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We present a method to extract the phase shift of a scattering process using the real-time evolution in the
early and intermediate stages of the collision in order to estimate the time delay of a wave packet. This
procedure is convenient when using noisy quantum computers for which the asymptotic out-state behavior
is unreachable. We demonstrate that the challenging Fourier transforms involved in the state preparation
and measurements can be implemented in 1þ 1 dimensions with current trapped ion devices and IBM
quantum computers. We compare quantum computations of the time delays obtained in the one-particle
quantum mechanics limit and the scalable quantum field theory formulation with accurate numerical
results. We discuss the finite volume effects in the Wigner formula connecting time delays to phase shifts.
The results reported involve two- and four-qubit calculations, and we discuss the possibility of larger scale
computations in the near future.
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I. INTRODUCTION

In recent years, the idea of simulating quantum field
theory with quantum computers has gained considerable
interest [1]. In the context of high-energy and nuclear
physics, a long term motivation is to develop quantum
computing methods that perform real-time evolution
for lattice quantum chromodynamics (QCD). This is an
ab-initio, ultraviolet complete, theory of strong interactions
which has been very successful in describing the static
properties of hadrons and nuclei [2]. Importance sampling
methods, used successfully today for lattice QCD at
Euclidean time, are not effective at dealing with the rapid
oscillations of real-time unitary operators acting on large
Hilbert spaces. Currently, physicists resort to non-ab-initio
algorithms such as Pythia and Herwig [3,4] to interpret
hadronic collider data. Doing ab-initio calculations for jet
physics would represent a major accomplishment and is a
long-term goal for the high-energy community. Strategies
to deal with the related question of parton distributions are
outlined in Refs. [5,6]. Progress for out-of-equilibrium

processes in many-electron systems and information para-
doxes in quantum gravity [7] would also have a large
potential impact.
As quantum computers offer new approaches to various

sign problems, it is common to advocate following the
sequence of models that has been successful for the
development of lattice QCD at Euclidean time on classical
computers [8,9]. The first step in this sequence is to study
the quantum Ising model (QIM) on today’s noisy inter-
mediate-scale quantum (NISQ) hardware. Real time
evolution involving a limited number of sites for the
QIM has already been attempted using a few qubits on
gate based quantum computers [10–23], as well as develop-
ments in progress for more complicated models [24–38].
For processes involving a few Trotter steps, error-
mitigation methods such as zero-point extrapolation [39],
written for a generic noise that can be intentionally
increased in order to attempt an extrapolation to zero noise,
have been applied successfully [28,40,41]. It has been
shown [13] that by modeling four qubits on an IBM Q
quantum computing hardware platform these mitigation
methods together with using significantly larger Trotter
steps [12,42,43] provide a reasonable extrapolation for
times of the order of the approximate periodicity of the
problems considered.
We will demonstrate that these recently developed

methods can be used for state-of-the-art NISQ devices to
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prepare and evolve suitable wave packets for the QIM. In
order to optimize the use of limited resources, we will focus
on the reduced problem of a particle coming from the left,
rebounding on a wall and returning to the left. We show that
it is possible to project the wave-function in the early stages
of a collision process onto momentum states and to
pinpoint a time t⋆ that corresponds to the middle of the
collision with the wall. This time can be estimated by
computing the time when the probability for the approxi-
mate momentum of the initial wave packet and its opposite
are equal. In practice, this can be done by introducing a
normalized probability R−ðtÞ for the reflection, defined
later in Eq. (9) and which takes the value 0.5 at t⋆. By
introducing an extra interaction close to the wall, we obtain
a time delayΔt⋆ illustrated in Fig. 1. We will show that Δt⋆
is half of the time delay ΔtW invoked in Wigner formula
[44], provided in Eq. (6), to estimate the derivative of the
phase shift with respect to the momentum.
Phase shifts are a key measurement in the scattering

process and represent the total change of phase due to
interactions. Significant progress has been made in calcu-
lating them from lattice QCD in Euclidean time [45–50]. In
standard textbooks, phase shifts and scattering amplitudes
are estimated from asymptotic data long after the collision
processes have occurred. However, for NISQ devices with
limited coherence time or gate-depth, using the information
from the early stages of the collision is advantageous.
We show that this idea can be implemented on both a
quantum computer using superconducting transmon qubits
and a trapped ion system operating at the University of
Maryland [51].
The article is organized as follows. We introduce the

quantum Ising model with an extra interaction and its
Hilbert space. We show that it is possible to implement the
three steps of the calculation of the S-matrix elements:
(1) preparation of the initial state, (2) real-time evolution,
and (3) measurement of the probability for a particular final
state. We then extract the phase shift by comparing the
cases with and without an external potential. Steps (1) and
(3) involve Fourier transforms and are very challenging
with NISQ devices. This is why we first restrict ourselves to

the quantum mechanics limit where one-particle states
interact with an external potential localized at one site.
We then show that it is possible to extend the computations
to the case of the quantum field theory formulations [12]
that require more qubits but are guaranteed to scale
efficiently for larger volume. More specifically, it can
shown [52] that for finite range interactions, for instance
involving only nearest neighbor degrees of freedom, the
computing timescales like the size of the system.

II. MODEL CALCULATIONS OF PHASE SHIFTS

We consider the transverse-field Ising model in one
spatial dimension,

Ĥ0 ¼ −J
XN−1

i¼1

σ̂xi σ̂
x
iþ1 − hT

XN
i¼1

σ̂zi : ð1Þ

The on-site energy hT is often called a transverse magnetic
field and the ferromagnetic nearest-neighbor interaction J
is responsible for particle hopping, creation and annihi-
lation. This model is very well understood [9] and
discussed for NISQ devices [10–13]. It is equivalent to
a theory of free fermions with subtle effects from the
boundary.
In order to perform Fourier transforms with a reduced

number of qubits, we first consider the quantum mechanics
limit J ≪ hT , where the model consists of energy bands
that can be assigned a particle number. This amounts to
neglecting terms of the form σ̂þi σ̂

þ
iþ1 and their conjugates.

This reduces the size of the Hilbert space from 2N to N and
also and analytic calculations [12] are possible in this
approximation.
For problems invariant under translations and rotations,

the standard quantum mechanics two-particle-scattering
problem can be reduced to a radial Schroedinger equation
in an effective potential. In one spatial dimension, the
simplest case of effective potential for the reduced problem
is a step adjacent to an infinite wall. To be concrete, we can
think of a particle coming from minus infinity and moving
toward a wall. As it approaches the wall, it reaches a
potential step which is defined as positive and constant. The
phase shift due to this type of potential is a standard
textbook problem.
In the Ising model, nontrivial interactions capable of

generating a phase shift can be introduced with an extra
term

Ĥint ¼ U
XN−1

i¼1

σ̂zi σ̂
z
iþ1: ð2Þ

For the reduced one-particle problem with a right wall, the
interaction of Eq. (2) introduces an effective potential at the
end of the chain. This can be seen in the one-particle basis.
If the particle is away from the wall and has a neighbor on

FIG. 1. Illustration of the measurement of the time delay
between the free and interacting wave packets. The normalized
reflection probability R−ðtÞ is defined in Eq. (9).
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each site, it creates an energy −2U, but if it next to the wall,
it only creates an energy−U which isþU above the energy
when it is away.
This discrete Schrödinger equation obtained in the limit

of small J, with U ¼ 0, and no boundaries admits plane
wave solutions e�ikx with energy

EðkÞ ¼ 2Jð1 − cosðkÞÞ: ð3Þ

An additive constant has been adjusted in order to have zero
energy at zero momentum. If we introduce a right wall and
impose ψðN þ 1Þ ¼ 0, we need a relative phase −ei2kðNþ1Þ

for the reflected wave e−ikx. If, in addition, we also
introduce a repulsive potential U > 0 at the rightmost site
N, the problem with a right wall can be solved by
introducing the phase shift. A short calculation shows
that:

ei2δðkÞ ¼ e−i2k
U þ Jeik

U þ Je−ik
: ð4Þ

Notice that this formula is independent of N, because so far
there is no left wall. In practice, such left wall will be
introduced to restrict the problem to N sites. By imposing
ψð0Þ ¼ 0, we obtain a Luscher formula

δðkÞ ¼ −kðN þ 1Þ mod π; ð5Þ

which introduces a restriction on the momenta.
The restriction to a finite number of sites implies a
N-dependence that we will discuss below.
The time delay ΔtW of a wave packet with a sharply

defined momentum k is related to the derivative of the
phase shift by the Wigner formula [44]:

ΔtW ¼ 2δ0ðkÞ=ð∂E=∂kÞ; ð6Þ

where ∂E=∂k is the group velocity, which in our case is
2J sinðkÞ. This formula is obtained by considering the
superposition of two plane waves with infinitesimally
close momenta and energies and calculating the time
difference for the two waves to be in phase at a given
location with and without interaction. This comparison
needs to be done at a time sufficiently longer than the
time when the interaction takes place. From Eq. (4)
we get:

ΔtW ¼
�
−1þ J

U cosðkÞ þ J
U2 þ J2 þ 2JU cosðkÞ

�
=J sinðkÞ: ð7Þ

The time delay ΔtW can also be estimated from the first
half of the real-time evolution of the scattering process and
that it is actually twice the time delay Δt⋆ already
mentioned in Fig. 1. For this purpose, we define the
probabilities to be in the j�ki state

P�ðtÞ≡ jh�kjψðtÞij2; ð8Þ

and their normalized versions

R�ðtÞ≡ P�ðtÞ
PþðtÞ þ P−ðtÞ

ð9Þ

which by design satisfy

Rþ þ R− ¼ 1: ð10Þ

With this normalization RþðtÞ and R−ðtÞ get interchanged
under time-reversal with respect to t⋆. The real-time evo-
lution provides the time t⋆ necessary to reach the symmetric
situation where Pþðt⋆Þ ¼ P−ðt⋆Þ and R−ðt⋆Þ ¼ 0.5. This
corresponds to the time where a classical particle would hit
the wall. We can then compare t⋆ in the case where U ¼ 0
and a nonzero value. We call these times t⋆free and t⋆int
respectively. We define the difference

Δt⋆ ≡ t⋆int − t⋆free; ð11Þ

and will argue that

Δt⋆ ¼ ΔtW
2

ð12Þ

This relation can be justified from the time-reversal
argument that after t⋆int only half of the phase shift,
δðkÞ, has built up while the other half builds after t⋆.
This is actually why historically, the total phase shift is
denoted 2δðkÞ.
In order to confirm this statement, we made a numeri-

cal calculation with a number of sites N ¼ 128. This
number is larger than the number that we will use later
(N ¼ 4) and allows us to minimize the finite volume
effects. The results are shown in Fig. 2 and sup-
port Eq. (11).

FIG. 2. Comparison of numerical Δt� with the analytical
formula Eq. (7) for N ¼ 128.
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We now briefly explain how we calculatedΔt�. First, it is
important to prepare a wave packet that is broad enough in
space to have sharply defined momentum but not too broad
so that it does not reflect too early. In the numerical
calculations, we used an initial wave packet which in lattice
units reads

ψðxÞ ∝ eikx−ðx−N=2Þ2=ðN=4Þ2 : ð13Þ

Second, we used a sigmoid parametrization for the nor-
malized reflection probability

R−ðtÞ ≃ 1=

�
1þ exp

�
−
�
t − t⋆
w

���
: ð14Þ

Empirically, this provides very good fits of the numerical
data. The parameter w describes the width of the transition
region in time units and t⋆ the time such that R−ðt⋆Þ ¼ 0.5
exactly. The quality of the sigmoid fit is illustrated in
Fig. 3. The fit was performed by calculating the continu-
ous time evolution by exact diagonalization and doing a
sigmoid fit with six points in time, as we will do in the
next section. It is useful to notice that the timescale for the
duration of the collision is roughly proportional to N. In
order to get an idea how the phase shifts change when we
decrease N, we plotted δðkÞ0 for N ¼ 32, 64 and 128 in
Fig. 4. This illustrates the magnitude of the volume effects
which are clearly more pronounced when k increases.
Note that some integration procedure is needed in order to
extract δðkÞ. From Eq. (4), we can expand δðkÞ in power of
k. For our numerical values J ¼ 0.02 and U ¼ 0.03, we
obtain

δðkÞ ≃ −0.6kþ 0.008k3 þ… ð15Þ

For 0 ≤ k ≤ 0.5 the correction to the linear approximation
is less then one percent, justifying the approximation

δðkÞ ≃ δ0ð0Þk: ð16Þ

This can be used to initialize the integration process
to extract δðkÞ from δ0ðkÞ obtained from the time
delay.

III. N = 4

Specializing to the case N ¼ 4, we have, up to an
unimportant additive constant, the following effective
Hamiltonian matrix:

Ĥeff ¼

0
BBBBB@

0 −J 0 0

−J 0 −J 0

0 −J 0 −J
0 0 −J U

1
CCCCCA
: ð17Þ

This allows us to reduce the Hilbert space from four
qubits needed for the N ¼ 4 field theory problem to two
qubits for the one particle limit. The remapping is
shown in Eq. (18) with the correspondence illustrated
in Fig. 5:

j1000i → j00i; j0100i → j01i
j0010i → j10i; j0001i → j11i: ð18Þ

The Hamiltonian in Eq. (17) can now be written as

FIG. 3. Comparison of the continuous evolution of R−ðtÞ and a
sigmoid fit at six equally spaced times. The fitted values are t⋆ ¼
1583.3 and w ¼ 173.8.

FIG. 4. Derivative of the phase shift with respect to momentum
calculated numerically using the time delays and Eq. (6) for
N ¼ 32, 64 and 128 compared to the infinite volume results
rom Eq. (7).
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Ĥeff ¼ −JσxII −
J
2
ðσxIσxII þ σyIσ

y
IIÞ

þ U
4
ð1 − σ̂zIÞð1 − σ̂zIIÞ: ð19Þ

The subscripted roman numerals are used to indicate the
use of our two-qubit decomposition.
We now report quantum computations for J ¼ 0.02 and

U ¼ 0.03. In the 2-qubit Hilbert space, the momentum
states for k ¼ �π=2 read

jk ¼ �π=2i ¼ 1

2
ðj00i � ij01i − j10i ∓ ij11iÞ: ð20Þ

It is necessary for the initial wave packet to have some
localization in space so that a distinct scattering event is
visible, i.e., there is a point in time when the particle
reaches the interaction region. As a side effect, the wave
packet will have some momentum distribution because it
no longer is a plane wave. As depicted in Fig. 5, we chose
our initial wave packet to be jπ=2i but restrict it to be
nonzero only in the middle:

jψi ¼ 1ffiffiffi
2

p ðj01i þ ij10iÞ: ð21Þ

We construct this wave packet on two sites with the
following quantum circuit with all qubits initialized in the
j0i state:

ð22Þ

The time evolution operator can be written as a combina-
tion of XX, YY, X, rotations and a controlled phase
operation (Rϕ):

ð23Þ

where ρ ¼ Jδt, θ ¼ Uδt, and δt ¼ 12.5. We use standard
notations [53] for the gates,

XXðρÞ ¼ e−iρXX=2; YYðρÞ ¼ e−iρYY=2;

and RXðρÞ ¼ e−iρX=2: ð24Þ

Thevery slow growth of the one-step error for large δt [42,43]
allows us to reach t ¼ 75 with only six Trotter
steps [13].
We then perform a quantum Fourier transform (QFTr)

on these two qubits to take this state into momentum
space:

ð25Þ

After applying the QFTr, the qubit states j10i and j11i
correspond to the momentum states jki and j−ki respec-
tively, with k ¼ π=2.
The time t⋆ is determined by the symmetric condition

R−ðt⋆Þ ¼ Rþðt⋆Þ ¼ 0.5. Because of the small volume, we
used a deformed sigmoid parametrization

R−ðtÞ ≃ A=

�
1þ exp

�
−
�
t − t̃⋆
w

���
ð26Þ

provides very good fits of the numerical data. The param-
eter w describes the width of the transition region and t̃⋆ is
related to t⋆ via,

t⋆ ¼ t̃⋆ − w lnð2A − 1Þ ð27Þ

The parameters w and t̃� are floated during the fit. For the
interacting case, there is a damping due to finite volume and
coherence loss and we set A equal to the last data point,
which is then excluded from the fit. For the free case, the
damping occurs at later time and we set A ¼ 1 and fit the
standard sigmoid with the six data points.
The data for R− obtained from both quantum computers

are shown in Fig. 6a together with the sigmoid fits where the
values of t⋆free and t⋆int are indicated by vertical lines crossing
the fits at the 0.5 horizontal line. This provides
the numerical values of Δt⋆ given in Table I. The Trotter-
exact and continuous-time estimates have assumed errors on
par with the statistical errors from the quantum simulations,

FIG. 5. Visual depiction of the qubit states (black dashes),
potential for the interacting (blue) and noninteracting case (dark
red), and initial wave packet (light red).
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δR−ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R−ðtÞ − ðR−ðtÞÞ2

q
=

ffiffiffiffiffiffiffiffiffiffiffi
Nshots

p
; ð28Þ

with Nshots ¼ 1000. For comparison, we give the values
obtained by doing sigmoid fits of the continuous-time
evolution (first column) and the Trotter steps (second
column) calculated numerically at the same discrete times
as the experimental data. The readout errors for the trapped
ion computer were implemented using SPAM correction.
The readout errors were corrected on the IBM simulation
using a pseudo-matrix inversion with least squares to ensure
entirely physical values [54]. The systematic errors are
expected to be larger than the statistical errors and very
difficult to estimate. Details of the fits are given in the
Appendix B. In addition the IBMQ Bogota simulation used
Richardson extrapolations which take into account further
systematic errors from the environment which produce
larger uncertainties.
We see that both the IBM and trapped ion estimates

provide larger absolute values of Δt� than the target values.
This can be in part explained by the fact that the fits for the
free process tend to lag below the Trotter steps for t > 50
indicating a loss of coherence.
Measurements from the IBMQ Bogota machine con-

tain both the noisy data with just readout corrections
and a mitigated version obtained using methods dis-
cussed in Ref. [13] and which account for some slightly
negative occupations at low t. This noise mitigation
involves increasing the effective error rate in the
circuit by applying iterated CNOT’s to increase the
decoherence noise and then using a linear fit to data
at different noise rates to extrapolate to a noiseless limit.
The trapped ion simulations include only readout cor-
rections without noise mitigation. This is discussed in
Appendix A.
We see that the quantum mechanics approximation

allows us to perform the QFTr and get reasonable estimates
of Δt�, (Table I). We expect to improve the accuracy of
these estimates in the near future. The extension of this
procedure for more than four sites requires an all-to-all
connectivity and a CNOT depth increasing with the number
of sites. In contrast, the field theory calculation discussed in
the next section, and which is our ultimate goal, requires
more qubits but remains local [52] with a constant
CNOT depth.

TABLE I. Results for Δt� in the quantum mechanics limit
(Q.M) and full field theory (Q.F.T.) from sigmoid fits of the
simulated continuous and Trotter-exact evolutions as well as the
experimental data from the trapped ions and IBM quantum
computers.

Type Continuous Trotter-exact Trapped ions IBM

Q.M. −17.5ð1Þ −13.7ð9Þ −26ð2Þ −21ð2Þ
Q.F.T. −17ð1Þ −14.3ð9Þ −14ð2Þ −15ð2Þ

(a)

(b)

FIG. 6. Experimental results for R−ðtÞ using the quantum
mechanics limit (a) and the full Hamiltonian of Eq. (1) (b) with
andwithout the interaction termon fourqubits for trapped ion (top in
figure), IBM (bottom in figure) quantum computers. The
Hamiltonians use the parameters J ¼ 0.02, hT ¼ 1.0, and
U ¼ 0.03. Statistical errors are shown for all except for mitigated
results.
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IV. TOWARD SCALABLE FIELD THEORY
CALCULATIONS

We have performed field theory computations with the
same devices using four sites and four qubits. This allows
for shallower local circuits but requires a more expensive
Fourier transform [55]. The initial state that we prepared,

jψ ii ¼
1ffiffiffi
2

p ðj01i þ ij10iÞ; ð29Þ

can be remapped to the Ising model by using the inverse
mapping originally described in the text:

j00i → j1000i; j01i → j0100i
j10i → j0010i; j11i → j0001i: ð30Þ

This remapping will give us the initial state:

jψ ii ¼
1ffiffiffi
2

p ðj0100i þ ij0010iÞ: ð31Þ

This state can easily be prepared with 1 XX gate and one
single qubit rotation,

ð32Þ

The time evolution of the system can be easily written in
terms of a circuit requiring at most 3 XX gates per Trotter
step when using a four site system, which is 2 XX gates
deep, see Eq. (33).

ð33Þ

The final portion of the quantum simulation is a Fourier transformation to take the circuit into momentum space [56,57].
This transformation can easily be done using four two-qubit operations.

ð34Þ
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Where F is given by the matrix:

F ¼

0
BBBBB@

1 0 0 0

0 1ffiffi
2

p 1ffiffi
2

p 0

0 1ffiffi
2

p − 1ffiffi
2

p 0

0 0 0 −1

1
CCCCCA
: ð35Þ

This can be decomposed into at most 4 CNOT gates. It
should be noted this is different from the traditional
quantum Fourier transform which uses binary encoding
for the qubits. The decompositions for the F-gate, CZ, and
XX are shown in Appendix D.
The measurement is done then in the z-basis and we

select out the states j0010i and j0001i for the jki and j−ki
state respectively.
In Fig. 6(b) we show the results of these calculations on

IBM’s Casablanca and the Maryland ion trap machines
using the full Hamiltonian with a Trotter step of δt ¼ 15
with six Trotter steps. In both cases, unmitigated data is
used for the analysis. Figure 6(b) indicates that the
discrepancies between the individual fits and the Trotter
exact results are more pronounced than in the previous
calculation. However the effects appear to somehow
compensate when we calculate the differences and we
obtain time delays closer to the Trotter exact ones as shown
in Table I. This question could be investigated with more
accurate data. As discussed in the SM, the fit methods are
similar to the previous ones. No Richardson extrapolations
are performed in this simulation because the effective noise
rate on the circuit would be well outside the linear regime
for the error. The nonlinear errors would render a
Richardson extrapolation infeasible. As improved quantum
computing hardware platforms become available, we plan
to use these upgraded facilities to get more accurate values
of Δt⋆ and extend these calculations to 8 and 16 sites with
one qubit per site. We provide the gate costs for each of
these simulations in Tables IV and V in Appendix C. The
circuit cost of the of the Fourier transform is expected to be
the most expensive but still scales like Oðn logðnÞÞ [55].

V. CONCLUSIONS

We have proposed a method to estimate the time delay
using the early steps of the real-time evolution. We have
given a proof of principle that actual computations of the
time delays can be implemented on both the IBM super-
conducting transmon and trapped ion hardware platforms
for a quantum mechanics limit with two qubits and the field
theory formulation with four qubits. There is plenty of
room for optimization for both devices and we do not claim
that our results allow a systematic comparison between the
devices. We expect that the field theory calculations should
feasible for a larger number of qubits in the near future. A
detailed comparison with existing real-time methods in one

spatial dimension [58–61] would be of great interest.
Quantum computations for quantum Ising models in two
spatial dimensions could offer the possibility to reach
quantum advantage.
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APPENDIX A: QUANTUM COMPUTING
HARDWARE PLATFORMS

This project used both the IBM Quantum Network
superconducting transmon hardware platforms and a
trapped ion machine. For the IBM quantum computers,
the project used IBMQ Bogota (5 qubit) and IBMQ
Casablanca (7 qubit) machines. Both IBM platforms are
rated with a quantum volume of 32. Access to these
machines was through the IBM cloud via the NC State
IBM Quantum Hub.
The ion trap quantum computer used in this study

consists of a chain of 171Ybþ ions confined in a linear
Paul trap and laser-cooled to their motional ground states
[51,62]. The qubits are defined in the hyperfine-split 2S1=2
manifold as j0i¼ jF¼0; mF¼0i, j1i ¼ jF ¼ 1; mF ¼ 0i,
with a splitting of 12.642821 GHz and are insensitive to
magnetic field fluctuations to first order. Qubits are
initialized to the j0i state by optical pumping [63].
Coherent operations are achieved by illuminating the ions
with a pair of counterpropagating Raman beams at 355-nm
which have a beat-note that is set resonant with the qubits
or near the motional sidebands of the chain [64]. One of the
Raman beams illuminates the entire chain. The other one is
split into individual beams that are each matched onto one
channel on a multi-channel acoustic-optic modulator
(AOM). The amplitude, frequency, and phase of each beam
can be modulated independently by the corresponding rf
signal. Individual addressing is achieved by focusing each
of these beams onto one single ion. Each ion is also
matched onto a distinct channel of a photomultiplier tube
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(PMT) that collects state-dependent fluorescence for indi-
vidual state readout [63]. There are two mechanisms of
quantum control. Single qubit rotations are performed by
driving Rabi rotations of the target ion on resonance. Two-
qubit entanglement is implemented by creating an effective
Ising spin-to-spin interaction via transient entanglement
between the qubits and the motional modes with the Raman
beat-note tuned near the motional sidebands [65–67]. Only
qubit-to-qubit entanglement remains after the motional
modes are disentangled at the end of the scheme [68].
Entanglement can be created between any pair of ions
owing to the long-range Coulomb interaction [69]. Typical
gate fidelities are around 99.5(2)% for the single-qubit
gates and 98(1)% for the two-qubit entangling gates.
The main sources of two-qubit gate errors are residual
entanglement between the motional modes and the qubits
due to laser intensity fluctuations and motional heating.
State preparation and measurement (SPAM) errors are
accounted for by applying the inverse of an independently
measured state-to-state error matrix when analyzing
the data.

APPENDIX B: DETERMINING TIME DELAY
WITH SIGMOIDS

We find the time delay using the sigmoid for the fit of
the quantities R−ðtÞ. The results for the quantum mechan-
ics simulations are shown in Table II and for the Quantum
Field theory simulations are shown in Table III. We have

separated out each of the various data sets into lines. The
continuous sampling uses 100 equally spaced time steps
between t ¼ 0 and t ¼ 75 with a corresponding uncer-
tainty of 0.001. Similarly, we also used 6 equally spaced
data points sampled from the continuous distribution at
times which are multiples of t ¼ 12.5 with the same
uniform error rate of 0.001. The noiseless Trotter (Trotter-
exact) was sampled at times steps of δt ¼ 12.5 and had an
uncertainty of δP�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� − P2

�ðtÞ
p

=
ffiffiffiffiffiffiffiffiffiffi
1000

p
. The

remaining three lines were sampled by fitting to the first
five data points for the interacting case (int) and six data
points for the free case. This was done to make sure that
the value of R−ðtÞ is at least 0.5 and that the system has not
reached an asymptotic state. Stated in a different way, in
the interacting case, the signal flattens below 1 after 5
Trotter steps due to the reflection on the left wall.
It is possible to get an idea of the magnitude of the

systematic errors by looking at the first time step, where a
detailed examination shows that the measured values of R−
are significantly larger than the Trotter exact values and the
estimated statistical errors. In absence of a reliable model
for the systematic errors, we estimated the error on the
parameters using the “jackknife” method, which involves
iteratively removing one data point and fitting to this
smaller data set and then using the standard deviation to
measure the systematic uncertainty.
The fitting methods for the field theory results are similar,

the only difference being a slightly larger Trotter step.

APPENDIX C: GATE COSTS

TABLE V. Total gate costs for trapped ions using native gates
XXðϕÞ and native 1-qubit rotations.

Operation Quantum mechanics Field theory

Type 1 qubit 2 qubit 1 qubit 2 qubit

State preparation 2 2 2 2
Single trotter 8 3 4 3
Fourier transform 5 1 52 14

TABLE II. Result of sigmoid fits to a sampling of the exact
evolution operator (continuous), Trotterization, the unmitigated
and mitigated data from IBM hardware, and the University of
Maryland trapped ion quantum computer (quantum mechanics
limit).

Type t̃⋆free t̃⋆int Δt⋆ wfree wint

Continuous Sampled 68.1(1) 50.6(2) −17.5ð1Þ 6.47(8) 7.12(2)
Trotterization 61.8(6) 48.2(7) −13.7ð9Þ 5.8(4) 8.8(6)
IBM unmitigated 57.9(8) 40(1) −13ð1Þ 13.6(5) 8.9(2)
IBM mitigated 65(3) 47(1) −21ð3Þ 6(2) 10.4(7)
Trapped ion 72.6(6) 39.6(2) −26ð2Þ 12.5(4) 8.2(2)

TABLE III. Result of sigmoid fits to a sampling of the exact
evolution operator (continuous), Trotterization, the unmitigated
from IBM hardware, and the University of Maryland Trapped Ion
quantum computer (QFT).

Type t̃⋆free t̃⋆int Δt⋆ wfree wint

Continuous Sampled 68.0(7) 50.9(8) −17ð1Þ 5.25(3) 8.2(2)
Trotterization 69.1(6) 54.8(7) −14.3ð9Þ 6.8(6) 6.5(4)
IBM unmitigated 72(2) 57(2) −15ð2Þ 18(1) 11(1)
Trapped ions 69(1) 54(1) −14ð2Þ 17(1) 9.6(8)

TABLE IV. Total gate costs for IBM using native gates
Uðθ; λ;ϕÞ and CNOT.

Operation Quantum mechanics Field theory

Type 1 qubit 2 qubit 1 qubit 2 qubit

State preparation 2 2 2 2
Single Trotter 15 3 7 6
Fourier transform 5 2 44 14
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APPENDIX D: GATE DECOMPOSITIONS

In this section we provide the gate decompositions for
the F-gate and the CZ gate. For the Maryland trapped ion
quantum computer the CZ gate is given in Fig. 7 and the
F-gate is given in Fig. 8. The implementation of the F-gate
on the IBM quantum hardware is provided in Fig. 9.
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