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In this work, from the experimental data we evaluate the first C-moments of the multiplicity distributions
recently measured in proton-proton collisions at the LHC and compare them with the predictions of two
models: the Kharzeev-Levin model and the Bialas-Praszalowicz model. We divide the data into three sets
according to their phase space coverage: I: pT > 100 MeV and jηj < 0.5; II: pT > 100 MeV and jηj < 2.4
and III: pT > 500 MeV and jηj < 2.4. The mean multiplicity grows with the energy according to a power
law and the power is different for each set. The Cn moments grow continuously with the energy, slowly in
Set I and faster in the other sets. Except for KL in Set II, both models reproduce the main features of the
data. The negative binomial parameter k decreases continuously with the energy and there is no sign of
change in this behavior.
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I. INTRODUCTION

Particle production in hadronic collisions at very high
energies is a very interesting phenomenon. On the exper-
imental side particle multiplicities are easy to measure. On
the theoretical side it is still a very challenging subject [1].
Most of the particles are produced with low and medium
transverse momentum, where perturbative QCD cannot be
applied and one has to use phenomenological models and/
or Monte Carlo event generators. In [2] it was shown that
these generators are able to reproduce the main features of
the multiplicity distributions but they are not yet able to
describe the data with precision, especially in the large
multiplicity region.
Over the past twenty years the QCD based theory of

particle production has experienced a significant progress,
especially because of the development of the color glass
condensate (CGC) formalism [3]. One of the most interest-
ing predictions of the CGC is that at very high energies the
multiplicity distributions will become narrower [4]. This
may be observed looking at the behavior of the multiplicity
moments Cn, which should decrease with the energy. Ten
years ago this prediction was confronted with the LHC data
in [5], where a careful study of the moments was carried out.
The conclusion was that the moments were continuously

growing with the energy with no sign of change in this trend.
Since then, new data appeared, taken at much higher
energies, and it is time to check if there is anything special
happening to the moments. Here it is important to mention
that in the most recent experimental papers the multiplicity
distributions PðnÞ were presented but the moments Cn were
not. The first goal of this work is thus to compute the
moments from the multiplicity tables, which we took from
the hepdata.net databasis (the corresponding links are given
right after the related articles in the reference list). The
numerical values of these quantities are given in the tables
contained in the Appendix. Then we will compare them with
the predictions of two simple models. The first one, which
we call Kharzeev-Levin (KL) was proposed in [6] and used
in [7] to compute the moments of charged particle multi-
plicity distributions. This model is based on the Balitsky-
Kovchegov (BK) equation with fixed dipole sizes. In the
second model, called here Bialas—Praszalowicz (BP) model
[5,8], multiparticle production is described by a probability
distribution, which is a superposition of a distribution of the
number of sources and a Poisson distribution describing
particle emission from each source. In the KL model there is
always only one source, whereas in the BP model the
number of sources grows with energy and can be large. In
this aspect, these models are complementary.
The predictions of KL and BP models will be compared

with the most recent data from the LHC on nonsingle
diffractive pp collisions, which can be grouped into
three sets:

(i) Set I: pT > 100 MeV, jηj < 0.5, and energiesffiffiffi
s

p ¼ 900, 2360, and 7000 GeV, from CMS [2].
(ii) Set II: pT > 100 MeV, jηj < 2.4, and energiesffiffiffi

s
p ¼ 900, 7000, and 8000 GeV from ALICE [9];
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ffiffiffi
s

p ¼ 8000 GeV [10] and 13000 GeV [11]
from ATLAS.

(iii) Set III: pT > 500 MeV, jηj < 2.4, and energiesffiffiffi
s

p ¼ 900, 7000 GeV [12], 8000 GeV (jηj < 2.5)
[10], 13000 GeV (jηj < 2.5) [13] from ATLAS and
13000 GeV (jηj < 2.4) [14] from CMS.

These datasets may contain particles produced through
different production mechanisms. The particles measured
in Set I are produced mainly from gluons; those measured
in Set II come also from the fragmentation region (larger
rapidities) and hence are produced also from the valence
quarks.
Due to the larger transverse momentum cutoff, set III

contains more particles which are produced perturbatively.
These differences might lead to a different behavior of
some observables. In previous analyses [2], it has been
observed that multiplicity distributions in Set I satisfy the
Koba-Nielsen-Olsen (KNO) scaling, whereas those in Set II
do not.

II. THE MODELS

A. The Kharzeev-Levin model

In Refs. [6,7], the authors developed a model
for multiplicity distributions based on the BK equation,
which we will call KL model. They propose the
following evolution equation for the parton multiplicity
distribution Pn:

dPnðYÞ
dY

¼ −ΔnPn þ ðn − 1ÞΔPn−1ðYÞ ð1Þ

which has the simple solution:

PnðYÞ ¼ PKLðnÞ ¼ e−ΔYð1 − e−ΔYÞn−1 ð2Þ

where Y ¼ lnð1=xÞ and Δ is the BFKL Pomeron intercept,
Δ ¼ 4 ln 2 ᾱs with ᾱs ¼ αsNc=π. From the above expres-
sion we obtain the mean multiplicity:

hni ¼
X
n

nPðnÞ ¼ eΔY ¼
�
1

x

�
Δ

ð3Þ

The variable x is defined here as in [15,16]:

x ¼ q20
s

ð4Þ

where q0 is a constant. Inserting (4) into (3) we obtain:

hni ¼
�
s
q20

�
Δ

ð5Þ

The energy scale q0 can be a mass or the average transverse
momentum and hence it might be different for different
datasets, but it should not depend on the collision energy

ffiffiffi
s

p
. In what follows we will fix q0 and Δ from the fit of the

available experimental data.

B. The Bialas-Praszalowicz model

In the BP model the multiplicity distribution is given by:

PBPðnÞ ¼
Z∞

0

dtFðtÞe−n̄t ðn̄tÞ
n

n!
: ð6Þ

where t is a fraction of the average multiplicity, and FðtÞ
the distribution of sources that contribute a fraction t to the
multiplicity probability PBPðnÞ. The function F is normal-
ized:

Z∞

0

dtFðtÞ ¼
Z∞

0

dttFðtÞ ¼ 1: ð7Þ

The above equation implies that hni ¼ n̄. In the BP model
F is given by

Fðt; kÞ ¼ kk

ΓðkÞ t
k−1e−kt ð8Þ

where Γ is the gamma function and PBP turns out to be the
negative binomial distribution (NBD) with parameter k,
which is known to describe relatively well the data at lower
energies [17]. From the equations above we see that in the
BP model particles are emitted by several sources, whose
number follows the distribution given by the function F and
increases with the energy. Moreover, each source emits
particles according to a Poisson distribution.
Since the late 1980s it has been known that a single

negative binomial distribution cannot fully describe the
measured multiplicity distributions. Indeed, up toffiffiffi
s

p ¼ 1 TeV, PðnÞ was reasonably well described by a
NBD. At the Tevatron at

ffiffiffi
s

p ¼ 1.8 TeV, the appearance of
a shoulder in PðnÞ was confirmed and this led to the two-
component model proposed in [18] in which the measured
data were described by a combination of two NBDs, one
representing the soft and one the semihard component. The
success of the double NBD approach was later confirmed
by the

ffiffiffi
s

p ¼ 7 TeV LHC data [19]. More recently, the data
taken at

ffiffiffi
s

p ¼ 8 and 13 TeV have shown that the best fit is
obtained with the inclusion of a third negative binomial
distribution [20–22]. Curiously, in [5] a good fit of the
measured Cn moments was obtained with the single
negative binomial (SNB) approach. One of our goals in
this work is to check at which energy and in which part of
the phase space the SNB fails to reproduce the most
recent data.
Distribution (8) depends on one parameter k, which

depends on the collision energy. The analysis of lower
energy data shows that k decreases with increasing energy.
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When k ¼ 1 the probability distribution PNBD becomes a
geometrical distribution PðnÞ ¼ hnin=ð1þ hniÞnþ1 When
k is large (1=k → 0), the distribution PNBD tends to a
Poisson distribution.

III. RESULTS

A. The mean multiplicity

We start fitting the data on the mean multiplicity as a
function of the energy with the help of the parametrization
(5), as shown in Fig. 1. For completeness we also show data
taken at lower energies. The obtained values of q0 and Δ
are presented in Table I. As it can be seen in the figure, the
data are well reproduced by the power law (5). However,
there is a difference in the size of the parameters. For Set II,
the power Δ is smaller and the corresponding energy
dependence is weaker than in the other sets. This seems

to be a feature of the data. To illustrate this, in Fig. 1(d) we
have have multiplied the data and the fitting curves by
appropriate constants so that the curves start at the same
point. The resulting plot shows clearly the different energy
behavior of the three sets. Since in Sets II and III the
rapidity coverage is the same, the difference in the energy
behavior of the mean multiplicity must be related to the
difference in the lower pT cut. As noted in the introduction,
the most natural explanation (if not the only one) for this

(a)

(c) (d)

(b)

FIG. 1. Mean multiplicities fitted with (5). (a) Dataset I, taken from Ref. [2]. (b) Dataset II, taken from Ref. [10,11] (circles), from
Ref. [9] (down-triangles), from Ref. [2] (squares), from Ref. [23] (left-triangles), from Ref. [24] (diamonds) and from Ref. [25] (stars).
(c) Dataset III, taken from Ref. [10,12,13] (circles). (d) Mean multiplicities adjusted with (5) for all Sets. The points in each set were
multiplied by a constant to illustrate the different behavior with the energy.

TABLE I. Parameters q0 and Δ used in Eq. (5).

Set Δ q0 (GeV)

I 0.13 6.31
II 0.11 0.01
III 0.16 4.83
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energy behavior is the increase of the contribution of
perturbative events, which are known to have a strong
energy dependence. It is nevertheless remarkable how a
relatively modest increase in pT (which is here still far from
the typical few GeV region) can produce a visible effect.
The data of Sets I and II have the same lower pT cut and

very different rapidity coverage. In Set I, we observe
particles produced in the central (rapidity) region, which
is dominated by gluons. In Set II there is a larger
contribution coming from the fragmentation region, where
the valence quarks play an important role in particle
production. The separation of central and fragmentation
regions and its relevance for particle production was first
discussed in [26] and later implemented as a model in [27].
In the fragmentation region, partons from the projectile and
from the target collide in a very asymmetric kinematical
configuration. If a parton from the projetile carries a large
momentum fraction of the proton, the one from the target
carries a very small fraction of the target proton momen-
tum. Therefore, data in this region of the phase space are
more sensitive to the low-x QCD dynamics and to
saturation effects. As it is well known, saturation tames
the growth of observables (parton distribution functions,
color dipole scattering amplitudes, hadron cross sections,
etc...) with the energy. According to these ideas, it is
tempting to interpret the weaker energy dependence of the
data of Set II (as compared to Set I) as a manifestation of
low x saturation effects.

B. The Cn moments

The moments are defined as:

Cm ¼ hnmi
hnim ð9Þ

They have been measured at the LHC and explicitly given
in Refs. [2,28]. For higher energies we can calculate them
from the hepdata.net databasis, as we did in the case of the
mean multiplicities. In the KL model we can obtain the
moments from the definition (9) and the multiplicity
distribution (2). The first of them are given by:

C2 ¼ 2 −
1

hni
C3 ¼

6ðhni − 1Þhni þ 1

hni2 ;

C4 ¼
ð12hniðhni − 1Þ þ 1Þð2hni − 1Þ

hni3

C5 ¼
ðhni − 1Þð120hni2ðhni − 1Þ þ 30hniÞ þ 1

hni4 ð10Þ

Since the mean multiplicities are given by (5), there are no
free parameters in the calculation with the KL model. In the

BP model the moments are obtained from (6) and the first
moments Cn are given by:

C2 ¼
1

hni þ 1þ 1

k
→

1

k
¼ C2 − 1 −

1

hni : ð11Þ

C3 ¼ C2ð2C2 − 1Þ − C2 − 1

hni ;

C4 ¼ C2ð6C2
2 − 7C2 þ 2Þ − 2

3C2
2 − 4C2 þ 1

hni þ C2 − 1

hni2 ;

C5 ¼ C2ð24C3
2 − 46C2

2 þ 29C2 − 6Þ

− 2
18C3

2 − 34C2
2 þ 19C2 − 3

hni

þ 14C2
2 − 23C2 þ 9

hni2 −
C2 − 1

hni3 : ð12Þ

In the above expressions, we need to know k to compute the
moment C2 and then all the other moments. Instead of
choosing values for k, we follow [5] and parametrize C2 as

C2 ¼ aþ b logð ffiffiffi
s

p ½GeV�Þ ð13Þ

We carefully repeat the fitting procedure described in
Ref. [5]. We insert Eq. (13) into the second line of
Eq. (12) obtaining C4 as a function of a and b. Then,
C4 is adjusted to the data and a and b are determined. After
that,C2, C3 and C5 are calculated and compared to the data.
At last, inserting C2 and hni [given by Eq. (5)] into
Eq. (11), we find k. The obtained values are listed in
Table II. Having determined the parameters a and b, which
are energy independent, we can calculate all the first C
moments, compare them with data and make predictions.
This is shown in Fig. 2, where we compare the KL and BP
moments with the three datasets. Looking first at the data
(which are put together here for the first time) we observe
that in all figures the moments grow with the energy. The
moments from Set I grow much slower and are even
compatible with a constant value. This motivated the
observation made in Ref. [2], where the authors claimed
that data relative to small rapidities exhibit KNO scaling
[1,29], while data of larger rapidity intervals do not.
Comparing the moments obtained with Sets II and III
we see that the Cn’s grow with energy in the same
(strong) way.

TABLE II. Parameters a and b obtained from the fit of data with
(13), for the three sets.

Set a b

I 1.68 0.02
II 0.97 0.08
III 1.30 0.06
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Both models give a reasonable description of data. The
KL model has less freedom than the BP one, since in the
latter, apart from hni, we can also adjustC2 to the data. This
flexibility yields better fits. In [5] the mean multiplicity was
calculated from the central rapidity density, dN=dηðη ¼ 0Þ,
while here we have used (5). We believe that this procedure
is more accurate. The results support the BP picture, in
which multiple sources (the number of sources follows the
distribution F) produce a number of particles which follows
a Poisson distribution and both distributions depend on the
energy. On the other hand the success of the KL model
would imply that particle production comes mostly from
gluon cascading resulting ultimately from the BK equation.
In view of its simplicity, the KL model does a reasonable
job with Sets I and III and fails badly with Set II. In this set
we have the bigger multiplicities and, as already pointed
out in [7], with the expressions (10) we rapidly reach the
asymptotic values of the “large hni” limit. The resulting
moments are large and very flat functions of

ffiffiffi
s

p
, in

contradiction with the data. It is not clear which part of
the model is wrong or incomplete. Having in mind the
observations made in the case of the mean multiplicities,
we would guess that there is a missing component in this
version of the model, namely the contribution from the
fragmentation region. Increasing the lower pT cut and
selecting higher pT particles, we reduce the contribution of
the fragmentation region yield (which is mostly forward
and with low transverse momentum) and improve the
agreement between the KL model and data, as is indeed
seen in the comparison with Set III data. Finally, it is worth
mentioning that the discrepancy between the KL model and
the Set II data is visible not only in the Cn moments but also
in the entire distribution PðnÞ, as shown in [30].
Finally, having fitted hni and C2 we return to (11) and

plot 1=k as a function of
ffiffiffi
s

p
. The result, shown in Fig. 3

indicates that 1=k is an increasing function and there is no
sign of a different behavior. These findings extend the
conclusions found ten years ago in [5] to the present
energies, which are two times higher.

IV. CONCLUSIONS

We have used the KL (10) and BP models (12) to fit the
multiplicity moments measured recently at the LHC. The
moments in the KL model depend only on hni and hence
only on two free parameter q0 and Δ. Even so it reproduces
reasonably well the moments of the data of Sets I and III
(where the model is indeed expected to be valid as we have
mainly gluons in the perturbative regime). The failure in
describing the data of Set II is arguably due to the absence
of a component from the fragmentation region.
In the BP model (12) and assuming a logarithmic growth

(13) of C2 moment, we have been able to reproduce the
multiplicity moments over the wide range of energies for
different rapidity intervals. The input growth of C2 with
energy can be translated through (11) into a decrease of the
parameter k. This behavior is consistent with lower energies
and does not exhibit the change predicted in [4].
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APPENDIX: MULTIPLICITIES AND C-MOMENTS

We present below the numerical values of the hni’s and
Cn’s, which appear in the figures (Tables III–V). Some of
them (for the LHC energies) we have calculated from the
data, as described in the text.

TABLE III. hni and Cn for Set I.
ffiffiffi
s

p
(GeV) 900 2360 7000

hni 3.59� 0.09 4.62� 0.12 5.98� 0.09
C2 1.98� 0.11 1.96� 0.12 2.04� 0.07
C3 5.41� 0.43 5.35� 0.46 5.86� 0.28
C4 18.58� 1.96 18.38� 2.11 21.15� 1.36
C5 75.81� 10.03 74.50� 10.82 90.14� 7.21
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(a) (b)

(c)

(e) (f)

(d)

FIG. 2. Cn moments. Solid lines: BP model. Dashed lines: KL model. (a) C2 and C3. Set I. Data from [25] (stars), [24] (diamonds) and
[2] (squares). (b)C4 and C5. Set I. Data from [25] (stars), [24] (diamonds), and [2] (squares). (c) C2 and C3. Set II. Data from [25] (stars),
[24] (diamonds), [9] (triangles) and [10,11] (circles). (d) C4 and C5. Set II. Data from [25] (stars), [24] (diamonds), [9] (triangles) and
[10,11] (circles). (e) C2 and C3. Set III. Data from [10,12,13]. (f) C4 and C5. Set III. Data from [10,12,13].
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