
Analytical structure of the equation of state at finite density: Resummation
versus expansion in a low energy model

Swagato Mukherjee ,1 Fabian Rennecke ,1,2,3,* and Vladimir V. Skokov4,5
1Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

2Institute for Theoretical Physics, Justus Liebig University Giessen,
Heinrich-Buff-Ring 16, 35392 Giessen, Germany

3Helmholtz Research Academy Hesse for FAIR (HFHF), Campus Giessen, 35392 Giessen, Germany
4Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
5RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 20 October 2021; accepted 12 January 2022; published 26 January 2022)

For theories plagued with a sign problem at finite density, a Taylor expansion in the chemical potential is
frequently used for lattice gauge theory-based computations of the equation of state. Recently, a new
resummation scheme was proposed [S. Mondal, S. Mukherjee, and P. Hegde, Lattice QCD Equation of
State for Nonvanishing Chemical Potential by Resumming Taylor Expansions, Phys. Rev. Lett. 128,
022001 (2022).] for such an expansion that resums contributions of correlation functions of conserved
currents to all orders in the chemical potential. Here, we study the efficacy of this resummation scheme
using a low energy model, namely the mean-field quark-meson model. After adapting the scheme for a
mean-field analysis, we confront the results of this scheme with the direct solution of the model at finite
density as well as compare with results from Taylor expansions. We study to what extent the two methods
capture the analytical properties of the equation of state in the complex chemical potential plane. As
expected, the Taylor expansion breaks down as soon as the baryon chemical potential reaches the radius of
convergence defined by the Yang-Lee edge singularity. Encouragingly, the resummation not only captures
the location of the Yang-Lee edge singularity accurately, but is also able to describe the equation of state for
larger chemical potentials beyond the location of the edge singularity for a wide range of temperatures.

DOI: 10.1103/PhysRevD.105.014026

I. INTRODUCTION

Uncovering the structure of the phase diagram of
quantum chromodynamics at nonzero temperature and
density has been the central goal for both the theoretical
and the experimental nuclear physic community (see
Ref. [1] for a review). Nonperturbative theoretical under-
standing of the QCD phase diagram is hampered by the so-
called sign problem. To introduce it, we consider a theory
containing bosonic fields Φ and fermionic fields ψ in
Euclidean spacetime with the following classical action:

S½Φ;ψ ;ψ̄ �¼SΦ½Φ�þ
Z

β

0

dx0

Z
d3xψ̄ðxÞMðΦ;μÞψðxÞ: ð1Þ

Here SΦ is the part of the action that only depends
on Φ. MðΦ; μÞ is a Dirac operator which includes a

coupling between the fermionic and bosonic fields. We
are considering finite temperature T ¼ 1=β and finite
chemical potential μ. Thus the Dirac operator, as indicated
above, explicitly depends on the chemical potential μ. A
prominent example of such a theory is QCD with the
bosonic fields to be identified with gluons and the fermi-
onic fields with quarks.
The partition function of this theory can formally be

obtained from the Euclidean path integral,

Z ¼
Z

DΦDψDψ̄e−S: ð2Þ

The grand canonical thermodynamic potential Ω is then
proportional to lnZ. The action in Eq. (1) is quadratic in the
fermionic fields; therefore they can be readily integrated
out, resulting in the (nonlocal) functional fermionic deter-
minant detM,

Z ¼
Z

DΦ exp½−SΦ½Φ� þ ln detMðΦ; μÞ�: ð3Þ

In numerous theories, including QCD, the presence of a
finite chemical potential in the Dirac operator gives rise to a
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sign problem: a real μ can lead to a complex spectrum of the
Dirac operator. In this case the weight of the configurations
of Φ, ∼ detM, is complex, rendering the Monte Carlo
importance sampling impractical.
Aside from attempts to entirely circumvent the sign

problem, e.g., by using methods that do not have to rely on
importance sampling [2–10], a common strategy is to
expand the path integral about μ ¼ 0 [11,12]. This yields
a power series in μ, where each coefficient can be computed
from the path integral with the μ ¼ 0weight. Information at
finite μ is therefore obtained through an extrapolation
from μ ¼ 0.
Although improvements of the conventional Taylor

expansion have been proposed in the literature [13], a
major obstacle for schemes based on analytical expansions
is that they are bound by the analytical constraints of the
underlying theory. Singularities in the complex plane
determine the radius of convergence of analytical expan-
sions. Resummations based on Padé approximations can be
used to estimate the location of the (nearest) singularities,
see, e.g., [12,14–17]. Still, precise knowledge of expansion
coefficients of very high order is required and information
beyond the singularities is difficult to obtain.
In this work, we study the approach introduced in [18],

where contributions of (n ≤ N)-point correlation functions
of the fermion number currents to the thermodynamic
potential are resummed to all orders in μ. In addition to
improved convergence, zeros of the partition function of
QCD at imaginary μ have been identified, which could be
related to physical singularities of the thermodynamic
potential. The main motivation of this work is to examine
this in detail regarding the analytic and thermodynamic
properties of a model where these quantities can be
computed directly.
To this end, we use a quark-meson model which can be

solved directly in mean-field approximation. While sim-
plistic, this model captures some basic features of QCD at
low energies and of the chiral phase transition, see, e.g.,
[19–23] for studies in mean field and beyond. After
introducing the resummation scheme and adapting it to a
mean-field approximation in Sec. II, we introduce the
model in Sec. III. In Sec. IV we discuss the analytical
properties of the model for complex chemical potential and
study how well it can be reproduced by the resummation
scheme. Full results for the thermodynamics at real and
imaginary chemical potentials are confronted with the
resummation and the conventional Taylor expansion
in Sec. V.

II. RESUMMATION

We start by introducing the resummation scheme of
Ref. [18]. To this end, we define the derivatives of the
logarithm of the fermion determinant as

DnðΦÞ ¼ ∂n ln detMðΦ; μÞ
∂μ̂n

����
μ¼0

; ð4Þ

with μ̂ ¼ μ=T. Expanding the fermion determinant inside
the path integral to order N in powers of μ̂ yields

ZR
N ¼

Z
DΦ exp

�XN
n¼1

1

n!
DnðΦÞμ̂n

�
detMðΦ; 0Þe−SΦ½Φ�

¼
�
exp

�XN
n¼1

1

n!
DnðΦÞμ̂n

��
0

: ð5Þ

The ensemble average at μ ¼ 0 is given by

hAi0 ¼
Z

DΦA detMðΦ; 0Þe−SΦ½Φ�: ð6Þ

The resulting thermodynamic potential is

ΩR
NðT; μÞ ¼ −

T
V
lnZR

N; ð7Þ

where V is the spatial volume. Crucially, even at finite order
of the expansion, N, ΩR

N contains infinite powers of μ̂.
In contrast, an ordinary Taylor expansion of the thermo-

dynamic potential about μ ¼ 0 to order N,

ΩE
NðT; μÞ ¼

XN
n¼1

1

n!
∂nΩðT; μÞ

∂μ̂n
����
μ̂¼0

μ̂n; ð8Þ

is only an Nth order polynomial of μ̂ by construction. In
theories with charge conjugation symmetry (including
QCD), only even powers of μ̂ contribute in Eq. (8). ΩE

N
can be expressed in terms of averages of the Dn at μ ¼ 0

[24]. As pointed out in [18],ΩR
N can be interpreted as an all-

order resummation of finite-order contributions toΩE
N . This

resummation is directly connected to the reweighting
method; for recent developments see, e.g., [25,26].
Expanding the logarithm of the fermion determinant in
the weight detMðΦ; μÞ= detMðΦ; 0Þ in powers of μ leads
to Eq. (5).
Naturally, the nontrivial analytic structure of the thermo-

dynamic potential in plane of complex μ, see [27,28],
cannot be captured by a strictly analytic expansion in μ.
Yet, the closest singularity in the complex plane determines
the radius of convergence of the expansion. Both ΩR

N and
ΩE

N can be evaluated at complex μ. However, unlike ΩE
N ,

which cannot resolve such singularities (directly), Re½ZR
N �

in Eq. (5) can become negative, resulting in a singular ΩR
N.

In this work, we want to test Eq. (7) using a mean-field
approximation, i.e., to leading order in the saddle-point
approximation of the path integral. In general, the thermo-
dynamic potential on a background field Φ̄ is
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Ω̄ðT; μ; Φ̄Þ ¼ −
T
V
fSΦ½Φ̄� þ ln detMðΦ̄; μÞg; ð9Þ

and the stationary point Φ̄0 is determined by

δΩ̄ðT; μ; Φ̄Þ
δΦ̄

����
Φ̄0

¼ 0: ð10Þ

Correspondingly, Eq. (7) becomes

Ω̄R
NðT; μ; Φ̄Þ ¼ −

T
V

�
SΦ½Φ̄� þ ln detMðΦ̄; 0Þ

þ
XN
n¼1

1

n!
DnðΦ̄Þμ̂n

�
: ð11Þ

Since the expansion in μ̂ in Eq. (5) is done before the
ensemble average, the stationary point Φ̄R

0 is defined by
Eq. (11),

δΩ̄R
NðT; μ; Φ̄Þ
δΦ̄

����
Φ̄R

0

¼ 0; ð12Þ

and all thermodynamic quantities can be extracted from

Ω̄R
NðT; μÞ≡ Ω̄R

NðT; μ; Φ̄R
0 Þ: ð13Þ

Owing to the explicit μ dependence of Ω̄R
NðT; μ; Φ̄Þ, the

stationary point of the resummed expansion depends non-
trivially on μ, Φ̄R

0 ¼ Φ̄R
0 ðμÞ. Through this dependence, Ω̄R

N
is in general a nonanalytic function of μ.
This is in contrast to the ordinary Taylor expansion in

mean field,

Ω̄E
NðT; μÞ ¼ −

XN
n¼0

χnð0Þ
n!

μ̂n; ð14Þ

where the coefficients are given by the susceptibilities,

χnðμÞ ¼
T
V
∂nΩ̄ðT; μ; Φ̄0Þ

∂μ̂n ; ð15Þ

evaluated at μ ¼ 0 and therefore do not depend on μ. For
any finiteN, Ω̄E

N is a finite (Nth) order polynomial in μ2 and
hence Ω̄E

N is strictly analytic.

III. MODEL

To test the resummation scheme of [18] directly, we use a
quark-meson model with Nf ¼ 2 degenerate quark flavors
and Nc ¼ 3 colors. The Euclidean action is

SQM ¼
Z

β

0

dx0

Z
d3x

�
ψ̄

	
γμ∂μ þ

1

2
hτϕþ γ0μ



ψ

þ 1

2
ð∂μϕÞ2 þUðϕ2Þ − jσ

�
: ð16Þ

γμ are the Euclidean gamma matrices, τT ¼ ð1; iγ5τ⃗Þ with
the Pauli matrices τ⃗, and ϕT ¼ ðσ; π⃗Þ is the Oð4Þ meson
field. Uðϕ2Þ is the Oð4Þ symmetric effective meson
potential. An explicit symmetry breaking is introduced
through the source j, which can be related to the current
quark mass. The precise form of this relation is of no
importance for our study.
In this work we employ a mean-field approximation to

compute the thermodynamic potential Ω based on Eq. (16).
Assuming a homogeneous mean field, the meson back-
ground field is

ϕ̄ ¼
	
σ̄

0⃗



; ð17Þ

resulting in the Dirac operator

MQMðσ̄; μÞ ¼ γμ∂μ þ γ0μþ
1

2
hσ̄; ð18Þ

where the appropriate unit matrices in spinor-, color-
and flavor space are implied. The thermodynamic potential
then is

Ω̄QMðT; μ; σ̄Þ ¼ Uðϕ̄2Þ − jσ̄ −
T
V
ln detMQMðσ̄; μÞ: ð19Þ

The quark determinant detM can be evaluated using
conventional methods of thermal field theory, see, e.g.,
[29]. With the fermionic Matsubara frequency νn ¼
ð2nþ 1ÞπT and the quark energy Eqðσ̄Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ 1

4
h2σ̄2

q
,

where q2 ≡ q⃗2, it reads

T
V
ln detMQMðσ̄; μÞ

¼ 2NfNcT
X∞
n¼−∞

Z
q
ln½ðνn þ iμÞ2 þ Eqðσ̄Þ2�

≡ 2NfNc½J0ðσ̄Þ þ JT;μðσ̄Þ þ JT;−μðσ̄Þ�; ð20Þ

where we used the shorthand notation
R
q ¼

R d3q
ð2πÞ3. The

thermal contribution to the quark determinant is given by

JT;μðσ̄Þ ¼
1

2π2

Z
∞

0

dqq2T ln½1þ e−ðEqðσ̄Þ−μÞ=T �: ð21Þ

Away from the low- and high-temperature limits, this
integral has to be carried out numerically. The vacuum
contribution J0 is ultraviolet divergent. Nonetheless, the
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finite piece of the vacuum contribution may and does
depend on the meson field. This contribution has to
carefully extracted [21]. For this we perform the expansion
around d ¼ 3 − 2ϵ dimension. It yields

J0ðσ̄Þ ¼ −
h4σ̄4

29π2Λ2ϵ

�
1

ϵ
− ln

	
h2σ̄2

4Λ2



þ CþOðϵÞ

�
; ð22Þ

with the constant C ¼ lnð4πÞ − γE þ 3
2
, where γE is the

Euler-Mascheroni constant. Λ is the renormalization scale
parameter. We subtract the divergent piece and the constant,
take the limit ϵ → 0, and arrive at the vacuum contribution
in dimensional regularization,

Jϵ0ðσ̄Þ ¼
h4σ̄4

29π2
ln

	
h2σ̄2

4Λ2



: ð23Þ

For the symmetric meson potential we use an ansatz which
allows for spontaneous symmetry breaking,

Uðϕ2Þ ¼ λ

4
ðϕ2 − ν2Þ2; ð24Þ

so that the regularized thermodynamic potential in the
mean-field approximation becomes

Ω̄QMðT;μ;σ̄Þ¼ λ

4
ðσ̄2−ν2Þ2−jσ̄

−2NfNc½Jϵ0ðσ̄ÞþJT;μðσ̄ÞþJT;−μðσ̄Þ�: ð25Þ

The vacuum contribution of the quarks is given in Eq. (23)
and the thermal contribution in Eq. (21). Physical results
are extracted at the minimum of the thermodynamic
potential, that is

Ω̄QMðT; μÞ ¼ Ω̄QMðT; μ; σ̄0Þ; ð26Þ

where σ̄0 is the solution of the equation of motion,

∂Ω̄QMðT; μ; σ̄Þ
∂σ̄

����
σ̄0

¼ 0: ð27Þ

The influence of the vacuum contribution on the thermo-
dynamics of the quark-meson model has been studied
in [21].
We thus have all ingredients of the model fully deter-

mined, as Eqs. (25) and (27) can numerically be solved for
an arbitrary (complex) μ. Using Eqs. (11) and (12) we
compute the resummed thermodynamic potential Ω̄QM;R

N .
The corresponding expansion coefficients Dn in Eqs. (11)
are given by

DQM
n ðσ̄Þ ¼ 2NfNcV

T
∂n

∂μ̂n ½JT;μðσ̄Þ þ JT;−μðσ̄Þ�jμ¼0; ð28Þ

where JT;μ is defined in Eq. (21). Furthermore, using
Eqs. (14) and (15) we compute the expanded and truncated
thermodynamic potential Ω̄QM;E

N . This is done by first
computing Ω̄QMðT; μÞ in Eq. (26) for a small region of
chemical potentials around μ ¼ 0 and then taking numeri-
cal derivatives at μ ¼ 0 to get the susceptibilities χQMn ð0Þ
defined in Eq. (15). Table I shows the model parameters
and resulting physical quantities we use for the numerical
analysis. We use the baryon chemical potential μB ¼ 3μ in
the following.

IV. ANALYTIC STRUCTURE

We first study how well the different methods capture the
analytical structure of the model in the complex μB plane.
Phase transitions in the system are related to a branch cut in
the thermodynamic potential at complex μB. At a second-
(first-)order phase transition this cut pinches (crosses) the
real μB axis. In the symmetric phase above the phase
transition, the cut terminates at complex conjugate branch
points, known as the Yang-Lee edge singularity μYLB
[27,28]. In the vicinity of the pseudocritical temperature
the closest singularity to the origin μB ¼ 0 is related to the
second-order phase transition in the chiral limit. Indeed, it
has been shown by Fisher [30] that, at a given temperature,
the Yang-Lee edge singularity corresponds to a critical
point in the complex plane. For a more detailed discussion
on this topic we refer to [31]; see also [32–34]. To find the
edge singularity μYLB , we can follow the same procedure as
when finding a critical point; that is, we solve the system of
equations

∂Ω̄QMðT; μB=3; σ̄Þ
∂σ̄ ¼ 0;

∂2Ω̄QMðT; μB=3; σ̄Þ
∂σ̄2 ¼ 0: ð29Þ

In contrast to a conventional critical point, where we look at
real parameters T and μB, here, for a given T we solve for

TABLE I. Model parameters (upper half) and resulting physical
quantities (lower half). Tpc is the pseudocritical temperature at
μB ¼ 0, defined via the maximum of the correlation length m−1

σ .
ðTCEP; μB;CEPÞ is the location of the critical endpoint. μB ¼ 3μ is
the baryon chemical potential.

h 2 × 300=93
λ 21
ν 106 MeV
j 1382 × 93 MeV3

Λ 500 MeV

fπ 92.67 MeV
mπ 138.25 MeV
mσ 496.59 MeV
Tpc 163.62 MeV
ðTCEP; μB;CEPÞ (27.46,895.85) MeV
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real and imaginary parts of μYLB and σ̄YL. Note that the
system consists of four equations, as for complex μB, the
thermodynamic potential is complex valued. The results for
the location of the edge singularity for temperatures
between 1 and 300 MeV are shown in Fig. 1.
The truncated Taylor expansion is analytic for any N and

thus cannot provide direct information about the location of
the Yang-Lee edge (except through the analysis of the
radius of the convergence of the expansion). In other words,
for any given order N, there are no solutions of Eq. (29)
with Ω̄QM → Ω̄QM;E

N . In contrast to this, we find that the
resummed thermodynamic potential can provide direct
information about the location of the Yang-Lee edge
singularity. In order to test this, we also solve Eq. (29)
using Ω̄QM;R

N . Even at order N ¼ 2, the exact location is
reproduced rather accurately. For a comparison of the result
for different orders N and the exact location at different
temperatures, see Fig. 1. In general, even the lowest-order
resummation gives precise results on the location of the
edge singularity for T ≳ 120 MeV, and higher orders
increase the precision of the result. The resummation
converges a bit slower at lower temperatures, but accurate
results can be achieved, e.g., for order N ¼ 8 at
T ¼ 100 MeV. However, the resummation completely fails
to describe the location of the edge singularity below
T ≲ 90 MeV. This is directly related to the absence of
thermal cuts in the resummation scheme.
In addition to the singularity and cut associated with the

Yang-Lee edge, there are also thermal cuts. These cuts
basically follow from the analytical structure of Eq. (21)
and are present even in a gas of free fermions. This can be
seen from a small mass=T expansion, which is valid in the
symmetric phase,

JT;μBðσÞ ¼ −
1

π
T4Li4ð−e

μB
3TÞ

þ 1

16π
h2σ2T2Li2ð−e

μB
3TÞ þOðσ4Þ: ð30Þ

The polylogarithm LisðzÞ has a branch cut at Rez > 1 and
Imz ¼ 0. This translates into cuts in the complex μB plane
at ReμB > 0 and ImμB ¼ 3ð2nþ 1ÞπT with n ∈ Z. In both
the Taylor expansion and the resummation this term is
expanded in powers of μB, so that these cuts cannot be
resolved either way. We therefore limit our analysis to
jμBj < 3πT, as it cannot be valid beyond this point. This
also implies that the periodicity of 6πT at purely imaginary
μB of the quark-meson model cannot be captured by both
schemes. In general, this follows from the fact that the
power-series expansion of Lisð−ewÞ about w ¼ 0 is only
valid for jwj < π [35].
In our analysis jμYLB j > 3πT for T ≲ 80 MeV. Thus, the

thermal cut, rather than the edge singularity, is the closest
singularity at small temperatures. This explains why the
determination of the edge singularity with the resummation
scheme converges more slowly at smaller temperatures
until it eventually fails when T ≤ jμYLB ðTÞj=ð3πÞ.
We see that the program of [18] of using the resumma-

tion technique to locate Lee-Yang zeros (or at least the
closest zeros) finds support in our calculation. Note that our
calculations are performed in the infinite volume/thermo-
dynamic limit, while lattice QCD calculations are intrinsi-
cally finite volume. We remind the reader that, in the mean-
field approximation, we are bound to consider the thermo-
dynamic limit. In a finite volume the Yang-Lee edge and
the corresponding branch cut will be replaced by set of Lee-
Yang zeros along the direction of cut. The subtle difference
between Lee-Yang zeros and Yang-Lee edge is most
probably of no consequence.

V. THERMODYNAMICS

We now turn to thermodynamics of the model. Here we
assess the accuracy of how well both the truncated Taylor
series and the resummed approach reproduce the results
obtained by a direct computation.
In what follows we consider the net baryon density, χ1,

and the fourth-order cumulant χ4 defined in Eq. (15). We
choose these two quantities for the following reason.
Although the baryon density is not very sensitive to the
details of the equation of state, it is a key element in
defining the equation of state of QCD and is required for
the analysis of heavy-ion collision experiments. The fourth-
order cumulant is a more sensitive probe of the equation of
state and is of significance for the experimental search of
the critical endpoint.
We consider two temperatures: one just a little bit above

the pseudocritical temperature (see Table I) and one below;
T ¼ 170 and 120 MeV. In Figs. 2 and 3 we show the
dependence of the baryon density on real and imaginary

FIG. 1. Location of the Yang-Lee edge singularities in the
complex right half plane of μB for T ¼ 1–300 MeV. The red line
shows the location of the full result. The points illustrate the
location for specific temperatures, where the full result is compared
to the resummed result at different truncation orders. For
T ≲ 90 MeV, the resummation method does not provide
reliable results on the location of the edge singularity. For
T < TCEP ¼ 27.46 MeV, instead of the edge singularity, there is
a cut across the real axis, reflecting a first-order phase transition.
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chemical potential for these temperatures, respectively. The
left panels of these figures show the comparison between
the direct calculations of χ1 with the results obtained by
using the truncated Taylor series. From both figures, it is
evident that the Yang-Lee edge singularity, whose location
jμYLB j is indicated by the vertical dashed gray lines, limits
the radius of the convergence of the series. Increasing the
order of the truncation does not improve the convergence of
the series for jμBj≳ jμYLB j, as expected. This is true for both
T ¼ 170 MeV (Fig. 2, left) and T ¼ 120 MeV (Fig. 3,
left). The differences between both temperatures regarding
the convergence behavior are only due to the different radii
of convergence from the different locations of the edge
singularity; cf. Fig. 1.
The right panels of Figs. 2 and 3 show the comparison

between the full result for χ1 and the resummation for
different orders in the expansion of the fermion determi-
nant. As compared to the Taylor expansion in the left
panels of the respective figures, the resummation shows
superior results without any apparent sensitivity to the

radius of convergence defined by the Yang-Lee edge
singularity.
The resummation converges rapidly with increasing

order of the truncation within the whole region of real
and imaginary chemical potentials studied here. χ1 is
accurately described for all orders N ≥ 6. The convergence
at large imaginary chemical potential is slower than at
large real chemical potential. This is because the chiral
condensate σ̄ monotonously increases from its value at
μB ¼ 0 for increasing imaginary chemical potential with
iμB ≤ 3iπT, while it monotonously decreases with increas-
ing real chemical potential. In the former case, the simple
expansion that leads to Eq. (30) is not possible and the
thermodynamic potential is in general a complicated
function of μB. In the latter case, for large real μB, the
condensate is very small and Eq. (30) is well approximated
by only the first term. It then follows from the properties of
the polylogarithm that the thermodynamic potential in
Eq. (25) is a fourth-order polynomial in μB for jμBj <
3πT [35]. Thus, for large real μB, σ̄ → 0 and the potential is

FIG. 2. χ1ðμ2BÞ at T ¼ 170 MeV for purely real and purely imaginary μB. In the latter case, also χ1 is purely imaginary. The vertical
dashed lines denote the location of the edge singularity jμYLB j. (Left) Comparison between the full result and various orders of the Taylor
expansion around μ ¼ 0 (E). (Right) Comparison between the full result and various orders of the resummation (R).

FIG. 3. Same as Fig. 2 with T ¼ 120 MeV.
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that of a free gas of fermions. The resummation at order
N ¼ 4 already captures this exactly. The Taylor expansion
around μB ¼ 0 is clearly not able to reproduce this simple
asymptotic behavior at any order.
The dependence of the fourth-order susceptibility on real

and imaginary chemical potentials, χ4ðμBÞ, is demonstrated
in Figs. 4 and 5, again at T ¼ 170 and 120 MeV. Since
higher-order susceptibilities are more sensitive to quark/
baryon number fluctuations, χ4 is in general a more
complicated function than χ1. It is therefore a stricter test
for convergence. Furthermore, rapidly varying/increasing
χn can be an indication for a crossover transition. This is
seen in Fig. 4, where signs of a crossover at imaginary μB
are shown, and similarly in Fig. 5, where a crossover is
indicated at real μB. This is expected because the former is
at temperatures above Tc, while the latter is below. As can
be seen in the left panels of these figures, the Taylor
expansion is only converged for a very narrow region
around μB ¼ 0 forN ≤ 14. Thus, the order of the expansion
is not high enough to probe the radius of convergence.

The convergence properties of the resummation dis-
cussed above for χ1, while qualitatively the same, are more
apparent in χ4. This is shown in the right panels of Figs. 4
and 5. Again, we observe very rapid convergence at real
chemical potential. It follows from the previous discussion
that χ4 has to become constant at large real μB when the
condensate vanishes. This asymptotic behavior, as well as
the nontrivial functional form of χ4 at smaller μB, is
reproduced with high precision already at low orders of
the resummation. The convergence is markedly slower at
large imaginary μB, but still discernible. The range of
validity of the resummation, jμBj < 3πT, discussed in
Sec. IV, is evident here.

VI. CONCLUSIONS

We have tested the scheme put forward in [18] for the
resummation of infinite orders of an expansion of the
partition function in the chemical potential in a mean-field
quark-meson model. In this case, the resummation amounts

FIG. 4. χ4ðμ2BÞ at T ¼ 170 MeV for purely real and purely imaginary μB. The vertical dashed lines denote the location of the edge
singularity jμYLB j. (Left) Comparison between the full result and various orders of the Taylor expansion around μ ¼ 0 (E). (Right)
Comparison between the full result and various orders of the resummation (R).

FIG. 5. Same as Fig. 4 with T ¼ 120 MeV.
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to solving the equation of motion based on a series
expansion of the effective potential. As a result, the bosonic
mean field becomes a nontrivial function of the chemical
potential. This directly translates into a mean-field thermo-
dynamic potential with nontrivial, in general nonanalytic,
dependence on the chemical potential. This way, not only
the effects of infinite powers in the chemical potential are
taken into account, but also the analytic structure of the
partition function becomes accessible.
This is in contrast to an ordinary Taylor expansion of the

thermodynamic potential in powers of the chemical poten-
tial, as it is by definition strictly analytic and therefore
bound to fail whenever nonanalyticities determine the
structure of the partition function. The relevant singularities
here are thermal cuts arising from thermal distributions in
the partition function, and the Yang-Lee edge singularity,
which is a critical point and a branch point singularity in the
complex chemical potential plane.
By confronting the results of a direct computation at

finite density with the resummation method and the Taylor
expansion, we have tested the capabilities of describing the
analytical structure and the thermodynamics of the model at
finite density. We have found that the resummation is far
superior in describing the model at finite chemical potential
as compared to the Taylor expansion. In fact, the resum-
mation at truncation order N ¼ 8 already describes the
susceptibilities for all real and imaginary chemical poten-
tials studied here with high accuracy. Furthermore, the
location of the Yang-Lee edge singularity is also described
accurately for T ≳ 90 MeV.
Since the resummation is able to capture important

analytical features of the equation of state at finite chemical
potential, it is not limited by the same analytical constraints
as the Taylor expansion. As expected, the Taylor expansion
breaks down at the location of the edge singularity, since it
defines its radius of convergence. Even high orders of the
Taylor expansion fail to describe the nontrivial μB depend-
ence of higher-order susceptibilities already at small μB. In

contrast, since infinite orders in μB are taken into account
with the resummation, the nontrivial functional form of
higher-order susceptibilities, as well as their asymptotic
behavior at large μB > 0, is reproduced faithfully. We find
that the resummation with increasing order of the trunca-
tion converges rapidly for chemical potentials in the region
−ð3πTÞ2 ≤ μ2B ≲ ð3πTÞ2. The only strict limit on the
applicability of the resummation stems from the fact that
the thermal cuts cannot be captured, limiting its range of
validity to jμBj < 3πT in the quark-meson model. In the
confined phase of QCD this bound would be decreased to
jμBj < πT, as thermal distributions of baryons, rather than
quarks, determine the thermal cuts in QCD.
We point out that the resummation is not aimed at curing

or mitigating the sign problem; as for any reweighting
method, Eq. (5) has a sign problem. The goal is to capture
the singularities in the complex plane in order to extend
lattice computations to these values of μB. The purpose of
the present work has been to test whether or not the
analytical structure can be captured by the resummation.
To further test the resummation scheme, a study analo-

gous to the present one, but beyond mean field, would be
useful. In any case, the present work demonstrates the
capability of this scheme in resolving the analytical
structure and thermodynamics of a nontrivial theory for
a wide range of complex chemical potentials. Our results
therefore provide strong indications for the advantages of
using the resummation scheme also for theories like QCD
at finite baryochemical potential, as studied in [18].
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