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The ’t Hooft model, i.e., the two-dimensional quantum chromodynamics in the limit of infinite number
of colors, is interpolated by an angle parameter δ between δ ¼ 0 for the instant form dynamics (IFD) and
δ ¼ π=4 for the light-front dynamics (LFD). With this parameter δ, we formulate the interpolating mass gap
equation which takes into account the nontrivial vacuum effect on the bare fermion mass to find the dressed
fermion mass. Our interpolating mass gap solutions not only reproduce the previous IFD result at δ ¼ 0 as
well as the previous LFD result at δ ¼ π=4 but also link them together between the IFD and LFD results
with the δ parameter. We find the interpolation angle independent characteristic energy function which
satisfies the energy-momentum dispersion relation of the dressed fermion, identifying the renormalized
fermion mass function and the wave function renormalization factor. The renormalized fermion condensate
is also found independent of δ, indicating the persistence of the nontrivial vacuum structure even in the
LFD. Using the dressed fermion propagator interpolating between IFD and LFD, we derive the
corresponding quark-antiquark bound-state equation in the interpolating formulation verifying its agree-
ment with the previous bound-state equations in the IFD and LFD at δ ¼ 0 and δ ¼ π=4, respectively.
The mass spectra of mesons bearing the feature of the Regge trajectories are found independent of the
δ-parameter reproducing the previous results in LFD and IFD for the equal mass quark and antiquark bound
states. The Gell-Mann-Oakes-Renner relation for the pionic ground-state in the zero fermion mass limit is
confirmed indicating that the spontaneous breaking of the chiral symmetry occurs in the ’t Hooft model
regardless of the quantization for 0 ≤ δ ≤ π=4. We obtain the corresponding bound-state wave functions
and discuss their reference frame dependence with respect to the frame independent LFD result. Applying
them for the computation of the so-called quasi-parton distribution functions now in the interpolating
formulation between IFD and LFD, we note a possibility of utilizing not only the reference frame
dependence but also the interpolation angle dependence to get an alternative effective approach to the LFD-
like results.

DOI: 10.1103/PhysRevD.104.036004

I. INTRODUCTION

The two-dimensional quantum chromodynamics
(QCD2) with the number of colors Nc → ∞ has served
as a theoretical laboratory for the study of strong inter-
actions. In ’t Hooft’s seminal paper in 1974 [1], the power
of 1=Nc expansion [2] was demonstrated in solving QCD2

in the limit ofNc → ∞, which was then widely studied also
in relation to the string model and dual theories with the
idea of 1=Nc expansion as a topological expansion in the
motion of physical strings (e.g., by Witten [3]). Under
the large Nc approximation, nonplanar diagrams are
negligible and thus, for example, only the rainbow dia-
grams need to be summed over for the computation of the

quark’s self-mass. The two other parameters in QCD2

besides Nc, are the dimensionful coupling constant g and
the quarkmassm. Sharing the samemass dimension, g andm
play an important role in determining the phase of QCD2 [4].
Depending on the value of the dimensionless coupling
g2Nc=m2, it is known that there are at least two phases in
QCD2 [5]. While the regime of the strong coupling phase
which does not require the finiteness condition on the
dimensionless coupling g2Nc=m2 [6] can be studied by
the bosonizationmethod [7], the regime of theweak coupling
phase which keeps the so-called “’t Hooft coupling” λ ∼
g2Nc finite in the limit of not onlyNc → ∞ but also g → 0 is
investigated typically in QCD2. Although the strong cou-
pling regime of QCD2 is interesting and deserves further
study, the scope of the present work is limited to the weak
coupling regime of QCD2. Yet, we notice that solving QCD2

in the weak coupling regime, i.e., ’t Hooft model, is still
highly nontrivial as the theory captures the property of quark
confinement and involves the infrared-cutoff procedures
discussed in two-dimensional gauge field theories [8,9].
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In particular, we notice that the ’t Hooft model was
originally formulated and solved in the light front dynamics
(LFD) [1] well before it was rederived and discussed in the
instant form dynamics (IFD) [10]. The numerical solution
of the ’t Hooft model in the IFD was presented in the rest
frame of the meson [11] and more recently also in the
moving frames [12]. While a particular family of the axial
gauges interpolated between the IFD and the LFD was
explored, the principal-value prescription for regulating the
infrared divergences was shown to be inconsistent with the
interpolated general axial gauges [9]. Since then, however,
this issue involving the interpolation between the IFD and
the LFD has not yet been examined any further although
the nontrivial vacua in two-dimensional models including
QED2 have been extensively discussed [13]. It thus
motivates us to explore the interpolation of the ’t Hooft
model between the IFD and the LFD fully beyond the
gauge sector and discuss the outcome of the full inter-
polation which naturally remedies the previous issue on
novel inconsistency with the interpolating gauge [9].
Before we get into the details and specific discussions on

the 1þ 1 dimensional nature of the ’t Hooft model, we first
briefly summarize the general remarks on distinguished
features of the IFD and the LFD proposed originally by
Dirac in 1949 [14] and the efforts of interpolating them
together [13,15–21]. The LFD has the advantage of having
the maximum number (seven) of the kinematic operators
among the ten Poincaré operators. More kinematic oper-
ators provide more symmetries that effectively save the
efforts of solving dynamic equations. The conversion of
the dynamic operator in one form of the dynamics into the
kinematic operator in another form of the dynamics can be
traced by introducing an interpolation angle parameter
spanning between the two different forms of the dynamics.
This in fact motivates the study of the interpolation between
the IFD and the LFD.
In our previous works, we have applied the interpolation

method to the scattering amplitude of two scalar particles
[17], the electromagnetic gauge fields [18], as well as the
helicity spinors [19] and established the interpolating QED
theory between the IFD and LFD [15]. In particular, we
presented [15] the formal derivation of the interpolating
QED in the canonical field theory approach and discussed
the constraint fermion degrees of freedom, which appear
uniquely in the LFD. The constraint component of the
fermion degrees of freedom in LFD results in the instanta-
neous contribution to the fermion propagator, which is
genuinely distinguished from the ordinary equal-time
forward and backward propagation of the relativistic
fermion degrees of freedom. The helicity of the on-
mass-shell fermion spinors in LFD is also distinguished
from the ordinary Jacob-Wick helicity in the IFD with
respect to whether the helicity depends on the reference
frame or not. Our analyses clarified any conceivable

confusion in the prevailing notion of the equivalence
between the infinite momentum frame (IMF) approach
and the LFD.
To link the 1þ 1 dimensional IFD space-time coordi-

nates with the LFD ones, we introduce the “hat notation”
for the interpolating variables, as we have done in
Refs. [15,17–19]:

�
xþ̂

x−̂

�
¼
�
cos δ sin δ

sin δ − cos δ

��
x0

x1

�
; ð1Þ

where the interpolation angle δ is allowed to be in the
region of 0 ≤ δ ≤ π

4
. When δ ¼ 0, we recover the IFD

coordinates ðx0;−x1Þ, and when δ ¼ π=4, we arrive at the
LFD coordinates denoted typically by x� ¼ ðx0 � x1Þ= ffiffiffi

2
p

without the “hat.”
In this coordinate system, the metric becomes

gμ̂ ν̂ ¼ gμ̂ ν̂ ¼
�
C S

S −C

�
; ð2Þ

where we use the short-hand notation C ¼ cos 2δ and
S ¼ sin 2δ. Apparently, the interpolating gμ̂ ν̂ goes to the
IFD metric ð1

0
0
−1Þ when δ ¼ 0, and the LFD metric ð0

1
1
0
Þ

when δ ¼ π=4.
The components of covariant and contravariant two-

vector a are then related with each other by

aþ̂ ¼ Caþ̂ þ Sa−̂; aþ̂ ¼ Caþ̂ þ Sa−̂;

a−̂ ¼ Saþ̂ − Ca−̂; a−̂ ¼ Saþ̂ − Ca−̂; ð3Þ

and the inner product of two vectors a and b can be
written as

aμ̂bμ̂ ¼ Cðaþ̂bþ̂ − a−̂b−̂Þ þ Sðaþ̂b−̂ þ a−̂bþ̂Þ: ð4Þ

The same transformation as shown in Eq. (1) applies to
momentum variables as well, i.e.,

pþ̂ ¼ p0 cos δþ p1 sin δ;

p−̂ ¼ p0 sin δ − p1 cos δ: ð5Þ

According to Eq. (3), we also have

pþ̂ ¼ p0 cos δ − p1 sin δ;

p−̂ ¼ p0 sin δþ p1 cos δ: ð6Þ

A useful relationship for the energy-momentum of the on-
mass-shell particle with massm and two-momentum vector
pμ̂ can be found as follows
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ðpþ̂Þ2 ¼ ðp−̂Þ2 þ Cm2: ð7Þ

With the “hat notation,” the theory of QCD1þ1 in the
interpolating quantization is then given by the Lagrangian
density1

L ¼ −
1

4
Fa
μ̂ ν̂F

μ̂ ν̂ a þ ψ̄ðiγμ̂Dμ̂ −mÞψ ; ð9Þ

where

Dμ̂ ¼ ∂ μ̂ − igAa
μ̂ta ð10Þ

and

Fa
μ̂ ν̂ ¼ ∂ μ̂Aa

ν̂ − ∂ ν̂Aa
μ̂ þ gfabcAb

μ̂A
c
ν̂: ð11Þ

In this work, we start from the interpolating Lagrangian
density, Eq. (9), derive the corresponding Hamiltonian and
solve the mass gap equation which interpolates between the
IFD and the LFD. We then apply the solutions of mass gap
equation to the calculations of chiral condensates and the
quark-antiquark bound states to find the meson mass
spectra and the corresponding wave functions. As expected
for any physical observables, the meson mass spectra are
found to be independent of the interpolation angle param-
eter. Since we obtain the meson wave functions in terms of
the interpolation angle parameter δ, we use these δ-
dependent wave functions to compute the corresponding
parton distribution functions (PDFs), comparing them with
the PDFs in the LFD and the so-called quasi-PDFs based on
the IMF approach in IFD [22].
The paper is organized as follows. In Sec. II, we derive

the fermion mass gap equation in QCD1þ1ðNc → ∞Þ in the
quantization interpolating between the IFD and the LFD,
using a couple of different methods, namely, the
Hamiltonian method and the Feynman-diagram method.
In Sec. III, we present the solutions of the mass gap
equation numerically spanning the interpolation angle
between δ ¼ 0 (IFD) and δ ¼ π=4 (LFD). In Sec. IV, we
apply the mass gap solutions to the calculations of the
chiral condensates and the constituent quark mass defined
in the full fermion propagator. In Sec. V, we derive the
quark-antiquark bound-state equations in the interpolating
dynamics and present their solutions in Sec. VI, including
the meson mass spectra, wave functions, and (quasi-)PDFs
in Secs. VI A, VI B and VI C, respectively. The summary

and conclusions follow in Sec. VII. In Appendix A, we
describe in detail the derivation of the interacting quark/
antiquark spinor representation using the Bogoliubov trans-
formation. In Appendix B, we show the method of
minimizing the vacuum energy with respect to the
Bogoliubov angle in getting the mass gap equation. In
Appendix C, we discuss the interpolating mass gap
equation and solution in terms of the rescaled variables
with respect to the mass dimension

ffiffiffiffiffi
2λ

p
and its treatment

associated with the λ ¼ 0 (Free) case vs the λ ≠ 0
(Interacting) case. In Appendix D, we present additional
numerical solutions of the mesonic wave function for a few
different quark masses beyond the ones presented in
Sec. VI B. The corresponding quasi-PDFs are discussed
in Appendix E. In Appendix F, we present the quark-
antiquark bound-state equations and solutions in the rest
frame of the meson.

II. THE MASS GAP EQUATION

In this section, we will derive the quark self-energy
equation in QCD1þ1ðNc → ∞Þ in the interpolating dynam-
ics between the IFD and the LFD. While we use two
different methods, i.e., the Hamiltonian method in Sec. II A
and the Feynman-diagram method in Sec. II B, we show
that both methods provide exactly the same set of equa-
tions. When δ → 0, C → 1 and p−̂ → p1, these equations
become the IFD mass gap equations presented in Ref. [10]
(i.e., Eqs. (3.18) and (3.19) of Ref [10]). The agreement to
Ref. [1] of the δ → π

4
limit is discussed in Sec. II C.

A. The Hamiltonian method

Before we start, we need to choose a gauge as in the case
of any gauge field theory. We adopt here the interpolating
axial gauge, i.e., Aa

−̂ ¼ 0, as explored previously in Ref. [9].
In this gauge, the gluon self-couplings are absent. With the
gauge condition, Eq. (9) reduces to

L ¼ 1

2
ð∂−̂Aa

þ̂Þ2 þ ψ̄ðiγþ̂Dþ̂ þ iγ−̂∂−̂ −mÞψ : ð12Þ

As no interpolation-time derivative of Aa
þ̂, i.e., ∂þ̂Aa

þ̂,
appears in Eq. (12), Aa

þ̂ is not a dynamical variable but
a constrained degree of freedom. We substitute this con-
strained degree of freedom using the equation of motion for
the gluon field Aa

þ̂ given by

∂2
−̂A

a
þ̂ ¼ ψ†γ0γþ̂gtaψ ≡ ρa ¼ Jþ̂a: ð13Þ

The general solution of Eq. (13) is given by

Aa
þ̂ðxþ̂;x−̂Þ

¼1

2

Z
dy−̂jx−̂−y−̂jρaðxþ̂;y−̂Þ−x−̂Faðxþ̂ÞþBaðxþ̂Þ; ð14Þ

1It is worth noting that our definition of g is the same with that
of Ref. [10], but differs with that of Ref. [1] by a factor of 1ffiffi

2
p , i.e.,

when δ → π
4
, (quantities with a superscript “t” denote the notation

used in Ref. [1], and the ones without are ours)

At
μ ¼ −i

ffiffiffi
2

p
Aa
μta; gt ¼ 1ffiffiffi

2
p g; and γtμ ¼ −iγμ: ð8Þ
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where Fa and Ba are constant. While Ba is irrelevant as it
can always be eliminated by a gauge transformation, Fa is a
background electric field which can provide some interest-
ing physical effect such as the axial anomaly in Abelian
gauge field theory [23]. For the color-singlet sector in the
non-Abelian gauge field theory, however, the background
field Fa has no effect, e.g., on the spectrum of hadrons in
the qq̄ channel. For this reason, we drop the background
field Fa and take the first term of Eq. (14) as the solution of
Aa
þ̂ðxþ̂; x−̂Þ in this work. More details of the discussion on

the effect from dropping the background field in the
’t Hooft model can be found in Ref. [10].
The energy-momentum tensor in the interpolation form is

T μ̂
ν̂ ¼ −Fμ̂ λ̂ aFν̂ λ̂

a þ iψ̄γμ̂Dν̂ψ − gμ̂ν̂L: ð15Þ

Thus, the interpolating Hamiltonian is

H ≡ Pþ̂ ¼
Z

dx−̂Tþ̂þ̂ ¼
Z

dx−̂
�
1

2
ð∂−̂Aa

þ̂Þ2

þ ψ†ðx−̂Þð−iγ0γ−̂∂−̂ þ γ0mÞψðx−̂Þ
�
: ð16Þ

As we have shown in [15], all components of the ψ field are
dynamical degrees of freedom for 0 ≤ δ < π=4, while half of
the components become constrained for δ ¼ π=4. The field
operator conjugate to ψðxÞ is

ΠðxÞ ¼ ∂L
∂ð∂þ̂ψðxÞÞ

¼ iγ0γþ̂ψ†ðxÞ: ð17Þ

The anticommutation relation at xþ̂ ¼ x0þ̂ is

fΠðxÞ;ψðx0Þgxþ̂¼x0þ̂ ¼ iγ0γþ̂fψ†ðx−̂Þ;ψðx0−̂Þg
¼ iδðx−̂ − x0−̂Þ: ð18Þ

Consequently,

fψ†ðx−̂Þ;ψðx0−̂Þg ¼ ðγ0γþ̂Þ−1δðx−̂ − x0−̂Þ: ð19Þ

The Dirac field ψ can be expanded in terms of the quark
creation and annihilation operators

ψðx−̂Þ¼
Z

dp−̂

2π
ffiffiffiffiffiffiffiffiffi
2pþ̂

q
× ½bðp−̂Þuðp−̂Þþd†ð−p−̂Þvð−p−̂Þ�e−ip−̂x−̂ : ð20Þ

When the form goes to the limit of IFD, i.e., δ → 0,
p−̂ → −p1 ¼ p1, and x−̂ → −x1, and Eq. (20) becomes
the ordinary field operator expansion in IFD.2

The nontrivial vacuum, jΩ >, which is defined by

bijΩ >¼ 0; dijΩ >¼ 0; ð21Þ

is different from the trivial vacuum j0 > defined by

bið0Þj0 >¼ 0; dið0Þj0 >¼ 0: ð22Þ

The trivial and nontrivial sets of creation and annihilation
operators are related by a Bogoliubov transformation

�
biðp−̂Þ

di†ð−p−̂Þ

�
¼
�
cos ζðp−̂Þ − sin ζðp−̂Þ
sin ζðp−̂Þ cos ζðp−̂Þ

�

·

�
bið0Þðp−̂Þ

dið0Þ†ð−p−̂Þ

�
: ð23Þ

The nontrivial set of operators, just like the trivial ones,
satisfy the canonical anticommutation relations at xþ̂ ¼ x0þ̂

fbiðp−̂;xþ̂Þ;b†jðp0
−̂;x

0þ̂Þgxþ̂¼x0þ̂ ¼2πδðp−̂ −p0
−̂Þδij; ð24Þ

fdið−p−̂; xþ̂Þ; d†jð−p0
−̂; x

0þ̂Þgxþ̂¼x0þ̂ ¼ 2πδðp−̂ − p0
−̂Þδij;

ð25Þ

and all others are zero.
The spinors can be defined through a combination of

boost and Bogoliubov transformation, which can be rep-
resented by

θðp−̂Þ ¼ θfðp−̂Þ þ 2ζðp−̂Þ; ð26Þ

where θfðp−̂Þ is the boost part given by

θfðp−̂Þ ¼ arctan
p−̂ffiffiffiffi
C

p
m
; ð27Þ

and ζðp−̂Þ is the Bogoliubov angle defined in Eq. (23).
While the details of the derivation are given in

Appendix A, the results of the spinors are given by

uðp−̂Þ ¼
ffiffiffiffiffiffiffiffiffi
2pþ̂

q 0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin θðp−̂Þ
2ðcos δ−sin δÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin θðp−̂Þ
2ðcos δþsin δÞ

q
1
CA ð28Þ

and

vð−p−̂Þ ¼
ffiffiffiffiffiffiffiffiffi
2pþ̂

q 0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin θðp−̂Þ
2ðcos δ−sin δÞ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin θðp−̂Þ
2ðcos δþsin δÞ

q
1
CA: ð29Þ

In the case of free particles, Eqs. (28) and (29) get
simplified with θðp−̂Þ ¼ θfðp−̂Þ given by Eq. (27) as

2It differs from the expression in Ref. [10] by a normalization
factor 1ffiffiffiffiffiffi

2pþ̂
p , which was inserted in order to be consistent with

standard textbook [24].
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uð0Þðp−̂Þ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂−p−̂

cos δ−sin δ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂þp−̂

cos δþsin δ

q
1
CA ð30Þ

and

vð0Þð−p−̂Þ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂þp−̂

cos δ−sin δ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂−p−̂

cos δþsin δ

q
1
CA: ð31Þ

Now, plugging the gluon field solution Eq. (14) without
the background field into Eq. (16), we obtain the inter-
polating Hamiltonian as

H ¼
Z

dx−̂ψ†ðx−̂Þð−iγ0γ−̂∂−̂ þ γ0mÞψðx−̂Þ

−
1

4

Z
dx−̂

Z
dy−̂ρaðx−̂Þjx−̂ − y−̂jρaðy−̂Þ

¼ T þ V; ð32Þ

where the kinetic energy

T ¼
Z

dx−̂ψ†ðx−̂Þð−iγ0γ−̂∂−̂ þ γ0mÞψðx−̂Þ; ð33Þ

and the potential energy

V ¼ −
1

4

Z
dx−̂

Z
dy−̂ρaðx−̂Þjx−̂ − y−̂jρaðy−̂Þ

¼ −
g2

4

Z
dx−̂

Z
dy−̂jx−̂ − y−̂jψ†ðx−̂Þγ0γþ̂taψðx−̂Þ

× ψ†ðy−̂Þγ0γþ̂taψðy−̂Þ: ð34Þ
Now, if we define the ’t Hooft coupling as

λ ¼ g2ðNc − 1=NcÞ
4π

; ð35Þ

then λ has the dimension of mass squared in 1þ 1
dimension. By normal-ordering the Hamiltonian, we can
write it in three pieces

H ¼ LNcEv þ ∶H2∶þ ∶H4∶: ð36Þ

Here, the vacuum energy density Ev for the one-
dimensional volume L is given by

Ev ¼
Z

dp−̂

ð2πÞð2pþ̂ÞTr½ð−γ
0γ−̂p−̂ þmγ0Þvð−p−̂Þv†ð−p−̂Þ�

þ λ

4π

Z
dp−̂

2pþ̂

Z
dk−̂
2kþ̂

1

ðp−̂ − k−̂Þ2
Tr½γ0γþ̂uðk−̂Þu†ðk−̂Þγ0γþ̂vð−p−̂Þv†ð−p−̂Þ�; ð37Þ

the two-body interaction term including the kinetic energy is given by

∶H2 ≔ ∶T∶þ ∶V2∶; ð38Þ

with

∶T ≔
Z

dp−̂

ð2πÞð2pþ̂Þ2 fTr½ð−γ
0γ−̂p−̂ þmγ0Þuðp−̂Þu†ðp−̂Þ�b†ðp−̂Þbðp−̂Þ

þ Tr½ð−γ0γ−̂p−̂ þmγ0Þvð−p−̂Þu†ðp−̂Þ�b†ðp−̂Þd†ð−p−̂Þ
þ Tr½ð−γ0γ−̂p−̂ þmγ0Þuðp−̂Þv†ð−p−̂Þ�dð−p−̂Þbðp−̂Þ
−Tr½ð−γ0γ−̂p−̂ þmγ0Þvð−p−̂Þv†ð−p−̂Þ�d†ð−p−̂Þdð−p−̂Þg; ð39Þ

and

∶V2 ≔
λ

2

Z
dp−̂

ð2πÞð2pþ̂Þ2
Z

dk−̂
ð2kþ̂Þðp−̂ − k−̂Þ2

× fTr½γ0γþ̂ðuðk−̂Þu†ðk−̂Þ − vð−k−̂Þv†ð−k−̂ÞÞγ0γþ̂uðp−̂Þu†ðp−̂Þ�b†ðp−̂Þbðp−̂Þ
þ Tr½γ0γþ̂ðuðk−̂Þu†ðk−̂Þ − vð−k−̂Þv†ð−k−̂ÞÞγ0γþ̂vð−p−̂Þu†ðp−̂Þ�b†ðp−̂Þd†ð−p−̂Þ
þ Tr½γ0γþ̂ðuðk−̂Þu†ðk−̂Þ − vð−k−̂Þv†ð−k−̂ÞÞγ0γþ̂uðp−̂Þv†ð−p−̂Þ�dð−p−̂Þbðp−̂Þ
−Tr½γ0γþ̂ðuðk−̂Þu†ðk−̂Þ − vð−k−̂Þv†ð−k−̂ÞÞγ0γþ̂vð−p−̂Þv†ð−p−̂Þ�d†ð−p−̂Þdð−p−̂Þg; ð40Þ
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and the four-body interaction term is given by

∶H4 ≔ −
g2

4

Z
dx−̂

Z
dy−̂jx−̂ − y−̂j∶ψ†ðx−̂Þγ0γþ̂taψðx−̂Þψ†ðy−̂Þγ0γþ̂taψðy−̂Þ∶: ð41Þ

Although the mass gap equation can be obtained either by minimizing Ev with respect to the Bogoliubov angle or by
requiring ∶H2∶ to be diagonal in the quark antiquark creation and annihilation operator basis, both methods provide the
same resulting equations. While we present the derivation of minimizing Ev in Appendix B, we derive here the mass gap
equations by requiring ∶H2∶ to be diagonal. The requirement of ∶H2∶ to be diagonal means that it must take the formZ

dp−̂

ð2πÞð2pþ̂Þ ½Euðp−̂Þb†ðp−̂Þbðp−̂Þ − Evðp−̂Þd†ð−p−̂Þdð−p−̂Þ�: ð42Þ

The divergent piece that comes out during the normal-ordering process is regulated removing the infinite energy [10], and
using the principal value prescription as was done in Ref. [11],

Z
dy

ðx − yÞ2 fðyÞ →
Z

dy
ðx − yÞ2

�
fðyÞ − fðxÞ − ðy − xÞ dfðxÞ

dx

�
≡
Z
� dy
ðx − yÞ2 fðyÞ: ð43Þ

Thus, the eigenvalue conditions on the spinors are given by

Euðp−̂Þ ¼ Tr
�
ð−γ0γ−̂p−̂ þmγ0ÞΓþðp−̂Þ þ

λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

γ0γþ̂ðΓþðk−̂Þ − Γ−ðk−̂ÞÞγ0γþ̂Γþðp−̂Þ
�
; ð44aÞ

Evðp−̂Þ ¼ Tr

�
ð−γ0γ−̂p−̂ þmγ0ÞΓ−ðp−̂Þ þ

λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

γ0γþ̂ðΓþðk−̂Þ − Γ−ðk−̂ÞÞγ0γþ̂Γ−ðp−̂Þ
�
; ð44bÞ

where Γ� is defined by

Γþðp−̂Þ≡ uðp−̂Þu†ðp−̂Þ
2pþ̂ ¼

0
B@

1−sin θðp−̂Þ
2ðcos δ−sin δÞ

cos θðp−̂Þ
2
ffiffiffi
C

p

cos θðp−̂Þ
2
ffiffiffi
C

p 1þsin θðp−̂Þ
2ðcos δþsin δÞ

1
CA; ð45Þ

Γ−ðp−̂Þ≡ vð−p−̂Þv†ð−p−̂Þ
2pþ̂ ¼

0
B@

1þsin θðp−̂Þ
2ðcos δ−sin δÞ − cos θðp−̂Þ

2
ffiffiffi
C

p

− cos θðp−̂Þ
2
ffiffiffi
C

p 1−sin θðp−̂Þ
2ðcos δþsin δÞ

1
CA: ð46Þ

By using Eqs. (28) and (29), one may see that the matrices on the right-hand side of Eqs. (45) and (46) can be obtained by
direct computation. Now, let us define

Eðp−̂Þ≡ C
2
½Euðp−̂Þ − Evðp−̂Þ�: ð47Þ

Then, by subtracting Eqs. (44a) and (44b) as well as plugging in Eqs. (45) and (46), we arrive at

Eðp−̂Þ ¼ p−̂ sin θðp−̂Þ þ
ffiffiffiffi
C

p
m cos θðp−̂Þ þ

Cλ
2

Z
� dk−̂
ðp−̂ − k−̂Þ2

cos ðθðp−̂Þ − θðk−̂ÞÞ: ð48Þ

On the other hand, by adding them, we get

Euðp−̂Þ þ Evðp−̂Þ ¼ −
2S
C

p−̂: ð49Þ

Also, we know that the off-diagonal elements of ∶H2∶ have to vanish
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0 ¼ Tr

�
ð−γ0γ−̂p−̂ þmγ0Þ vð−p−̂Þu†ðp−̂Þ

2pþ̂ þ λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

γ0γþ̂ðΓþðk−̂Þ − Γ−ðk−̂ÞÞγ0γþ̂
vð−p−̂Þu†ðp−̂Þ

2pþ̂

�
; ð50aÞ

0 ¼ Tr

�
ð−γ0γ−̂p−̂ þmγ0Þ uðp−̂Þv†ð−p−̂Þ

2pþ̂ þ λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

γ0γþ̂ðΓþðk−̂Þ − Γ−ðk−̂ÞÞγ0γþ̂
uðp−̂Þv†ð−p−̂Þ

2pþ̂

�
: ð50bÞ

From either Eq. (50a) or Eq. (50b), we get

p−̂

C
cos θðp−̂Þ −

mffiffiffiffi
C

p sin θðp−̂Þ ¼
λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

sin ðθðp−̂Þ − θðk−̂ÞÞ: ð51Þ

Equations (48) and (51) are the mass gap equations in the interpolating dynamics. The same set of mass gap equations can
be derived using the Feynman diagram method as we present in the following Sec. II B.

B. The Feynman diagram method

The self-energy equation in the large Nc approximation is drawn pictorially in Fig. 1. Following the Feynman rules for
the gluon propagator, the free quark propagator and the vertex as 1

k2−̂
, 1

=k−mþiϵ
, and gγþ̂ta, respectively, with the momentum

assignment shown in Fig. 1, we have

Σðp−̂Þ ¼ i
λ

2π

Z
� dk−̂dkþ̂
ðp−̂ − k−̂Þ2

γþ̂
1

=k −m − Σðk−̂Þ þ iϵ
γþ̂: ð52Þ

Writing the self-energy as

Σðp−̂Þ ¼
ffiffiffiffi
C

p
Aðp−̂Þ þ γ−̂Bðp−̂Þ

¼
ffiffiffiffi
C

p
Aðp−̂Þ þ ðSγþ̂ − Cγ−̂ÞBðp−̂Þ; ð53Þ

we express the dressed quark propagator as

SðkÞ ¼ ½=k −m − Σðk−̂Þ þ iϵ�−1
¼ ½γþ̂ðkþ̂ − SBðk−̂ÞÞ þ γ−̂ðk−̂ þ CBðk−̂ÞÞ − ðmþ

ffiffiffiffi
C

p
Aðk−̂ÞÞ þ iϵ�−1: ð54Þ

This dressed quark propagator can be obtained from the bare quark propagator with the replacement given by

8>><
>>:

kþ̂ → kþ̂ − SBðk−̂Þ
k−̂ → k−̂ þ CBðk−̂Þ
m → mþ ffiffiffiffi

C
p

Aðk−̂Þ
: ð55Þ

Then, Eq. (52) becomes

Σðp−̂Þ ¼ i
λ

2π

Z
� dk−̂dkþ̂
ðp−̂ − k−̂Þ2

γþ̂
1

γþ̂ðkþ̂ − SBðk−̂ÞÞ þ γ−̂ðk−̂ þ CBðk−̂ÞÞ − ðmþ ffiffiffiffi
C

p
Aðk−̂ÞÞ þ iϵ

γþ̂

¼ i
λ

2π

Z
� dk−̂dkþ̂
ðp−̂ − k−̂Þ2

×
Cγþ̂ðkþ̂ − SBðk−̂ÞÞ þ ð2Sγþ̂ − Cγ−̂Þðk−̂ þ CBðk−̂ÞÞ þ Cðmþ ffiffiffiffi

C
p

Aðk−̂ÞÞ
Cðkþ̂ − SBðk−̂ÞÞ2 þ 2Sðkþ̂ − SBðk−̂ÞÞðk−̂ þ CBðk−̂ÞÞ − Cðk−̂ þ CBðk−̂ÞÞ2 − ðmþ ffiffiffiffi

C
p

Aðk−̂ÞÞ2 þ iϵ
; ð56Þ

where we have used the algebra for the interpolating γ matrices ðγþ̂Þ2 ¼ C · I2×2, ðγ−̂Þ2 ¼ −C · I2×2, and
fγþ̂; γ−̂g ¼ 2S · I2×2. Now, the two poles of kþ̂ in the denominator of Eq. (56) are given by
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−
S
C
k−̂ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k−̂
C

þ Bðk−̂Þ
�

2

þ
�

mffiffiffiffi
C

p þ Aðk−̂Þ
�

2

s
∓ iϵ0: ð57Þ

After doing the kþ̂ pole integration using Cauchy’s theorem, we get

Σðp−̂Þ ¼
λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

ffiffiffiffi
C

p ð ffiffiffiffi
C

p
mþ CAðk−̂ÞÞ þ γ−̂ðk−̂ þ CBðk−̂ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk−̂ þ CBðk−̂ÞÞ2 þ ð ffiffiffiffi
C

p
mþ CAðk−̂ÞÞ2

q
¼ λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

ð
ffiffiffiffi
C

p
cos θðk−̂Þ þ γ−̂ sin θðk−̂ÞÞ; ð58Þ

where θðk−̂Þ is defined by

θðk−̂Þ ¼ tan−1
�

k−̂ þ CBðk−̂Þffiffiffiffi
C

p
mþ CAðk−̂Þ

�
: ð59Þ

By comparing Eq. (58) with Eq. (53), we can identify

Aðp−̂Þ ¼
λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

cos θðk−̂Þ ð60Þ

and

Bðp−̂Þ ¼
λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

sin θðk−̂Þ: ð61Þ

From Eq. (59), we may geometrically represent the
effective mass and longitudinal momentum of the particle

moving in nontrivial vacuum by drawing the triangle
picture shown in Fig. 2. From Fig. 2, we identify the
energy Eðp−̂Þ as

Eðp−̂Þ2 ¼ ðp−̂ þ CBðp−̂ÞÞ2 þ ð
ffiffiffiffi
C

p
mþ CAðp−̂ÞÞ2; ð62Þ

and find the mass gap equations

Eðp−̂Þ cos θðp−̂Þ ¼
ffiffiffiffi
C

p
mþ C ·

λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

cos θðk−̂Þ;

ð63Þ

Eðp−̂Þ sin θðp−̂Þ ¼ p−̂ þ C ·
λ

2

Z
� dk−̂
ðp−̂ − k−̂Þ2

sin θðk−̂Þ;

ð64Þ

where we used Eqs. (60) and (61) for Aðp−̂Þ and Bðp−̂Þ.
Now, multiplying Eq. (63) by sin θðp−̂Þ and Eq. (64) by
cos θðp−̂Þ and subtracting them, we get the exact same
equation in Sec. II A as given by Eq. (51). Also, by
multiplying Eq. (63) by cos θðp−̂Þ and Eq. (64) by
sin θðp−̂Þ and adding them, we get the same equation as
Eq. (48) in Sec. II A.
In Sec. III, we numerically solve Eq. (51) to obtain θðp−̂Þ

and plug it into Eq. (48) to find Eðp−̂Þ. We note that the
solution of Eðp−̂Þ is not always positive and thus the
geometric interpretation of Fig. 2 should be regarded as a
pictorial device to represent Eqs. (62)–(64) without assum-
ing that the lengths of the triangle sides are positive. We
also recognize Eq. (57) as Eu and Ev mentioned in the
previous subsection, Sec. II A, i.e.,

Euðp−̂Þ¼−
S
C
p−̂þ

Eðp−̂Þ
C

; Evðp−̂Þ¼−
S
C
p−̂ −

Eðp−̂Þ
C

;

ð65Þ

where we note Euð−p−̂Þ ¼ −Evðp−̂Þ and Evð−p−̂Þ ¼
−Euðp−̂Þ due to the evenness of Eðp−̂Þ under
p−̂ ↔ −p−̂, i.e., Eðp−̂Þ ¼ Eð−p−̂Þ. When Eðp−̂Þ is

FIG. 1. Self-energy equation.

FIG. 2. Geometrical representation of mass gap equations
representing Eqs. (62)–(64).
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positive, Eu is the first energy pole corresponding to the
plus sign in Eq. (57), and Ev to the minus sign as written in
Eq. (65). When Eðp−̂Þ is negative, however, Eu is the pole
with minus sign, and Ev the plus sign. Moreover, one can
naturally obtain Eqs. (47) and (49) by adding and sub-
tracting Eu and Ev in Eq. (65).

C. Behavior of the gap equation when
approaching the light front

We note that the interpolating mass gap equations are
greatly simplified in the limit to the LFD, i.e., C → 0. In
this limit, Eq. (51) becomes

pþ cos θðpþÞ ¼ 0; ð66Þ

where one should note p−̂ ¼ p− ¼ pþ as C → 0. The
solution of Eq. (66) is analytically given by

θðpþÞ ¼ π

2
sgnðpþÞ: ð67Þ

Likewise, Eq. (48) is simplified as

EðpþÞ ¼ pþ sin θðpþÞ: ð68Þ

Moreover, Eqs. (60) and (61) are now given by

AðpþÞ ¼ 0 ðexceptpþ ¼ 0Þ; ð69Þ

BðpþÞ ¼ λ

2

Z
� dkþ

ðpþ − kþÞ2 sgnðk
þÞ; ð70Þ

where the light-front zero-mode pþ ¼ 0 contribution
should be taken into account separately with the form of
AðpþÞ ¼ Að0ÞδðpþÞ solution in mind. Besides the pþ ¼ 0
contribution, it is interesting to note a remarkable simpli-
fication of the self-energy in the LFD given by ΣðpþÞ ¼
γþBðpþÞ due to the absence of the scalar part, i.e.,
AðpþÞ ¼ 0. For the computation of BðpþÞ in Eq. (70), ’t
Hooft [1] did not use the principal value but discussed
how to make the infrared region finite by introducing
the infrared cutoff parameter ε as summarized below for
pþ > 0 and pþ < 0, respectively, i.e., in the limit ε → 0, for
pþ > 0,

BðpþÞ ¼ λ

2

�Z
0

−∞
−

dkþ

ðpþ − kþÞ2 þ
Z

pþ−ε

0

dkþ

ðpþ − kþÞ2

þ
Z þ∞

pþþε

dkþ

ðpþ − kþÞ2
�

¼ −λ
�

1

pþ −
1

ε

�
; ð71Þ

while for pþ < 0,

BðpþÞ ¼ λ

2

�Z
pþ−ε

−∞
−

dkþ

ðpþ − kþÞ2 þ
Z

0

pþþε
−

dkþ

ðpþ − kþÞ2

þ
Z þ∞

0

dkþ

ðpþ − kþÞ2
�

¼ −λ
�

1

pþ þ 1

ε

�
: ð72Þ

Thus, the ’t Hooft’s solution for BðpþÞ is given by

BðpþÞ ¼ λ

�
sgnðpþÞ

ε
−

1

pþ

�
: ð73Þ

With these solutions, the replacement given by Eq. (55) in
the LFD limit (δ → π

4
) becomes

8>><
>>:

pþ̂ → pþ̂ − SB

p−̂ → p−̂ þ CB

m → mþ ffiffiffiffi
C

p
A

!C→0

8>><
>>:

p− → p− þ λ
pþ − λ sgnðpþÞ

ε

pþ → pþ

m → m;

ð74Þ

and it leads to the dressed fermion propagator given by

SðpÞ¼
γþðp−þ λ

pþ−λ sgnðp
þÞ

ε Þþ γ−pþþm

2pþp− −m2þ2λ−2λ jp
þj
ε þ iϵ

¼
γþðp− −p−

onþ λ
pþ−λ sgnðp

þÞ
ε Þþ γþp−

onþ γ−pþþm

2pþðp− −p−
onþ λ

pþ−λ sgnðp
þÞ

ε Þþ iϵ

¼ γþ

2pþþ ponþm

p2−m2þ2λ−2λ jp
þj
ε þ iϵ

; ð75Þ

where p−
on ¼ m2

2pþ and pþ
on ¼ pþ. Here, we note the splitting

of the instantaneous contribution (∼γþ) and the so-called
on-mass-shell part∼ðpon þm) of the fermion propagator in
LFD. While the interpolating fermion propagator can split
into the forward moving part with the energy denominator
1=ðpþ̂ − Euðp−̂ÞÞ and the backward moving part with the
energy denominator 1=ðpþ̂ − Evðp−̂ÞÞ as we discuss the
details of the fermion propagator in Sec. IV B, one can notice
the behaviors of Euðp−̂Þ and Evðp−̂Þ in the limit C → 0 as
Euðp−̂Þ → BðpþÞ þ m2

2pþ and Evðp−̂Þ → −ð2pþ
C þ BðpþÞ þ

m2

2pþÞ for pþ > 0 while Euð−p−̂Þ → þð2pþ
C þ BðpþÞ þ m2

2pþÞ
and Evð−p−̂Þ → −ðBðpþÞ þ m2

2pþÞ for pþ < 0 using
Eqs. (62) and (65). Takingpþ > 0 for the sake of discussion,
one can rather easily identify that the on-mass-shell part
∼ðpon þm) of the dressed fermion propagator corresponds
to the forward moving part from the ’t Hooft solution for
BðpþÞ given byEq. (73) aswell as the correspondencepon þ
m with the spinor biproduct uðpþÞūðpþÞ of the dressed
fermion. Likewise, one can identify the instantaneous con-
tribution (∼γþ) to the backward moving part by noting the
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cancellation of 1=C factor in Evðp−̂Þ ∼ − 2pþ
C with the

1=C factor in the backward moving spinor biproduct
vð−pþÞv̄ð−pþÞ ∼ 2pþγþ

C . However, the instantaneous con-
tribution effectively vanishes in the actual calculation of the
rainbowand ladder diagrams as every quark line ismultiplied
by the vertex factor gγþ from both sides and ðγþÞ2 ¼ 0.
Moreover, as fγþ; γ−g ¼ 2, the dressed quark propagator
can be effectively given by

SðpÞ ¼ pþ

2pþp− −m2 þ 2λ − 2λ jpþj
ε þ iϵ

; ð76Þ

with the effectivevertex factor2g.We cannowsee that, due to
the 1=ε infrared divergence, the on-mass-shell pole of this
dressed quark propagator moves toward the infinity from the
on-mass-shell pole p−

on ¼ m2

2pþ. This disappearance of the on-
mass-shell pole due to the infrared cutoff term was inter-
preted as the confinement of the fermions in the ’t Hooft
model [1].
As shown in Ref. [1], however, the infrared cutoff terms

cancel themselves in the bound-state spectroscopy calcu-
lation. Thus, one can use the principal value prescription as
defined in Eq. (43) to regulate the infinite piece. With the
same principal value prescription, BðpþÞ in the limit of
ε → 0 is given by

BðpþÞ ¼ λ

2

Z
dkþ

ðpþ − kþÞ2 ðsgnðk
þÞ − sgnðpþÞÞ

¼ λ

�
sgnðpþÞ

ε
−

1

pþ

�
−
λ

2
sgnðpþÞ

×

�Z
pþ−ε

−∞

dkþ

ðpþ − kþÞ2 þ
Z þ∞

pþþε

dkþ

ðpþ − kþÞ2
�

¼ −
λ

pþ : ð77Þ

The reduced quark propagator without the 1=ε infrared
divergence factor in the denominator is then given by

SðpÞ ¼ pþ

2pþp− −m2 þ 2λþ iϵ
; ð78Þ

which leads to the same effective planar Feynman rule of
the fermion propagator in the light-front gauge presented in
Ref. [1] besides the notation difference explained in the
footnote in Sec. I.

III. THE MASS GAP SOLUTION

The mass gap equation given by Eq. (51) is solved
numerically using a generalized Newton method mentioned
in Ref. [11] as well as in Ref. [12], and we use the same
numerical method elaborated in Refs. [11,12]. Using the
same 200 grid points and choosing the same quark mass

values (in unit of
ffiffiffiffiffi
2λ

p
) as in Ref. [11] and in Ref. [12],

we obtain the numerical solutions of Eq. (51). To cover
the entire interpolating longitudinal momentum range,
−∞ < p−̂ < þ∞, we use the variable ξ ¼ tan−1 p−̂, where
ξ ∈ ð− π

2
; π
2
Þ. As the solutions of θðp−̂Þ are antisymmetric

under the transformation of p−̂ → −p−̂, i.e., θð−p−̂Þ ¼
−θðp−̂Þ, we present the results for the region 0 < p−̂ <
þ∞ only, i.e., 0 < ξ < π

2
, for several quark mass values in

(a)

(b)

(c)

FIG. 3. The numerical solutions of θðp−̂Þ for several interpo-
lation angles, corresponding to the quark mass values in Fig. 4 of
Ref. [11]. All the mass values are in the unit of

ffiffiffiffiffi
2λ

p
. Note

that θðp−̂Þ is an odd function of p−̂ and only the positive p−̂ range
is plotted with the variable ξ ¼ tan−1 p−̂. The closeness of
δ ¼ 0.785398 to π=4 can be assessed by the ratio
0.785398

π=4 ≈ 0.999999792.
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Figs. 3 and 4. In Fig. 3, the numerical solutions of θðp−̂Þ for
several interpolation angles are plotted for the quark mass
values presented in Ref. [11]. The profiles of θðξÞ for δ ¼ 0
coincide with the IFD results provided in Ref. [11]’s Fig. 4.
Also, the profiles of θðξÞ for δ → π=4 approach to the
analytic solution given by Eq. (67) in LFD. It is interesting to
note that the IFD results exhibit a convex profile for the
lighter quark mass (m ¼ 0.18), and as the quark mass
increases (m ¼ 1.00 and 2.11) the profile gets more and

(a)

(b)

(c)

(d)

FIG. 4. The numerical solutions of θðp−̂Þ for several interpo-
lation angles, corresponding to the quark mass values in Fig. 2 of
Ref. [12]. All the mass values are in the unit of

ffiffiffiffiffi
2λ

p
. Note

that θðp−̂Þ is an odd function of p−̂ and only the positive p−̂
range is plotted with the variable ξ ¼ tan−1 p−̂. The closeness
of δ ¼ 0.785398 to π=4 can be assessed by the ratio
0.785398

π=4 ≈ 0.999999792.

(a)

(b)

(c)

FIG. 5. The solutions of Eðp−̂Þ=
ffiffiffiffi
C

p
for several interpolation

angles for different choices of quark mass corresponding to the
quark mass values in Fig. 5 of Ref. [11]. All quantities are in
proper units of

ffiffiffiffiffi
2λ

p
. Eðp−̂Þ is an even function of p−̂. We plot

only for positive p−̂ with the variable ξ ¼ tan−1 p−̂.
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more concave. For the quark mass values presented in
Ref. [12], the numerical solutions of θðp−̂Þ for several
interpolation angles are plotted in Fig. 4. The authors of
Ref. [12] chose the ’t Hooft coupling λ as πλ ¼ 0.18 GeV2 in
conformity to the value of the string tension in the realistic
QCD4, and then determined the light quark mass mu=d ¼
0.045 to obtain the physical pion massMπ ¼ 0.41 in the unit
of

ffiffiffiffiffi
2λ

p
by solving the bound-state equation, which we

present in Sec. V. Likewise, the heavy quarkmassmc ¼ 4.23
was determined to get the physical J=ψ massMJ=ψ ¼ 9.03 in
the same unit. The strange quarkmassms ¼ 0.749was taken
to provide a threshold, below (above) which is called light
(heavy) flavor, by minimizing the relative distance between
the θðξÞ solution and the straight line θðξÞ ¼ ξ in IFD as the
profile of θðξÞ in IFD (i.e., δ ¼ 0) passes from the convex to
concave with the increasing quark mass as discussed in
Fig. 3. The chiral limit withmu ¼ 0was also considered and
the Gell-Mann–Oakes–Renner relation (GOR) was dis-
cussed in Ref. [12]. For those quark masses, m ¼ 0,
0.045, 0.749 and 4.23, we obtain the interpolating mass
gap solutions for several δ values between δ ¼ 0 (IFD) and
δ ¼ π=4 (LFD) as plotted in Fig. 4. Our numerical solutions
for δ ¼ 0 coincide with the IFD results provided in
Ref. [12]’s Fig. 2 (left panel). Again, the profiles of θðξÞ
for δ → π=4 approach to the analytic solution given by
Eq. (67) in LFD.
We then obtain the solutions for Eðp−̂Þ by plugging the

mass gap solutions presented in Figs. 3 and 4 into Eq. (48).
As the plots of Eðp−̂Þ themselves for different interpolation
angles are too close to each other to observe clearly, we
present the solutions of Eðp−̂Þ=

ffiffiffiffi
C

p
in Figs. 5 and 6. The

quark mass values in Figs. 5 and 6 correspond to those in
Figs. 3 and 4, respectively. At δ ¼ 0, the profiles of
Eðp−̂Þ=

ffiffiffiffi
C

p ¼ Eðp1Þ in Figs. 5 and 6 coincide with the
IFD results provided in Ref. [11]’s Fig. 5 and Ref. [12]’s
Fig. 2 (right panel), respectively. Examining the results of
Eðp−̂Þ themselves in the limit δ → π=4, we also find that all
of them approach to the analytic result of EðpþÞ given by
Eq. (68) independent of quark mass m. Moreover, the LFD
result of EðpþÞ given by Eq. (68) is always positive
regardless of pþ while the IFD (δ ¼ 0) results of Eðp1Þ
for small quark mass values, e.g.,m ¼ 0.18 in Fig. 5(a) and
m ¼ 0 and 0.045 in Figs. 6(a) and 6(b), respectively, are
negative for small momentum regions. Indeed, we notice
that the region of small momentum for the negative value of
Eðp1Þ gets shrunken as m gets larger but persists up to
m ≈ 0.56. It was argued in Ref. [10] that the existence of
negative quark self-energy does not cause any concern
though, due to the lack of observability for the energy of a
confined single quark. While similar aspect of the negative
quark energy exists for other interpolation angle values
unless δ ¼ π=4, the corresponding range of the small
momentum gets reduced as δ approaches to π=4 as depicted
in Figs. 5(a), 6(a), and 6(b). It is interesting to note that our

(a)

(b)

(c)

(d)

FIG. 6. The solutions of Eðp−̂Þ=
ffiffiffiffi
C

p
for several interpolation

angles for different choices of quark mass, corresponding to the
quark mass values in Fig. 2 of Ref. [12]. All quantities are in
proper units of

ffiffiffiffiffi
2λ

p
. Eðp−̂Þ is an even function of p−̂. We plot

only for positive p−̂ with the variable ξ ¼ tan−1 p−̂.
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observation of diminishing the negative quark self-energy
region in the limit δ → π=4 (LFD) appears consistent with
the result that the single particle energies do not change
sign due to the additional constant term appearing in
converting the light-front longitudinal momentum sum to
a principal value integral discussed in Ref. [25] with the
formulation of a finite light-front x− coordinate interval.

IV. CHIRAL CONDENSATE AND CONSTITUENT
QUARK MASS

As we have obtained the mass gap solutions, we now
utilize them to discuss the chiral condensate and the
constituent quark mass in this section.

A. The chiral condensate

While the Coleman’s theorem [26] prohibits the sponta-
neously broken chiral symmetry (SBCS) in two-dimen-
sional theories with a finite number of degrees of freedom,
the large Nc limit of the ’t Hooft model does not contradict
with the Coleman’s theorem. The exact result for the chiral
condensate was found in the chiral limit (m → 0) for the
weak coupling regime of QCD2 (m ≫ g ∼ 1=

ffiffiffiffiffiffi
Nc

p
) [4] as

hψ̄ψi ¼ −Nc=
ffiffiffiffiffi
12

p
ð79Þ

in the unit of the mass dimension
ffiffiffiffiffi
2λ

p
with the definition of

λ given by Eq. (35). This indicates that the SBCS occurs in
the ’t Hooft model, in contrast to the strong coupling
regime of QCD2 in which the SBCS does not occur
according to the Coleman’s theorem [26]. Ramifications
of the nontrivial chiral condensates with respect to the
vacuum in the LFD as well as its nonanalytic behavior were
discussed for nonzero quark masses and its chiral limit [27].
For nonzero quark masses, the renormalized quark con-
densation was defined by subtracting the free field expect-
ation value to render the quark condensation finite [27],

hψ̄ψijren ≡ hψ̄ψi − hψ̄ψijg¼0: ð80Þ

In the chiral limit, m → 0, hψ̄ψijg¼0 ¼ 0 and thus
hψ̄ψijren ¼ hψ̄ψi: The numerical computation verifying
Eq. (79) was presented in IFD [28] substituting the mass
gap solution for θðp1Þ in the chiral limit m → 0 as

hψ̄ψijren ¼ −Nc

Z þ∞

−∞

dp1

2π
cos θðp1Þ ≈ −0.29Nc: ð81Þ

With the interpolating quark field between IFD and LFD
given by Eq. (20), we find

hψ̄ψijren¼Nc

Z þ∞

−∞

dp−̂

ð2πÞð2pþ̂Þ
× ½Trfvð−p−̂Þv̄ð−p−̂Þg−Trfvð0Þð−p−̂Þv̄ð0Þð−p−̂Þg�

¼−
Nc

2π
ffiffiffiffi
C

p
Z þ∞

−∞
dp−̂½cosθðp−̂Þ−cosθfðp−̂Þ�;

ð82Þ

where we have used the interpolating spinors given by
Eqs. (29) and (31). We numerically compute Eq. (82) in the
chiral limit, m → 0, for different interpolation angles, and
the results are shown in Table I. We observe that the closer
one gets to the LFD (δ ¼ π

4
), the higher accuracy one needs

for the numerical computation and thus we list the results
obtained by increasing the number of grid points used. One
can see that when δ is away from π=4, the coarser grid is
already good enough to obtain an accurate result. For δ
closer to π=4, the number of grid points should be increased
to improve the numerical accuracy. Table I indicates an
eventual agreement to the analytical value −1=

ffiffiffiffiffi
12

p
≈

−0.29 regardless of the interpolation angle δ with the
enhancement of the numerical accuracy.
Even if the chiral limit is not taken, we notice that the

renormalized chiral condensate must be independent of the
interpolating angle δ as it must be the characteristic
quantity determining the vacuum property for a given
phase of the theory. In fact, the interpolating longitudinal
momentum variable p−̂ can be scaled out by the inter-
polating parameter

ffiffiffiffi
C

p
and Eq. (82) can be given by the

rescaled variable p0
−̂ ¼ p−̂=

ffiffiffiffi
C

p
, i.e.,

TABLE I. The numerically calculated condensation values in
the chiral limit with different interpolation angles and computa-
tional accuracy. All quantities are in proper units of

ffiffiffiffiffi
2λ

p
.

δ Number of grid points hψ̄ψijm→0=Nc

0 200 −0.285209
600 −0.287508

0.4 200 −0.285164
600 −0.287496

0.6 200 −0.284792
600 −0.287375

0.7 200 −0.283836
600 −0.287059

0.75 200 −0.281837
600 −0.286396

0.78 200 −0.296575
600 −0.291334

0.785 600 −0.298104
1000 −0.294377
3000 −0.290590

0.78535 1000 −0.304659
3000 −0.294134
5000 −0.291964
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hψ̄ψijren¼−
Nc

2π

Z þ∞

−∞
dp0

−̂½cosθðp0
−̂Þ− cosθfðp0

−̂Þ�: ð83Þ

The same variable change can be applied to the interpolat-
ing mass gap equation given by Eq. (51) as we illustrate in
Appendix C to obtain the rescaled mass gap equa-
tion without any apparent interpolation angle dependence
as given by Eq. (C6). With θðp0

−̂Þ being the solution of
Eq. (C6) as well as θfðp0

−̂Þ ¼ tan−1ðp0
−̂=mÞ from Eq. (27),

we can confirm that the chiral condensate is indeed
independent of the interpolation angle δ. Thus, the result
of the chiral condensate must be identical whichever
dynamics is chosen for the computation between δ ¼ 0
(IFD) and δ ¼ π=4 (LFD). Computing hψ̄ψijren in Eq. (82)
for any given interpolation angle between δ ¼ 0 and
δ ¼ π=4, one can numerically verify the uniqueness of
the result for each and every quark mass values that one
takes. Varying the quark masses betweenm ¼ 0 andm ¼ 4

in the unit of
ffiffiffiffiffi
2λ

p
, we computed hψ̄ψijren from Eq. (83) and

obtained the numerical result shown in Fig. 7. Our
numerical result for m ¼ 0 in Fig. 7 confirms the results
obtained in Table I reproducing the analytic value
−1=

ffiffiffiffiffi
12

p
≈ −0.29. Likewise, our numerical results for

0 < m ≤ 4 coincide with the analytic result given by
Eq. (2.19) of Ref. [27] which was also numerically
confirmed in Ref. [12].
In the formulation of a finite light-front x− coordinate

interval [25], a phase transition was reported in the weak
coupling limit as a dramatic change of the quark condensate
value to zero was observed. In the continuum limit,
however, there is no such phase transition and the nonzero
condensate value is intact regardless of the form of
dynamics between δ ¼ 0 (IFD) and δ ¼ π=4 (LFD) as
discussed in this subsection. In this respect, it is important
to realize that the phase characterized by the SBCS is
uniquely viable in the continuum ’t Hooft model. While
there is a simple analytic step function solution of Eq. (51)

in IFD (δ ¼ 0) given by θðp1Þ ¼ π
2
sgnðp1Þ in the chiral

limit [10], it should be clearly distinguished from the step
function solution in LFD given by Eq. (67). The step
function solution in IFD leads to the zero chiral condensate
hψ̄ψi ¼ 0 in contrast to the nontrivial chiral condensate
given by Eq. (79). It was indeed demonstrated in Ref. [29]
that this chirally symmetric step function solution in IFD
reveals the possession of infinite vacuum energy compared
to the vacuum energy of the SBCS solution. Thus, the step
function solution in IFD should be clearly distinguished
from the physically viable solution characterized by the
SBCS [30] discussed in this subsection.

B. The fermion propagator and constituent mass

The interpolating free fermion propagator has been
discussed at length in our previous work [15] and can
be readily applied for the interpolating bare quark propa-
gator in 1þ 1 dimension with the notation of the on-mass-
shell two-momenta Paμ̂ ¼ ðPaþ̂; p−̂Þ, Pbμ̂ ¼ ð−Pbþ̂;−p−̂Þ
taking Paþ̂ and −Pbþ̂ as the positive and negative on-shell
interpolating energies of the bare quark, i.e.,

Paþ̂ ¼ −
S
C
p−̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
−̂ þ Cm2

p
C

¼ −Sp−̂ þ pþ̂

C
; ð84Þ

and

−Pbþ̂ ¼ −
S
C
p−̂ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
−̂ þ Cm2

p
C

¼ −Sp−̂ − pþ̂

C
: ð85Þ

The interpolating bare quark propagator is then given by

SðpÞf ¼
1

2pþ̂

�
Pa þm

pþ̂ − Paþ̂ þ iϵ
þ Pb −m
pþ̂ þ Pbþ̂ − iϵ

�
; ð86Þ

where ðPa þmÞ ¼ uð0Þðp−̂Þūð0Þðp−̂Þ and ðPb −mÞ ¼
vð0Þð−p−̂Þv̄ð0Þð−p−̂Þ can be easily verified using the inter-
polating free spinors given by Eqs. (30) and (31). In
Eq. (86), we call m as the bare quark mass. As discussed
in Sec. II B, the interpolating dressed quark propagator can
be obtained from the interpolating bare quark propagator
with the replacement given by Eq. (55). Effectively, Paþ̂ and
Pbþ̂ are replaced by Eu and Ev in Eq. (65) as well as the free
spinors, uð0Þðp−̂Þ and vð0Þðp−̂Þ, are replaced by the spinors
given by Eqs. (28) and (29), uðp−̂Þ and vðp−̂Þ, respectively.
The dressed quark propagator is then obtained as

SðpÞ ¼ 1

2pþ̂

�
uðp−̂Þūðp−̂Þ

pþ̂ − Euðp−̂Þ þ iϵ
þ vð−p−̂Þv̄ð−p−̂Þ
pþ̂ − Evðp−̂Þ − iϵ

�
;

ð87Þ
where the first and second terms correspond to the forward
and backward moving propagators, respectively. The equiv-
alence of Eq. (87) to Eq. (54) can be verified using the
relations

FIG. 7. Numerical results of the condensation hψ̄ψijren as a
function of m in comparison with the analytic result in Ref. [27].
All quantities are in proper units of

ffiffiffiffiffi
2λ

p
.
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uðp−̂Þūðp−̂Þ
2pþ̂ ¼ Γþγ0 ¼

0
B@

cos θðp−̂Þ
2
ffiffiffi
C

p 1−sin θðp−̂Þ
2ðcos δ−sin δÞ

1þsin θðp−̂Þ
2ðcos δþsin δÞ

cos θðp−̂Þ
2
ffiffiffi
C

p

1
CA;

vð−p−̂Þv̄ð−p−̂Þ
2pþ̂ ¼ Γ−γ0 ¼

0
B@ − cos θðp−̂Þ

2
ffiffiffi
C

p 1þsin θðp−̂Þ
2ðcos δ−sin δÞ

1−sin θðp−̂Þ
2ðcos δþsin δÞ − cos θðp−̂Þ

2
ffiffiffi
C

p

1
CA;

where Γþ and Γ− are given by Eqs. (45) and (46), respec-
tively. As discussed in Sec. II C, one can verify that the
forward and backward moving parts in the limit C → 0
correspond to the on-mass-shell part ∼ðpon þmÞ and the
instantaneous contribution (∼γþ) in LFD, respectively.
To discuss the dressed fermion propagator in more

physical terms [31], one can express the dressed quark
propagator given by Eq. (54) in terms of the mass function
Mðp−̂Þ and the wave function renormalization factor
Fðp−̂Þ, i.e.,

SðpÞ ¼ Fðp−̂Þ
p −Mðp−̂Þ

; ð88Þ

and identify Mðp−̂Þ and Fðp−̂Þ respectively as

Mðp−̂Þ ¼ p−̂
mþ ffiffiffiffi

C
p

Aðp−̂Þ
p−̂ þ CBðp−̂Þ

¼ p−̂ffiffiffiffi
C

p cot θðp−̂Þ ð89Þ

and

Fðp−̂Þ ¼
�
1þ CBðp−̂Þ

p−̂

�
−1

¼ p−̂

Eðp−̂Þ sin θðp−̂Þ
: ð90Þ

We then numerically computeMðp−̂Þ and Fðp−̂Þ using the
mass gap solutions θðp−̂Þ and Eðp−̂Þ obtained in Sec. III.
In Figs. 8 and 9, the results of the mass function Mðp−̂Þ

are shown as a function of the variable ξ ¼ tan−1 p−̂ for the
bare quark mass values in Ref. [11] (m ¼ 0.18, 1.00, 2.11)
and Ref. [12] (m ¼ 0, 0.045, 0.749, 4.23), respectively. As
we can see in Figs. 8 and 9, the mass function Mðp−̂Þ
approaches the respective bare quark mass value m as
ξ → π=2 or p−̂ → ∞ while it gets to the respective
characteristic mass value Mð0Þ at ξ ¼ 0 or p−̂ ¼ 0 regard-
less of the interpolation angle δ, although the profile of
Mðp−̂Þ in 0 < ξ < π=2 does depend on the value of δ. The
characteristic mass value Mð0Þ may be regarded as the
dressed quark mass acquired from the dynamical self-
energy interaction depicted in Fig. 1. We note that the
profile ofMðp−̂Þ as δ → π=4 approaches to the shape of the
step-function which drops from Mð0Þ to m away from
pþ ¼ 0.
In Figs. 10 and 11, the results of the wave function

renormalization factor Fðp−̂Þ are plotted with the same
variable ξ for the bare quark mass values in Ref. [11]
(m ¼ 0.18, 1.00, 2.11) and Ref. [12] (m ¼ 0, 0.045, 0.749,

4.23), respectively. Rather immediately, we notice a dra-
matic difference in the results of Fðp−̂Þ for the lower values
of bare quark mass m ¼ 0.18 in Fig. 10 as well as m ¼ 0
and 0.045 in Fig. 11 due to the negative values for small
ξ ¼ tan−1 p−̂ region. Interestingly, the appearance of the
negative values in Fðp−̂Þ for those bare quark mass values
is correlated with the negative values of Eðp−̂Þ=

ffiffiffiffi
C

p
discussed previously for Figs. 5(a) (m ¼ 0.18), 6(a)
(m ¼ 0), and 6(b) (m ¼ 0.045). To comprehend the sign
correlation between Fðp−̂Þ and Eðp−̂Þ, we write cos θðp−̂Þ
and sin θðp−̂Þ in terms ofMðp−̂Þ and Fðp−̂Þ from Eqs. (89)
and (90), as

(a)

(b)

(c)

FIG. 8. Constituent mass as a function of ξ ¼ tan−1 p−̂ for
(a) m ¼ 0.18, (b) m ¼ 1.00, and (c) m ¼ 2.11. All quantities are
in proper units of

ffiffiffiffiffi
2λ

p
.

INTERPOLATING ’t HOOFT MODEL BETWEEN INSTANT AND … PHYS. REV. D 104, 036004 (2021)

036004-15



cos θðp−̂Þ ¼
ffiffiffiffi
C

p
Mðp−̂Þ

Fðp−̂ÞEðp−̂Þ
; ð91Þ

and

sin θðp−̂Þ ¼
p−̂

Fðp−̂ÞEðp−̂Þ
; ð92Þ

so that we may rewrite Eq. (62) associated with the triangle
diagram shown in Fig. 2 as

(a)

(b)

(c)

(d)

FIG. 9. Constituent mass as a function of ξ ¼ tan−1 p−̂ for
(a) m ¼ 0, (b) m ¼ 0.045, (c) m ¼ 0.749, and (d) m ¼ 4.23. All
quantities are in proper units of

ffiffiffiffiffi
2λ

p
.

(a)

(b)

(c)

FIG. 10. Wave function renormalization as a function of
ξ ¼ tan−1 p−̂ for (a) m ¼ 0.18, (b) m ¼ 1.0, and (c) m ¼ 2.11.
All quantities are in proper units of

ffiffiffiffiffi
2λ

p
.
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Fðp−̂ÞEðp−̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CMðp−̂Þ2 þ p2

−̂

q
; ð93Þ

or

Eðp−̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CMðp−̂Þ2 þ p2

−̂

p
Fðp−̂Þ

: ð94Þ

In contrast to Eq. (62), we can now express Eðp−̂Þ itself
without squaring it as Eðp−̂Þ2 with the support from the
wave function renormalization factor Fðp−̂Þ as well as the
mass function Mðp−̂Þ. This is rather remarkable because
the issue of Eðp−̂Þ not being always positive for m≲ 0.56,
which was discussed in Sec. III, is now resolved by
expressing the dressed quark propagator SðpÞ in terms
of Fðp−̂Þ and Mðp−̂Þ as given by Eq. (88). While Eðp−̂Þ
can be negative, Fðp−̂ÞEðp−̂Þ is always positive due to the
sign correlation between Eðp−̂Þ and Fðp−̂Þ as one can see
from Eq. (90) or equivalently from Eq. (92) due to the sign
correlation between θðp−̂Þ and p−̂. This allows us more
physically transparent interpretation of the energy-
momentum dispersion relation for the interpolating dressed
quark with its self-energy. Moreover, using the rescaled
variable p0

−̂ ¼ p−̂=
ffiffiffiffi
C

p
introduced in Eq. (83) for the

renormalized chiral condensate, we can assert the inter-
polation angle independence of the rescaled energy-
momentum dispersion given by

Fðp0
−̂ÞEðp0

−̂Þffiffiffiffi
C

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðp0

−̂Þ2 þ p0
−̂
2

q
≡ Ẽðp0

−̂Þ; ð95Þ

where we define the interpolation angle independent energy
function Ẽðp0

−̂Þ which extends the interpolating energy-
momentum dispersion relation of the on-mass-shell particle
given by Eq. (7) to the case of the dressed quark with the
rescaled variable, i.e.,

Ẽðp0
−̂Þ2 ¼ p0

−̂
2 þMðp0

−̂Þ2: ð96Þ

As the solution of Ẽðp0
−̂Þ is always positive in contrast to

Eðp−̂Þ, we can now promote the mere pictorial device of

(a)

(b)

(c)

(d)

FIG. 11. Wave function renormalization as a function of ξ ¼
tan−1 p−̂ for (a) m ¼ 0, (b) m ¼ 0.045, (c) m ¼ 0.749, and
(d) m ¼ 4.23. All quantities are in proper units of

ffiffiffiffiffi
2λ

p
.

FIG. 12. Geometrical representation of mass gap equations
with the interpolation angle independent energy function Ẽðp0

−̂Þ
defined in Eq. (95).
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geometric interpretation depicted in Fig. 2 to the more
physically meaningful geometric interpretation with
Ẽðp0

−̂Þ;Mðp0
−̂Þ and p0

−̂ as shown in Fig. 12 with all the
positive lengths of the triangle sides. From Eqs. (7) and
(96), we also note the correspondence m ↔ Mðp0

−̂Þ and
pþ̂=

ffiffiffiffi
C

p
↔ Ẽðp0

−̂Þ between the bare quark and the dressed
quark. As an illustration of this correspondence, we plot the
profiles of Ẽ as a function of p0

−̂ for the two cases ofm ¼ 0

and m ¼ 0.18 in Fig. 13. It is evident that Ẽðp0
−̂Þ →

pþ̂=
ffiffiffiffi
C

p
as p0

−̂ → ∞, which is consistent with the result
that the mass function Mðp−̂Þ approaches the bare quark
mass value m as ξ → π=2 or p−̂ → ∞ (See Figs. 8 and 9).
As p0

−̂ → 0, however, Ẽðp0
−̂Þ approaches the characteristic

mass value Mð0Þ as shown in Fig. 13. Indeed we note
Ẽð0Þ ¼ Fð0ÞEð0Þffiffiffi

C
p ¼ Mð0Þ, confirming the sign correlation

between Eðp−̂Þ and Fðp−̂Þ mentioned earlier, i.e., the

negativity of Eðp−̂Þ for the small p−̂ region is compensated
by the corresponding negativity of Fðp−̂Þ to yield the mass
function Mðp−̂Þ positive always for any kinematic region
of p−̂. In Table II, the numerical values of Mð0Þ and Fð0Þ
are tabulated for the quark mass values shown in Figs. 8 and
9 as well as in Figs. 10 and 11. As expected, Fð0Þ values
are negative for the small bare quark mass values
(m≲ 0.56) to compensate the corresponding negative
values of Eð0Þ while Mð0Þ values are all positive.
Now, between the two limits (p0

−̂ → 0 and p0
−̂ → ∞),

both Ẽðp0
−̂Þ and Mðp0

−̂Þ are running with the variable p0
−̂

and their profiles of the p0
−̂-dependence are completely

independent of the interpolation angle δ. The invariance of
Ẽðp0

−̂Þ andMðp0
−̂Þ under the interpolation between IFD and

LFD indicates their universal nature as physically mean-
ingful quantities. In this respect, one may call Ẽðp0

−̂Þ and
Mðp0

−̂Þ as the effective energy and the constituent mass of
the dressed quark moving with the scaled longitudinal
momentum p0

−̂. In principle, these physical quantities can
be also computed in the well-known Euclidean approaches
[32] such as the latticeQCD[33] and themanifestly covariant
Dyson-Schwinger formulation. In the Euclidean formu-
lation, which can in principle be applied to the interpolation
dynamics as far as 0 ≤ δ < π=4 except δ ¼ π=4 due to
the light-like nature of LFD, the effective energy and the
constituent quark mass would be given in terms of the
Lorentz-invariant Euclidean variable P̃2 < 0, i.e., ẼðP̃2Þ and
MðP̃2Þ. In IFD, onemay correspond theWick rotated energy
P̃0 with the imaginary effective energy, i.e., P̃0 ¼ iẼðP̃2Þ
(purely imaginaryvalue), and the longitudinalmomentum P̃1

with p1 of the dressed quark, so that P̃2 ¼ ðP̃0Þ2þ
ðP̃1Þ2 ¼ −ẼðP̃2Þ2 þ ðp1Þ2 ¼ −ðp1Þ2 −MðP̃2Þ2 þ ðp1Þ2 ¼
−MðP̃2Þ2 < 0. In the same token, as p2 ¼ ðpþ̂Þ2−ðp−̂Þ2

C gen-
erally in the interpolating dynamics, the Wick rotated
interpolating energy P̃þ̂ with the imaginary effective energy,
i.e., P̃þ̂=

ffiffiffiffi
C

p ¼ iẼðp0
−̂
2Þ (purely imaginary value), and the

longitudinal momentum P̃−̂=
ffiffiffiffi
C

p
with p0

−̂ of the dressed

quark, so that P̃2 ¼ ðP̃þ̂Þ2þðP̃−̂Þ2
C ¼−Ẽðp0

−̂
2Þ2þp0

−̂
2¼−p0

−̂
2−

Mðp0
−̂Þ2þp0

−̂
2¼−Mðp0

−̂Þ2 < 0. Thus, it is natural to corre-
spond the square of the rescaled longitudinal momentum
(p0

−̂) to the Euclidean variable P̃2 for the space-like region
P̃2 < 0 in the interpolating dynamics, i.e.,

p02
−̂ ↔ −P̃2: ð97Þ

FIG. 13. The profiles of Ẽðp0
−̂Þ for several interpolation angles

for two example small quark masses (a)m ¼ 0 and (b)m ¼ 0.18,
in comparison with pþ̂=

ffiffiffiffi
C

p
for a free particle of the correspond-

ing same masses, as a function of p0
−̂. All quantities are in proper

units of
ffiffiffiffiffi
2λ

p
.

TABLE II. The numerical values of Mð0Þ and Fð0Þ for several different quark mass values. All quantities are in
proper units of

ffiffiffiffiffi
2λ

p
.

m 0 0.045 0.18 0.749 1.00 2.11 4.23

Mð0Þ 0.532778 0.563644 0.659112 1.10105 1.31167 2.30969 4.34358
Fð0Þ −0.495173 −0.584175 −0.987673 4.11079 2.17976 1.22134 1.05526
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This correspondence is supported not only from the relativ-
istic form invariance of Ẽðp0

−̂Þ andMðp0
−̂Þ but also from the

matching condition between the Minkowsky space and
the Euclidean space. Namely, when the real energy value
in the Minkowsky space is converted into the purely
imaginary value in the Euclidean space, the matching
between the real value and the purely imaginary value occurs
precisely where the value itself is zero. For instance, in IFD,
the Wick rotation of the energy p0 → P̃0 ¼ ip0 has the
common energy value p0 ¼ P̃0 ¼ 0 so that the Lorentz-
invariant momentum-squared value in theMinkowsky space
can be matched with the corresponding Euclidean momen-
tum-squared value, P̃2, by taking simultaneously both the
real value p0 ¼ 0 in the Minkowsky space and the purely
imaginary value P̃0 ¼ ip0 ¼ 0. Likewise, in the interpola-
tion of the relativistic dynamics for 0 ≤ δ < π=4, one can
match the Minkowsky space and the Euclidean space by
taking pþ̂=

ffiffiffiffi
C

p ¼ ipþ̂=
ffiffiffiffi
C

p ¼ P̃þ̂=
ffiffiffiffi
C

p ¼ 0, confirming the
correspondence given by Eq. (97).

V. THE BOUND-STATE EQUATION

Having solved the mass gap equation and obtained the
dressed quark propagator interpolating between IFD and
LFD, we now derive the quark-antiquark bound-state
equation in the interpolating form. While we consider
the quark-antiquark bound-state with the equal bare mass
m in this work, one may generalize it rather straightfor-
wardly to the unequal quark and antiquark mass cases.
Bound-states for the unequal quark and antiquark mass
cases were analyzed in Refs. [1,34], and the quark-hadron

duality, analytical heavy quark expansion and chiral sym-
metry breaking effects in the heavy-light mesons have been
discussed respectively in Refs. [35–37]. Denoting the
covariant Bethe-Salpeter amplitude Γðr; pÞ of the two-
body bound state with the two-momentum rμ̂ of the bound
state and the two-momentum pμ̂ of one of the two
constituents depicted in Fig. 14, we first write down the
Bethe-Salpeter equation following the Feynman rules of the
gluon propagator and the dressed quark propagator in the
’t Hooft model

Γðr; pÞ ¼ iλ
2π

Z
� dk−̂dkþ̂
ðp−̂ − k−̂Þ2

SðpÞγþ̂Γðr; kÞγþ̂Sðp − rÞ:

ð98Þ

To project the covariant Bethe-Salpeter amplitude
Γðr; pÞ into the interpolating equal-time wave function,
we first integrate out the interpolating energy pþ̂ and define
the wave function ϕðr−̂; p−̂Þ as ϕðr−̂; p−̂Þ ¼

R
dpþ̂Γðr; pÞ

with the on-mass-shell condition to fix the external inter-
polating energy rþ̂. Then, Eq. (98) is converted to the
equation for ϕðr−̂; p−̂Þ

ϕðr−̂; p−̂Þ ¼
iλ
2π

Z
� dk−̂
ðp−̂ − k−̂Þ2

Z
dpþ̂SðpÞγþ̂ϕðr−̂; k−̂Þγþ̂Sðp − rÞ: ð99Þ

Now, we also write the fermion propagator SðpÞ given by Eq. (87) as

SðpÞ ¼ T̃ðp−̂ÞΛþT̃†ðp−̂Þγ0
pþ̂ − Euðp−̂Þ þ iϵ

þ T̃ðp−̂ÞΛ−T̃†ðp−̂Þγ0
pþ̂ − Evðp−̂Þ − iϵ

; ð100Þ

using Eqs. (A21) and (A22) to rewrite uðp−̂Þūðp−̂Þ and vð−p−̂Þv̄ð−p−̂Þ as

uðp−̂Þūðp−̂Þ ¼ Tðp−̂Þuð0Þð0Þuð0Þ†ð0ÞT†ðp−̂Þγ0 ¼ T̃ðp−̂ÞΛþT̃†ðp−̂Þγ0 ð101Þ

and

vð−p−̂Þv̄ð−p−̂Þ ¼ Tðp−̂Þvð0Þðp−̂0Þvð0Þ†ðp−̂0ÞT†ðp−̂Þγ0 ¼ T̃ðp−̂ÞΛ−T̃†ðp−̂Þγ0; ð102Þ

where we define

Λþ ≡ uð0Þð0Þuð0Þ†ð0Þ
2
ffiffiffiffi
C

p
m

¼
 1

2ðcos δ−sin δÞ
1

2
ffiffiffi
C

p

1

2
ffiffiffi
C

p 1
2ðcos δþsin δÞ

!
ð103Þ

FIG. 14. Diagrammatic representation of the Bethe-Salpeter
Equation.
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Λ− ≡ vð0Þð0Þvð0Þ†ð0Þ
2
ffiffiffiffi
C

p
m

¼
� 1

2ðcos δ−sin δÞ − 1

2
ffiffiffi
C

p

− 1

2
ffiffiffi
C

p 1
2ðcos δþsin δÞ

�
ð104Þ

and

T̃ðp−̂Þ ¼ exp

�
−
1

2
θðp−̂Þ

γ−̂ffiffiffiffi
C

p
�
: ð105Þ

Substituting then Eq. (100) to Eq. (99) and performing the pþ̂ integration, we get

ϕðr−̂; p−̂Þ ¼ λ

Z
� dk−̂
ðp−̂ − k−̂Þ2

×

�
T̃ðp−̂ÞΛþT̃†ðp−̂Þγ0γþ̂ϕðr−̂; k−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛ−T̃†ðp−̂ − r−̂Þγ0

−rþ̂ þ Euðp−̂Þ − Evðp−̂ − r−̂Þ

þ T̃ðp−̂ÞΛ−T̃†ðp−̂Þγ0γþ̂ϕðr−̂; k−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛþT̃†ðp−̂ − r−̂Þγ0
rþ̂ þ Euðp−̂ − r−̂Þ − Evðp−̂Þ

�
: ð106Þ

Here, we note T̃ð−p−̂ÞT̃ðp−̂Þ ¼ I and further define ϕ̃ðr−̂; p−̂Þ ¼ T̃ð−p−̂Þϕðr−̂; p−̂ÞT̃ðr−̂ − p−̂Þ, to plug in ϕðr−̂; k−̂Þ ¼
T̃ðk−̂Þϕ̃ðr−̂; k−̂ÞT̃ðk−̂ − r−̂Þ and obtain

ϕ̃ðr−̂; p−̂Þ ¼ λ

Z
� dk−̂
ðp−̂ − k−̂Þ2

�
ΛþT̃†ðp−̂Þγ0γþ̂T̃ðk−̂Þϕ̃ðr−̂; k−̂ÞT̃ðk−̂ − r−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛ−γ0

−rþ̂ þ Euðp−̂Þ − Evðp−̂ − r−̂Þ

þ Λ−T̃†ðp−̂Þγ0γþ̂T̃ðk−̂Þϕ̃ðr−̂; k−̂ÞT̃ðk−̂ − r−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛþγ0

rþ̂ þ Euðp−̂ − r−̂Þ − Evðp−̂Þ
�
: ð107Þ

Examining the general structure of ϕ̃ in Eq. (107), we realize that it can be split into the forward moving part ϕ̂þ and the
backward moving part ϕ̂− with the two 2 × 2 matrices M̂þ and M̂−, i.e., ϕ̃ ¼ ϕ̂þM̂þ þ ϕ̂−M̂

−, where

M̂þ ¼ γ5
ffiffiffiffi
C

p þ γ−̂
2

¼
 

−
ffiffiffi
C

p
2

cos δþsin δ
2

− cos δ−sin δ
2

ffiffiffi
C

p
2

!
; ð108Þ

M̂− ¼ γ5
ffiffiffiffi
C

p
− γ−̂

2
¼
 

−
ffiffiffi
C

p
2

− cos δþsin δ
2

cos δ−sin δ
2

ffiffiffi
C

p
2

!
: ð109Þ

We note here that M̂þ and M̂− coincide with the two 2 × 2matricesMþ andM− in the IFD given by Eq. (4.9) of Ref. [10] as

δ → 0 or C → 1, i.e., Mþ ¼ γ5þγ1

2
¼ 1þγ0

2
γ5, and M− ¼ γ5−γ1

2
¼ 1−γ0

2
γ5, due to γ0γ5 ¼ γ1, while M̂� → M�

LF ¼ � γþ
2
in the

LFD limit δ → π=4 or C → 0. For the interpolation angle 0 ≤ δ ≤ π=4 in general, from the direct calculation of the matrix
multiplications, we find

½ΛþT̃†ðp−̂Þγ0γþ̂T̃ðk−̂Þ�M̂þ½T̃ðk−̂ − r−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛ−γ0� ¼ Cðp−̂; k−̂; r−̂ÞM̂þ; ð110Þ

½ΛþT̃†ðp−̂Þγ0γþ̂T̃ðk−̂Þ�M̂−½T̃ðk−̂ − r−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛ−γ0� ¼ −Sðp−̂; k−̂; r−̂ÞM̂þ; ð111Þ

½Λ−T̃†ðp−̂Þγ0γþ̂T̃ðk−̂Þ�M̂þ½T̃ðk−̂ − r−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛþγ0� ¼ −Sðp−̂; k−̂; r−̂ÞM̂−; ð112Þ

½Λ−T̃†ðp−̂Þγ0γþ̂T̃ðk−̂Þ�M̂−½T̃ðk−̂ − r−̂Þγþ̂T̃ðp−̂ − r−̂ÞΛþγ0� ¼ Cðp−̂; k−̂; r−̂ÞM̂−; ð113Þ

where
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Cðp−̂; k−̂; r−̂Þ ¼ cos

�
θðp−̂Þ − θðk−̂Þ

2

�
cos

�
θðr−̂ − p−̂Þ − θðr−̂ − k−̂Þ

2

�
; ð114Þ

and

Sðp−̂; k−̂; r−̂Þ ¼ sin

�
θðp−̂Þ − θðk−̂Þ

2

�
sin

�
θðr−̂ − p−̂Þ − θðr−̂ − k−̂Þ

2

�
: ð115Þ

With Eqs. (110)–(113), we finally split Eq. (107) into the two coupled bound-state equations of ϕ̂þ and ϕ̂−̂

½−rþ̂ þ Euðp−̂Þ − Evðp−̂ − r−̂Þ�ϕ̂þðr−̂; p−̂Þ ¼ λ

Z
� dk−̂
ðp−̂ − k−̂Þ2

½Cðp−̂; k−̂; r−̂Þϕ̂þðr−̂; k−̂Þ − Sðp−̂; k−̂; r−̂Þϕ̂−ðr−̂; k−̂Þ�;

ð116aÞ

½rþ̂ þ Euðp−̂ − r−̂Þ − Evðp−̂Þ�ϕ̂−ðr−̂; p−̂Þ ¼ λ

Z
� dk−̂
ðp−̂ − k−̂Þ2

½Cðp−̂; k−̂; r−̂Þϕ̂−ðr−̂; k−̂Þ − Sðp−̂; k−̂; r−̂Þϕ̂þðr−̂; k−̂Þ�:

ð116bÞ

We again note here that Eqs. (116a)–(116b) coincide with Eq. (4.12) of Ref. [10] in the IFD as δ → 0 because not only the

energies of particle and antiparticle become Euðp−̂Þ!δ→0
Eðp1Þ and Evðp−̂Þ!δ→0 − Eðp1Þ but also the rest of the variables

correspond to their IFD counterparts, e.g., rþ̂ !δ→0
r0, etc..

In the LFD limit C → 0 (or δ → π=4) on the other hand, as discussed earlier in Sec. II C, Euðp−̂Þ !δ→π=4
BðpþÞþ

m2

2pþ ¼ m2−2λ
2pþ and Evðp−̂ − r−̂Þ !δ→π=4

− Bðrþ − pþÞ − m2

2ðrþ−pþÞ ¼ − m2−2λ
2ðrþ−pþÞ using Eq. (77) while Euðp−̂ − r−̂Þ !δ→π=4 2ðrþ−pþÞ

C þ
Bðrþ − pþÞ þ m2

2ðrþ−pþÞ and Evðp−̂Þ !δ→π=4
− 2pþ

C for the bound-state kinematics 0 < pþ < rþ. In this limit then, noting

Cðpþ; kþ; rþÞ → 1 and Sðpþ; kþ; rþÞ → 0 from Eq. (67), we note that Eq. (116a) gets reduced to

�
−r− þm2 − 2λ

2pþ þ m2 − 2λ

2ðrþ − pþÞ
�
ϕðrþ; pþÞ ¼ λ

Z
� dkþ

ðpþ − kþÞ2 ϕðr
þ; kþÞ; ð117Þ

where ϕðrþ; pþÞ corresponds to ϕ̂þðr−̂; p−̂Þ in the LFD limit. Also, a solution of zero for ϕ̂− can be attained rather
immediately from Eq. (116b) by dividing it by the energy denominator factor ½rþ̂ þ Euðp−̂ − r−̂Þ − Evðp−̂Þ� and noting the
correspondence 1=ðrþ̂ þ Euðp−̂ − r−̂Þ − Evðp−̂ÞÞ → C=ð2rþ þ Cðr− þ Bðrþ − pþÞ þ BðpþÞ þ m2

2ðrþ−pþÞ þ m2

2ðpþÞÞ → 0 as

C → 0. Substituting the on-mass-shell condition r− ¼ M2=ð2rþÞ for the bound-state meson of mass M, defining the
manifestly boost-invariant light-front momentum fraction variables x ¼ pþ

rþ ð0 ≤ x ≤ 1Þ and y ¼ kþ
rþ ð0 ≤ y ≤ 1Þ and

multiplying both sides of the equation by ð−2rþÞ, we obtain

�
M2 −

m2 − 2λ

x
−
m2 − 2λ

1 − x

�
ϕðxÞ ¼ −2λ

Z
�1

0

dy
ðx − yÞ2 ϕðyÞ; ð118Þ

where the rþ independence of ϕðrþ; pþÞ and ϕðrþ; kþÞ is imposed in ϕðxÞ and ϕðyÞ due to the boost-invariance of the
light-front bound-state equation correctly reproducing ’t Hooft’s bound-state equation, Eq. (25) in Ref. [1].
In general, relating Eu’s and Ev’s in Eq. (116) to the solutions of E in Eq. (65), we summarize the interpolating coupled

bound-state equations for ϕ̂þðr−̂; p−̂Þ and ϕ̂−ðr−̂; p−̂Þ between IFD and LFD as follows:

�
−rþ̂ þ −Sp−̂ þ Eðp−̂Þ

C
þ Sðp−̂ − r−̂Þ þ Eðp−̂ − r−̂Þ

C

�
ϕ̂þðr−̂; p−̂Þ

¼ λ

Z
� dk−̂
ðp−̂ − k−̂Þ2

½Cðp−̂; k−̂; r−̂Þϕ̂þðr−̂; k−̂Þ − Sðp−̂; k−̂; r−̂Þϕ̂−ðr−̂; k−̂Þ�; ð119aÞ
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�
rþ̂ þ −Sðp−̂ − r−̂Þ þ Eðp−̂ − r−̂Þ

C
þ Sp−̂ þ Eðp−̂Þ

C

�
ϕ̂−ðr−̂; p−̂Þ

¼ λ

Z
� dk−̂
ðp−̂ − k−̂Þ2

½Cðp−̂; k−̂; r−̂Þϕ̂−ðr−̂; k−̂Þ − Sðp−̂; k−̂; r−̂Þϕ̂þðr−̂; k−̂Þ�: ð119bÞ

In the next section, Sec. VI, we solve Eqs. (119a)–(119b) using the solutions of Eqs. (48) and (51) to determine the
bound-state mass spectrum as well as the corresponding bound-state wave functions ϕ̂þðr−̂; p−̂Þ and ϕ̂−ðr−̂; p−̂Þ
interpolating between IFD and LFD.

VI. THE BOUND-STATE SOLUTION

Solving Eqs. (119a)–(119b) in practice, we use rþ̂ ¼ Crþ̂ þ Sr−̂ and scale the interpolating quark momentum variables
p−̂ and k−̂ with respect to the interpolating bound-state momentum r−̂ introducing the interpolating momentum fraction
variables x ¼ p−̂=r−̂ and y ¼ k−̂=r−̂, respectively.

3

Noting the conversion between the upper and lower indices of the momentum variable, we rewrite Eqs. (119a) and (119b)
respectively as follows,

½−rþ̂ þ Eðxr−̂Þ þ Eðr−̂ − xr−̂Þ�r−̂ϕ̂þðr−̂; xÞ ¼ λC
Z
� dy
ðx − yÞ2 ½Cðx; y; r−̂Þϕ̂þðr−̂; yÞ − Sðx; y; r−̂Þϕ̂−ðr−̂; yÞ�; ð120aÞ

½rþ̂ þ Eðr−̂ − xr−̂Þ þ Eðxr−̂Þ�r−̂ϕ̂−ðr−̂; xÞ ¼ λC
Z
� dy
ðx − yÞ2 ½Cðx; y; r−̂Þϕ̂−ðr−̂; yÞ − Sðx; y; r−̂Þϕ̂þðr−̂; yÞ�; ð120bÞ

where

Cðx; y; r−̂Þ ¼ cos

�
θðxr−̂Þ − θðyr−̂Þ

2

�
cos

�
θðr−̂ − xr−̂Þ − θðr−̂ − yr−̂Þ

2

�
; ð121Þ

and

Sðx; y; r−̂Þ ¼ sin

�
θðxr−̂Þ − θðyr−̂Þ

2

�
sin

�
θðr−̂ − xr−̂Þ − θðr−̂ − yr−̂Þ

2

�
: ð122Þ

One may note here that the ordinary longitudinal momentum r1 is related to the interpolating longitudinal momentum r−̂ as

r1 ¼ 1

C

�
r−̂ cos δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−̂ cos

2 δ − Cðr2−̂ −M2 sin2 δÞ
q �

ð123Þ

due to the on-mass-shell condition for the meson mass M as rμ̂rμ̂ ¼ rμrμ ¼ M2. In this section, we solve the coupled

equations Eqs. (120a) and (120b) to find the bound-state mass spectrum M2
ðnÞ ¼

ðrþ̂ðnÞÞ2−ðr−̂Þ2
C and the corresponding wave

functions ϕ̂ðnÞ
� ðr−̂; xÞ for the nth bound state as we discuss in Sec. VI A and Sec. VI B, respectively. Then, we also apply the

ϕ̂ðnÞ
� ðr−̂; xÞ solutions to obtain the interpolating PDFs and discuss the comparison with the quasi-PDFs in Sec. VI C.

A. Spectroscopy

As discussed in Ref. [30], the bound-state wave functions ϕ̂ðnÞ
� ðr−̂; xÞ correspond to the coefficients of the compound

operators creating/annihilating color singlet quark and antiquark bound states in the generalized Bogoliubov trans-
formation. In contrast to the Bogoliubov transformation for the fermion operators given by Eq. (23) with the coefficients
satisfying the normalization cos2 ζ þ sin2 ζ ¼ 1, the coefficients of the generalized Bogoliubov transformation for the
meson states satisfy the normalization condition [12]

3For the computation with r−̂ ¼ 0 as in the IFD calculation at the meson rest frame [11], we do not scale the interpolating momentum
variables but directly take r−̂ ¼ 0 in Eqs. (119a)–(119b) as separately presented in Appendix F.
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Z
dxfjϕ̂ðnÞ

þ ðr−̂; xÞj2 − jϕ̂ðnÞ
− ðr−̂; xÞj2g ¼ 1: ð124Þ

In conjunction with the compound operators [30], it is
interesting to note that the scalar or fermionic matter fields
transforming in the adjoint representation of SUðNÞ have
been discussed in the literature [38].
In solving numerically the coupled integral equations,

Eqs. (120a) and (120b), we use the spectrum method
illustrated in Refs. [11,12]. While the rest frame basis
wave function [11] was generalized to the moving frame
basis wave function [12] in IFD, we further generalize it to
the interpolating basis wave function applicable to any
interpolation angle δ between IFD and LFD, i.e.,

Ψmðα;r−̂;xÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr−̂jα

2mm!
ffiffiffi
π

p
s

exp
h
−
α2r2−̂ð1−2xÞ2

8

i
Hm

�
αr−̂
2

ð1−2xÞ
�
;

ð125Þ
where Hm is the m-th Hermite polynomial and α is the
variational parameter which can be tuned to minimize the
mass of the ground state. The reason for the Hermite
polynomial basis can be traced back to the similarity
between the λ ¼ 0 free Hamiltonian expressed in terms
of the quark-antiquark compound operators [30] and the
simple harmonic oscillator Hamiltonian. Due to the charge
conjugation symmetry of the bound states, the wave
functions of the mesons ϕ̂þ and ϕ̂− are then the super-
positions of these basis functions

ϕ̂ðnÞ
� ðr−̂; xÞ ¼

	PN−1
m¼0 a

ðnÞ�
m Ψ2mðα; r−̂; xÞ; n even;P

N−1
m¼0 b

ðnÞ�
m Ψ2mþ1ðα; r−̂; xÞ; n odd;

ð126Þ
where the momentum fraction x ¼ p−̂=r−̂ goes to the
familiar light-front momentum fraction pþ=rþ as
δ → π=4. While x ¼ p−̂=r−̂ is unbounded, x ∈ ð−∞;∞Þ,
for 0 ≤ δ < π=4 in solving the interpolating coupled
bound-state equations given by Eqs. (120a)–(120b), x gets
bounded to be in [0, 1] consistently satisfying the bound-
state kinematics 0 ≤ pþ ≤ rþ in LFD at δ ¼ π=4 (or
C ¼ 0) and the two coupled equations, Eqs. (120a) and
(120b), get reduced to the single light-front bound-state
equation given by Eq. (118). We check this LFD reduction
by confirming the correspondence of the interpolating
solutions ϕ̂þðr−̂; p−̂Þ → ϕðxÞ and ϕ̂−ðr−̂; p−̂Þ → 0 in the
limit δ → π=4 (or C → 0).
In solving the coupled equations, Eqs. (120a)–(120b),

for the ground state n ¼ 0 as well as the n even excited
states, we use the orthonormal basis of Ψ2mðα; r−̂; xÞ with
m ¼ 0; 1; 2;…N − 1 due to the x ↔ 1 − x symmetry. In
contrast, for the n odd excited states, we use the

orthonormal basis of Ψ2mþ1ðα; r−̂; xÞ with m ¼
0; 1; 2;…N − 1 due to the x ↔ 1 − x antisymmetry dic-
tated by the charge conjugation symmetry. By projecting
Eqs. (120a) and (120b) onto the given set of orthonormal
basis functions and integrating over the momentum fraction
x on both sides, Eqs. (120a)–(120b) are then transformed
into a matrix eigenvalue equation in the orthonormal basis
given by Eq. (126) with m ¼ 0; 1; 2;…N − 1, i.e., Ψ2m or
Ψ2mþ1 depending on whether n is even or odd. Due to the
coupling between ϕ̂þ and ϕ̂−, the size of the matrix to be
diagonalized is then 2N × 2N for either n even or n odd
states. While we get 2N of rþ̂ðnÞ eigenvalues by diagonal-

izing the 2N × 2N matrix, what we actually find in the
meson spectroscopy is just N number of meson masses via

M2
ðnÞ ¼

ðrþ̂ðnÞÞ2−ðr−̂Þ2
C as the half of the 2N eigenvalues of rþ̂ðnÞ

are the same but opposite sign of the other half of the rþ̂ðnÞ
eigenvalues. For the ground state n ¼ 0 and the n even
excited states, the N number ofMðnÞ values are found from
the lowest one as the ground state meson mass Mð0Þ to the
exited state meson masses Mð2Þ, Mð4Þ, etc., all the way up
to M2ðN−1Þ. For the n odd excited states, the N number of
MðnÞ values are found from the lowest one as the first
excited state meson mass Mð1Þ to the higher exited state
meson massesMð3Þ,Mð5Þ, etc., all the way up toMð2N−1Þ.
In the numerical computation, we note that the numerical

accuracy of the results depends not only on the number of
basis functions but also the number of grid points for the
numerical integrations. In practice, we take N ¼ 20 in
Eq. (126) to get the mass spectrum of the lowest 8 states,
i.e., n ¼ 0; 1; 2;…; 7, and the number of grid points as 200
for the computation of the integrations in Eqs. (120a) and
(120b). As our numerical method involves the values of the
interpolation angle δ and the interpolating longitudinal
momentum r−̂, we check the stability of our numerical
results and their accuracy by varying δ and r−̂. While our
numerical program provides typically the numerical accu-
racy of up to 4 or 5 digits for most δ and r−̂ values with the
number of grid points being 200 for the computation of
the integrations, we need to pay attention to the accuracy of
the numerical values for the mass spectrum when we take δ
close to π=4 or r−̂ large. Especially, as the meson mass

MðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ̂ðnÞÞ2−ðr−̂Þ2

C

r
gets smaller, the eigenvalues rþ̂ðnÞ that

we obtain from Eqs. (120a) and (120b) gets closer to the
value r−̂ that we take for our numerical computation so that
it may lead to the cancellation of the two large values in
getting the small value. The demand of numerical accuracy
gets even more enhanced when δ gets close to π=4 (or C
gets close to zero) and r−̂ gets large as both the values in the
numerator and the denomination get closer to zero.
In particular, as the bare quark mass m → 0, we need to

check our numerical accuracy paying attention to the GOR
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relation which was explicitly derived in the ’t Hooft model
[30] and identifying the pionic bound state M2

ð0Þ∼
m

ffiffiffi
λ

p
→ 0. To confirm the validity of GOR relation numeri-

cally, we have computed M2
ð0Þ with 600 grid points (rather

than 200 grid points normally used in our computation) for
the very small m values (m ¼ 0, 0.01, 0.02, 0.03, 0.045).
The results are plotted in Fig. 15. As we can see in Fig. 15,
we numerically confirm the behavior of M2

ð0Þ ∼m
ffiffiffi
λ

p
and

indeed obtain the slope of the straight line consistent with
the analytic result given by4

M2
π ¼ −

4mhψ̄ψi
f2π

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2m2λ

3

r
; ð127Þ

where we used Eq. (79) for the vacuum condensation hψ̄ψi
and the pion decay constant fπ ¼

ffiffiffiffiffiffiffiffiffiffiffi
Nc=π

p
derived [30]

from the matrix element of the axial vector current between
the pionic ground state and the nontrivial vacuum. Here, the
pionic bound state in the chiral limit corresponds to the zero
mass bound state that occurs when both quarks have mass
zero as pointed out by ’t Hooft [1]. The corresponding
bound state wave function in LFD is given by ϕðxÞ ¼ 1 for
x ∈ ½0; 1� as we will discuss in the next subsection, Sec. VI
B. These results are consistent with the discussions
[4,12,30,37] on the SBCS in the ’t Hooft model
(Nc → ∞) which does not contradict with the Coleman’s
theorem [26] that would prohibit the SBCS in the case of a
finite Nc. As the result of Mð0Þ must be zero theoretically
for the bare quark mass m ¼ 0, the scrutiny of the
numerical sensitivity check depending on the values of δ
and r−̂ as well as the number of computational grid points is
maximally enhanced in the m ¼ 0 case. In Table III, the

numerical values of Mð0Þ for the bare quark mass m ¼ 0

are listed depending on the values of δ and r−̂ as well as the
number of computational grid points. We take the values of
r−̂ as r−̂ ¼ 0; 0.2M0.18, and 2M0.18, with the scale ofM0.18
which is the lowest bound-state mass for m ¼ 0.18, i.e.,
M0.18 ¼ 0.88, as the lowest bound-state mass for m ¼ 0 is
zero, i.e., M0 ¼ 0, and cannot be taken as any reference
value of r−̂. While it is highly challenging to achieve the
typical numerical accuracy mentioned earlier for the bare
quark mass m ¼ 0, our numerical results appear to con-
sistently approach the theoretical value Mð0Þ ¼ 0 as the
number of grid points is increased from 200 to 600 for the
ranges of the δ and r−̂ values in Table III. As δ gets close to
π=4, our numerical computation demands much higher
numerical accuracy. Although we have not increased the
number of grid points beyond 600, we anticipate that our
numerical results would get closer and closer to zero as we
increase the number of grid points even if δ gets close
to π=4.
In Table IV, we list the results of the meson mass spectra

MðnÞ up to n ¼ 7 for the bare quark mass m ¼ 0 including
Mð0Þ obtained with the 600 grid points for δ ¼ 0, 0.6
and 0.78. For the mass spectra of excited states,
MðnÞðn ¼ 1; 2;…; 7Þ, the results were obtained with the
number of grid points just 200 for δ ¼ 0 and 0.6 although
the number of grid points for the δ ¼ 0.78 case was still
kept as 600. Similarly, we present the results of the meson
mass spectra for the bare quark mass m ¼ 0.18 in Table V.
Here, all the results MðnÞðn ¼ 0; 1; 2;…; 7Þ including the
ground-state were obtained with the 200 grid points for
δ ¼ 0 and 0.6 while for δ ¼ 0.78 with the 380 grid points.
We note that our numerical results are consistent with each

FIG. 15. The bare quark mass m dependence of Mπ
2. All

quantities are in proper units of
ffiffiffiffiffi
2λ

p
. Our numerical results are

compared with the analytic result given by Eq. (127).

TABLE III. Numerical results of the ground-state meson mass
Mð0Þ depending on the values of δ and r−̂ as well as the number
of computational grid points for the quark bare mass m ¼ 0 case.
All the mass spectra are given in six significant figures with the
proper unit of

ffiffiffiffiffi
2λ

p
. The ground-state meson mass M0.18 ¼ 0.88

for m ¼ 0.18 is taken as the reference value of the interpolating
longitudinal momentum r−̂. The results for r−̂ ¼ 0 were obtained
with the method presented in Appendix F.

δ r−̂ Number of grid points Mð0Þ

0 0 200 0.0607101
600 0.0361024

0 0.2M0.18 200 0.0632755
600 0.0395562

0 2M0.18 200 0.107216
600 0.0532456

0.6 0 200 0.0690707
600 0.0407446

0.6 0.2M0.18 200 0.0678997
600 0.0472921

0.6 2M0.18 200 0.143686
600 0.0599700

4There is the factor 2 difference between Refs. [30] and
[12,34,39] in the coefficient of Eq. (127). Our result is consistent
with Refs. [12,34,39].
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other up to the second digit after the decimal point for the δ
values not close to π=4 such as δ ¼ 0 and 0.6 and the r−̂
values not so large such as r−̂ ¼ 0 and 0.2M0.18 as listed in
Tables IV and V. Such stability persists in all the cases of
the bare quark mass values (m ¼ 0, 0.045, 0.18, 1.00, 2.11)
that we considered for the computation of the meson mass
spectra in this work.
In Table VI, we summarize these stable numerical results

up to the second digit after the decimal point. Here, we take
Mð0Þ ¼ 0 for the case m ¼ 0 from the theoretical SBCS
ground. The values in Table VI are also shown in Fig. 16
depicting the feature of “Regge trajectories” for the quark-
antiquark bound states each with the corresponding equal
bare mass m [1,8,11,12,34]. It is interesting to note that the
Regge trajectory gets slightly modified from just the linear
trajectory behavior, developing a bit of curvature in the
trajectory for the ground-state and the low-lying excited
states. For the small mass, in particular m ¼ 0, the
trajectory looks a little concave shape while for the larger
mass the curvature turns somewhat into a convex shape.

TABLE V. Meson mass spectra for the bare quark mass m ¼
0.18with the variation of δ and r−̂ values. All the mass spectra are
given in six significant figures with the proper unit of

ffiffiffiffiffi
2λ

p
. The

ground-state meson mass M0.18 ¼ 0.88 for m ¼ 0.18 is taken as
the reference value of the interpolating longitudinal momentum
r−̂. The results for r−̂ ¼ 0 were obtained with the method
presented in Appendix F.

δ r−̂ Mð0Þ Mð2Þ Mð4Þ Mð6Þ

0 0 0.880457 3.99902 5.85781 7.29550
0.2M0.18 0.880686 3.99928 5.85843 7.29630
2M0.18 0.883080 3.99921 5.85774 7.29676

0.6 0 0.881753 3.99943 5.85807 7.29566
0.2M0.18 0.881526 3.99943 5.85812 7.29612
2M0.18 0.886997 4.00048 5.85938 7.29641

0.78 0 0.889730 4.00233 5.86016 7.29718
0.2M0.18 0.856979 3.99561 5.85482 7.29324
2M0.18 0.914992 4.01176 5.86721 7.30555

δ r−̂ Mð1Þ Mð3Þ Mð5Þ Mð7Þ
0 0 2.73527 5.00349 6.61265 7.92348

0.2M0.18 2.73565 5.00401 6.61336 7.92401
2M0.18 2.73588 5.00338 6.61320 7.92469

0.6 0 2.73559 5.00384 6.61285 7.92360
0.2M0.18 2.73595 5.00406 6.61329 7.92419
2M0.18 2.73818 5.00430 6.61360 7.92388

0.78 0 2.73843 5.00638 6.61463 7.92496
0.2M0.18 2.73213 5.00048 6.60966 7.92062
2M0.18 2.75685 5.01497 6.62144 7.93055

FIG. 16. The feature of “Regge trajectories” for the quark-
antiquark bound states each with the corresponding equal bare
mass m. All quantities are in proper units of

ffiffiffiffiffi
2λ

p
.

TABLE VI. Summary of meson mass spectra MðnÞ
(n ¼ 0; 1; 2;…; 7) for the bare quark mass values m ¼ 0,
0.045, 0.18, 1.00, 2.11 in the unit of

ffiffiffiffiffi
2λ

p
.

n 0 1 2 3 4 5 6 7

m ¼ 0 0 2.43 3.76 4.81 5.69 6.46 7.15 7.79
m ¼ 0.045 0.42 2.50 3.82 4.85 5.73 6.49 7.19 7.82
m ¼ 0.18 0.88 2.74 4.00 5.00 5.86 6.61 7.30 7.92
m ¼ 1.00 2.70 4.16 5.21 6.09 6.85 7.53 8.16 8.75
m ¼ 2.11 4.91 6.17 7.06 7.83 8.51 9.13 9.69 10.23

TABLE IV. Meson mass spectra for the bare quark mass m ¼ 0
with the variation of δ and r−̂ values. All the mass spectra are
given in six significant figures with the proper unit of

ffiffiffiffiffi
2λ

p
. The

ground-state meson mass M0.18 ¼ 0.88 for m ¼ 0.18 is taken as
the reference value of the interpolating longitudinal momentum
r−̂. The results for r−̂ ¼ 0 were obtained with the method
presented in Appendix F.

δ r−̂ Mð0Þ Mð2Þ Mð4Þ Mð6Þ

0 0 0.0361024 3.76245 5.68513 7.15304
0.2M0.18 0.0395562 3.76266 5.68573 7.15381
2M0.18 0.0532456 3.76433 5.68703 7.16921

0.6 0 0.0407446 3.76302 5.68552 7.15329
0.2M0.18 0.0472921 3.76285 5.68542 7.15361
2M0.18 0.0599700 3.76441 5.68690 7.15444

0.78 0 0.0884992 3.76458 5.68665 7.15417
0.2M0.18 0.173979 3.76292 5.69002 7.15655
2M0.18 0.106365 3.77182 5.69178 7.16045

δ r−̂ Mð1Þ Mð3Þ Mð5Þ Mð7Þ
0 0 2.42728 4.80619 6.45726 7.79124

0.2M0.18 2.42773 4.80668 6.45797 7.79191
2M0.18 2.42861 4.80603 6.45736 7.79204

0.6 0 2.42772 4.80668 6.45756 7.79145
0.2M0.18 2.42815 4.80693 6.45796 7.79205
2M0.18 2.43215 4.80696 6.45845 7.79172

0.78 0 2.42906 4.80807 6.45857 7.79239
0.2M0.18 2.43734 4.80832 6.45799 7.79376
2M0.18 2.43520 4.81589 6.46355 7.79905

INTERPOLATING ’t HOOFT MODEL BETWEEN INSTANT AND … PHYS. REV. D 104, 036004 (2021)

036004-25



This seems to reflect the fact that the GOR works in the
chiral limit as shown in Fig. 15 but the chiral symmetry gets
broken as the quark mass gets larger. The convex feature of
the Regge trajectory for the heavy quarkonia model was
shown in Ref. [40].

B. Wave functions

We present here our numerical solutions of the bound-
state wave functions ϕ̂ðnÞ

� ðr−̂; xÞ interpolating between IFD
and LFD for the ground state n ¼ 0 and the first excited
state n ¼ 1 with r−̂ ≠ 0 in terms of the interpolating
longitudinal momentum fraction variable x ¼ p−̂=r−̂.
The results for r−̂ ¼ 0 are presented separately in
Appendix F in terms of the variable ξ ¼ tan−1ðp−̂Þ without
scaling the interpolating momentum variable p−̂ with
respect to r−̂. In the chiral limit, where the GOR relation

M2
ð0Þ ∼m

ffiffiffi
λ

p
→ 0 is satisfied, the analytic solution of the

pionic ground-state wave function ϕ� in IFD, i.e., ϕ̂ð0Þ
� for

δ ¼ 0, is known [30] in terms of the IFD longitudinal
momentum variables p1 and r1 of the quark and the pionic
meson, respectively. Corresponding the IFD longitudinal
momentum p1 and r1 to the interpolating longitudinal
momentum p−̂ and r−̂ and confirming the consistency with
the LFD analytic mass gap solution discussed in Sec. II C,
we note that the corresponding analytic solution in the
interpolating formulation is given by

ϕ̂ð0Þ
� ðr−̂; p−̂Þ ¼

1

2

�
cos

θðr−̂ − p−̂Þ − θðp−̂Þ
2

� sin
θðr−̂ − p−̂Þ þ θðp−̂Þ

2

�
; ð128Þ

(a) (b)

(d)

(f)

(c)

(e)

FIG. 17. Ground state wave functions ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ for m ¼ 0. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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where the normalization is taken to satisfy Eq. (124) [12].
In Fig. 17, our numerical results of the plus and minus
components of the bound-state wave function for the

ground state, i.e., ϕ̂ð0Þ
� ðr−̂; xÞ, are shown for the bare quark

mass value m ¼ 0 in comparison with the interpolating
analytic solution given by Eq. (128). The results of δ ¼ 0,
0.6 and 0.78 are shown in the top, middle, and bottom
panels, respectively. In each panel, the results of r−̂ ¼
0.2M0.18; 2M0.18 and 5M0.18 with the scale of the ground-
state meson mass M0.18 ¼ 0.88, i.e., r−̂ ¼ 0.176, 1.76 and
4.4 (all in units of

ffiffiffiffiffi
2λ

p
), are depicted by the solid lines for

the analytic results and the dashed lines for the numerical
results in blue, yellow, and green, respectively. Our
numerical results coincide with the analytic results given

by Eq. (128) as shown in Fig. 17 except for some wiggle
and bulge in the numerical result of δ ¼ 0.78 and r−̂ ¼
5M0.18 in Fig. 17(e) due to the numerical sensitivity near
the LFD (C → 0) and large longitudinal momentum r−̂.
Our results in Fig. 17 appear to confirm the validity of our
numerical results as well as the analytic results. As the
longitudinal momentum r−̂, i.e., r1 for δ ¼ 0, gets large, the

numerical results of ϕ̂ð0Þ
þ ðr−̂; xÞ approach to ϕðxÞ ¼ 1 for

x ∈ ½0; 1�, which is the solution of the ’t Hooft equation
given by Eq. (118) in LFD [1,34], while ϕ̂ð0Þ

− ðr−̂; xÞ results
tend to diminish although for very small momentum, e.g.,
r1 ¼ 0.2M0.18, it is still of comparable order of magnitude

to ϕ̂ð0Þ
þ ðr−̂; xÞ as noted also in Ref. [12]. Reference [22] also

noted that for light mesons the large-momentum IFD

(a) (b)

(d)

(f)

(c)

(e)

FIG. 18. First excited state wave functions ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ for m ¼ 0. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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numerical results approach the exact light-front solution
very slowly. While the LFD solution for m ¼ 0 exhibits an
infinite slope at the endpoints x ¼ 0, 1, such feature is not
achieved in the IFD large momentum method [12,22]. As δ
gets closer to π=4, however, the resemblance to the LFD
solutions is attained even in the smaller longitudinal
momentum (e.g., r−̂ ¼ 2M0.18) and thus the large r−̂
(e.g., r−̂ ¼ 5M0.18) does not need to be taken for the
confirmation of the LFD solutions. The similar behavior of
resemblance to the LFD results depending on the values of

δ and r−̂ is also found in the first excited states ϕ̂ð1Þ
þ ðr−̂; xÞ

and ϕ̂ð1Þ
− ðr−̂; xÞ shown in Fig. 18. As dictated by the charge

conjugation symmetry, under the exchange of x ↔ 1 − x,

ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ are antisymmetric while

ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ are symmetric. We note also
that our results for δ ¼ 0 shown in the top panels of
Figs. 17–18, i.e., the plots of Figs. 17(a), 17(b), 18(a), 18(b)
appear to be consistent with the results in Ref. [12]
although only a qualitative comparison can be made as
different momentum values are taken for the moving
frames in Ref. [12] compared to what we present here.
In contrast to the case of m ¼ 0, there are no known

analytic solutions of the bound-state wave functions for
m ≠ 0. While we present the numerical results of

ϕ̂ð0Þ
� ðr−̂; xÞ and ϕ̂ð1Þ

� ðr−̂; xÞ for the cases of m ¼ 0.045,
1.0 and 2.11 in Appendix D, we take here m ¼ 0.18 to

(a)

(c) (d)

(f)(e)

(b)

FIG. 19. Ground state wave functions ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ for m ¼ 0.18. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.

BAILING MA and CHUENG-RYONG JI PHYS. REV. D 104, 036004 (2021)

036004-28



correspond with the spectroscopy discussion in the last
subsection (Sec. VI A) and show its numerical results of

ϕ̂ðnÞ
� ðr−̂; xÞ for the ground state n ¼ 0 and the first excited

state n ¼ 1. In Fig. 19, the numerical results of ϕ̂ð0Þ
þ ðr−̂; xÞ

and ϕ̂ð0Þ
− ðr−̂; xÞ for δ ¼ 0, 0.6, and 0.78 are shown in the

top, middle, and bottom panels, respectively. Similarly, in

Fig. 20, the numerical results of ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ
for δ ¼ 0, 0.6, and 0.78 are shown in the top, middle and
bottom panels, respectively. In each panel, the results of
r−̂ ¼ 0.2M0.18; 2M0.18 and 5M0.18 with the scale of
M0.18 ¼ 0.88, i.e., r−̂ ¼ 0.176, 1.76 and 4.4 (all in units
of

ffiffiffiffiffi
2λ

p
), are depicted by the solid lines in blue, yellow, and

green, respectively. As noted for the case of m ¼ 0, the
large-momentum IFD (δ ¼ 0) numerical results approach

the LFD results very slowly also for the case of m ¼ 0.18.

While the LFD results (ϕ̂ðnÞ
þ ðr−̂; xÞ ¼ ϕðnÞðxÞ) should be

constrained in the x-region [0, 1], the IFD results in the top
left panel of Fig. 19, i.e., Fig. 19a, exhibit rather long tails
outside the [0, 1] region even for the pretty large longi-
tudinal momentum r1 ¼ 5M0.18 ¼ 4.4. For δ ¼ 0.78, how-
ever, i.e., very close to the LFD (π=4 ≈ 0.785398), shown
in Fig. 19e, the wave functions for the relatively larger
momenta r−̂ ¼ 2M0.18 ¼ 1.76 and 5M0.18 ¼ 4.4 almost
coincide with each other while closely fitting in the region
[0, 1] although the result with very small longitudinal
momentum (r−̂ ¼ 0.2M0.18 ¼ 0.176) has a long tail out-
side the [0, 1] region similar to the IFD (δ ¼ 0) result.

While we notice some wiggle and bulge in ϕ̂ð0Þ
þ ðr−̂; xÞðδ ¼

0.78Þ for r−̂ ¼ 5M0.18, we did not pursue any further

(a) (b)

(d)

(f)

(c)

(e)

FIG. 20. First excited state wave functions ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ for m ¼ 0.18. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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numerical accuracy as we understand that it is due to the
computational sensitivity arising in the interpolation region
where C gets close to 0 in particular as r−̂ gets very large.
Since the LFD results of ϕ̂ðnÞ

− ðr−̂; xÞ must vanish as
discussed in the derivation of the ’t Hooft’s bound-state
equation given by Eq. (118), it is manifest in Fig. 19(b) that
the large-momentum IFD (δ ¼ 0) results approach to the
LFD (δ ¼ π=4) result again very slow for ϕ̂ð0Þ

− ðr−̂ ¼ r1; xÞ
while the δ ¼ 0.78 results in Fig. 19f are rather immedi-
ately close to the LFD result. Figure 20 shows the first

excited state wave functions ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ for
the input bare quark mass value m ¼ 0.18. The results for
m ¼ 0.18 in Fig. 20 look quite similar to the results
for m ¼ 0 in Fig. 18. They share the same feature of the
charge conjugation symmetry, under the exchange of

x ↔ 1 − x, i.e., ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ are antisym-

metric while ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ are symmetric.
They also share the similar behavior of resemblance to the
LFD results depending on the values of δ and r−̂, which we
have discussed for the ground state previously.

C. Quasi-PDFs

Since we obtained the bound-state wave functions, we
now apply them to compute the so-called quasi-PDFs
which have been discussed extensively even in the
’t Hooft model application [22] due to the possibility of
computing directly the longitudinal momentum fraction
x-dependence of the parton distributions in Euclidean
lattice approach using the large momentum effective field
theory (LaMET) program [41]. In our interpolating ’t Hooft
model computation, the “quasi-PDFs” may be defined as
the following matrix element for the nth state of the meson
with the interpolating longitudinal momentum r−̂:

q̃ðnÞðr−̂; xÞ ¼
Z þ∞

−∞

dx−̂

4π
eix

−̂r−̂hrþ̂ðnÞ; r−̂jψ̄ðx−̂Þ

× γ−̂W½x−̂; 0�ψð0Þjrþ̂ðnÞ; r−̂iC; ð129Þ

where rþ̂ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−̂ þ CM2

ðnÞ
q

as obtained from Eq. (7), and

the range of the longitudinal momentum fraction x ¼ p−̂=r−̂
is unconstrained, −∞ < x < þ∞, for 0 ≤ δ < π=4, while
bounded, 0 ≤ x ≤ 1, for δ ¼ π=4. One should note that this
definition of the “quasi-PDFs” is not unique, e.g., taking γþ̂

instead of γ−̂ in front of the interpolating gauge linkW½x−̂; 0�
in Eq. (129), but still uniquely approach the PDF defined in
the LFD as δ → π=4, whichever definition is taken. While
one may consider the so-called universality class [42] of the
interpolating “quasi-PDFs,”we note that the definition given
by Eq. (129) coincides with the canonical definition of the
quasi-PDFs in IFD (δ ¼ 0) [22]. While it has been discussed
which definition approaches the PDFs in LFD faster for the
perspectives of the LaMETprogram [22,41], wewill take the

definition given by Eq. (129) in this work and discuss our
numerical results corresponding to this definition. The
interpolating gauge link

W½x−̂; 0� ¼ P
�
exp

�
−ig

Z
x−̂

0

dx0−̂A−̂ðx0−̂Þ
��

ð130Þ

inserted in Eq. (129) assures the gauge invariance of the
interpolating “quasi-PDFs”. The subscript C in Eq. (129)
indicates the removal of the disconnected contribution
discussed [43] for the forward matrix element computation:

hrþ̂ðnÞ; r−̂jrþ̂ðnÞ; r−̂i

×
Z þ∞

−∞

dx−̂

4π
eix

−̂r−̂hΩjψ̄ðx−̂Þγ−̂W½x−̂; 0�ψð0ÞjΩi: ð131Þ

As we adopted the axial gauge in the interpolation form,
i.e., Aa

−̂ ¼ 0, the gauge link becomes an identity and the
quantization procedure illustrated in Sec. II A yields

q̃ðnÞðr−̂; xÞ ¼
rþ̂ðnÞ
r−̂

sin θðxr−̂Þ½ϕ̂ðnÞ
þ ðr−̂; xÞ2 þ ϕ̂ðnÞ

− ðr−̂; xÞ2

þ ϕ̂ðnÞ
þ ðr−̂;−xÞ2 þ ϕ̂ðnÞ

− ðr−̂;−xÞ2�: ð132Þ

For δ ¼ 0, i.e., IFD, Eq. (132) coincides with Eq. (74)
of Ref. [22].
Based on this formula, we compute the interpolating

“quasi-PDFs” for the cases of δ ¼ 0, 0.6, and 0.78. In
Figs. 21 and 22, the interpolating “quasi-PDFs” of the
ground state (n ¼ 0) and the first excited state (n ¼ 1) are
shown for the case of δ ¼ 0, respectively. The two panels in
each of these figures exhibit our numerical results for the
bare quark mass m ¼ 0 and m ¼ 0.18, respectively.
Numerical results for other mass cases (m ¼ 0.045, 1.0
and 2.11) are summarized in Appendix E. In each panel, the
results for the meson longitudinal momentum r−̂ ¼ r1 ¼
0.2M0.18; 2M0.18; 5M0.18 are depicted by blue, yellow and
green solid lines, respectively. The general behaviors of our
numerical results with respect to the variation of r1 values
from small (0.2M0.18) to large (5M0.18) agree with the
results presented in Ref. [22], although different longi-
tudinal momentum values were taken between ours and
Ref. [22]. As r1 gets larger, the numerical results of the
quasi-PDFs resemble the PDFs in LFD more closely fitting
in x ∈ ½0; 1� and ½−1; 0�. It is our interest to take a look at
the rate of achieving the resemblance to the PDFs in LFD as
δ gets away from the IFD (δ ¼ 0) and r−̂ gets larger. The
numerical results of the ground state (n ¼ 0) and the first
excited state (n ¼ 1) are shown for the case of δ ¼ 0.6 in
Figs. 23 and 24 and for the case of δ ¼ 0.78 in Figs. 25 and
26, respectively. As noticed previously in Figs. 17 and 19,

the wiggle and bulge in ϕ̂ð0Þ
þ ðr−̂; xÞðδ ¼ 0.78Þ for r−̂ ¼

5M0.18 is due to the computational sensitivity arising in the
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(a) (b)

FIG. 21. Quasi-PDFs in IFD (δ ¼ 0) for the ground state (n ¼ 0) wave functions of (a) m ¼ 0, (b) m ¼ 0.18. All quantities are in
proper units of

ffiffiffiffiffi
2λ

p
.

(a) (b)

FIG. 22. Quasi-PDFs in IFD (δ ¼ 0) for the first excited state (n ¼ 1) wave functions of (a) m ¼ 0, (b)m ¼ 0.18. All quantities are in
proper units of

ffiffiffiffiffi
2λ

p
.

(a) (b)

FIG. 23. δ ¼ 0.6 interpolating “quasi-PDFs” for the ground state (n ¼ 0) wave functions of (a)m ¼ 0, (b)m ¼ 0.18. All quantities are
in proper units of

ffiffiffiffiffi
2λ

p
.
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interpolation region where C gets close to 0 in particular as
r−̂ gets very large. The corresponding wiggle and bulge in
q̃ð0Þðr−̂; xÞ is noticed also in Fig. 25. Besides such numeri-
cal sensitivity for the very large value of r−̂, it is apparent
that the δ ¼ 0.78 results are rather immediately close to the
LFD result.
Interestingly, our numerical results of the interpolating

“quasi-PDFs” in the moving frames indicate a possibility to
utilize both variation of δ and r−̂ to attain the LFD result
more effectively. Namely, one may not need to boost the
longitudinal momentum r−̂ too large but search for a “sweet
spot” by varying both δ and r−̂ together to obtain the “LFD-
like” result. In IFD, δ ¼ 0 is fixed and thus the boost to the
large longitudinal momentum is necessary for a successful
approach to the LFD result. However, in the interpolating
formulation between the IFD and the LFD, the LFD result
can be approached even at rather small r−̂. Moreover, the
application to the lattice formulation may be also possible
with the existing technique of Wick rotation replacing the
ordinary instant form time x0 by the interpolating time xþ̂

in the process of taking the “imaginary time” in the lattice
as far as δ remains in the region 0 ≤ δ < π=4 avoiding the
light-like surface δ ¼ π=4. As discussed in the later part of
Sec. IV B, one can match the Minkowsky space and the
Euclidean space confirming the correspondence given
by Eq. (97).
For an illustration of the δ variation for a given finite r−̂,

we take r−̂ ¼ 2M0.18 for the case of m ¼ 0 and show the
“quasi-PDFs” of the ground-state and the first excited-state
for the variation of δ parameter as δ ¼ 0, δ ¼ 0.6 and δ ¼
0.78 in Fig. 27. It indicates that a pretty slow approach to
the LFD result in the large-momentum IFD can be fairly
well expedited by taking δ away from the IFD (δ ¼ 0) and
getting closer to the LFD (δ ¼ π=4) while the same value of
the longitudinal momentum r−̂ ¼ 2M0.18 is taken. The
numerical sensitivity arising near δ ¼ π=4 for the large r−̂,
e.g., the “wiggle and bulge” mentioned for r−̂ ¼ 5M0.18 in
Figs. 25 and 26 for δ ¼ 0.78, is also dodged by taking the
smaller value of r−̂, e.g., r−̂ ¼ 2M0.18 for this illustration.
We think it would be worthwhile to explore this idea of

(a) (b)

FIG. 24. δ ¼ 0.6 interpolating “quasi-PDFs” for the first excited state (n ¼ 1) wave functions of (a) m ¼ 0, (b) m ¼ 0.18. All
quantities are in proper units of

ffiffiffiffiffi
2λ

p
.

(a) (b)

FIG. 25. δ ¼ 0.78 interpolating “quasi-PDFs” for the ground state (n ¼ 0) wave functions of (a) m ¼ 0, (b) m ¼ 0.18. All quantities
are in proper units of

ffiffiffiffiffi
2λ

p
.
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utilizing the interpolating formulation between IFD and
LFD for the application to the lattice computation.
For further application of the interpolating bound-state

wave functions, one can also consider the interpolating
“quasi-distribution amplitude (quasi-DA)” which may be
written as

Φ̃ðnÞðr−̂; xÞ ¼
1

fðnÞ

Z þ∞

−∞

dx−̂

2π
eiðx−1

2
Þr−̂x−̂

× hrþ̂ðnÞ; r−̂jψ̄
�
x−̂

2

�
W
�
x−̂

2
;−

x−̂

2

�

× γ−̂γ5ψ

�
−
x−̂

2

�
jΩi; ð133Þ

whereW is the gauge link introduced in Eq. (130), and fðnÞ
is the decay constant mentioned in Sec. VI A. As men-
tioned in the definition of the interpolating “quasi-PDFs”
given by Eq. (129), the definition of the interpolating
“quasi-DAs” is also not unique, e.g., γþ̂ can be taken

instead of γ−̂ in front of the interpolating gauge link
W½x−̂

2
;− x−̂

2
� in Eq. (133). Whichever definition is taken,

they all uniquely approach the DA defined in the LFD as
δ → π=4, belonging to the same universality class [42] as
mentioned for the case of interpolating “quasi-PDFs”.
Using the definition given by Eq. (133) which coincides
with the canonical definition of the quasi-DAs in IFD
(δ ¼ 0) [22], we note that the interpolating “quasi-DAs” of
the even-n mesonic states can be formulated as

Φ̃ðnÞðr−̂; xÞ ¼
1

fðnÞ

ffiffiffiffiffiffiffiffiffiffiffi
Ncrþ̂

πr−̂

s
sin

θðxr−̂Þ þ θðð1 − xÞr−̂Þ
2

× ½ϕ̂ðnÞ
þ ðr−̂; xÞ þ ϕ̂ðnÞ

− ðr−̂; xÞ�; ð134Þ

where ϕ̂ðnÞ
� ðr−̂; xÞ denote the interpolating mesonic wave

functions associated with the nth excited mesonic state. The
normalization condition of the interpolating “quasi-DAs”
given by

(a) (b)

FIG. 26. δ ¼ 0.78 interpolating “quasi-PDFs” for the first excited state (n ¼ 1) wave functions of (a) m ¼ 0, (b) m ¼ 0.18. All
quantities are in proper units of

ffiffiffiffiffi
2λ

p
.

(a) (b)

FIG. 27. Interpolating “quasi-PDFs” at the fixed value of r−̂ ¼ 2M0.18 for the (a) ground state and (b) first excited state for m ¼ 0 in
three cases of δ ¼ 0, δ ¼ 0.6 and δ ¼ 0.78. All quantities are in proper units of

ffiffiffiffiffi
2λ

p
.
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Z þ∞

−∞
dxΦ̃ð2nÞðr−̂; xÞ ¼ 1 ð135Þ

is consistent with the explicit form of the decay constant
fðnÞ given by

fðnÞ ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffi
Ncrþ̂
πr−̂

q Rþ∞
−∞ dx sin θðxr−̂Þþθðð1−xÞr−̂Þ

2

×½ϕ̂ðnÞ
þ ðr−̂; xÞ þ ϕ̂ðnÞ

− ðr−̂; xÞ� even n;

0 odd n:

ð136Þ

While the corresponding results for the IFD (δ ¼ 0) have
been worked out in Refs. [12,22], it is interesting to note that
the analytic result for the pion decay constant fπ ¼

ffiffiffiffiffiffiffiffiffiffiffi
Nc=π

p
[30] can be immediately obtained by taking the LFD solution

in the chiral limit, i.e., ϕ̂ð0Þ
þ ðr−̂; xÞ ¼ ϕðxÞ ¼ 1 for x ∈ ½0; 1�

and ϕ̂ð0Þ
− ðr−̂; xÞ ¼ 0, as well as θðxr−̂Þ¼ θðxrþÞ¼ θðpþÞ¼

π
2
and θðð1−xÞr−̂Þ¼ θðð1−xÞrþÞ¼ θðrþ−pþÞ¼ π

2
, noting

rþ̂
r−̂
¼ rþ

r−
¼ 1 in LFD.As theDAs inLFD are directly involved

with the QCD factorization theorem for the hard exclusive
reactions involving hadrons, it would be useful to explore the
utility of the interpolating “quasi-DAs” further in the
future works.

VII. CONCLUSION AND OUTLOOK

In this work, we interpolated the ’t Hooft model (i.e.,
QCD2 in the large Nc limit) with the interpolation angle δ
between IFD (δ ¼ 0) and LFD (δ ¼ π=4) and analyzed its
nontrivial vacuum effects on the quark mass and wave
function renormalization as well as the corresponding
meson mass and wave function properties taking the meson
as the quark-antiquark bound-state. We derived the inter-
polating mass gap equation between IFD and LFD using
not only the algebraic method based on the Bogoliubov
transformation between the trivial and nontrivial vacuum as
well as the bare and dressed quark but also the diagram-
matic method based on the self-consistent embodiment of
the quark self-energy. Our mass gap solutions agree not
only with the LFD result in Ref. [1] for δ ¼ π=4 but also
with the IFD results in Refs. [11,12] for δ ¼ 0. The
renormalized chiral condensate was computed and the
agreement of the result in the chiral limit was verified
with the exact result in Ref. [4]. Its invariance regardless of
the δ values between IFD and LFD was also confirmed.
Taking into account the wave function renormalization
factor Fðp−̂Þ as well as the mass function Mðp−̂Þ and
expressing the dressed quark propagator SðpÞ in terms of
Fðp−̂Þ and Mðp−̂Þ as given by Eq. (88), we resolved the
issue of Eðp−̂Þ not being always positive for m≲ 0.56
discussed in Ref. [10]. Extending the interpolating energy-
momentum dispersion relation of the on-mass-shell particle

given by Eq. (7) to the case of the dressed quark with the
rescaled variable given by Eq. (96), we obtained the
interpolation angle independent energy function Ẽðp0

−̂Þ.
Typical profiles of Ẽðp0

−̂Þ were exemplified in Fig. 13.
Utilizing the dressed fermion propagators, we then

derived the quark-antiquark bound-state equation interpo-
lating between IFD and LFD for the equal bare quark and
antiquark mass m and solved numerically the correspond-
ing bound-state equations. From the numerical solutions of
the spectroscopy, we find that the meson mass spectrum is
independent of interpolation angle between the IFD and
LFD as expected for physical observables. In particular, for
the bare quark mass m → 0, we confirmed the GOR
behavior of the pionic ground-state mass square M2

ð0Þ ∼
m

ffiffiffi
λ

p
→ 0 as shown in Fig. 15. Our result is consistent with

the discussions [4,12,30,37] on the SBCS in the ’t Hooft
model (Nc → ∞). Plotting the meson mass spectra MðnÞ
(n ¼ 0; 1; 2;…; 7) for various m values as summarized in
Table VI, we also observe the Regge trajectory feature as
shown in Fig. 16. The corresponding bound-state wave

functions ϕ̂ðnÞ
� ðr−̂; xÞ were obtained, in particular, for the

low-lying states, i.e., n ¼ 0 and 1 states, and were applied
to the interpolating formulation of “quasi-PDFs”. The
results of the wave functions clearly dictate the charge
conjugation symmetry, exhibiting the symmetric and anti-

symmetric behaviors of ϕ̂ð0Þ
� ðr−̂; xÞ and ϕ̂ð1Þ

� ðr−̂; xÞ, respec-
tively, under the exchange of x ↔ 1 − x. It is also
interesting to note that the massless Goldstone boson
cannot exist in the rest frame due to the null normalization

from the equivalence between ϕ̂ð0Þ
þ ðp−̂Þ and ϕ̂ð0Þ

− ðp−̂Þ for
the massless ground-state in the rest frame as shown
in Fig. 41.
Applying the bound-state wave functions ϕ̂ðnÞ

� ðr−̂; xÞ for
the computation of the interpolating “quasi-PDFs” given by
Eq. (132), we note the consistency with the observation
made in Ref. [22] for the quasi-PDFs at δ ¼ 0 (IFD) that
there exists considerable difference between the shapes of
the LFD result and the IFD quasi-PDF result for the light
mesons. Our results indicate that the slow approach to the
LFD-like results may be remedied by varying the inter-
polation parameter δ as well as the interpolating longi-
tudinal meson momentum r−̂. For the future work, one may
explore such idea to search for the “sweet spot” of δ and r−̂
to attain most effective computation with the least sensitive
numerical errors in getting the LFD result. Extending the
Wick rotation technique to the interpolating time xþ̂, the
idea of searching for the “sweet spot” may be applicable to
the usual lattice formulation in the Eunclidean space. This
would be in good contrast to the recent application of the
present interpolating formulation to the two-dimensional
ϕ4 theory using the discretization technique in Minkowsky
space consistent with the discrete light-cone quantization
(DLCQ) approach [20,44]. It will be interesting to explore
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both “Euclidean” and “Minkowsky” numerical approaches
implementing the interpolating formulation between IFD
and LFD.
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APPENDIX A: BOGOLIUBOV
TRANSFORMATION FOR THE INTERPOLATING

SPINORS BETWEEN IFD AND LFD

In this Appendix, we summarize the interpolating
spinors and γ matrices in the 1þ 1 dimensional chiral
representation and the Bogoliubov transformation between
the free and interacting spinors as well as the corresponding
creation/annihilation operators.
For the representation of the spinors [19], we adopt the

chiral representation (CR), under which the usual γ
matrices in IFD for the 1þ 1 dimensions are given by
the Pauli matrices:

γ0 ¼ σ1 ¼
�
0 1

1 0

�
; γ1 ¼ iσ2 ¼

�
0 1

−1 0

�
;

γ5 ¼ γ5 ¼ −γ0γ1 ¼ γ0γ1 ¼ −σ3 ¼
�−1 0

0 1

�
: ðA1Þ

These can be transformed into standard representation (SR)
easily by a transformation matrix

S ¼ S† ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
ðA2Þ

through

γμSR ¼ SγμCRS
†: ðA3Þ

In the SR representation, the free spinors in the rest frame in
IFD are typically given by

uð0ÞSRðp1 ¼ 0Þ ¼
ffiffiffiffiffiffiffi
2m

p �
1

0

�
; vð0ÞSRðp1 ¼ 0Þ ¼

ffiffiffiffiffiffiffi
2m

p �
0

1

�
;

ðA4Þ

where we take the normalization factor ūð0ÞSRu
ð0Þ
SR ¼ 2m in

conformity with the standard textbooks [24]. The corre-
sponding free spinors in the chiral representation are used
in this work without denoting the “CR” specification:

uð0Þðp1 ¼ 0Þ ¼ S · uð0ÞSRðp1 ¼ 0Þ ¼ ffiffiffiffi
m

p �
1

1

�
;

vð0Þðp1 ¼ 0Þ ¼ S · vð0ÞSRðp1 ¼ 0Þ ¼ ffiffiffiffi
m

p �
1

−1

�
: ðA5Þ

The IFD spinors in the moving frame with the energy Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1Þ2 þm2

p
are then obtained as

uð0Þðp1Þ ¼ BðηÞuð0Þð0Þ ¼ ffiffiffiffi
m

p �
e−

η
2 0

0 e
η
2

��
1

1

�

¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep − p1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þ p1

q
1
CCA; ðA6Þ

and

vð0Þð−p1Þ ¼ Bð−ηÞvð0Þð0Þ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þ p1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep − p1

q
1
CA; ðA7Þ

where the usual boost operator BðηÞ with the rapidity

η ¼ tanh−1 p1

Ep
and the longitudinal boost generator K1 is

given by

BðηÞ ¼ exp ð−iη · K1Þ ¼ exp

�
−
1

2
ησ3

�
¼ exp

�
1

2
ηγ5

�
:

ðA8Þ

In terms of the interpolating momentum variables, the
rapidity η can be written [19] as

η ¼ log

�
pþ̂ þ p−̂

mðcos δþ sin δÞ
�
; ðA9Þ

where one can note the following equality as well

−η ¼ log

�
pþ̂ − p−̂

mðcos δ − sin δÞ
�
: ðA10Þ

The boost operator BðηÞ can then be written in terms of the
interpolating momentum variables as

BðηÞ ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂−p−̂

mðcos δ−sin δÞ

q
0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂þp−̂

mðcos δþsin δÞ

q
1
CCA; ðA11Þ

so that the boosted interpolating spinors are given by
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uð0Þðp−̂Þ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂−p−̂

cos δ−sin δ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂þp−̂

cos δþsin δ

q
1
CA; ðA12Þ

and

vð0Þð−p−̂Þ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂þp−̂

cos δ−sin δ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂−p−̂

cos δþsin δ

q
1
CA: ðA13Þ

Although Eqs. (A12)–(A13) are expressed in terms of the
interpolating momentum variables while Eqs. (A6)–(A7)
are written in terms of the IFD momentum variables, one
should note that they are intrinsically the same spinors with
respect to each other as we have shown in the above
derivation. As δ → π

4
, i.e., in the LFD limit, Eqs. (A12)–

(A13) coincide with the LFD spinors [19]

uð0ÞðpþÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
pþ

q �
mffiffiffi
2

p
pþ

�
; ðA14Þ

and

vð0ÞðpþÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
pþ

q �
m

−
ffiffiffi
2

p
pþ

�
; ðA15Þ

where one may note the correspondence

pþ̂ − p−̂

C
!C→0 m2

2pþ ; ðA16Þ

with pþ̂ → pþ, and p−̂ → pþ. Thus, the interpolating
spinors given by Eqs. (A12)–(A13) are nothing but the
same spinors as given by Eqs. (A6)–(A7) in IFD and
Eqs. (A14)–(A15) in LFD, respectively. There are no
differences in the spinors except the expression difference
in terms of the momentum variables taken in each different
form of the dynamics.
Dropping the “CR” specification again for the γ matri-

ces, we follow the link given by Eq. (1) to get the following
interpolating γ matrices in the chiral representation as

γþ̂ ¼
�

0
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ S

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − S

p
0

�
;

γ−̂ ¼
�

0 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − S

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ S

p
0

�
: ðA17Þ

Lowering the indices with the interpolating metric given by
Eq. (2), we also get

γþ̂ ¼ Cγþ̂ þ Sγ−̂ ¼
�

0
ffiffiffiffiffiffiffiffiffiffiffi
1 − S

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ S

p
0

�
;

γ−̂ ¼ Sγþ̂ − Cγ−̂ ¼
�

0
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ S

p

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − S

p
0

�
; ðA18Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffi
1� S

p
can be identically given by cos δ� sin δ

with cos δ ≥ sin δ always due to 0 ≤ δ ≤ π
4
. One can

explicitly check that the interpolating γ matrices satisfy
fγμ̂; γν̂g ¼ 2gμ̂ ν̂ · I2×2, in particular,

ðγþ̂Þ2 ¼ ðγþ̂Þ2 ¼ C · I2×2; ðγ−̂Þ2 ¼ ðγ−̂Þ2 ¼ −C · I2×2:

ðA19Þ

As δ → π=4, one gets the usual LFD γ matrices given by

γþ ¼ ðγ0 þ γ1Þ=
ffiffiffi
2

p
¼
�
0

ffiffiffi
2

p

0 0

�
¼ γ−;

γ− ¼ ðγ0 − γ1Þ=
ffiffiffi
2

p
¼
�

0 0ffiffiffi
2

p
0

�
¼ γþ; ðA20Þ

where fγμ; γνg ¼ 2gμν · I2×2 and ðγþÞ2 ¼ ðγ−Þ2 ¼ 0.
Now, using the Bogoliubov transformation given by

Eq. (23) for the creation/annihilation operators of the quark/
anti-quark fields as well as the boost operation for the free
quark/antiquark fields, we get the following relationship
between the interacting spinors and the free spinors at rest:

uðp−̂Þ ¼ Tðp−̂Þuð0Þð0Þ; vð−p−̂Þ ¼ Tðp−̂Þvð0Þð0Þ;
ðA21Þ

where

Tðp−̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂ffiffiffiffi
C

p
m

s
exp

�
−

γ−̂ffiffiffiffi
C

p θðp−̂Þ
2

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂ffiffiffiffi
C

p
m

s
exp

�
−

γ−̂ffiffiffiffi
C

p θfðp−̂Þ þ 2ζðp−̂Þ
2

�

¼ Tfðp−̂Þ exp
�
−

γ−̂ffiffiffiffi
C

p ζðp−̂Þ
�

ðA22Þ

with

exp
h
−

γ−̂ffiffiffiffi
C

p ζðp−̂Þ
i
¼ cosζðp−̂Þ ·I2×2−sinζðp−̂Þ

γ−̂ffiffiffiffi
C

p

¼

0
B@ cosζðp−̂Þ −sinζðp−̂Þ

ffiffiffiffiffiffiffi
1þS
C

q
sinζðp−̂Þ

ffiffiffiffiffiffiffi
1−S
C

q
cosζðp−̂Þ

1
CA;

ðA23Þ
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and

Tfðp−̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂ffiffiffiffi
C

p
m

s
exp

�
−

γ−̂ffiffiffiffi
C

p θfðp−̂Þ
2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂ffiffiffiffi
C

p
m

s �
cos

θfðp−̂Þ
2

· I2×2 − sin
θfðp−̂Þ

2
·
γ−̂ffiffiffiffi
C

p
�
: ðA24Þ

Note here that the free spinors in the moving frame are related to each other as γ−̂ffiffiffi
C

p · uð0Þðp−̂Þ ¼ vð0Þð−p−̂Þ and
γ−̂ffiffiffi
C

p · vð0Þð−p−̂Þ ¼ −uð0Þðp−̂Þ, and that the free spinors in the moving frame and the rest frame are related to each other

uð0Þðp−̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂ffiffiffiffi
C

p
m

s
exp

�
−

γ−̂ffiffiffiffi
C

p θfðp−̂Þ
2

�
uð0Þð0Þ;

vð0Þð−p−̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ̂ffiffiffiffi
C

p
m

s
exp

�
−

γ−̂ffiffiffiffi
C

p θfðp−̂Þ
2

�
vð0Þð0Þ; ðA25Þ

where θfðp−̂Þ is given by Eq. (27) and is related in the IFD case to the rapidity η as sin θf ¼ tanh η, while in general they are

related by tanh η ¼ sin θf−tan δ
1−sin θf tan δ

, or in other words, sin θf ¼ tanh ηþtan δ
1þtan δ tanh η. From Eq. (A21), one can get the interacting quark/

antiquark spinors given by Eqs. (28) and (29) in Sec. II A as well as Eqs. (45) and (46).

APPENDIX B: MINIMIZATION OF THE VACUUM ENERGY WITH RESPECT
TO THE BOGOLIUBOV ANGLE

In this Appendix, we show that the mass gap equation given by Eq. (51) can also be obtained by minimizing the vacuum
energy Ev in Eq. (37) with respect to the Bogoliubov angle, θðp−̂Þ in addition to the methods presented in Sec. II. Recall that

Ev ¼
Z

dp−̂

2π
Tr½ð−γ0γ−̂p−̂ þmγ0ÞΓ−ðp−̂Þ� þ

λ

2

Z
dp−̂

2π

Z
dk−̂

ðp−̂ − k−̂Þ2
Tr½γ0γþ̂Γþðk−̂Þγ0γþ̂Γ−ðp−̂Þ�; ðB1Þ

where Γ� is defined by Eqs. (45) and (46). Let us now compute the small variation of Ev as

δEv ¼
Z

dp−̂

2π
Tr½ð−γ0γ−̂p−̂ þmγ0ÞδΓ−ðp−̂Þ� þ

λ

2

Z
dp−̂

2π

Z
dk−̂

ðp−̂ − k−̂Þ2
Tr½γ0γþ̂δΓþðk−̂Þγ0γþ̂Γ−ðp−̂Þ�

þ λ

2

Z
dp−̂

2π

Z
dk−̂

ðp−̂ − k−̂Þ2
Tr½γ0γþ̂Γþðk−̂Þγ0γþ̂δΓ−ðp−̂Þ�: ðB2Þ

In the second term of the above equation, we are able to swap variables p−̂ and k−̂, i.e.,Z
dp−̂dk−̂

ðp−̂ − k−̂Þ2
Tr½γ0γþ̂δΓþðk−̂Þγ0γþ̂Γ−ðp−̂Þ� ¼

Z
dp−̂dk−̂

ðp−̂ − k−̂Þ2
Tr½γ0γþ̂δΓþðp−̂Þγ0γþ̂Γ−ðk−̂Þ�

¼ −
Z

dp−̂dk−̂
ðp−̂ − k−̂Þ2

Tr½γ0γþ̂δΓ−ðp−̂Þγ0γþ̂Γ−ðk−̂Þ�; ðB3Þ

where we used the fact that the sum of Γþðp−̂Þ and Γ−ðp−̂Þ is independent of p−̂ from the first equality to the second
equality. Thus, we obtain

δEv ¼
Z

dp−̂

2π
Tr½ð−γ0γ−̂p−̂ þmγ0ÞδΓ−ðp−̂Þ�

þ λ

2

Z
dp−̂

2π

Z
dk−̂

ðp−̂ − k−̂Þ2
Tr½γ0γþ̂Γþðk−̂Þγ0γþ̂δΓ−ðp−̂Þ − γ0γþ̂δΓ−ðp−̂Þγ0γþ̂Γ−ðk−̂Þ�: ðB4Þ

The functional differentiation of Ev relative to θðp−̂Þ for a given p−̂ is then given by
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δEv

δθðp−̂Þ
¼ Tr

�
ð−γ0γ−̂p−̂ þmγ0Þ δΓ

−ðp−̂Þ
δθðp−̂Þ

�

þ λ

2

Z
dk−̂

ðp−̂ − k−̂Þ2
Tr

��
γ0γþ̂Γþðk−̂Þγ0γþ̂

δΓ−ðp−̂Þ
δθðp−̂Þ

− γ0γþ̂
δΓ−ðp−̂Þ
δθðp−̂Þ

γ0γþ̂Γ−ðk−̂Þ
��

¼ 0; ðB5Þ

i.e.,

Tr

(�−ðcos δþ sin δÞp−̂ m

m ðcos δ − sin δÞp−̂

� cos θðp−̂Þ
2ðcos δ−sin δÞ

sin θðp−̂Þ
2
ffiffiffi
C

p

sin θðp−̂Þ
2
ffiffiffi
C

p − cos θðp−̂Þ
2ðcos δþsin δÞ

!
þ λ

2

Z
dk−̂

ðp−̂ − k−̂Þ2

×

" 1−sin θðk−̂Þ
2

cos δ−sin δ
2
ffiffiffi
C

p cos θðk−̂Þ
cos δþsin δ

2
ffiffiffi
C

p cos θðk−̂Þ 1þsin θðk−̂Þ
2

! cos θðp−̂Þ
2

ðcos δ−sin δÞ
2
ffiffiffi
C

p sin θðp−̂Þ
ðcos δþsin δÞ

2
ffiffiffi
C

p sin θðp−̂Þ − cos θðp−̂Þ
2

!

−

 cos θðp−̂Þ
2

ðcos δ−sin δÞ
2
ffiffiffi
C

p sin θðp−̂Þ
ðcos δþsin δÞ

2
ffiffiffi
C

p sin θðp−̂Þ − cos θðp−̂Þ
2

! 1þsin θðk−̂Þ
2

− cos δ−sin δ
2
ffiffiffi
C

p cos θðk−̂Þ
− cos δþsin δ

2
ffiffiffi
C

p cos θðk−̂Þ 1−sin θðk−̂Þ
2

!#)
¼ 0: ðB6Þ

The computation of the trace leads to the gap equation given by Eq. (51).

APPENDIX C: TREATMENT OF THE λ = 0
(FREE) CASE VS THE λ ≠ 0 (INTERACTING)

CASE WITH RESPECT TO THE MASS
DIMENSION

ffiffiffiffiffi
2λ

p

As the ’t Hooft coupling λ given by Eq. (35) has the
mass-square dimension, we scaled out the mass dimensionffiffiffiffiffi
2λ

p
and used the dimensionless mass m, longitudinal

momentum p−̂, etc., in presenting all the figures and tables
of our work. Of course, we could have explicitly defined
the dimensionless variables, e.g., denoted by

p̄−̂ ¼ p−̂ffiffiffiffiffi
2λ

p ; Ē ¼ Effiffiffiffiffi
2λ

p ; m̄ ¼ mffiffiffiffiffi
2λ

p ; ðC1Þ

and rewrite, for example, Eqs. (48) and (51) as

Ēðp̄−̂Þ¼ p̄−̂ sinθðp̄−̂Þþ
ffiffiffiffi
C

p
m̄cosθðp̄−̂Þ

þC ·
1

4

Z
� dk̄−̂
ðp̄−̂ − k̄−̂Þ2

cosðθðp̄−̂Þ−θðk̄−̂ÞÞ; ðC2Þ

and

p̄−̂ cos θðp̄−̂Þ −
ffiffiffiffi
C

p
m̄ sin θðp̄−̂Þ

¼ C ·
1

4

Z
� dk̄−̂
ðp̄−̂ − k̄−̂Þ2

sin ðθðp̄−̂Þ − θðk̄−̂ÞÞ; ðC3Þ

respectively. Similarly, we can also scale out the interpo-
lation angle dependence by defining the following rescaled
variables

p̄0
−̂ ¼ p̄−̂ffiffiffiffi

C
p ; Ē0 ¼ Ēffiffiffiffi

C
p ; ðC4Þ

to reduce Eqs. (C2) and (C3) as

Ē0ðp̄0
−̂Þ ¼ p̄0

−̂ sin θðp̄0
−̂Þ þ m̄ cos θðp̄0

−̂Þ

þ 1

4

Z
� dk̄0−̂
ðp̄0

−̂ − k̄0−̂Þ2
cos ðθðp̄0

−̂Þ − θðk̄0−̂ÞÞ; ðC5Þ

and

p̄0
−̂ cos θðp̄0

−̂Þ − m̄ sin θðp̄0
−̂Þ

¼ 1

4

Z
� dk̄0−̂
ðp̄0

−̂ − k̄0−̂Þ2
sin ðθðp̄0

−̂Þ − θðk̄0−̂ÞÞ; ðC6Þ

respectively. Indeed, we used such rescaled variables in
Eqs. (83), (95) and (96) to present the corresponding results
without any dependence of δ ∈ ½0; π=4�, confirming that
the physical results are indeed invariant regardless of the
interpolation angle δ as they must be. However, one should
note the contrast between the scaling by the dimensionful
parameter

ffiffiffiffiffi
2λ

p
and the scaling by the dimensionless

parameter
ffiffiffiffi
C

p
. While the rescaling over the dimensionless

variable C includes the limit of C ¼ 0, i.e., LFD, the
rescaling over the dimensionful variable

ffiffiffiffiffi
2λ

p
cannot

include the limit to λ ¼ 0. Namely, the free theory without
any interaction must be distinguished from the interacting
theory and should be discussed separately. For λ ¼ 0, in
fact, the mass gap solution θðp−̂Þ ¼ θfðp−̂Þ can be
immediately found even analytically by taking the right-
hand side of Eq. (51) to be zero, i.e.,
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θfðp−̂Þ ¼ arctan

�
p−̂ffiffiffiffi
C

p
m

�
; ðC7Þ

where the dimensionless ratio p−̂=m can still be written as
p̄−̂=m̄ with the cancellation of the λ ¼ 0 factor in the ratio.
In terms of the rescaled variables in Eqs. (C1) and (C4), this
analytic free solution becomes

θfðp̄0
−̂Þ ¼ arctan

�
p̄0
−̂
m̄

�
: ðC8Þ

In Fig. 28, we plot the interacting mass gap solution
θðp̄0

−̂Þ in comparison with the free mass gap solution
θfðp̄0

−̂Þ as functions of rescaled variable ξ̄0 ¼ tan−1 p̄0
−̂.

Note here that the interacting mass gap solution θðp̄0
−̂Þ

includes the LFD solution analytically given by Eq. (67)
while the free analytic solution θfðp̄0

−̂Þ is clearly distin-
guished from the interacting solution θðp̄0

−̂Þ, although the
difference between the free solution and the interacting
solution gets reduced as m̄ gets larger. It confirms that the
entire nontrivial contributions from the interaction to the
LFD solution are provided by the zero-mode pþ ¼ 0 as

the finite p̄0
−̂ can be attained only if p̄−̂ ¼ pþ=

ffiffiffiffiffi
2λ

p ¼ 0 in
the limit

ffiffiffiffi
C

p
→ 0 (LFD).

APPENDIX D: MESONIC WAVE FUNCTIONS
FOR m= 0.045, 1.0, AND 2.11

IN THE UNIT OF
ffiffiffiffiffi
2λ

p

In Sec. VI B, we discussed the wave functions of the
quark-antiquark bound states for the cases of m ¼ 0 and
m ¼ 0.18 in the unit of

ffiffiffiffiffi
2λ

p
, i.e., m̄ ¼ 0 and 0.18. In this

Appendix, we summarize the numerical results of

ϕ̂ð0Þ
� ðr−̂; xÞ and ϕ̂ð1Þ

� ðr−̂; xÞ for a few other bare quark/
antiquark mass cases; m ¼ 0.045, 1.0 and 2.11 in the unit
of

ffiffiffiffiffi
2λ

p
, i.e., m̄ ¼ 0.045, 1.0 and 2.11. In particular, m̄ ¼

0.045 corresponds to the physical pion mass Mπ ¼ 0.41 in
the unit of

ffiffiffiffiffi
2λ

p
according to the reasoning [12] mentioned

in Sec. III. We also note that the free mass gap solution
θfðp̄0

−̂Þ given by Eq. (C8) for m̄ ¼ 1.0 exhibits the straight
line profile in the plot with respect to ξ̄0 ¼ tan−1 p̄0

−̂ while
the profile of the solution for m̄ > 1.0, e.g., m̄ ¼ 2.11, gets
bent toward the concave shaped profile from the convex
shaped profile for m̄ < 1.0 as one can see in Fig. 28.

(a)

(c)

(b)

(d)

FIG. 28. The numerical solutions of θðp̄0
−̂Þ versus the free solutions θfðp̄0

−̂Þ for a few choices of quark mass (a) m̄ ¼ 0 (b) m̄ ¼ 0.18
(c) m̄ ¼ 1.0 and (d) m̄ ¼ 2.11, for several different interpolation angles.
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For the case of m̄ ¼ 0.045, the numerical results of

ϕ̂ð0Þ
� ðr−̂; xÞ and ϕ̂ð1Þ

� ðr−̂; xÞ are presented in Figs. 29 and
30, respectively. In each figure, the results of δ ¼ 0, 0.6 and
0.78 are shown in the top, middle and bottom panels,
respectively. In each panel, the results of r−̂ ¼ M0.045;
5M0.045 and 8M0.045, where M0.045 ¼ 0.42 (see Table VI)
is the ground state meson mass for the quark mass value
m̄ ¼ 0.045, are depicted by the solid lines in blue, yellow,
and green, respectively. We note that the IFD (δ ¼ 0) results

shown in Figs. 29(a), 29(b), 30(a), and 30(b) coincide with
the corresponding plots in Fig. 9 of Ref. [12]. The results for
the case of m̄ ¼ 0.045 exhibit the similar features that we
discussed for the case of m̄ ¼ 0 in Sec. VI B. Namely, the
large-momentum IFD (δ ¼ 0) numerical results approach to
the LFD results quite slowly [22] as themomenta r−̂ get large
[see Figs. 29(a), 29(b), 30(a), and 30(b)], while the results
getting close to δ ¼ π=4 (e.g., δ ¼ 0.78) yield very quickly
the essential features of the LFD results fitting in the region

(a)

(c)

(e) (f)

(d)

(b)

FIG. 29. Ground state wave functions ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ for m ¼ 0.045. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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[0, 1] regardless of the momenta r−̂ ¼ M0.045, 5M0.045,
or 8M0.045 and the minus component disappears [see
Figs. 29(e), 29(f), 30(e), and 30(f)] although the numerical
sensitivity gets enhanced with some wiggles or bulges in

ϕ̂ð0Þ
þ ðr−̂; xÞðδ ¼ 0.78Þ for r−̂ ¼ 5M0.045 and 8M0.045 due to

the enhanced demand of numerical accuracy as C gets close
to zero and r−̂ gets large. In Figs. 29 and 30, the charge
conjugation symmetry under the exchange of x ↔ 1 − x is
manifest as we have discussed for the ground state and the

first excited state previously in Sec. VI B, i.e., ϕ̂ð1Þ
þ ðr−̂; xÞ

and ϕ̂ð1Þ
− ðr−̂; xÞ reveal the antisymmetric profiles while

ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ exhibit the symmetric profiles.
For the case of m̄ ¼ 1.0 which we noted above its

straight line profile for θfðp̄0
−̂Þ in Fig. 28, the numerical

results of ϕ̂ð0Þ
� ðr−̂; xÞ and ϕ̂ð1Þ

� ðr−̂; xÞ are presented in
Figs. 31 and 32, respectively. The frames for m̄ ¼ 1.0
are chosen as r−̂ ¼ 0.2M1.0; 2M1.0, and 5M1.0, where

(a) (b)

(c)

(e) (f)

(d)

FIG. 30. First excited state wave functions ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ for m ¼ 0.045. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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M1.0 ¼ 2.70 (see Table VI) is the ground state meson mass
for the quark mass value m̄ ¼ 1.0. The essential features
that we discussed for the lower masses (m̄ ¼ 0, 0.045, 0.18)
in Sec. VI B and above remain without much change. As
mentioned earlier, we have not increased the number of grid
points beyond 600 while the numerical accuracy is much
more demanded as C gets close to zero and r−̂ gets large.
However, we are not alarmed by the appearance of “rabbit
ear” for δ ¼ 0.78 and r−̂ ¼ 5M1.0 ¼ 13.5 in Fig. 31(e) as
we are convinced from our numerical analyses that such

numerical noise would disappear as we keep pushing the
number of grid points even higher.
Finally, in Figs. 33 and 34, we present our numerical

results of ϕ̂ð0Þ
þ ðr−̂;xÞ, ϕ̂ð0Þ

− ðr−̂;xÞ, ϕ̂ð1Þ
þ ðr−̂;xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ
for the case of m̄ ¼ 2.11. In this case, the θðp̄0

−̂Þ solution
gets close to the free mass gap solution θfðp̄0

−̂Þ as shown in
Fig. 28, which may indicate that the binding effect
gets lesser while the quark mass effect gets larger. In
fact, the extreme heavy quark mass limit would yield the
nonrelativistic δ-function type of ground-state meson

(a)

(c)

(e) (f)

(d)

(b)

FIG. 31. Ground state wave functions ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ for m ¼ 1.0. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.

BAILING MA and CHUENG-RYONG JI PHYS. REV. D 104, 036004 (2021)

036004-42



wave function peaked highly at x ¼ 1=2 to share the
longitudinal momentum equally between the two equal
mass quark and antiquark. In Fig. 33, we see a kind of
precursor for such tendency toward the heavy quark-
antiquark bound-state system. In the case of m̄ ¼ 2.11, we
take our frames as r−̂ ¼ 0.2M2.11;M2.11 and 2M2.11,
where M2.11 ¼ 4.91 (see Table VI). As 2M2.11 is already
large enough for our numerical computation, we do not go
beyond r−̂ ¼ 2M2.11. Besides the tendency toward the
heavy quark-antiquark bound-state system, the essential

features that we discussed previously including the
charge conjugation symmetry under the exchange
of x ↔ 1 − x for the ground state and the first excited
state appear similar in Figs. 33 and 34. We notice some
wiggles in the ϕ̂− component of the wave function
solution in e.g., Fig. 33(f), but the overall magnitude
of the ϕ̂− wave function is always negligible compared to
ϕ̂þ whenever this occurs, thus it does not cause concern
to us.

(a)

(c)

(e) (f)

(d)

(b)

FIG. 32. First excited state wave functions ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ for m ¼ 1.0. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 33. Ground state wave functions ϕ̂ð0Þ
þ ðr−̂; xÞ and ϕ̂ð0Þ

− ðr−̂; xÞ for m ¼ 2.11. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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APPENDIX E: “QUASI-PDFs” CORRESPONDING
TO MESONIC WAVE FUNCTIONS FOR m= 0.045,

1.0, AND 2.11 IN THE UNIT OF
ffiffiffiffiffi
2λ

p

Starting from the definition of the “quasi-PDFs” inter-
polating between IFD and LFD given by Eq. (129), we
obtained the “quasi-PDFs” using the mesonic wave func-
tions of the quark-antiquark bound states in the interpolat-
ing axial gauge, Aa

−̂ ¼ 0, as given by Eq. (132) and
discussed the “quasi-PDFs” for the cases of m ¼ 0 and
m ¼ 0.18 in Sec. VI C. As the mesonic wave functions for
m ¼ 0.045, 1.0, and 2.11 were presented in the previous
Appendix D, we now discuss the corresponding “quasi-
PDFs” in this Appendix E.

First, the δ ¼ 0 (IFD) results of the ground state and first
excited state mesonic quasi-PDFs are shown in Figs. 35 and
36, respectively, for a few different quark mass values, not
only m ¼ 0.045 as taken in Ref. [22] but also m ¼ 1.0 and
m ¼ 2.11. The results of m ¼ 0.045 shown in Figs. 35(a)
and 36(a) agree very well with the top right panels of
Figs. 2 and 3 of Ref. [22]. Due to the charge conjugation

symmetry under the exchange of x ↔ 1 − x, ϕ̂ð0Þ
� ðr−̂; xÞ ¼

ϕ̂ð0Þ
� ðr−̂; 1 − xÞ and ϕ̂ð1Þ

� ðr−̂; xÞ ¼ −ϕ̂ð1Þ
� ðr−̂; 1 − xÞ, we see

the peak and valley at x ¼ 1=2 for q̃0ðr−̂; xÞ and q̃1ðr−̂; xÞ,
respectively, as shown in Figs. 35 and 36. Although the
peak and valley get a little more sharpened asm gets larger,
the essential features of the symmetry remain intact

(a)

(c)

(e) (f)

(d)

(b)

FIG. 34. First excited state wave functions ϕ̂ð1Þ
þ ðr−̂; xÞ and ϕ̂ð1Þ

− ðr−̂; xÞ for m ¼ 2.11. All quantities are in proper units of
ffiffiffiffiffi
2λ

p
.
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(a) (b)

(c)

FIG. 35. Quasi-PDFs in IFD (δ ¼ 0) for the ground state (n ¼ 0) wave functions of (a) m ¼ 0.045, (b)m ¼ 1.00, and (c)m ¼ 2.11 in
the unit of

ffiffiffiffiffi
2λ

p
.

(a) (b)

(c)

FIG. 36. Quasi-PDFs in IFD (δ ¼ 0) for the first excited state (n ¼ 1) wave functions of (a) m ¼ 0.045, (b) m ¼ 1.00, and
(c) m ¼ 2.11 in the unit of

ffiffiffiffiffi
2λ

p
.
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(a) (b)

(c)

FIG. 37. δ ¼ 0.6 interpolating “quasi-PDFs” for the ground state (n ¼ 0) wave functions of (a) m ¼ 0.045, (b) m ¼ 1.00, and
(c) m ¼ 2.11 in the unit of

ffiffiffiffiffi
2λ

p
.

(a) (b)

(c)

FIG. 38. δ ¼ 0.6 interpolating “quasi-PDFs” for the first excited state (n ¼ 1) wave functions of (a) m ¼ 0.045, (b) m ¼ 1.00, and
(c) m ¼ 2.11 in the unit of

ffiffiffiffiffi
2λ

p
.
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(a) (b)

(c)

FIG. 39. δ ¼ 0.78 interpolating “quasi-PDFs” for the ground state (n ¼ 0) wave functions of (a) m ¼ 0.045, (b) m ¼ 1.00, and
(c) m ¼ 2.11 in the unit of

ffiffiffiffiffi
2λ

p
.

(a) (b)

(c)

FIG. 40. δ ¼ 0.78 interpolating “quasi-PDFs” for the first excited state (n ¼ 1) wave functions of (a) m ¼ 0.045, (b) m ¼ 1.00, and
(c) m ¼ 2.11 in the unit of

ffiffiffiffiffi
2λ

p
.
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regardless of the m values. In each panel, the results of the
moving frames with the longitudinal meson momentum
r−̂ ¼ r1 ¼ M0.045; 5M0.045, and 8M0.045, where M0.045 ¼
0.42 (see Table VI) is the ground state meson mass for the
quark mass valuem ¼ 0.045, are depicted by the solid lines
in blue, yellow, and green, respectively. As noted in
Ref. [22], the large-momentum IFD (δ ¼ 0) numerical
results approach to the LFD results quite slowly as the
momentum r−̂ ¼ r1 gets large. The corresponding results
for the larger m values, m ¼ 1.0 and m ¼ 2.11, are shown
in Figs. 35(b) and 36(b) and Figs. 35(c) and 36(c) for the
ground state and the first excited state, respectively.
As discussed in Sec. VI C, the variation of the inter-

polating parameter δ may remedy the slow approach to the
LFD results in IFD (δ ¼ 0). To exhibit this feature, we
show the results of the ground state and first excited state
mesonic quasi-PDFs for different δ values (δ ¼ 0.6 and
0.78) in Figs. 37–40, respectively, with the same arrange-
ment of correspondingm values (m ¼ 0.045, 1.0 and 2.11).
For the δ ¼ 0.6 case shown in Figs. 37 and 38, one may see
already some improvement in the approach to the LFD
results by comparing the corresponding q̃0ðr−̂; xÞ and
q̃1ðr−̂; xÞ results in Figs. 35 and 36 with the corresponding
r−̂ values. For the δ ¼ 0.78 case shown in Figs. 39 and 40,
the results get improved much more dramatically yielding
very quickly the essential features of the LFD results fitting
in the region x ∈ ½0; 1�. The similar features have been
noted earlier in Secs. VI B and VI C as well as in
Appendix D, i.e., taking δ away from the IFD (δ ¼ 0),
the resemblance to the PDFs in LFD may appear more
swiftly achieved with the boost of the meson longitudinal
momentum r−̂ to the larger value. Nevertheless, one should
note here a numerical caveat demanding much higher
numerical accuracy as the meson momentum r−̂ gets larger
while the δ value gets close to π=4 (e.g., δ ¼ 0.78). In such
situation, the numerical sensitivity kicks in so strongly that
the results cannot be trusted unless they get tested for the
improvement with much higher numerical accuracy.
However, as discussed in Sec. VI C, one does not need
to boost the longitudinal momentum r−̂ too large if the δ
value gets close to π=4. As the δ value gets close to π=4,
relatively smaller r−̂ value can do the job. Thus, it would be
worthwhile to search for a “sweet spot” by varying both δ
and r−̂ together to obtain the “LFD-like” result.

APPENDIX F: REST FRAME BOUND-STATE
EQUATION AND ITS SOLUTION

While we presented our numerical solutions of the
bound-state wave functions ϕ̂ðnÞ

� ðr−̂; xÞ in terms of the
interpolating longitudinal momentum fraction variable x ¼
p−̂=r−̂ in Sec. VI B and Appendix D to discuss the moving
frame dependence of the interpolating wave functions
between IFD and LFD, the rest frame is special and
deserves separate description/discussion. In particular,
the massless particles cannot exist in the rest frame

according to the relativity although the GOR relation
M2

ð0Þ∼m
ffiffiffi
λ

p
→0 indicates that the meson mass Mð0Þ→0

as m → 0 in the chiral limit. As the massless Goldstone
boson moves with the speed of light, it cannot exist in the
rest frame. We thus devote this final Appendix for the
discussion of the rest frame bound-state equation and its
solution.
Taking r−̂ ¼ 0 in Eq. (116), we get

½−rþ̂ þ 2Eðp−̂Þ�ϕ̂þðp−̂Þ

¼ λC
Z
� dk−̂
ðp−̂ − k−̂Þ2

× ½Cðp−̂; k−̂Þϕ̂þðk−̂Þ − Sðp−̂; k−̂Þϕ̂−ðk−̂Þ�; ðF1aÞ

½rþ̂ þ 2Eðp−̂Þ�ϕ̂−ðp−̂Þ

¼ λC
Z
� dk−̂
ðp−̂ − k−̂Þ2

× ½Cðp−̂; k−̂Þϕ̂−ðk−̂Þ − Sðp−̂; k−̂Þϕ̂þðk−̂Þ�; ðF1bÞ

where

Cðp−̂; k−̂Þ ¼ Cðp−̂; k−̂; r−̂ ¼ 0Þ ¼ cos2
�
θðp−̂Þ − θðk−̂Þ

2

�
;

ðF2Þ

and

Sðp−̂; k−̂Þ ¼ Sðp−̂; k−̂; r−̂ ¼ 0Þ ¼ − sin2
�
θðp−̂Þ − θðk−̂Þ

2

�
:

ðF3Þ

The basis wave function is also provided without scaling
the interpolating momentum variable p−̂ with respect
to r−̂ [in contrast to Eq. (125)]

FIG. 41. Analytic solutions for the ground state wave functions
in the rest frame for the bare quark massm ¼ 0 for three different
interpolation angles as functions of ξ ¼ tan−1 p−̂. All quantities
are in proper units of

ffiffiffiffiffi
2λ

p
.
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Ψmðα; p−̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α

2mm!
ffiffiffi
π

p
r

exp
h
−
1

2
α2p2

−̂

i
Hmðαp−̂Þ; ðF4Þ

and the nth bound-state wave functions ϕ̂ðnÞ
� ðp−̂Þ are

normalized as

Z
dp−̂fjϕ̂ðnÞ

þ ðp−̂Þj2 − jϕ̂ðnÞ
− ðp−̂Þj2g ¼ 1; ðF5Þ

where one should note the caveat of n ¼ 0 solution for
m ¼ 0 that becomes null in the rest frame due to the
relativity.
In the frame r−̂ ¼ 0, the meson mass square M2

ðnÞ ¼
ðrþ̂ðnÞÞ2
C and the corresponding wave functions ϕ̂ðnÞ

� ðp−̂Þ are
obtained by solving the coupled bound-state equations,
Eqs. (F1a) and (F1b), using essentially the same technique
that we described in Sec. VI A.
Due to the GOR relationM2

ð0Þ ∼m
ffiffiffi
λ

p
→ 0, the ground-

state meson mass Mð0Þ → 0 as m → 0. As mentioned

(a) (b)

(d)

(f)

(c)

(e)

FIG. 42. Rest frame wave functions ϕ̂ðnÞ
þ ðp−̂Þ and ϕ̂ðnÞ

− ðp−̂Þ for m ¼ 0 (n ¼ 1 and n ¼ 2) as functions of ξ ¼ tan−1 p−̂. All quantities
are in proper units of

ffiffiffiffiffi
2λ

p
.
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earlier, the massless Goldstone boson then moves with the
speed of light and cannot exist in the rest frame according
to the relativity. How can one understand this distinction of
the massless Goldstone boson in the rest frame? To realize
it, one may take a look more closely the analytic solution of

the ground-state (n ¼ 0) wave function (ϕ̂ð0Þ
� ðp−̂Þ) given by

Eq. (128) and find that the rest frame r−̂ ¼ 0 yields

ϕ̂ð0Þ
� ðp−̂Þ as

ϕ̂ð0Þ
þ ðp−̂Þ ¼ ϕ̂ð0Þ

− ðp−̂Þ ¼
1

2
cos θðp−̂Þ: ðF6Þ

Then, indeed, the normalization condition given by
Eq. (124) becomes null indicating the absence of the
massless Goldstone boson in the rest frame. However,

the individual interpolating wave functions ϕ̂ð0Þ
þ ðp−̂Þ and

ϕ̂ð0Þ
− ðp−̂Þ do not vanish as plotted in Fig. 41. Here, we use

(a)

(c)

(e) (f)

(d)

(b)

FIG. 43. Rest frame wave functions ϕ̂ðnÞ
þ ðp−̂Þ and ϕ̂ðnÞ

− ðp−̂Þ for m ¼ 0.045 as functions of ξ ¼ tan−1 p−̂. All quantities are in proper
units of

ffiffiffiffiffi
2λ

p
.
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the variable of the horizontal axis ξ ¼ tan−1ðp−̂Þ. In
Fig. 41, the interpolation angle δ ¼ 0, 0.6, and 0.78 results
are depicted in solid, dashed, and dotted lines, respectively.
In contrast to the ground state, the excited states (n ≠ 0)

for m ¼ 0 acquire the nonzero bound-state mass as shown
in Table VI, e.g., Mð1Þ ¼ 2.43, Mð2Þ ¼ 3.76, etc. in the

unit of
ffiffiffiffiffi
2λ

p
, and they can take the rest frame r−̂ ¼ 0. In

Fig. 42, the bound-state wave functions ϕ̂ðnÞ
þ ðp−̂Þ and

ϕ̂ðnÞ
− ðp−̂Þ for the first (n ¼ 1) and second (n ¼ 2) excited

states obtained by numerically solving Eq. (F1) are plotted
with yellow and green lines, respectively. From Fig. 42, we
can see the odd and even parities respectively for n ¼ 1 and

n ¼ 2 state wave functions ϕ̂ðnÞ
� ðp−̂Þ under the exchange of

p−̂ ↔ −p−̂. For the δ value close to π=4, the wave
functions are very sharply peaked and constrained in a
relatively small jp−̂j region, indicating that ultimately
only the zero-mode pþ ¼ 0 survives for rþ ¼ 0 frame
in LFD. Not only does the supporting momentum region

(a)

(c)

(e) (f)

(d)

(b)

FIG. 44. Rest frame wave functions ϕ̂ðnÞ
þ ðp−̂Þ and ϕ̂ðnÞ

− ðp−̂Þ for m ¼ 0.18 as functions of ξ ¼ tan−1 p−̂. All quantities are in proper
units of

ffiffiffiffiffi
2λ

p
.
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ξ ¼ tan−1ðp−̂Þ for ϕ̂ðnÞ
� ðp−̂Þ get shrunken to the zero-mode

ξ ¼ tan−1ðpþÞ ¼ 0 but also the magnitude of ϕ̂ðnÞ
− ðp−̂Þ gets

much more suppressed compared to ϕ̂ðnÞ
þ ðp−̂Þ as δ value

gets close to π=4, indicating the absence of ϕ̂ðnÞ
− ðpþÞ

solutions in LFD.
For the nonzero mass cases, we plot n ¼ 0, 1, and 2

together for the rest frame wave functions ϕ̂ðnÞ
þ ðp−̂Þ and

ϕ̂ðnÞ
− ðp−̂Þ as shown in Fig. 43 for m ¼ 0.045, Fig. 44 for

m ¼ 0.18, Fig. 45 for m ¼ 1.0, and Fig. 46 for m ¼ 2.11,
respectively.

For m ¼ 0.045, although we have compared our results
for the moving frames shown in Figs. 29 and 30 with the
corresponding results in Ref. [12] as discussed in
Appendix D, we could not compare our results shown in
Fig. 43 with Ref. [12] as the rest frame was not considered
in Ref. [12]. However, the results shown in Fig. 43 are not
much different from the corresponding results for m ¼ 0

discussed above as the difference in the mass m is rather
marginal.
For m ¼ 0.18, 1.0 and 2.11, all of our δ ¼ 0 results

shown in Figs. 44, 45, and 46 can be respectively compared

(a)

(c)

(e) (f)

(d)

(b)

FIG. 45. Rest frame wave functions ϕ̂ðnÞ
þ ðp−̂Þ and ϕ̂ðnÞ

− ðp−̂Þ form ¼ 1.0 as functions of ξ ¼ tan−1 p−̂. All quantities are in proper units
of

ffiffiffiffiffi
2λ

p
.
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with the corresponding rest frame results shown in Figs. 7, 8,
9 and 10 of Ref. [11]. Although the normalization of the
bound-state wave function was mistaken in Ref. [11] by

taking the þ sign between jϕ̂ðnÞ
þ ðp−̂Þj2 and jϕ̂ðnÞ

− ðp−̂Þj2 in
Eq. (F5), our results look quite consistent with theirs as the

magnitude of ϕ̂ðnÞ
þ ðp−̂Þ is much larger than the magnitude of

ϕ̂ðnÞ
− ðp−̂Þ to reveal any sizable difference for the comparison.

All of our results look consistent with the characteristics of

ϕ̂ðnÞ
þ ðp−̂Þ and ϕ̂ðnÞ

− ðp−̂Þ discussed previously.

(a) (b)

(d)(c)

(e) (f)

FIG. 46. Rest frame wave functions ϕ̂ðnÞ
þ ðp−̂Þ and ϕ̂ðnÞ

− ðp−̂Þ for m ¼ 2.11 as functions of ξ ¼ tan−1 p−̂. All quantities are in proper
units of

ffiffiffiffiffi
2λ

p
.
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