞ þ aið−kÞ�

�
; ð3Þ

where the summation over all color is implied. Here, j0i is
the Fock vacuum of the soft gluon Hilbert space. The

“background” Weizsäcker-Williams gluon field bia is the
solution of the static Yang-Mills equation

∂ibai ðxÞ ¼ gρaðxÞ; ð4Þ

where ρaðxÞ is the color charge density of the valence
gluons.
Equation (2) strictly speaking is valid in the regime when

the color charge density is weak where one can perform the
perturbative diagonalization of the QCD Hamiltonian in the
soft gluon sector. Nevertheless, in principle, the solution
to Eq. (2) contains nonlinearities in ρ which reflect certain
gluon saturation effects. Often, for the sake of simplifica-
tion, one considers the limit k ≫ Qs where these non-
linearities are small. In this case, the solution of the
Yang-Mills equation can be expressed as1

biaðkÞ ¼ gρaðkÞ
iki
k2

þ ciaðkÞ; ð5Þ

where ciaðkÞ is at least Oðρ2Þ. In this section, following the
original derivation of Ref. [14], we neglect the contribution
due to ciaðkÞ. We come back to consider nonlinear terms in
the next section. Note that the first term in Eq. (5) is
longitudinal (in the two dimensional sense) while ci is
transverse; that is, ciki ¼ 0. Thus, neglecting cia leads to
excitation of only longitudinal gluon degrees of freedom in
the soft gluon wave function.
We use the McLerran-Venugopalan model to model the

valence state [15,16]. This corresponds to treating the color
charges as the only relevant valence degrees of freedom
with the distribution

hρjvihvjρi ¼ e
−
R
k
ρaðkÞ 1

2μ2ðkÞρ
�
aðkÞ

: ð6Þ

The density matrix of the complete system is thus
given by

ρ̂ ¼ jsihsj ⊗ jvihvj; ð7Þ

and corresponds to a pure state, as it should.

1For completeness, we provide the conventions for the Fourier
transformation in two dimensions,

fðxÞ ¼
Z

d2k
ð2πÞ2 e

ik·xfðkÞ≡
Z
k
eivk·xfðkÞ

fðkÞ ¼
Z

d2xe−ik·xfðxÞ:

In this paper, k stands for 2-d vector, and k stands for its
magnitude.
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B. The reduced density matrix of soft gluons

To proceed with evaluation of the entanglement entropy,
we integrate out the valence modes. The resulting reduced
density matrix for the soft modes is defined as

ρ̂r¼
X
v

hvjρ̂jvi¼N
Z

Dρe
−
R
k

1

2μ2ðkÞρaðkÞρ
�
aðkÞCj0ih0jC†: ð8Þ

Our next step is to compute the reduced density matrix
explicitly. For this, it is convenient to introduce the notation

ϕðkÞ ¼ aðkÞ þ aþð−kÞ;
ϕðxÞ ¼ aðxÞ þ aþðxÞ:

The matrix element of the reduced density matrix in the
field basis is

hϕ1jρ̂rjϕ2i ¼ N
Z

Dρe
−
R
k

1

2μ2ðkÞρaðkÞρ
�
aðkÞ

× hϕ1jCðρ;ϕÞj0ih0jC†ðρ;ϕÞjϕ2i: ð9Þ

In the above,

hϕ1jCðρ;ϕÞj0i ¼ hϕ1j exp
�
i
Z
k
biaðkÞϕ�

aðkÞ
�
j0i

¼ exp

�
i
Z
k
biaðkÞϕ�

1aðkÞ
�
hϕ1j0i: ð10Þ

The wave function for the coherent vacuum hϕ1j0i is
known, and we use its explicit form at a later stage of the
derivation. Equation (9) then becomes

hϕ1jρ̂jϕ2i ¼ N
Z

Dρe
−
R
k

1

2μ2ðkÞρcðkÞρ
�
cðkÞ

e
i
R
k
biaðkÞϕ�i

1;aðkÞ

× hϕ1j0ih0jϕ2ie
−i
R
k
b�jb ðkÞϕj

2;bðkÞ: ð11Þ

The integral over the color charge density ρ is Gaussian and
can be evaluated in a straightforward manner. Using Eq. (5)
and neglecting nonlinear terms in the solution, we obtain

N
Z

Dρe
−
R
k

1

2μ2ðkÞρcðkÞρ
�
cðkÞþi

R
k
biaðkÞϕ�i

1;aðkÞ−i
R
k
b�jb ðkÞϕj

2;bðkÞ ¼N
Z

Dρ e
−
R
k

1

2μ2ðkÞρcðkÞρ
�
cðkÞþi

R
k
biaðkÞðϕi

1;að−kÞ−ϕi
2;að−kÞÞ

¼N
Z

Dρ e
−
R
k

1

2μ2ðkÞ½ρaðkÞ−gμ
2 ki
k2
ðϕa1iðkÞ−ϕa2iðkÞÞ�½ρað−kÞ−gμ2−kik2

ðϕa1ið−kÞ−ϕa2ið−kÞÞ�

×e
−
R
k

g2μ2

2

kikj

k4
ðϕa1jðkÞ−ϕa2jðkÞÞðϕa1ið−kÞ−ϕa2ið−kÞÞ

¼e
−
R
k

g2μ2

2

kikj

k4
ðϕa1jðkÞ−ϕa2jðkÞÞðϕa1ið−kÞ−ϕa2ið−kÞÞ: ð12Þ

Therefore, the matrix element reads

hϕ1jρ̂jϕ2i

¼hϕ1j0ih0jϕ2ie
−
R
k
1
2
Mab

ij ðkÞðϕa
1jðkÞ−ϕa

2jðkÞÞðϕb
1ið−kÞ−ϕb

2ið−kÞÞ; ð13Þ
with

Mab
ij ðkÞ≡ g2μ2ðkÞδab kikj

k4
: ð14Þ

This has to be supplemented by the vacuum wave function
(in terms of fields in the coordinate space representation),

hϕj0i ¼ Nvace
−1
4

R
x
ϕa
i ðxÞϕa

i ðxÞ; ð15Þ

where N is defined by the condition2

1¼ h0j0i ¼
Z

Dϕh0jϕihϕj0i ¼ N2
vac

Z
Dϕe−

1
2

R
x
ϕa
i ðxÞϕa

i ðxÞ:

We finally obtain that the matrix element that has the
following form:

hϕ1jρ̂jϕ2i ¼ N2
vace

−
R
k
½1
2
Mab

ij ðkÞðϕa
1jðkÞ−ϕa

2jðkÞÞðϕb
1ið−kÞ−ϕb

2ið−kÞÞþ1
4
ϕa
1iðkÞϕa

1ið−kÞþ1
4
ϕa
2iðkÞϕa

2ið−kÞ�: ð16Þ

2The argument of the exponential of the vacuum wave function is normalized to yield the same result for the density matrix as we
previously obtained in [14], see also [17,18].
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The representation (16) is the most convenient for
computing the von Neumann entropy.

C. The von Neumann entropy

The von Neumann entropy of a density matrix is
defined as3

SE ¼ −tr½ρ̂ ln ρ̂�: ð17Þ

The calculation is facilitated by using the replica trick.
Using the identity

ln ρ̂ ¼ lim
ϵ→0

1

ϵ
ðρ̂ϵ − 1Þ; ð18Þ

we have

SE ¼ −lim
ϵ→0

tr

�
ρ̂N − ρ̂

ϵ

�
¼ −lim

ϵ→0

trρ̂N − 1

ϵ
; ð19Þ

where N ¼ ϵþ 1. Thus, the problem of evaluating the von
Neumann entropy reduces to computation of trρ̂N for
integer N and subsequent analytic continuation to arbi-
trary N. Note that trρ̂N is related to the Nth Renyi entropy

SN ¼ 1

1 − N
ln ½Trρ̂N �: ð20Þ

It is straightforward to proceed with

Tr ρ̂N ¼
Z

Dϕ1hϕ1jρ̂N jϕ1i

¼
Z

Dϕ1Dϕ2hϕ1jρ̂jϕ2ihϕ2jρ̂N−1jϕ1i ¼ …

¼
Z YN

n¼1

Dϕnhϕnjρ̂jϕnþ1i;

where the fields satisfy periodic boundary conditions in
replica spaceϕNþ1 ¼ ϕ1.We use boldface font to denote the
field index.With the help of Eq. (16), we can explicitly write

Trρ̂N ¼ NN
vac

Z
Dϕ1Dϕ2…DϕN

× exp

�
−
1

2

XN
n¼1

Z
k
ϕa
niðkÞϕa

nið−kÞ

−
1

2

XN
n¼1

Z
k
½ϕa

niðkÞ − ϕa
ðnþ1ÞiðkÞ�Mab

ij ðkÞ½ϕb
njð−kÞ

− ϕb
ðnþ1Þjð−kÞ�

�
: ð21Þ

The integrand involves mixing terms between different
replica fields; however, it can be diagonalized by performing
the Fourier transformation with respect to the replica index
(we suppress other indices for simplicity),

ϕ̃η ¼
1

N

XN
n¼1

ei
2π
Nnηϕn; ð22Þ

ϕn ¼
XN−1

η¼0

e−i
2π
Nnηϕ̃η: ð23Þ

This yields

XN
n¼1

�
ϕa
ni − ϕa

ðnþ1Þi
��

ϕb
nj − ϕb

ðnþ1Þj
�

¼ N
XN−1

η¼0

�
1 − e−i

2πη
N

��
1 − ei

2πη
N

�
ϕ̃a
ηiϕ̃

b
ð−ηÞj ð24Þ

¼ 4N
XN−1

η¼0

sin2
�
π

N
η

�
ϕ̃a
ηiϕ̃

b
ð−ηÞj; ð25Þ

and the problem is reduced to a standard Gaussian integral,

Tr ρ̂N ¼ N
Z

Dϕ̃0Dϕ̃1…Dϕ̃N−1

× exp

�
−N

XN−1

η¼0

ϕ̃a
η;i

	
1

2
δijδ

ab þ 2Mab
ij sin

2

�
π

N
n

�


× ϕ̃b
ð−nÞ;j

�
; ð26Þ

wherewe have absorbed the Jacobian into the normalization
factor which we establish below. The Gaussian integral
yields

Tr ρ̂N ¼ N det

	YN−1

η¼0

�
1

2
þ 2Msin2

�
π

N
η

��
−1
2



ð27Þ

¼N det

	YN−1

η¼0

�
1

2
þM

�
1− cos

�
2π

N
η

���
−1
2



: ð28Þ

The matrix M in Eq. (28) is diagonal in color, momen-
tum, and the replica space. Its polarization structure is
purely longitudinal, so that the eigenvalues areM− ¼ 0 and

Mþ ¼ g2μ2

k2 . We therefore get
3For a thorough discussion of various definitions of entropy,

see [19].
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Tr ρ̂N ¼ N det

	YN−1

η¼0

�
1

2
þM−

�
1 − cos

�
2π

N
η

���
−1
2



Na

× det

	YN−1

η¼0

�
1

2
þMþ

�
1 − cos

�
2π

N
η

���
−1
2



Na

¼ N det

	YN−1

η¼0

�
1þ 2Mþ

�
1 − cos

�
2π

N
η

���

−Na=2

;

ð29Þ

where we again absorbed irrelevant constants into N .
To perform summation over η, we adapt the formula

(1.394) from [20],

YN−1

l¼0

	
x2 − 2xy cos

2lπ
N

þ y2


¼ ðxN − yNÞ2; ð30Þ

using the following mapping:

x2 þ y2 ¼ 1þ 2Mþ; 2xy ¼ 2Mþ:

The result is

YN−1

η¼0

�
1þ2Mþ

�
1− cos

�
2π

N
η

���

¼ 1

22N

h
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4Mþ
p þ1ÞN − ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4Mþ
p

−1ÞN
i
2
: ð31Þ

Thus, we arrive at

Tr ρ̂N ¼ N detkf2NNa ½ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Mþ

p þ 1ÞN
− ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Mþ
p

− 1ÞN �−Nag; ð32Þ

where detk denotes a determinant in momentum space
(product over momenta) only, and Na ¼ N2

c − 1. The
normalization factor N can now be determined by requir-
ing that the reduced density matrix is properly normalized.
Setting N ¼ 1, we have Trρ̂ ¼ N detk1, and thus,
N ¼ 1= detk 1.
Performing analytical continuation N ¼ 1þ ϵ and

expanding in ϵ, we obtain

Trρ̂N ≈N det

�
1 − ϵ

Na

2

�
lnMþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Mþ
p

× ln

	
1þ 1

2Mþ
þ 1

2Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Mþ

p 
��

≈ 1 − ϵ
Na

2
S⊥
Z
k

�
lnMþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Mþ
p

× ln
	
1þ 1

2Mþ
þ 1

2Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Mþ

p 
�
: ð33Þ

Therefore, the entanglement entropy is given by

SE ¼ Na

2
S⊥
Z
k

�
lnMþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Mþ
p

× ln

	
1þ 1

2Mþ
þ 1

2Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Mþ

p 
�
: ð34Þ

With the definition Mþ ¼ g2μ2

k2 , this reproduces the result
of Ref. [14].4

III. BEYOND THE DILUTE APPROXIMATION

In the previous section, we derived the entanglement
entropy under the dilute approximation,

hbiaðqÞbjbð−pÞi≡N
Z

Dρe
−
R
k

1

2μ2ðkÞρcðkÞρ
�
cðkÞbiaðqÞbjbð−pÞ

≈ δ2ðq − pÞð2πÞ2g2μ2δab p
ipj

p4
: ð35Þ

As we pointed out before, this approximation neglects
any saturation corrections in the wave function, and as a
result, only the longitudinally polarized gluons contribute
to the entanglement entropy. Here, our goal is to take into
account the saturation corrections.
In general, the solution of the static Yang-Mills equation

for the Weizsäcker-Williams field is given by

bai ðxÞ ¼
1

igNc
Tr½TaUþðxÞ∂iUðxÞ�

¼ 2

ig
Tr½taVþðxÞ∂iVðxÞ�: ð36Þ

Given that the color charge distribution must be globally
color invariant, the field correlator must have the form
hbiaðxÞbjbðyÞi ∝ δab. Summing with respect to the colors,
we have

4Reference [14] used a different normalization of μ, see also
Ref. [17].

GLUON QUASIPARTICLES AND THE CGC DENSITY MATRIX PHYS. REV. D 105, 056009 (2022)

056009-5



hbai ðxÞbaj ðyÞi¼−
4

g2
hTr½taVþðxÞ∂iVðxÞ�Tr½taVþðyÞ∂jVðyÞ�i

¼−
2

g2
hTr½VþðxÞ∂iVðxÞVþðyÞ∂jVðyÞ�i

¼ð2πÞ3
2

xGWW
ij ðx;x−yÞ: ð37Þ

Here, xGij
WWðx; x − yÞ is the Weizsäcker-Williams gluon

distribution in the coordinate space. Performing Fourier
transformation and taking into account the translational
invariance of the Weizsäcker-Williams gluon distribution
function, we arrive at

hbai ðkÞbaj ðqÞi ¼
ð2πÞ5
2

δð2Þðkþ qÞ
Z

d2re−ir·kxGWW
ij ðx; rÞ

¼ ð2πÞ5
2

δð2Þðkþ qÞ
S⊥

xGij
WWðx; kÞ: ð38Þ

The factor of the transverse area S⊥ in the denominator
originates from the commonly accepted definition of
xGij

WWðx; kÞ,

xGij
WWðx; kÞ ¼

Z
d2xd2ye−iðx−yÞkxGij

WWðx; x − yÞ

¼ S⊥
Z

d2re−ir·kxGWW
ij ðx; rÞ: ð39Þ

Thus,

hbai ðkÞbbj ðqÞi ¼
ð2πÞ5

2ðN2
c − 1ÞS⊥

δð2Þðkþ qÞδabxGij
WWðx; kÞ:

ð40Þ

The tensor xGij
WWðx; kÞ is conventionally split into two

independent components,

xGij
WWðx;kÞ ¼

1

2
δijxGð1Þðx;kÞ− 1

2

�
δij− 2

kikj
k2

�
xhð1Þðx;kÞ;

ð41Þ

where xhð1Þ is the linearly polarized gluon distribution.
Thus, in general, the Weizsäcker-Williams field correlator
contains both longitudinal and transverse components, with
the transverse component proportional to xGð1Þ − xhð1Þ.
In the MV model, both components can be computed

semianalitically [21] to yield

xhð1Þðx; q⊥Þ ¼
S⊥

2π3αs

N2
c − 1

Nc

Z
∞

0

dr⊥
r⊥J2ðq⊥r⊥Þ
r2⊥ ln

�
1

r2⊥Λ2

�

×

	
1 − e

−1
4
r2⊥Q2

s ln

�
1

r2⊥Λ2

�

; ð42Þ

xGð1Þðx; q⊥Þ ¼
S⊥

2π3αs

N2
c − 1

Nc

Z
∞

0

dr⊥
r⊥J0ðq⊥r⊥Þ

r2⊥

×

	
1 − e

−1
4
r2⊥Q2

s ln

�
1

r2⊥Λ2

�

; ð43Þ

where Λ is a nonperturbative IR scale, and the saturation
momentum Qs is given by

Q2
s ¼ Ncαsg2μ2: ð44Þ

In this paper, we use the expression in the MV model for
the Weizsäcker-Williams gluon field distributions; our
results, however, can be straightforwardly extended to
account for the small-x evolution [22].
Now, we are ready to revise the derivation of the reduced

matrix to account for the saturation corrections. We go back
to the integration over the valence degrees of freedom in
Eq. (12),

D
e
−i
R
k
biaðkÞðϕi

1;að−kÞ−ϕi
2;að−kÞÞ

E

¼ 1þ
X∞
q¼1

1

q!

�	
−i
Z
k
biaðkÞðϕi

1;að−kÞ − ϕi
2;að−kÞÞ



q
�
:

The right-hand side contains all higher order correlators
of the Weizsäcker-Williams field. We will however invoke
a simple minded mean field Gaussian approximation in
which all higher correlators factorize into products of the
two point function. In this approximation, we have

D
e
−i
R
k
biaðkÞðϕi

1;að−kÞ−ϕi
2;að−kÞÞ

E
MV

¼ e
−
R
k
1
2
M̃ab

ij ðkÞðϕb1jðkÞ−ϕb2jðkÞÞðϕa1ið−kÞ−ϕa2ið−kÞÞ; ð45Þ

with

M̃ab
ij ðkÞ ¼

ð2πÞ3δab
2ðN2

c − 1ÞS⊥
xGij

WWðx; kÞ: ð46Þ

This approximation, albeit simple, allows us to incorporate
the main saturation effects in the CGC density matrix.
While deriving Eq. (46), we took into account that
δð2Þðk ¼ 0Þ ¼ S⊥=ð2πÞ2.
In the limit k ≫ Qs, we recover the dilute approximation

of the previous section, i.e., M̃ab
ij ðkÞ → Mab

ij ðkÞ. To show

this explicitly, consider the eigenvalues of xGij
WWðx; kÞ.
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Those are ðxGð1Þ � xhð1ÞÞ=2. At large momentum, one can
consider small r in the integrals (42) and (43). Expanding
the exponentials, we obtain

xhð1Þðx;q⊥Þ≈
S⊥

2π3αs

N2
c−1

Nc

Q2
s

4

Z
∞

0

dr⊥r⊥J2ðq⊥r⊥Þ

≈
S⊥

4π3αs

N2
c−1

Nc

Q2
s

q2
;

xGð1Þðx;q⊥Þ≈
S⊥

2π3αs

N2
c−1

Nc

Q2
s

4

Z
∞

0

dr⊥r⊥J0ðq⊥r⊥Þln
�

1

r2⊥Λ2

�

≈
S⊥

4π3αs

N2
c−1

Nc

Q2
s

q2
: ð47Þ

This reproduces the limits discussed in Ref. [23]. We thus
obtain one zero eigenvalue and the other one given by

lim
q≫Qs

xGð1Þ þ xhð1Þ

2
¼ S⊥

4π3αs

N2
c − 1

Nc

Q2
s

q2⊥
: ð48Þ

The nontrivial eigenvalue of M̃ becomes

S⊥
4π3αs

1

Nc

Q2
s

q2⊥
×
ð2πÞ3δab
2S⊥

¼ g2μ2δab

q2⊥
: ð49Þ

This indeed reduces to the expression in the dilute limit
used in the previous section.
Repeating the derivation of the previous section sepa-

rately for each eigenvalue of the matrix M̃, we obtain

SE ¼ N2
c − 1

2

X
ν¼�

Z
k

	
ln M̃νðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M̃νðkÞ

q

× ln

�
1þ 1

2M̃νðkÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M̃νðkÞ

p
2M̃νðkÞ

�

; ð50Þ

where

M̃� ¼ ð2πÞ3
2S⊥ðN2

c − 1Þ
xGð1Þ � xhð1Þ

2
: ð51Þ

Comparing to Eq. (34), there are two major differences.
First, Eq. (50) contains a nontrivial contribution of the
transverse mode, and second, the small momentum behav-
ior of the larger eigenvalue is very different from that
of Mþ. We return to the discussion of this point later on.

IV. DIAGONALIZATION OF THE REDUCED
DENSITY MATRIX

A. The Boltzmann density matrix

As we alluded to in the Introduction, it is anticipated that
the result of the previous section can be rewritten in a
Boltzmann form,5

SE¼ðN2
c−1ÞS⊥

X
ν¼�

Z
d2k
ð2πÞ2

h
ð1þfνÞlnð1þfνÞ−fν lnfν

i
:

ð52Þ

Here, we defined the distribution functions

f�ðkÞ ¼
1

expðβω�ðkÞÞ − 1
; ð53Þ

with

βω�ðkÞ ¼ 2 ln

 
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̃�ðkÞ

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4M̃�ðkÞ

s !
: ð54Þ

This suggests that in a basis in which the density matrix
is diagonal, it must have the Boltzmann form,

ρ̂ ¼ Ne−βωþn̂þe−βω−n̂− ; ð55Þ

where n̂� is the corresponding number density of the
quasiparticles. We refer to this basis as the quasiparticle basis.
Our purpose in this section is to find the quasiparticle

basis explicitly. Before turning to this problem, we ask
what is the dispersion relation of the quasiparticles pro-
vided our interpretation of Eq. (52) is correct.
Let us first examine the dilute case of Sec. II. For the only

nontrivial polarizationMþ ¼ g2μ2=k2 and at small momenta
k ≪ g2μ2, Eq. (54) gives βωþ ≈ k=ðgμÞ. Interestingly, this
looks like a dispersion relation of a massless particle.
Although only the product of the frequency and the inverse
temperature is determined by Eq. (54), assuming the velocity
of quasiparticles is the speed of light, the inverse temperature
is β ¼ ðgμÞ−1. At large momentum, βωþ ≈ lnðk2=g2μ2Þ or
fþ ≈ g2μ2=k2. This perturbativelike behavior is then inter-
preted as a logarithmic dispersion relation for quasiparticles
at high momenta.
One interesting point to note is that the transition

between the “low momentum” and “high momentum”
regimes in the present context is given by the scale g2μ2

which is parametrically larger than the saturation momen-
tum Qs, i.e., g2μ2 ¼ Q2

s=αsNc. Physically, this is easy to
understand. While saturation effects become important at
the momentum scale at which the gluon occupation number

5A similar result was obtained in a general Gaussian density
matrix [10].
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is large, of order 1=αs, the perturbative regime, i.e.,
momenta for which the eigenvalue Mþ becomes small,
requires the occupation number to be smaller than unity.
Thus, there is a whole range of momenta, at which the
gluon occupation number is greater than one, but saturation
effects are still unimportant. We refer to this range of
momenta, Q2

s < k2 < Q2
s=αsNc as “semihard”. At small

’tHooft coupling αsNc, the semihard region is parametri-
cally large.
The saturation corrections discussed in the previous

section have a strong effect on the “dispersion relation”
at low momenta. Beyond the dilute limit, xGð1Þ dominates
over xhð1Þ at k < Qs, so that both eigenvalues M̃� behave
as xGð1Þ ∝ lnQs=k in the infrared. This is a well-known
effect where the infrared 1=k2 behavior of the transverse
momentum dependent which formally leads to a power like
infrared divergence in the produced particle spectrum is
tamed by the saturation corrections and becomes logarith-
mic. This correction results in the logarithmic “dispersion
relation” βω� ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnQs=k

p
. This modification however

is only important at very low momenta k2 < Q2
s . In the

semihard regime Q2
s < k2 < Q2

s=αsNc, the quasiparticles
corresponding to the eigenvalue Mþ still behave approx-
imately as massless bosons. For these momenta, the
eigenvalue Mþ is large. For large Mþ, we can expand
the logarithm in Eq. (54), which leads to βωþ ≈ 1=

ffiffiffiffiffiffiffiffi
M̃þ

p
.

Then, taking the high momentum approximation, that is
M̃þ ∝ Q2

s=αsk2, we obtain βωþ ∝ ffiffiffiffiffi
αs

p
k=Qs, i.e., thermal

spectrum for massless particles. The temperature is of the
order T ∼Qs=

ffiffiffiffiffiffiffiffiffiffi
αsNc

p
which is parametrically larger than

the saturation momentum. The reason, as we explained
above, is that the gluon occupation number is of order unity
for momenta which are much higher than Qs, and it is the
value of the momentum of the highest occupied state that
determines the effective temperature.

B. Construction of the eigenvalue problem

We now perform the explicit diagonalization of the
reduced density matrix.
First, we note that the density matrix has a product form

in the momentum space due to the factorization of the
momentum modes. Using Eq. (16), we can write the
density matrix operator as

ρ̂ ¼
Y
k

ρ̂νðkÞ ¼
Y
ν¼�

Y
k

N
Z

DϕðkÞDΦðkÞ

× e−
1
4
ðϕðkÞϕð−kÞþΦðkÞΦð−kÞÞe−1

2
M̃ϕðkÞϕð−kÞ−1

2
M̃ΦðkÞΦð−kÞ

× eM̃ϕðkÞΦð−kÞ × jϕðkÞihΦðkÞj; ð56Þ

where M̃ is an eigenvalue of M̃ij

M̃ ¼ M̃þ or M̃−: ð57Þ

Equation (56) should also contain a product over the index
ν ¼ �, which we do not indicate explicitly.
Since ρ̂ is a product over momentum (and polarization),

we consider only a single momentum (and polarization)
mode for the sake of simplifying the notations.
The Boltzmann form of the entanglement entropy

suggests that all eigenvalues of the density matrix are
given by integer powers of the same number. Our goal is to
find these eigenvalues explicitly by solving the eigenvalue
equation,

ρ̂jΨii ¼ λijΨii: ð58Þ

We write the eigenstate in the field basis as

jΨiðkÞi ¼
Z

dϕðkÞfiðϕðkÞÞjϕðkÞi: ð59Þ

The eigenvalue equation for the wave function fi becomes

1ffiffiffiffiffiffi
2π

p
Z

dΦe−
ð1þ2MÞ

4
ðϕð−kÞϕðkÞþΦð−kÞΦðkÞÞeMϕð−kÞΦðkÞfiðΦÞ

¼ λifiðϕÞ: ð60Þ

The form of the integrand suggests to look for the ground
state in the form of the Gaussian

f0ðϕðkÞÞ ¼ N exp ½−αϕð−kÞϕðkÞ�: ð61Þ

Once we find the constant α by solving Eq. (60), we
generate exciting states by acting with the creation oper-
ators, which are defined analogously to the quantum
oscillator problem

cðkÞ ¼ 1ffiffiffi
2

p
� ffiffiffi

α
p

ϕðkÞ þ ð2πÞ2ffiffiffi
α

p δ

δϕð−kÞ
�
; ð62Þ

c†ðkÞ ¼ 1ffiffiffi
2

p
� ffiffiffi

α
p

ϕð−kÞ − ð2πÞ2ffiffiffi
α

p δ

δϕðkÞ
�
: ð63Þ

The operators satisfy

h
cðpÞ; c†ðkÞ

i
¼ ð2πÞ2δð2Þðp − kÞ; ð64Þ

cðkÞf0ðϕðkÞÞ ¼ 0: ð65Þ

It can be checked straightforwardly that once the appro-
priate α is found, the states obtained by repeated action of
c†ðkÞ on the Gaussian state Eq. (61),

fnðϕðkÞÞ ¼
�
α

2

�n
2

ϕð−kÞn exp ½−αϕðkÞϕð−kÞ�; ð66Þ

are in fact eigenstates of the density matrix.
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Substituting the Gaussian function Eq. (61) into Eq. (60)
and after a little algebra, we find

4α� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M̃�

q
; ð67Þ

λ�0 ¼
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M̃� þ 4α�

p ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M̃�

p : ð68Þ

Proceeding similarly for the excited states, we find

λ�n ¼
	

2M̃�
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M̃�

p
Þ2

n
λ�0 : ð69Þ

This result confirms our earlier expectation that the
density matrix has the Boltzmann form. In terms of the
operators c and c†, it can be written as

ρ̂ðkÞ¼N

	
2M̃�

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4M̃�

p
Þ2

c†c

¼Ne−βωðkÞc†ðkÞcðkÞ; ð70Þ

with

βω ¼ ln

	ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M̃�

p
Þ2

2M̃�



; ð71Þ

and N the appropriate normalization factor. This coincides
with Eq. (54).

C. The Bogoliubov transformation

We have thus explicitly established that in the basis of
the quasiparticles defined by the creation and annihilation
operators c†ðkÞ and cðkÞ, the density matrix is diagonal and
has a Boltzmann form. It is easy to show that the
quasiparticle basis is related to the perturbative gluon
Fock space basis by a simple Bogolyubov transformation,

c�ðkÞ ¼ coshðB�Þa�ðkÞ þ sinhðB�Þa†�ð−kÞ; ð72Þ

c†�ðkÞ ¼ coshðB�Þa†�ðkÞ þ sinhðB�Þ; a�ð−kÞ; ð73Þ

where B� ¼ ln 2
ffiffiffiffiffiffi
α�

p ¼ 1
4
ln ð1þ 4M̃�Þ. Here, we have

restored the polarization indices and have defined aþðkÞ≡
k̂iaiðkÞ and a− ≡ ϵijk̂

iajðkÞ with k̂ a unit vector in the
direction of the transverse momentum k.
How “far” is the quasiparticle Fock space removed from

the perturbative gluon Fock space? The answer clearly
depends on the value of the transverse momentum. Let us
consider the two simple limiting cases:

[k ≫ Qs:] here, we have M̃− ∝ k−4, while M̃þ ∝ k−2.
For either polarization, B� ≈ 0 so that the quasipar-
ticle basis practically coincides with the perturbative
gluon basis c�ðkÞ ≈ a�ðkÞ. This is natural since for
large momenta the occupation number of gluons

vanishes, and the density matrix in the first approxi-
mation is just given by the perturbative vacuum.

[k ≪ Qs:] the situation is quite different in this limit.
Here, M̃� is large, and sinhðB�Þ ≃ coshðB�Þ ≃ eB� .
The transformation in this case corresponds to maxi-
mal mixing. Interestingly, this maximal mixing regime
only requires that M̃ ≫ 1. Thus, it is not only valid for
very small momenta but also for a considerably large
range of “semihard” momenta, k < 2πQs. This is the
same momenta for which the dispersion relation of the
quasiparticles is approximately linear.

V. DISCUSSION

In this paper, we have extended the approach to the CGC
density matrix pioneered in [14] by including saturation
corrections in a mean-field approximation. The effect of
these corrections is two prong. First, they result in excitation
of the transverse gluon mode, so that both gluon polar-
izations now contribute to entanglement entropy. Second, the
infrared behavior of the Weizsäcker-Williams field propa-
gator is softened.
We have also pointed out that the reduced soft gluon

density matrix can be explicitly diagonalized by a
Bogoliubov transformation. In the quasiparticle basis, it
has a Boltzmann form; i.e., for a given transverse momen-
tum and polarization, its eigenvalues are powers of one
number. If interpreted as a thermal density matrix, this
determines the product of the quasiparticle energy and the
inverse temperature. We found that for semihard momenta,
Q2

s < k2 < Q2
s=αsNc, the dispersion relation of the quasi-

particles is approximately linear with momentum, while at
very low momenta k2 < Q2

s the saturation effects lead
logarithmic dispersion relation. The saturation then induces
an effective mass for the quasiparticles, albeit this mass is not
fixed but rather runs with the momentum into the infrared.
We also noted that the effective temperature for the

quasiparticle system is not given by the saturation momen-
tum Qs but rather by a parametrically greater scale
T ∼Qs=

ffiffiffiffiffiffiffiffiffiffi
αsNc

p
. The physical reason is that the temper-

ature is determined by the momentum of those levels for
which the occupation number is of order unity rather than
much larger than unity.
The two distinct scales that arise in the physics of

saturated wave function is reminiscent of the two scales
present at high temperature in weakly interacting quark-
gluon plasma. The softest scale is where the saturation
momentum is closely analogous to the so called “magnetic
mass”. Both arise due to self-interaction of very soft modes,
and both are parametrically msoft ∝ αsΛhard, where in the
case of plasma Λhard ¼ T, while in CGC Λhard ¼ μ. The
semihard scale, parametrically msemi hard ∝ gΛhard is identi-
fied with the “electric mass” in plasma and the effective
temperature in CGC. This scale arises in both cases via the
interaction of semihard modes with the hard ones. In the case
of plasma, the relevant mechanism is “hard thermal loops”,
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while in the case of CGC it is the eikonal emissions by the
valence charges that populate the CGC wave function in the
semihard region. Amusingly, in both cases, only “electric”
modes are affected by this scale, in the sense that in the
plasma the electric mass produces finite correlation length
only for the chromoelectric field, while in the CGC wave
function only the electric (longitudinal in the two dimen-
sional sense) modes are populated in the semihard region.
Note that the value of the effective temperature in this

paper is very different from the one obtained in [14]. The
reason is that in [14] the inverse temperature was defined as
the derivative of the entropy with respect to transverse
energy. The total transverse energy is dominated by the UV
modes despite the low occupancy of each energy level.
Thus, the temperature calculated this way in [14] was
dominated by the contribution of the UV modes and came
out proportional to the UV cutoff. Conversely, when
considering properties of the density matrix of produced
gluons, which is dominated by momenta of order Qs, the
temperature in [14] came out to be of order Qs. In the
present paper however, we discussed the effective temper-
ature of those modes which have an approximate
Boltzmann distribution of massless bosons. These turned
out to be semihard modes, and the temperature accordingly
turned out to be tied to the appropriate semihard scale.
We conclude by noting that the concept of gluon

quasiparticles inside a hadron is a very interesting concept.
It is especially worth stressing, that while at high momenta
the quasiparticles coincide with perturbative gluons, at

semihard momenta the quasiparticle operators are very
different from the perturbative gluon creation and annihi-
lation operators as is clear from our discussion in the
previous section. Thus, the semihard momentum region
arises here as a well defined transition region between the
perturbative hard regime and a genuinely nonperturbative
soft (k < Qs) regime. One is reminded of the Landau liquid
theory, where quasiparticles indeed arise via possibly
strong dressing of original particles while still retaining
the same quantum numbers and a particle identity.
It would be extremely interesting to understand how to

probe experimentally the properties of such gluon quasi-
particles. This is of course a very difficult question, since
the quasiparticles discussed here exist inside the wave
function of a hadron, while any final state is described
(modulo hadronization corrections) in terms of original
perturbative gluons. Nevertheless, it seems to us that this
problem is well worth thinking about.
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