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The self-energies of the full set of flavor SU(3) octet and decuplet baryons are computed within a
relativistic chiral effective theory framework. The leading nonanalytic chiral behavior is derived for the
octet and decuplet masses, and a finite-range regularization consistent with Lorentz and gauge invariance is
applied to account for the finite size of the baryons. Using a four-dimensional dipole form factor, the
relative importance of various meson-baryon loop contributions to the self-energies is studied numerically
as a function of the dipole range parameter and meson mass, and a comparison is made between the
relativistic results and earlier approximations within the heavy baryon limit.
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I. INTRODUCTION

Understanding the structure and interactions of atomic
nuclei and their constituents from the fundamental theory
of quantum chromodynamics (QCD) poses one of the
greatest challenges of modern subatomic physics. In the
nearly 50 years since the formulation of QCD, significant
progress has been made in describing the high-energy
behavior of hadronic cross sections in terms of quark and
gluon degrees of freedom, using the tools of perturbation
theory to expand around the small value of the QCD
coupling at short distances. In the low-energy realm,
however, where the coupling becomes large and these
tools are no longer applicable, other methods must be
sought to provide approximate solutions.
The most common approach for describing low-energy

hadron structure has been the use of effective field theories,
in which “effective” hadronic degrees of freedom are
typically used, constrained by the known symmetries of
QCD which any such approximate theory must respect.
Along with Lorentz invariance and electromagnetic gauge
invariance, one of the most crucial symmetries for under-
standing the dynamics of hadrons and nuclei at low
energies is chiral symmetry. In particular, the spontaneous
breaking of chiral symmetry leads to the appearance of
nearly massless pseudoscalar Goldstone bosons, which are
identified in nature with pions and kaons. Here effective

chiral theories have been constructed, in which the pseu-
doscalar mesons play a fundamental role, and calculations
can be performed based on expansions of observables in
powers of (low) momenta or the pion mass relative to the
nucleon mass.
The applications of chiral symmetry and its breaking for

hadron and nuclear structure are too numerous to list (see,
e.g., Refs. [1–3] for overviews). One of the important areas
where this has received attention in recent years is in the first
principles calculation of hadron properties, such as masses,
in lattice QCD [4–7]. Considerable progress has been made
in pushing lattice calculations closer to the physical region, in
terms of the lattice spacing, lattice volume, and quark mass.
Some simulations are now routinely performed at the
physical quark mass, mphys

q ∼m2
π ≈ ð140 MeVÞ2, although

extrapolations to the continuum and infinite volume limits
still need to be applied.
The role of meson loops in the analysis of lattice data on

hadron masses has been stressed by many authors. In
particular, the behavior of baryon masses near the chiral
limit, mq → 0, is known to deviate strongly from the linear
Mbaryon ∼mq dependence expected at large mq values.
Expanding the masses in terms of powers of mπ , the
low-mπ behavior is characterized by model-independent
nonanalytic terms that involve odd powers of mπ or
logarithms of mπ [8]. Such behavior can only arise from
pseudoscalar meson loops, and must be present in any
effective treatment of QCD near the chiral limit [9].
Although the physics implications of the chiral loops are

relatively clear [10], in the literature various methods have
been used to implement them in practical calculations. In
particular, while the long-range structure and dynamics of
baryons is characterized by model-independent features of
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pion loops, the short-range structure depends on non-
perturbative dynamics and details of how the ultraviolet
behavior of loops is regularized. Historically, a popular
approach has utilized the framework of chiral perturbation
theory [11–15], with dimensional regularization to regu-
larize divergences and parametrize the short-distance phys-
ics via counter terms. Other approaches have emphasized
the importance of taking the finite size of baryons into
account, regularizing the ultraviolet behavior via form
factors or finite-range regulators [16]. The latter have been
argued to lead to better convergence of the chiral expan-
sion, through a resummation of nominally higher-order
terms as relativistic corrections to the leading nonanalytic
(LNA) terms [3].
Regardless of the specific approach to the regularization,

most of the early efforts have relied on the heavy baryon or
nonrelativistic approximations [3,17,18], focusing pri-
marily on the properties of the nucleon, often emphasizing
the important role played by the Δ resonance [19]. More
recently, manifestly covariant formulations of chiral effec-
tive theory have been developed, partly in an effort to
further improve the convergence properties of the heavy-
baryon approaches [15].
Extensions to baryons other than the nucleon have been

made in a number of studies, both in the context of the heavy
baryon expansion with finite-range regularization [20–22],
as well as in covariant calculations with dimensional regu-
larization [23–25]. Most recently, relativistic loop correc-
tions to masses arising from octet and decuplet intermediate
states were computed using a Gaussian form factor [26],
however, only nucleon external states were considered.
In other recent applications, careful treatment of chiral

loops has been stressed in connectionwith themeson–baryon
splitting functions needed for the calculation of parton
distribution functions [27–33], and in particular the key role
played by light-front zero-mode contributions [34–38].
Elsewhere, the effects of relativistic chiral corrections on
electromagnetic form factors [39,40] and transverse momen-
tum distributions [41] have recently been studied. Con-
siderable interest has also been devoted to the application
of chiral loops to scalar matrix elements and σ-terms
[15,20,22,42] for the nucleon and other baryons, as well
as for more exotic hadrons such as the H-dibaryon [21].
In this paper we build upon the previous work on chiral

loops to compute the self-energies for the complete set of
SU(3) octet and decuplet baryon intermediate and external
states, using a fully relativistic chiral effective theory
framework with a four-dimensional finite-range regulator.
We begin the discussion in Sec. II with a brief review of the
basics of the chiral effective theory, and the definitions of
the baryon octet and decuplet self-energies. In Sec. III we
present the results for the self-energies using a four-
dimensional dipole regulator, for each of the octet-octet,
octet-decuplet, decuplet-octet and decuplet-decuplet tran-
sitions, and compare these with some nonrelativistic

approximations. The LNA behavior of the self-energies
is derived in Sec. IV, along with the decay widths for
channels in which the initial baryon mass is larger than the
intermediate baryon mass plus the meson mass. A numeri-
cal comparison of the self-energies as a function of the
regulator mass and the pion mass is presented in Sec. V for
all octet and decuplet baryons, along with a direct assess-
ment of the role of relativistic effects. Finally, in Sec. VI we
summarize our findings and outline future applications of
the results obtained. We then summarize our coupling
constants, integral relations and example of decay rate
derivation in Appendixes A, B and C, respectively.

II. FOUNDATIONS

In this section we briefly summarize the basic elements
of the chiral SU(3) effective theory, and introduce the
formal definitions of the octet and decuplet baryon self-
energies associated with the fluctuations into meson-
baryon intermediate states.

A. Chiral SU(3) effective theory

The effective chiral SUð3ÞL × SUð3ÞR Lagrangian
describing the interactions of octet (B) and decuplet (Tμ)
baryons with psuedoscalar mesons (ϕ) can be written at
leading order as [18,43–45]

L ¼ f2ϕ
4
Tr½DμUðDμUÞ†� þ Tr½B̄ði=D −MBÞB�

þ ðTμÞijkðiγμναDα −MTγ
μνÞðTνÞijk

−
D
2
Tr½B̄γμγ5fuμ; Bg� −

F
2
Tr½B̄γμγ5½uμ; B��

−
C
2
½εijkðTμÞilmΘμνðuνÞljðBÞmk þ H:c:�

−
H
2
ðTμÞijkγαγ5ðuαÞklðTμÞijl; ð1Þ

where MB and MT are the octet and decuplet baryon
masses, and “H.c.” indicates the Hermitian conjugate. The
coefficients of the various terms in L are the pseudoscalar
decay constant, fϕ ¼ 93 MeV, the meson-octet baryon
coupling constants, D and F, and the meson-octet-decuplet
and meson-decuplet coupling constants, C and H, respec-
tively. The tensors in Eq. (1) are defined as γμν ¼ 1

2
½γμ; γν�,

and γμνα ¼ 1
2
fγμν; γαg in terms of the Dirac γ matrices, and

εijk is the antisymmetric tensor in flavor space.
The flavor SU(3) baryon octet fields Bij are comprised of

the nucleon N (¼ p, n), Λ, Σ�;0 and Ξ−;0 hyperon fields,
and can be represented in the matrix form,

B ¼

0
BB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCA: ð2Þ
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The baryon decuplet fields are parametrized in terms of the spin-3=2 Rarita-Schwinger field, and represented by the tensor
ðTμÞijk, which includes the Δ-isobar, Σ�, Ξ� and the triply-strange Ω− fields,

Tμ ¼

8>><
>>:
0
BB@

Δþþ 1ffiffi
3

p Δþ 1ffiffi
3

p Σ�þ

1ffiffi
3

p Δþ 1ffiffi
3

p Δ0 1ffiffi
6

p Σ�0

1ffiffi
3

p Σ�þ 1ffiffi
6

p Σ�0 1ffiffi
3

p Ξ�0

1
CCA;

0
BB@

1ffiffi
3

p Δþ 1ffiffi
3

p Δ0 1ffiffi
6

p Σ�0

1ffiffi
3

p Δ0 Δ− 1ffiffi
3

p Σ�−

1ffiffi
6

p Σ�0 1ffiffi
3

p Σ�− 1ffiffi
3

p Ξ�−

1
CCA;

0
BB@

1ffiffi
3

p Σ�þ 1ffiffi
6

p Σ�0 1ffiffi
3

p Ξ�0

1ffiffi
6

p Σ�0 1ffiffi
3

p Σ�− 1ffiffi
3

p Ξ�−

1ffiffi
3

p Ξ�0 1ffiffi
3

p Ξ�− Ω−

1
CCA
9>>=
>>;: ð3Þ

Note, however, that the tensor ðTμÞijk contains spurious spin-1=2 components, which must be removed by projecting onto
spin 3=2. This amounts to the replacement on the meson-decuplet-decuplet interaction term,

−
H
2
ðTμÞijkγαγ5ðuαÞklðTμÞijl → −i

H
2
ðTμÞijkϵμναβγβðuαÞklðTνÞijl: ð4Þ

The mesonic operatorU is defined in terms of the matrix of
pseudoscalar fields ϕ,

U ¼ u2; with u ¼ exp

�
i

ϕffiffiffi
2

p
fϕ

�
; ð5Þ

where the meson field ϕ includes the isotriplet π, isospin-
1=2 K and isosinglet η mesons,

ϕ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 −
ffiffi
2

pffiffi
3

p η

1
CCCA: ð6Þ

The first three terms in the Lagrangian in Eq. (1)
represent the meson, octet baryon and decuplet baryon
free-field Lagrangians, while the terms proportional to the
couplings D, F, C, and H involve interactions between
fields. In particular, for the octet-decuplet transition, the
tensor Θμν is defined as

Θμν ¼ gμν −
�
Z þ 1

2

�
γμγν; ð7Þ

where Z is the decuplet off-shell parameter that gives the
relative strength of the two terms in Eq. (7). Note that
observables, such as masses and cross sections, do not
depend on the choice of Z, but specific choices of Z may
simplify the calculations. In this analysis we follow the
conventional choice and set Z ¼ 1

2
[45].

The psuedoscalar mesons couple to the baryon fields via
the vector and axial vector combinations defined by

Γμ ¼
1

2
ðu†∂μuþ u∂μu†Þ −

i
2
ðu†λαuþ uλαu†Þvαμ; ð8Þ

uμ ¼ iðu†∂μu − u∂μu†Þ þ ðu†λαu − uλαu†Þvαμ; ð9Þ

where vαμ is an external vector field, λα (α ¼ 1;…; 8) are
the SU(3) Gell-Mann matrices, and u is defined in Eq. (5).

The covariant derivativesDμ of the octet and decuplet fields
in Eq. (1) are defined as

DμBij ¼ ∂μBij þ ½Γμ; B�ij − ihλ0iv0μBij; ð10Þ

DμðTνÞijk ¼ ∂μðTνÞijk þ ðΓμ; TνÞijk − ihλ0iv0μðTνÞijk;
ð11Þ

where v0μ denotes an external singlet vector field, λ0 is the
unit matrix, and h…i indicates a trace in flavor space. The
second term on the right hand side in Eq. (11) denotes
the combination

ðΓμ; TνÞijk ¼ ðΓμÞilðTνÞljk þ ðΓμÞjlðTνÞilk þ ðΓμÞkl ðTνÞijl:
ð12Þ

Finally, the covariant derivative on the psuedoscalar meson
fields is given by

DμU ¼ ∂μU þ ðiUλα − iλαUÞvαμ: ð13Þ

Using Eqs. (2)–(13), one can expand the chiral Lagrangian
(1) to leading order in the baryon and meson fields and
derive the self-energies of the SU(3) octet and decuplet
baryons, as we discuss in the following.

B. Baryon self-energies

In this section we introduce the self-energies of the
SU(3) octet and decuplet baryons arising from pseudosca-
lar meson loops, as illustrated in Fig. 1, focusing first on
octet external states and then on decuplet external states.
The self-energy operators are constructed using the
Feynman rules corresponding to the diagrams in Fig. 1.
The formal derivation of the meson and baryon propagators
and vertices from the chiral effective Lagrangian can be
found in the literature—see, e.g., Ref. [45].
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1. Octet external states

The contribution to the self-energy of an octet baryon B
(with four-momentum p) from the process involving the
emission of virtual meson ϕ (four-momentum k) with an
octet baryon B0 (four-momentum p − k) in the intermediate
state is defined by taking the on-shell matrix elements of
the B → B0ϕ transition operator bΣB→B0ϕ,

ΣB→B0ϕ ¼ 1

2

X
s

ūBðp; sÞbΣB→B0ϕuBðp; sÞ

¼ 1

4MB
Tr½ð=pþMBÞbΣB→B0ϕ�; ð14Þ

where the sum is taken over the spins s of the external octet
baryon state, and the Dirac spinor uBðp; sÞ is normalized
such that ūBðp; sÞuBðp; s0Þ ¼ δss0 . From the terms in the
Lagrangian in Eq. (1) involving the couplings D and F,
the self-energy operator for the octet-octet transition is
given by

bΣB→B0ϕ ¼ i

�
CBB0ϕ

fϕ

�
2
Z

d4k
ð2πÞ4 =kγ5

ið=p − =kþMB0 Þ
DB0

γ5=k
i
Dϕ

;

ð15Þ

where CBB0ϕ is the BB0ϕ coupling constant. In Eq. (15) we
define the shorthand notation for the denominators of the
propagators, indicating the on-mass-shell pole positions of
the intermediate meson and octet baryon, as

Dϕ ¼ k2 −m2
ϕ þ iϵ; ð16Þ

DB0 ¼ ðp − kÞ2 −M2
B0 þ iϵ; ð17Þ

withmϕ andMB0 the masses of the meson and intermediate
state octet baryon. The coupling constants CBB0ϕ depend
on the couplings D and F, and for specific transitions
B → B0ϕ are given in Appendix A.
Similarly, for an octet baryon dressed by a meson loop

with a decuplet baryon T 0 in the intermediate state, the
contribution to the self-energy is given by the matrix
element of the B → T 0ϕ transition operator bΣB→T 0ϕ,

ΣB→T 0ϕ ¼ 1

2

X
s

ūBðp; sÞbΣB→T 0ϕuBðp; sÞ

¼ 1

4MB
Tr½ð=pþMBÞbΣB→T 0ϕ�: ð18Þ

Again, from the terms in the Lagrangian (1) involving the
coupling C, one derives the transition operator

bΣB→T 0ϕ ¼ i

�
CBT 0ϕ

fϕ

�
2
Z

d4k
ð2πÞ4 Θ̄

μνkν

×
−ið=p − =kþMT 0 ÞΛμλðp − kÞ

DT 0
Θλσkσ

i
Dϕ

; ð19Þ

where the BT 0ϕ coupling constant CBT 0ϕ depends on the
coefficient C, and is given in Appendix A. Similarly to
Eq. (17), we define the propagator factor indicating the on-
mass-shell pole position for an intermediate decuplet
baryon as

DT 0 ¼ ðp − kÞ2 −M2
T 0 þ iϵ: ð20Þ

Setting the off-shell parameter Z ¼ 1
2
in the octet-decuplet

transition operator Θμν, the spin-3=2 energy projector Λαβ

can be written as

ΛαβðpÞ ¼ gαβ −
1

3
γαγβ −

γαpβ − γβpα

3MT 0
−
2pαpβ

3M2
T 0

: ð21Þ

Note that choices of Z other than Z ¼ 1
2
would introduce

additional Z dependence into the projector Λαβ.

2. Decuplet external states

Extending the discussion to decuplet external states, T,
the contribution to the self-energy from intermediate states
with octet baryons, B0, is defined in terms of the Rarita-
Schwinger spin-3=2 spinor-tensor uTμ ðp; sÞ,

ΣT→B0ϕ ¼ 1

4

X
s

ūTμ ðp; sÞbΣμν
T→B0ϕu

T
ν ðp; sÞ

¼ −
1

8MT
Tr½ð=pþMTÞΛνμðpÞbΣμν

T→B0ϕ�: ð22Þ

The spinor-tensor uTμ ðp; sÞ is normalized such that

X
s

ūTμ ðp; sÞuTν ðp; sÞ ¼ −
4

3

�
gμν −

pμpν

M2
T

�
; ð23Þ

and the energy projector Λνμ is given in Eq. (21). Similarly
to Eq. (19), the T → B0ϕ self-energy operator is given by

FIG. 1. Pseudoscalar meson ϕ loop contributions to the self-
energies of octet baryons B and decuplet baryons T from loops
involving intermediate octet baryons B0 and decuplet baryons T 0.
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bΣμν
T→B0ϕ ¼ i

�
CTB0ϕ

fϕ

�
2
Z

d4k
ð2πÞ4 Θ̄

μαkα
ið=p − =kþMB0 Þ

DB0

× Θνβkβ
i
Dϕ

; ð24Þ

where CTB0ϕ is the TB0ϕ coupling, given for specific
transitions in Appendix A.
Finally, for the decuplet–decuplet transition T → T 0ϕ,

the self-energy contribution can be written as

ΣT→T 0ϕ ¼ 1

4

X
s

ūTμ ðp; sÞbΣμν
T→T 0ϕu

T
ν ðp; sÞ

¼ −
1

8MT
Tr½ð=pþMTÞΛνμðpÞbΣμν

T→T 0ϕ�; ð25Þ

where the relevant self-energy operator is given by

bΣμν
T→T 0ϕ ¼ i

�
CTT 0ϕ

fϕ

�
2
Z

d4k
ð2πÞ4 ϵ

μσαβγβkα

×
−ið=p − =kþMT 0 ÞΛσλðp − kÞ

DT 0
ϵλνρδγδkρ

i
Dϕ

;

ð26Þ

with CTT 0ϕ the corresponding TT 0ϕ coupling, and ϵμσαβ the
Levi-Civita tensor.
The calculation of the baryon self-energies is in principle

straightforward, but simple power counting shows that the
integrals over the loop momentum k in the self-energy
operators in Eqs. (15), (19), (24), and (26) are divergent,
and therefore need to be regularized. In the next section we
discuss the computation of the self-energies using finite-
range regularization.

III. SELF-ENERGIES WITH FINITE-RANGE
REGULARIZATION

As outlined in Sec. I, various regularization prescriptions
have been discussed in the literature in calculations of
baryon self-energies. An important consistency require-
ment is that the regularization procedure preserves the
Lorentz and gauge symmetry of the fundamental QCD
theory. This is satisfied by the commonly used dimensional
regularization; however, for applications to particles with
finite size, finite-range regularization has been argued to
have some advantages regarding the convergence proper-
ties of the integrals [10,16].
Finite-range schemes such as Pauli-Villars regularization

satisfy all of the symmetry requirements, and are a special
case of four-dimensional form factors applied to the
integrands of pointlike results. Lorentz invariance restricts
form factors to be functions of the meson virtuality k2 and
baryon virtuality ðp − kÞ2. Following earlier work [29,46–
48], in the present analysis we apply a four-dimensional

form factor that is a function of k2 only. In particular, we
employ a four-dimensional dipole shape function Fðk;ΛÞ
with a regulator mass Λ,

Fðk;ΛÞ ¼
�
Λ̃2

DΛ

�
2

; ð27Þ

where Λ̃2 ¼ Λ2 −m2
ϕ, and we define, in analogy with

Eq. (16),

DΛ ¼ k2 − Λ2 þ iϵ: ð28Þ

The form (27) respects the necessary symmetries of the
calculation, and suppresses the divergences in the self-
energy integrals.
In the calculations, it will also be convenient to use light-

front coordinates, in which a four-vector vμ ¼ ðvþ; v−; v⊥Þ
is written in terms of the “longitudinal” v� ¼ v0 � vz
components and the transverse component v2⊥ ¼ v2x þ v2y.
For convenience we define the light-front momentum
fraction of the initial state baryon carried by the meson
ϕ by y ¼ kþ=pþ, with a corresponding momentum fraction
ȳ≡ 1 − y ¼ ðpþ − kþÞ=pþ carried by the intermediate
state baryon. Also, without loss of generality, we choose
a frame in which p⊥ ¼ 0.
In the following, we discuss the evaluation of the self-

energies in detail. We pay particular attention to ensuring
that the four-dimensional integrations correctly take into
account the end-point contributions [32], which are asso-
ciated with δ-function terms in the variable y and can affect
the model-independent leading nonanalytic behavior (see
Sec. IVA). We describe in detail how this is achieved by
reducing the integrands to forms where the momentum
dependence is contained mostly in the propagator factors
with minimal momentum dependence in the numerators.

A. Octet → octet transitions

We begin with the simplest case of the contribution to the
self-energy of an octet baryon B from intermediate states
with an octet baryon B0 and meson ϕ. Substituting the
dipole form factor Fðk;ΛÞ in Eq. (27) into Eq. (15) and
taking the spin trace, the self-energy can be written as

ΣB→B0ϕ ¼ −i
�
CBB0ϕ

fϕ

�
2 1

2MB

Z
d4k
ð2πÞ4

�
Λ̃4

D2
Λ

�
2

×
½2MBMBB0k2 þ 2p · kðk2 − 2p · kÞ�

DB0Dϕ
; ð29Þ

where we introduce the shorthand notation

MBB0 ≡MB þMB0 ; ð30Þ

ΔB0B ≡MB0 −MB; ð31Þ

OCTET AND DECUPLET BARYON SELF-ENERGIES IN … PHYS. REV. D 103, 094019 (2021)

094019-5



for a generic baryon B ¼ B or T (for decuplet states,
see below). Rearranging the propagators in Eqs. (16) and
(17), we can make the substitutions in the numerator of
Eq. (29),

k2 → Dϕ þm2
ϕ or DΛ þ Λ2;

p · k →
1

2
ðDϕ −DB0 þM2

B −M2
B0 þm2

ϕÞ: ð32Þ

With these replacements, the k-dependent terms in the
numerator can then be reduced to

ΣB→B0ϕ ¼ −i
�
CBB0ϕ

fϕ

�
2 Λ̃8

2MB

Z
d4k
ð2πÞ4

�ðm2
ϕ − Δ2

B0BÞM2
BB0

DϕDB0D4
Λ

þ M2
BB0

DB0D4
Λ
þ 2p · k −MBB0ΔB0B

DϕD4
Λ

�
: ð33Þ

Note that the first two terms in the brackets of Eq. (33) have
poles in different half-planes, so that using Cauchy’s
integral formula one can choose a contour in either the
upper or lower half-plane to perform the k− integration
analytically. As shown in Appendix B, taking the pole in
the baryon propagator allows one to evaluate the first two
terms in Eq. (33).
For the third term in the brackets of Eq. (33), the first part

involving ðp · kÞ in the numerator is odd in the pion
momentum k, and since the four-dimensional Lorentz
invariant regulator (27) does not introduce any additional
dependence on p · k, this will integrate to zero. For the
second part of the term involving constants and propagators
the integral vanishes when kþ ≠ 0, since here both the Dϕ

and DΛ poles lie on the same half-plane. When kþ ¼ 0,
however, the integral is divergent and the integration must
be handled more carefully. This is also outlined in
Appendix B. Putting all the terms in (B1), (B2) and

(B4) together, the k− integrated expression for the octet-
octet self-energy can be written as

ΣB→B0ϕ ¼ C2
BB0ϕ

ð4πfϕÞ2
Λ̃8M2

BB0

2MB

Z
1

0

dy
Z

∞

0

dk2⊥

×

�
ȳ4ðm2

ϕ − Δ2
B0BÞ

DBϕB0D4
BΛB0

−
ȳ3

D4
BΛB0

þ ΔB0B

MBB0

Z
1

0

dz
z3

ðk2⊥ þΩÞ4 δðyÞ
�
; ð34Þ

where the factors DBϕB0 and DBΛB0 are the ϕ and Λ
propagators, respectively, taken at the DB0 ¼ 0 pole and
are defined in Eq. (B3), and Ω is defined in Eq. (B5).
The dy and dk2⊥ integrations in (34) can be performed

analytically, although the resulting expressions are rather
long and not particularly illuminating, so they will not be
listed here. However, the special case of MB ¼ MB0 is
interesting since it corresponds to the well known Nπ self-
energy of the nucleon. Taking B ¼ B0 ¼ N, ϕ ¼ π, and
MB ¼ M to be the mass of the nucleon in Eq. (34), the Nπ
loop contribution to the nucleon self-energy is given by the
simplified expression,

ΣN→Nπ ¼ −
C2
NNπ

8π2f2π
ðΛ̃8MÞ

Z
1

0

dy
Z

∞

0

dk2⊥
ȳ3ðk2⊥ þM2y2Þ
DNπND4

NΛN
:

ð35Þ
For a proton external state, summing over the various
intermediate nucleon charge states (p, n) and using Table II
of Appendix A, we have for the NNπ coupling constant
C2
NNπ ¼ C2

ppπ0 þ C2
pnπþ ¼ 3

4
ðDþ FÞ2 ¼ 3

4
g2A. Evaluating

the integrals in Eq. (35) explicitly, one then obtains the
final analytic result for the Nπ contribution to the proton
self-energy,

ΣN→Nπ ¼ −
g2A

ð8πfπÞ2
1

MΛ3ð4M2 − Λ2Þ5=2

×

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − Λ2

p �
M2Λ̃4

�
m2

πðΛ2 − 10M2Þ þ 2Λ2ðΛ2 −M2Þ
�

þ 3Λ2m2
πð4M2 − Λ2Þ2

�
m2

π log
m2

π

Λ2

þ 2mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 −m2

π

q �
tan−1

mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 −m2

π

p þ tan−1
2M2 −m2

π

mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 −m2

π

p ���
þ 6ð2Λ6M4ðΛ2 − 2M2Þ − Λ2m4

πðΛ2 − 6M2ÞðΛ4 − 4Λ2M2 þ 6M4Þ
þ 2Λ4M2m2

πðΛ4 − 10Λ2M2 þ 18M4Þ − 4M6m6
πÞ

×

�
tan−1

Λ2 − 2M2

Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − Λ2

p − tan−1
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 − Λ2
p

��
: ð36Þ
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We have confirmed that this result coincides with Ref. [35]
after accounting for the differences in pseudoscalar and
pseudovector couplings. The expression in Eq. (34) gen-
eralizes that result to the case where the initial and
intermediate baryons have different mass, ΔB0B ≠ 0.
The final result for theN → Nπ self-energy (36) can also

serve as a reference point for comparing with heavy-baryon
chiral expansions. By expanding in powers of 1=M and
considering only the leading term, which corresponds to
taking the heavy-baryon limit M → ∞ in Eq. (36), we
obtain the simple result,

ΣHB
N→Nπ ¼ −

3g2AðΛ −mπÞ4ðΛ2 þ 4Λmπ þm2
πÞ

512πf2πΛ3
: ð37Þ

If the differences in form factors are taken into account,
Eq. (37) agrees with the N → Nπ heavy-baryon result
found by Young et al. [3]. In particular, one can easily
verify from Eq. (37) that the coefficient of the Oðm3

πÞ LNA

term is the familiar result from chiral perturbation theory
[8,18], ΣLNA

N→Nπ ¼ −ð3g2AÞ=ð32πf2πÞm3
π (see Sec. IVA).

A further important observation about the relativistic
calculation is that, although the δðyÞ term in Eq. (34) does
not contribute for the special case of MB ¼ MB0 , it is in
practice vital to keep terms proportional to δðyÞ to ensure
self-consistency of the calculation. Such terms would arise,
for example, if one were to use a pseudoscalar interaction
instead of a pseudovector coupling in the calculation of the
N → Nπ self-energy [35] (or indeed for any B → B0ϕ
transition). As discussed in Ref. [36], in that case the light-
front zero-modes (kþ ¼ 0) play a crucial role in determin-
ing the correct LNA behavior in the chiral limit.

B. Octet → decuplet transitions

For the contribution to the octet baryon self-energy from
intermediate states with decuplet baryons T 0, using the
same dipole form factor (27) in the self-energy operator in
Eq. (19) and taking the trace as in Eq. (18), we obtain

ΣB→T 0ϕ ¼ −i
�
CBT 0ϕ

fϕ

�
2 1

12MBM2
T 0

Z
d4k
ð2πÞ4

�
Λ̃4

D2
Λ

�
2 8ðMBMBT 0 − p · kÞðM2

Bk
2 − ðp · kÞ2Þ

DϕDT 0
: ð38Þ

From the definitions of the propagators in Eqs. (16), (17), and (20), one can reduce the numerator in (38) via the
replacements given in Eq. (32) and

p · k →
1

2
ðDϕ −DT 0 þM2

B −M2
T 0 þm2

ϕÞ: ð39Þ

The self-energy (38) can then be written in reduced form as

ΣB→T 0ϕ ¼ i

�
CBT 0ϕ

fϕ

�
2 Λ̃8

12MBM2
T 0

Z
d4k
ð2πÞ4

�ðΔ2
T 0B −m2

ϕÞðM2
BT 0 −m2

ϕÞ2
DϕDT 0D4

Λ

þ 4ðp · kÞ2 −M2
BT 0 ð2p · k −MBT 0ΔT 0BÞ − 2ðM2

BT 0 −MBΔT 0B − p · kÞm2
ϕ þm4

ϕ

DϕD4
Λ

−
4ðp · k0Þ2 þ ðM2

BT 0 −MBMT 0 −m2
ϕÞ2 − 5M2

BM
2
T 0 þ 2p · k0ðM2

BT 0 −m2
ϕÞ

DT 0D4
Λ

�
; ð40Þ

where k0 ¼ k − p, and we define M̄BT 0 and ΔT 0B in analogy with Eqs. (30)–(31). Compared with the octet–octet self-energy
case, Eq. (40) contains two new types of terms, namely, ones proportional to ðp · k0Þ2 and to ðp · kÞ2. The former can be
reduced and written in the form

4ðp · k0Þ2
DT 0D4

Λ
¼ ðM2

B þM2
T − Λ2Þ2

DT 0D4
Λ

þ 3M2
B þM2

T − 2p · k − Λ2

D4
Λ

þ 2ðΛ2 −M2
B −M2

TÞ
DT 0D3

Λ
þ 1

DT 0D2
Λ
−

1

D3
Λ
; ð41Þ

using Eqs. (32) and (39). Each of these terms are straightforward to evaluate in the d4k integration and are discussed in
Appendix B.
The term proportional to ðp · kÞ2 in Eq. (40) cannot be reduced further and must be evaluated directly. Following similar

steps as those in the Appendix B for the derivation of Eq. (B4), we rewrite this term as
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Z
d4k

4ðp · kÞ2
DϕD4

Λ
¼ 1

2

Z
dkþd2k⊥

Z
1

0

dzz3
Z

dk−
ðpþk−Þ2 þ 2M2

Bk
þk− þ ðp−kþÞ2

ðkþk− − k2⊥ −Ωþ iϵÞ5 ; ð42Þ

where Ω is as in Eq. (B5), and consider each term in the numerator separately. The term proportional to ðpþk−Þ2 can be
written as

Z
dkþd2k⊥

Z
1

0

dz
Z

dk−
z3ðpþk−Þ2

ðkþk− − k2⊥ −Ωþ iϵÞ5

¼
�
pþ

2

�
2
Z

dkþd2k⊥
Z

1

0

dz
z3

3!

� ∂
∂kþ

�
2
� ∂
∂Ω

�
2
�
2πi log

�
k2⊥ þΩ

μ2

�
δðkþÞ

�
: ð43Þ

The next step must be handled with care. Note that the partial kþ derivative is applied only to the δ function, giving

∂
∂kþ δðkþÞ ¼ −

1

kþ
δðkþÞ: ð44Þ

Since the δ function is even in kþ, δðkþÞ ¼ δð−kþÞ, integration of this term over all kþ will vanish. Higher derivatives
applied in Eq. (44) will not modify the null result, so the integral proportional to ðpþk−Þ2 in (42) is zero.
For the term proportional to kþk−, following similar steps one can derive

Z
dkþd2k⊥

Z
1

0

dz
Z

dk−
z3kþk−

ðkþk− − k2⊥ − Ωþ iϵÞ5 ¼
2π2i
3

Z
dkþdk2⊥

Z
1

0

dz
z3

ðk2⊥ þΩÞ3 δðk
þÞ: ð45Þ

Finally, for the ðp−kþÞ2 term, which has no k− dependence, after the k− integration the integral will be proportional to
kþδðkþÞ, which again for reasons of symmetry will vanish. The term proportional to k− is therefore the only part of Eq. (42)
that gives a nonzero contribution, given by Eq. (45). The complete k− integrated expression for the decuplet intermediate
state contribution to the octet baryon self-energy is given by

ΣB→T 0ϕ ¼ C2
BT 0ϕ

ð4πfϕÞ2
Λ̃8

12MBM2
T 0

Z
1

0

dy
Z

∞

0

dk2⊥
�
ȳ4ðm2

ϕ − Δ2
T 0BÞðm2

ϕ −M2
BT 0 Þ2

DBϕT 0D4
BΛT 0

−
ȳ3

D4
BΛT 0

�
ðM2

B þM2
T 0 − Λ2Þ2 þ ðM2

BT 0 −MBMT 0 −m2
ϕÞ2 − 5M2

BM
2
T 0

�

−
2ȳ2

D3
BΛT 0

ðM2
B þM2

T 0 − Λ2Þ − ȳ
D2

BΛT 0
−
ð3k2⊥ þ 6M2

B þ 2M2
T 0 þ Λ2Þ

6ðk2⊥ þ Λ2Þ3 δðyÞ

þ
Z

1

0

dz
z3

ðk2⊥ þ ΩÞ4
�
2

3
M2

Bðk2⊥ þΩÞ −M3
BT 0ΔT 0B

þ 2ðM2
BT 0 −MBΔT 0BÞm2

ϕ −m4
ϕ

�
δðyÞ

�
: ð46Þ

Note that in Eq. (46) terms proportional to p · k and p · k0
have been omitted, since these are odd in k and k0,
respectively, and hence vanish after integration. The fully
integrated expression for the octet → decuplet self-energy
is quite lengthy, but can be easily obtained by evaluating
the y, k2⊥, and z integrals in Eq. (46).
A similar chiral effective theory calculation of the N →

Δπ contribution to the proton self-energy was performed in
Ref. [35], although with some important differences com-
pared to our result in Eq. (46), which affect the resulting
LNA behavior. These differences can be traced back to the

treatment of the light-front zero-modes and the handling
of the light-front energy k− integration in Eq. (40). In
particular, Eq. (13) of Ref. [35] is the result of taking the
pole in which the intermediate Δ is on its mass shell in the
light-front energy k− integration. However, the absence of
terms proportional to δðyÞ in Eq. (13) of Ref. [35] suggests
that the light-front zero-mode (kþ ¼ 0) contribution has not
been included.
In order to ensure that the integration captures the

kþ ¼ 0 contribution, we first reduce the numerator of
Eq. (38) using Eq. (39) to decompose the total amplitude
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into terms proportional to 1=ðDπDΔÞ, 1=Dπ and 1=DΔ,
along with the overall factor 1=D4

Λ from the regulating
function Fðk;ΛÞ. Each individual denominator term is then
computed separately, as shown in Eqs. (40)–(46).
While it is certainly legitimate to take theDΔ ¼ 0 pole in

the upper k− half-plane for terms such as 1=ðDπDΔD4
ΛÞ that

also have poles in the lower k− half-plane, it would not be
correct to take DΔ ¼ 0 pole for the terms such as
1=ðDπD4

ΛÞ that have poles only in the lower k− half-plane.
One could mistakenly do this, for instance, by directly
taking the DΔ ¼ 0 pole in Eq. (38) before reducing the
momentum dependence in the numerator. As shown in
Eqs. (42)–(45), terms with poles only in the lower k− half-
plane are survived by the light-front zero-mode (kþ ¼ 0)
contributions, resulting in the terms proportional to δðyÞ in
Eq. (46). Without correctly capturing the kþ ¼ 0 contri-
bution, the result in Eq. (13) of [35] yields an LNA term of
the form m2

π logm2
π , in addition to the standard m4

π logm2
π

behavior. In contrast, our LNA results, discussed more fully
in Sec. IVA below, include the light-front zero-mode
(kþ ¼ 0) contribution, and Eq. (58) for ΔB0B > mϕ repro-
duces the standard expression ∼m4

π=ΔΔN logm2
π for the

LNA behavior of the N → Δπ transition [17] (see also
Eq. (2.17) of Ref. [42]).
In the same vein as the light-front zero-mode δðyÞ

contribution, we also note the appearance of δðȳÞ terms

from the light-front endpoint singularity in the pointlike
limit, Fðk;ΛÞ → 1 with Λ → ∞. Taking the DΔ ¼ 0 pole
for the terms proportional to the denominator 1=DΔ alone
would in this case lead to incorrect results. Just as terms
with poles only in the lower k− half-plane are survived by
the zero-mode (kþ ¼ 0) contribution, so too the terms
proportional to 1=DΔ with the pole only in the upper k−

half-plane are survived by the endpoint (kþ ¼ pþ) con-
tribution, leading to the terms proportional to δðȳÞ. The
appearance of these terms can be traced back to the
ȳðn−1Þ=Dn

BΛT 0 terms with the sole denominator DBΛT 0 for
2 ≤ n ≤ 4 in Eq. (46). As shown by Salamu et al. [29], one
can identify these terms in the Λ → ∞ limit with terms
proportional to δðȳÞ,

Λ̃8ȳ3

D4
BΛT 0

⟶
Λ→∞

lim
Ω0→∞

Z
ΩT0

Ω0

dt
−4yȳ3Λ̃8

ðyt − yȳM2
B þ ȳΩΛÞ5

				
Λ→∞

⟶
Λ→∞

− log
ΩT 0

Ω0

δðȳÞ ¼
�
1 − log

ΩT 0

μ2

�
δðȳÞ; ð47Þ

where ΩΛ ¼ k2⊥ þ Λ2 and ΩT 0 ¼ k2⊥ þM2
T 0 , with Ω0 a

Λ-independent constant, and μ is defined such that
logðΩT 0=μ2Þ ¼ logðΩT 0=Ω0Þ þ 1. Taking the Λ → ∞ limit
of Eq. (46) for the N → Δπ transition, the self-energy for
the pointlike case is then given by

Σpoint
N→Δπ ¼

CNΔπ

ð4πfπÞ2
1

12MM2
Δ

Z
1

0

dy
Z

∞

0

dk2⊥
�ðm2

π − Δ2
ΔNÞðm2

π −M2
NΔÞ2

DNπΔ

− log
k2⊥ þm2

π

μ2

�
M3

NΔΔΔN − 2m2
πðM2

NΔ −MΔΔNÞ þm4
π

�
δðyÞ

−
�
log

k2⊥ þM2
Δ

μ2

�
ðM2

NΔ −MMΔ −m2
πÞ2 − 5M2M2

Δ

�

−
�
1 − log

k2⊥ þM2
Δ

μ2

�
2M2ðk2⊥ þM2

ΔÞ
�
δðȳÞ

�
: ð48Þ

The same result can also be obtained using the manifestly
covariant dimensional regularization method. The result
(48) can also be contrasted with the pointlike limit of
Eq. (13) in Ref. [35] by setting the form factor “FΔð−tÞ”
there to unity, where t ¼ ðk2⊥ þ yðM2

Δ −M2Þ þ y2M2Þ=ȳ.
The terms in Eq. (13) of [35] with higher powers of t are
obtained by taking the DΔ ¼ 0 pole in the k− integration;
however, as illustrated above, one should not take the
DΔ ¼ 0 pole for terms proportional to the sole denominator
1=Dπ or 1=DΔ. These terms are survived by the light-front
zero-mode (kþ ¼ 0) and endpoint (kþ ¼ pþ) contribu-
tions, leading to the δðyÞ and δðȳÞ terms, respectively, in

Eq. (48). In particular, the δðyÞ contribution is crucial for
obtaining the correct LNA behavior ∼ðm4

π=ΔΔNÞ logm2
π

[17,42], as mentioned above. We will discuss the LNA
coefficients in more detail in Sec. IVA below.

C. Decuplet → octet transitions

The derivation of the T → B0ϕ loop contribution to the
self-energy of the decuplet baryon T follows closely that of
the octet → decuplet transitions in Sec. III B. Starting from
the expression in Eq. (22), and applying the dipole
regulator of Eq. (27), we find
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ΣT→B0ϕ ¼ −i
�
CTB0ϕ

fϕ

�
2 1

24M3
T

Z
d4k
ð2πÞ4

�
Λ̃4

D2
Λ

�
2 8ðMTMB0T − p · kÞðM2

Tk
2 − ðp · kÞ2Þ

DϕDB0
: ð49Þ

Using the replacement

p · k →
1

2
ðM2

B −M2
T 0 þDϕ −DB0 þm2

ϕÞ ð50Þ

in the numerator factors, Eq. (49) can be reduced to the form

ΣT→B0ϕ ¼ i

�
CTB0ϕ

fϕ

�
2 Λ̃8

24M3
T

Z
d4k
ð2πÞ4

�ðΔ2
B0T −m2

ϕÞðM2
BT 0 −m2

ϕÞ2
DϕDB0D4

Λ

þ 4ðp · kÞ2 −M2
TB0 ð2p · k −MTB0ΔB0TÞ − 2ðM2

TB0 −MBΔB0T − p · kÞm2
ϕ þm4

ϕ

DϕD4
Λ

−
4ðp · k0Þ2 þ ðM2

TB0 −MTMB0 −m2
ϕÞ2 − 5M2

TM
2
B0 þ 2p · k0ðM2

TB0 −m2
ϕÞ

DB0D4
Λ

�
: ð51Þ

Note that the decuplet-octet self-energy is almost identical to the octet-decuplet self-energy of Eq. (40), with the external
decuplet baryon mass and the internal octet baryon mass switched.
We can follow closely the steps and expressions in the previous Sec. III B, with the substitutionsMB → MT ,MT 0 → MB0 ,

andDT 0 → DB0 . Using the integral relations in Eqs. (B1), (B2) and (B7) in Appendix B, together with the identities (41), and
(45), we arrive at the k− integrated expression for the decuplet-octet self-energy,

ΣT→B0ϕ ¼ C2
TB0ϕ

ð4πfϕÞ2
Λ̃8

24MTM2
B0

Z
1

0

dy
Z

∞

0

dk2⊥
�
ȳ4ðm2

ϕ − Δ2
BT 0 Þðm2

ϕ −M2
TB0 Þ2

DBϕT 0D4
BΛT 0

−
ȳ3

D4
BΛT 0

�
ðM2

T þM2
B0 − Λ2Þ2 þ ðM2

TB0 −MTMB0 −m2
ϕÞ2 − 5M2

TM
2
B0

�

−
2ȳ2

D3
BΛT 0

ðM2
T þM2

B0 − Λ2Þ − ȳ
D2

BΛT 0
−
ð3k2⊥ þ 6M2

T þ 2M2
B0 þ Λ2Þ

6ðk2⊥ þ Λ2Þ3 δðyÞ

−
Z

1

0

dz
z3

ðk2⊥ þ ΩÞ4
�
2

3
M2

Tðk2⊥ þΩÞ −M3
BT 0ΔBT 0

þ 2ðM2
BT 0 −MTΔBT 0 Þm2

ϕ −m4
ϕ

�
δðyÞ

�
; ð52Þ

where again terms involving p · k and p · k0 have been
dropped as discussed in Sec. III B.
Note that for the T → B0ϕ transitions, the negative

baryon mass difference −ΔB0T ¼ MT −MB0 can be larger
than the meson mass, mϕ. In particular, the specific
transitions Δ → Nπ, Σ� → Λπ, Σ� → Σπ, and Ξ� → Ξπ
are all kinematically allowed in the physical region. In this
case the corresponding self-energies will develop imagi-
nary parts, which are related to the decay rates ΓT→B0π .
Similar to the optical theorem relating the total cross
section with the imaginary part of forward scattering
amplitudes, the decay rate Γ for the physical transition
is related to the imaginary part of the corresponding

self-energy, Γ ¼ −2ℑmΣ. In Sec. IV B we discuss the
basic features of this relation and the general results for the
various transitions, and in Appendix C illustrate the
derivation with the explicit example of the decay of a
spin-1=2 excited state to a nucleon and pion, N0 → Nπ.

D. Decuplet → decuplet transitions

To complete this section, we present the results for the
contribution to the self-energy of decuplet baryons from
loops involving decuplet baryons and mesons. Using the
definition given in Eq. (25), and applying the dipole form
factor we get
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ΣT→T 0ϕ ¼ −i
�
CTT 0ϕ

fϕ

�
2 1

72M3
TM

2
T 0

Z
d4k
ð2πÞ4

�
Λ̃2

DΛ

�
4 8

DϕDT 0

× ½2M2
TT 0 ðp · kÞ3 þ 2MTðΔ3

T 0T − 3MTT 0MTMT 0 þM3
T 0 Þðp · kÞ2

þM2
Tð9M2

T 0 − 2M2
TT 0 Þp · kk2 þM3

TMTT 0 ð2M2
T 0T þ 3MT 0 ðΔT 0T −MTÞÞk2�: ð53Þ

The rearranged propagators are then used to reduce the momentum dependence from the numerator factors, as in the other
self-energy calculations above. Namely, making the substitution

p · k →
1

2
ðM2

T −M2
T 0 þDϕ −DT 0 þm2

ϕÞ; ð54Þ

we arrive at the expression

ΣT→T 0ϕ ¼ −i
�
CTT 0ϕ

fϕ

�
2 Λ̃8

36M3
TM

2
T 0

Z
d4k
ð2πÞ4

×
�

M2
TT 0

DϕDT 0D4
Λ

�
ðm2

ϕ − Δ2
T 0TÞ

�
ðΔ2

T 0T −m2
ϕ þMTMT 0 Þ2 þ 9M2

TM
2
T 0

��

þ M2
TT 0

DT 0D4
Λ

�
2p · k0½m2

ϕ − Δ2
T 0T þ 2MTMT 0 � þ ðm2

ϕ − Δ2
T 0TÞ2 þ 10M2

TM
2
T 0 − 4ðp · k0Þ2

�

−
1

DϕD4
Λ

�
4M2

TT 0 ðp · kÞ2 þ 2p · k

�
M2

TT 0m2
ϕ −M4

TT 0 þ 6MTMT 0 ðΔ2
T 0T −MTMT 0 Þ

�

þMTT 0

�
MTT 0m4

ϕ þ 2m2
ϕðMTM2

T 0 −M3
T 0 − 2M3

TÞ

þ ΔT 0T

�
ðΔ2

T 0T þMTMT 0 Þ2 þ 9M2
TM

2
T 0

����
: ð55Þ

All the different types of terms in Eq. (55) have already been discussed in previous sections. Using the results in Appendix B
and making the substitution MB → MT in Eq. (45) to obtain the relation

Z
d4k

4ðp · kÞ2
DϕD4

Λ
¼ π2i

Z
dkþ

Z
dk2⊥

Z
1

0

dz
2z3

3

M2
T

ðk2⊥ þΩÞ3 δðk
þÞ; ð56Þ

we finally arrive at the k− integrated result for the decuplet-decuplet self-energy,

ΣT→T 0ϕ ¼ C2
TT 0ϕ

ð24πfϕÞ2
Λ̃8M2

TT 0

M3
TM

2
T 0

Z
1

0

dy
Z

dk2⊥

×

�
ȳ4

DTϕT 0D4
TΛT 0

�
ðm2

ϕ − Δ2
T 0TÞ½ðΔ2

T 0T −m2
ϕ þMTMT 0 Þ2 þ 9M2

TM
2
T 0 �
�

−
ȳ3

D4
TΛT 0

�
ðM2

T þM2
T 0 − Λ2Þ2 þ ðm2

ϕ − Δ2
TT 0 Þ2 þ 10M2

TM
2
T 0

�

−
2ȳ2

D3
TΛT 0

ðM2
T þM2

T 0 − Λ2Þ − ȳ
D2

TΛT 0
−
ð3k2⊥ þ 6M2

T þ 2M2
T 0 þ Λ2Þ

6ðk2⊥ þ Λ2Þ3 δðyÞ

−
Z

1

0

dz
z3

3ðk2⊥ þΩÞ4
�
2M2

Tðk2⊥ þ ΩÞ − 3

MT 0T

�
2m2

ϕðMTM2
T 0 − 2M3

T −M3
T 0 Þ

þm4
ϕMT 0T þ ΔT 0T

�
ðΔ2

T 0T þMTMT 0 Þ2 þ 9M2
TM

2
T 0

���
δðyÞ

�
; ð57Þ

where, as before, we have dropped the p · k and p · k0 terms which vanish after integration.
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Having derived the full set of results for the self-energies
of octet and decuplet baryons, we will proceed to system-
atically study their effects numerically. Before doing so,
however, we first make a brief aside to discuss the
calculation of some of their analytic properties and
applications.

IV. ANALYTIC PROPERTIES OF SELF-ENERGIES

In this section we discuss several important analytic
properties of the self-energies derived in Sec. III, namely,
their LNA behavior in the chiral limit and the decay widths
for their various decay channels.

A. Leading nonanalytic behavior

Expanding the baryon self-energies in a series about
the chiral limit, mϕ → 0, it is well known that coefficients
of certain terms in the series are model independent. In
particular, while the coefficients of terms that are analytic in
the pseudoscalar meson mass squared (m2

ϕ ∼mq, according
to the Gell-Mann–Oakes–Renner relation [49]) depend on

details of short-distance, model-dependent physics, the
coefficients of the nonanalytic terms are determined by
the long-distance properties of meson loops and are there-
fore model independent. The LNA terms in particular can
serve as an important check of consistency of any calcu-
lation of a hadronic observable with the chiral properties
of QCD.
Generally, the LNA results for the self-energies are

common for both SU(3) octet and decuplet baryons,
depending only on differences between the baryon masses.
For simplicity we therefore adopt the notation B and B0 to
indicate external and internal baryon states, respectively,
with B;B0 ¼ B0 or T 0. To derive the LNA behaviors of
the self-energies ΣB→B0ϕ we write the internal baryon mass
as MB0 ¼ ΔB0B þMB, and expand the self-energies in

powers of 1=MB0 and mϕ. Defining RB0B ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

B0B −m2
ϕ

q
and RB0B ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − Δ2
B0B

q
, the nonanalytic terms in the

expansion of the self-energy, denoted by ΣLNA
BB0ϕ, are found

to be

ΣLNA
B0Bϕ ¼

8>><
>>:

CLNA
BB0

π2f2ϕ

h
ΔB0Bð3m2

ϕ − 2Δ2
B0BÞ logm2

ϕ − 2R3
B0B



π − 2 arctan ΔBB0

R̄B0B

�i
; ΔB0B < mϕ;

CLNA
BB0

π2f2ϕ

h
ΔB0Bð3m2

ϕ − 2Δ2
B0BÞ logm2

ϕ þ 2R3
B0B log

ΔB0B−RB0B
ΔB0BþRBB0

i
; ΔB0B > mϕ;

ð58Þ

where the coefficients CLNABB0 are given in Table I in terms of
the coupling constants CBB0ϕ, which themselves are given
in Tables II and III of Appendix A in terms of the couplings
defined in the Lagrangian (1).
Considering the two scenarios in (58), for theΔB0B < mϕ

case the mass difference ΔB0B approaches zero first in
the chiral limit, which then leads to the resulting LNA
expression

ΣLNA
BB0ϕ ¼ −

2CLNABB0

πf2ϕ
m3

ϕ; ΔBB0 < mϕ: ð59Þ

This displays the characteristic ∼m3
ϕ behavior which has

been known, and for the BB0ϕ ¼ NNπ case agrees with the
well-known result [8,18],

ΣLNA
NNπ ¼ −

3g2A
32πf2π

m3
π; ð60Þ

where gA ¼ Dþ F is the axial vector charge.
For the ΔB0B > mϕ case, expanding the terms in powers

of the meson mass gives the result,

ΣLNA
BB0ϕ ¼ CLNABB0

π2f2ϕ

�
ð3m2

ϕΔB0B − 2Δ3
B0BÞ logm2

ϕ

þ 2

�
Δ3

B0B −
3m2

ϕΔB0B

2
þ 3m4

ϕ

8ΔB0B

�
logm2

ϕ

�

¼ 3CLNABB0

4π2f2ϕ

m4
ϕ

ΔB0B
logm2

ϕ; ΔB0B > mϕ: ð61Þ

For the phenomenologically relevant case of B ¼ N,
B0 ¼ Δ, from Tables I and II the coupling is given by
CLNANΔ ¼ ð1=24ÞC2

NΔπ ¼ ð1=24ÞC2, and using the SU(6)
relation C ¼ ð6=5ÞgA, we have the familiar behavior

ΣLNA
NΔπ ¼ C2

32π2f2π

m4
π

ΔΔN
logm2

π ¼
3g2A

16π2f2π

32

25

3m4
π

8ΔΔN
logmπ;

ð62Þ
which is next-to-leading nonanalytic for the nucleon mass.
We have verified that for the general case our expressions

TABLE I. Coefficients CLNABB0 of the LNA terms in the expansion
of the self-energies for the various octet (B, B0) and decuplet
baryon (T, T 0) initial (B ¼ B, T) and intermediate (B0 ¼ B0; T 0)
states around mϕ ¼ 0. The BB0ϕ coupling constants are given in
Tables II and III of Appendix A for specific hadronic states.

CLNABB0 B0 T 0

B 1
16
C2
BB0ϕ

1
24
C2
BT 0ϕ

T 1
48
C2
TB0ϕ

5
144

C2
TT 0ϕ
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(58) agree with the results derived in Ref. [15] using
dimensional regularization, where the NΔπ coupling hA
defined there is given by hA ¼ ffiffiffi

2
p

C.
As noted previously in Sec. III B, it is crucial to capture

the light-front zero-mode (kþ ¼ 0) contribution in order to
obtain the correctm4

π logmπ LNA behavior for theN → Δπ
transition in Eq. (62). The result given by Eq. (13) of
Ref. [35] omits the δðyÞ terms of Eq. (46) and finds an LNA
behavior of the form m2

π logm2
π . Such a term is in fact

canceled exactly by the light-front zero-mode (kþ ¼ 0)
contribution. Furthermore, for the pointlike limit (FΔ ¼ 1)
in Eq. (13) of [35], one should also recover the δðȳÞ term
from the light-front endpoint (kþ ¼ pþ) contribution, as
discussed in Sec. III B. The result in Ref. [35] should
therefore be corrected by taking into account the light-front
zero-mode (kþ ¼ 0) as well as the light-front endpoint
(kþ ¼ pþ) contributions.

B. Decay rates

For a general transition B → B0ϕ in which the decay
channel is open, the baryon decay rate can be computed
from the imaginary part of the self-energy, ΓBB0ϕ ¼
−2ℑmΣB→B0ϕ. As discussed in Appendix C, imaginary
contributions to the self-energy are generated from
1=ðDϕDB0D4

ΛÞ type terms, where the propagators of both
the internal meson (Dϕ) and baryon (DB0 ) co-exist, so that
the k− and k⊥ integration of 1=ðDϕDB0D4

ΛÞ produces the
logarithmic term, Z

1

0

dy logð−D̃Þ; ð63Þ

where D̃ ¼ yȳM2
B − yM2

B0 − ȳm2
ϕ. No such negative loga-

rithm term can arise from terms in the self-energy propor-
tional to 1=ðDϕD4

ΛÞ or 1=ðDB0D4
ΛÞ alone. To find the

imaginary part of the self-energy, one can look for only
the contribution from the region of y integration where the
condition D̃ > 0 is satisfied, namely, ymin < y < ymax with

ymin ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ2

B0B −m2
ϕÞðM2

BB0 −m2
ϕÞ

q
þM2

B −M2
B0 þm2

ϕ

2M2
B

ð64Þ

and

ymax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ2

B0B −m2
ϕÞðM2

BB0 −m2
ϕÞ

q
þM2

B −M2
B0 þm2

ϕ

2M2
B

:

ð65Þ

In this region, one can isolate the logð−1Þ ¼ iπ term in
Eq. (C5) and evaluate the y integration,

Z
ymax

ymin

dy logð−1Þ ¼ iπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ2

B0B −m2
ϕÞðM2

BB0 −m2
ϕÞ

q
M2

B

: ð66Þ

The condition for the existence of the nonvanishing ℑmΣ
coincides with the kinematic constraint −ΔB0B > mϕ

allowing the physical decay process B → B0ϕ. The imagi-
nary terms of the self-energy will therefore be the coef-
ficients of the 1=ðDϕDB0D4

ΛÞ term multiplied by the result
in Eq. (66), together with a factor π2i=Λ̃8 from the k− and
k⊥ integrations.
Applying these relations to the specific B → B0ϕ chan-

nels, for B ¼ octet B or decuplet T baryon, we have

ΓBB0ϕ ¼ C2
BB0ϕ

16πf2ϕ

M2
BB0

M3
B
ðΔ2

B0B −m2
ϕÞ3=2ðM2

BB0 −m2
ϕÞ1=2 ð67Þ

ΓBT 0ϕ ¼ C2
BT 0ϕ

72πf2ϕ

1

M3
BM

2
T 0
ðΔ2

T 0B −m2
ϕÞ3=2ðM2

BT 0 −m2
ϕÞ5=2

ð68Þ

ΓTB0ϕ ¼ C2
TB0ϕ

192πf2ϕ

1

M5
T

ðΔ2
B0T −m2

ϕÞ3=2ðM2
TB0 −m2

ϕÞ5=2 ð69Þ

ΓTT 0ϕ ¼ C2
TT 0ϕ

288πf2ϕ

M2
T 0T

M5
TM

2
T 0
ðΔ2

T 0T −m2
ϕÞ3=2ðM2

TT 0 −m2
ϕÞ1=2

× ½ðΔ2
T 0T −m2

ϕ þMTMT 0 Þ2 þ 9M2
TM

2
T 0 �: ð70Þ

Comparing these expressions with experimental decay
rates, one can then determine the numerical values of
the coupling constants, as done in Ref. [15] for theΔ → Nπ
transition. As discussed in Sec. III C, for decuplet to octet
baryon transitions the negative baryon mass difference
−ΔB0T ¼ MT −MB0 can be larger than the meson mass,
mϕ, even without considering baryon excited states, and
physically the transitions Δ → Nπ, Σ� → Λπ, Σ� → Σπ,
and Ξ� → Ξπ are all kinematically allowed.
In the next section we study the baryon self-energies

numerically, including their dependence on the pion mass.
For the open decay channels this reveals the rather
distinctive curvature as one cross the kinematic thresholds
arising from the development of a nonvanishing imaginary
part of the self-energy.

V. NUMERICAL RESULTS

Having derived the full set of analytical results for the
octet and decuplet self-energies, in this section we perform
a comprehensive numerical study of the sizes and magni-
tudes of the various intermediate state contributions, both
as a function of the dipole regulator mass, Λ, and of the
pion mass squared, m2

π . At the end of the section we also
compare the relativistic calculation of the proton self-
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energy with results of the heavy baryon approximation, for
a common choice of regulator.

A. Octet baryon self-energies

For the self-energies of the octet baryons, we can
analytically evaluate the k2⊥, y and z integrals in
Eqs. (34) and (46) for the octet and decuplet intermediate
state contributions, respectively. For the numerical calcu-
lation, we use for the SU(3) couplings D ¼ 0.85 and
F ¼ 0.41, matching Ref. [30], so that the axial vector
charge gA ¼ Dþ F ¼ 1.26, and we use the SU(6) value for
the meson-octet-decuplet coupling C ¼ ð6=5ÞgA, which
reproduces the LNA behavior of the N → Δπ transition.
Other values for the couplings have been used in the
literature, such as the quark model result F=D ¼ 2=3, and
the Skyrme model prediction F=D ¼ 5=9 [50–52]. The
effects of different values are not uniform across all self-
energies, since different transitions have different depend-
encies on D and F, but they do not alter our overall
conclusions. The relations for the various meson-baryon
coupling constants CBB0ϕ and CBT 0ϕ in terms ofD, F, and C
are given in Appendix A.
The results for the proton, Λ, Σþ and Ξ0 hyperon self-

energies are shown in Fig. 2 as a function of the dipole
regulator, Λ, over a typical range 0.8≲ Λ≲ 1.2 GeV, at
physical values of the meson and baryon masses.
Naturally, the magnitude of each of the self-energies
increases with increasing Λ, and the general tendency

is for the magnitude to decrease with increasing mass of
the external baryon. As an overall trend, the contributions
from intermediate states with higher masses have a
somewhat stronger variation with Λ, and the heavier
external baryons receive significant contributions from
a larger number of intermediate states. Furthermore, the K
loop contributions become more significant for external
baryons with larger strangeness, and, along with η loops,
play a slightly increasing role than the π loop contribu-
tions for larger regulator masses.
As far as specific external states, for the proton self-

energy, Σp, the Nπ intermediate states make the greatest
overall contribution, followed by the Δπ state. Con-
tributions involving kaons and hyperons are generally
much smaller than those from nonstrange states, but
become relatively more significant with increasing cutoff
mass, and those involving the η meson are negligible.
For the Λ hyperon external state, the most significant

contribution to the self-energy is from the Σπ intermediate
state, which is a factor ≈2 smaller in magnitude than the
most significant (Nπ) contribution to the proton self-
energy. Contributions from NK and Σ�π intermediate states
are ≈2–3 smaller for the given range of regulator masses,
with kaon loops generally playing a greater role than for the
proton.
For the Σþ, the contributions from the Σπ and Λπ

intermediate state configurations are similar, but about a
factor 2 smaller than the largest (Σπ) contribution to the Λ
hyperon for a regulator mass∼1 GeV. The ΞK contribution

FIG. 2. Contributions to the self-energies of octet baryons from various meson-baryon intermediate states as a function of the dipole
regulator mass parameter Λ, for the proton p, Λ, Σþ, and Ξ0 hyperons.
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is next largest, and in fact becomes comparable to the
pionic contributions for masses ≳1.2 GeV, although at
such values the one-loop approximation becomes more
questionable. The remaining contributions from the other
intermediates states are mostly negligible.
In contrast to the other hyperons, for the Ξ0 baryon the

ΣK loop makes the dominant contribution to the self-
energy, which is much larger in magnitude than from any of
the other states, with the exception perhaps of the Ξπ state.
Interestingly, the largest self-energy contribution to the Ξ0

baryon is not the diagonal (Ξπ) case, but the off-diagonal
ΣK channel.
It is also instructive to examine the dependence of

the baryon self-energies on the pion mass squared, m2
π ,

which we illustrate in Fig. 3 for a fixed value of the
regulator mass Λ ¼ 1 GeV. While nature provides us with
only one physical value for mπ, the mπ dependence can in
principle be studied within lattice QCD, where any chosen
value of the quark mass can be dialed and the simulation
performed also at an unphysical pion mass. The calculated
mass dependence can then be compared with that expected
from the QCD chiral analysis, or the latter can be utilized to
extrapolate the lattice data from unphysically large masses
to the physical ones. In the numerical analysis of the pion
mass dependence, for states involving K and η mesons we
use the relations [53]

m2
K ¼ 4λ

f2π
ms þ

m2
π

2
;

m2
η ¼

16λ

3f2π
ms þ

m2
π

3
; ð71Þ

where ms is the strange quark mass and λ is a fitting para-
meter. Fitting the PACS-CS lattice QCD data for the baryon
masses [4], we find this parameter to be λ ¼ 0.00748 GeV3

and use ms ¼ 0.0674 GeV to reproduce the experimental
kaon mass at the physical value of the pion mass.
At low values of the pion mass, the baryon masses can be

expanded in a power series in m2
π , with terms ∼c0 þ

c2m2
π þ � � � that are analytic in m2

π , as well as terms that are
nonanalytic. The latter can only arise from pseudoscalar
loops, so it is therefore instructive to examine deviations of
the self-energies from linearity at small m2

π . The results in
Fig. 3 clearly indicate nonlinearity in the self-energies for
m2

π ≲ 0.2–0.3 GeV2 for all the octet baryons, as observed
in existing lattice simulations [4], with greatest nonlinearity
apparent for the proton and least for the Ξ0. For large values
of m2

π the various meson–baryon contributions to the self-
energies rapidly decrease, and in the limit mϕ → ∞ these
vanish. Closer inspection of the mass dependence of the
individual intermediate states indicates that the contribu-
tions from K and η loops decrease in magnitude more

FIG. 3. Contributions to the self-energies of octet baryons from various meson-baryon intermediate states as a function of the pion
mass squared, m2

π , for the proton p, Λ, Σþ, and Ξ0 hyperons. For transitions involving K and η loops, the meson masses are written as
functions of m2

π using Eq. (71).
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slowly than the pion loop contributions, which can be
understood from the pion mass dependence of m2

K and m2
η

in Eq. (71).

B. Decuplet baryon self-energies

For the self-energies of the decuplet baryons, as for
the octet case, we evaluate the k2⊥, y and z integrals in
Eqs. (53) and (57) analytically and study the decuplet
self-energies numerically as a function of the regulator
mass parameter and pion mass squared. In the numerical
calculations we use the same value for the meson-octet-
decuplet coupling as above, C ¼ ð6=5ÞgA, and for the
meson-decuplet-decuplet coupling use the SU(6) result
H ¼ ð9=5ÞgA. The relations for the various meson-baryon
coupling constants CTB0ϕ and CTT 0ϕ are given in Table III of
Appendix A.
The behavior observed for the decuplet baryon self-

energies is qualitatively similar to that for the octet baryons,
but with some unique features. The dependence on the
regulator mass is displayed in Fig. 4, where again the
magnitudes of the self-energies are seen to increase with Λ.
The largest contributions generally arise from intermediate
states involving decuplet baryons, and contributions from
intermediate states with kaons increase at a somewhat faster
rate than their pion counterparts.
For the Δþ external state, the diagonal Δ → Δπ tran-

sition dominates over all other contributions over the entire

range of Λ considered. The Nπ intermediate state gives the
second largest contribution, while those involving K and η
loops are relatively insignificant. For larger Λ values the
magnitude of the Σ�K contribution increases at a faster rate,
and eventually exceeds the Nπ. However, as mentioned
previously, the behavior at large regulator masses is
questionable because of the increasing importance of
higher order terms that are not included in this analysis.
The diagonal Σ�π contribution to the Σ�þ self-energy is

also significantly larger than other terms, although a
number of other states, such as the ΔK, Ξ�K, Λπ, and
Σπ, make non-negligible contributions. At smaller values
of Λ ≲ 1 GeV the contributions from the (octet baryon) Λπ
and Σπ states are actually larger than those from the
(decuplet baryon) ΔK and Ξ�K, however, at larger values
of Λ≳ 1 GeV the latter increase rapidly and become more
prominent.
The Ξ�0 baryon self-energy displays an interesting

feature in that the largest two contributions, namely, from
the Ξ�π and Σ�K intermediate states, switch their order at
Λ ≈ 0.9 GeV, with the latter becoming much larger at
higher values of Λ. For lower Λ values, the Ξπ state also
makes an important contribution, but its relative impact
decreases with increasing Λ. This feature, as evident also
for the Σ�þ self-energies, illustrates the general trend of the
contributions involving decuplet baryons playing a more
prominent role than those involving octet baryons at larger
Λ. This is of course expected from the fact that decuplet

FIG. 4. Contributions to the self-energies of decuplet baryons from various meson-baryon intermediate states as a function of the
dipole regulator mass parameter Λ, for the Δþ isobar, Σ�þ, Ξ�0 and Ω− hyperons.
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baryon propagators involve higher powers of the loop
momentum, which are less suppressed for larger values
of Λ.
Finally, for the triply strange Ω baryon there are only

three intermediate states that preserve strangeness which
can contribute to the self-energy, namely, two involving
decuplet baryons, Ξ�K and Ωη, and one involving the octet
ΞK. The Ξ�K gives the largest contribution, followed by
the diagonal Ωη, while the octet contribution ΞK has the
smallest magnitude.
In a similar manner to the octet self-energies, it is also

instructive to examine the variation of the decuplet baryon
self-energies with respect to the pion mass squared.
Choosing again the nominal value Λ ¼ 1 GeV for the
finite range regulator mass, we illustrate the octet baryon
and decuplet baryon intermediate state contributions to the
decuplet self-energies in Fig. 5, using the relations in
Eq. (71) to express the K and η masses in terms of the pion
mass. Generally similar behavior is observed for the
decuplet baryon self-energies to that for the octet self-
energies when varying mπ , albeit with one rather striking
difference. For mass differences between the external and
internal baryons (MT −MB0 ¼ −ΔB0T) greater than the
meson mass, the self-energies acquire an imaginary part,
as discussed above in Secs. III C and IV B. This results in
noticeable kinks in the self-energies when mϕ ¼ −ΔB0T ,
below which the decay channels become open.

For the Δ → Nπ self-energy, for example, the branch
point is clearly seen at mπ ≈ 0.293 GeV, corresponding to
the difference between the nucleon and Δ masses. For the
Σ�þ baryon, branch points are observed for the Λπ channel
at mπ ¼ 0.267 GeV and for the Σπ channel at
mπ ¼ 0.19 GeV. For the Ξ�0 baryon the Ξπ intermediate
state has a clearly visible branch point atmπ ¼ 0.213 GeV,
while the Ω− has no branch points when varying with
respect to the pion mass.
Note also that since these results show the variation with

respect to m2
π and the K and η masses are written using

Eq. (71), there are no observable branch points for any
intermediate states involving kaons or η mesons. This can
be understood from Eq. (71) by noting that atmπ ¼ 0 the K
mass is given by mK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4λ=f2πÞms

p
¼ 0.482 GeV and

the η mass by mη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16λ=3f2πÞms

p
¼ 0.557 GeV, which

are larger than the largest baryon mass differ-
ence, −ΔΣ�N ¼ MΣ� −M ¼ 0.444 GeV.

C. Analysis

Putting all these results together, in Fig. 6 we show a
comparison of the total self-energies for all the octet and
decuplet baryons versus the regulator mass parameter and
versus the pion mass squared, as in Figs. 2–5. The general
trend is for the magnitude of the self-energies to become
larger the lighter the baryon is. For the same value of the

FIG. 5. Contributions to the self-energies of decuplet baryons from various meson-baryon intermediate states as a function of the pion
mass squared, m2

π , for the Δþ, Σ�þ, Ξ�0, and Ω−. For transitions involving K and η loops, the meson masses are written as functions of
m2

π using Eq. (71).
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regulator mass, the decuplet baryon masses are slightly
larger than the corresponding octet baryon masses, for the
same value of the strangeness. For example, the Δ baryon
self-energy is ≈ − 0.4 GeV at Λ ¼ 1 GeV, compared with
the nucleon’s ≈ − 0.2 GeV, while the Ξ� baryon self-
energy of ≈ − 0.2 GeV is about twice as large in magnitude
as the Ξ self-energy at the same value of the regulator mass.
In the comparison of the total decuplet self-energies with

varying m2
π , the kinks at low mπ values are clearly

noticeable, and correspond to the points where the decay
channels open and the self-energies develop an imaginary
part. For largermπ values, each of the four octet and each of

the four decuplet state self-energies cross over as one
approaches the SU(3) symmetric limit, where ms ∼mu;d.
It should be noted that closer inspection of the intersect

region does reveal some slight SU(3) symmetry breaking in
our case, which arises from differences between the various
baryon masses used in the propagators and spin trace
factors in the expressions for the self-energies. If one were
to use the same external mass and mass difference for all
possible transitions, SU(3) symmetry would be exact and
all lines would intersect at the same point, as observed in
Refs. [21,22] for example.

FIG. 7. Comparison of Nπ (red lines) and Δπ (blue lines) intermediate state contributions to the proton self-energy, Σp, versus the
regulator mass parameter Λ and versus m2

π , for our full relativistic calculation (solid lines) and the heavy baryon approximation
(dashed lines).

FIG. 6. Total self-energies for octet (left) and decuplet (right) baryons as functions of Λ (top) and m2
π (bottom).
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We also stress that if all possible transitions were not
considered for each octet and decuplet baryon, the inter-
sections of the various curves in Fig. 6 would not occur.
This further emphasizes the importance of a comprehensive
approach including all octet and decuplet baryon inter-
mediate state contributions to the self-energies.
Finally, before concluding our discussion it is instructive

to compare the results of our relativistic calculations with
those obtained in the heavy baryon limit, which has been
used in many previous calculations. For illustration, we
focus on the proton external state, and consider the
contributions from the Nπ and Δπ intermediate states.
The integrated expressions for the N → Nπ case for the full
relativistic and approximated heavy baryon results are
given in Eqs. (36) and (37), respectively. In Fig. 7, we
show the Nπ and Δπ intermediate state contributions to the
proton self-energy, both as a function of the regulator mass
parameter Λ and versus m2

π , for the relativistic and heavy
baryon calculations.
The heavy baryon results for the Nπ contribution are

≈50% larger in magnitude for the same value of the
regulator Λ ∼ 1 GeV, with the difference remaining rela-
tively stable for varying Λ and m2

π. This can be understood
by considering the 1=M expansion of the relativistic
expression in Eq. (36). While Eq. (37) is the leading order
term in the heavy baryon approximation, the next to lead-
ing order correction in the expansion is positive and
≈þ 0.15 GeV in the chiral limit. This amounts to
≈40% of the magnitude of the leading term, which is
≈ − 0.35 GeV for the same regulator mass, and accounts
for most of the difference between the relativistic and heavy
baryon results. The relativistic effects for the Δπ contri-
bution are even more sizeable, with a reduction of the self-
energy correction of ∼2=3 from the heavy baryon result in
the chiral limit. These results suggest that relativistic effects
in the baryon mass expansion can play a significant role in
the self-energies. In this respect, it will be interesting to
investigate whether the sizable cancellations in the chiral
logarithmic corrections to the baryon axial vector currents
between the intermediate octet and decuplet states observed
in the nonrelativistic heavy baryon approach [54] arise also
in the relativistic approach.

VI. CONCLUSIONS

In this paper we have, for the first time, evaluated the
self-energies of all baryons in the octet and decuplet
representations of flavor SU(3) within a relativistic chiral
effective theory, and using a four-dimensional finite-
range regulator with a dipole shape. The use of the four-
dimensional regulator ensures that the calculation preserves
the necessary Lorentz, gauge and chiral symmetries of
the fundamental QCD theory. Furthermore, we derive the
leading nonanalytic behavior of all the self-energies in the
chiral limit, which provides an important consistency check
for phenomenological model calculations [55].

We studied the dependence of the baryon self-energies
numerically as a function of the regulator mass, Λ, and
identified the most important channels for each baryon
external state. To allow for comparisons with lattice QCD
data we also considered the dependence of the self-energies
on the pion mass, illustrating the characteristic nonlinear
behavior with m2

π near the chiral limit.
At larger pion masses, the SU(3) symmetry point, where

all self-energies are equal, is identified, with small sym-
metry-breaking corrections arising from the use of physical
baryon masses in the self-energy equations. This illustrates
the importance of accounting for all SU(3) octet and
decuplet baryons in the intermediate states, without which
the symmetry point would not be observed. Comparison
with the nonrelativistic or heavy baryon approximation for
the Nπ and Δπ contributions to the proton mass suggests
that relativistic effects are significant, and reduce the
magnitude of the (negative) correction by some 40%–
50% compared with the heavy baryon result.
A natural future extension of our results will be to

explore the applications of the self-energies to baryon
masses and σ-terms. In chiral effective theory, baryon
masses can be expanded in powers of the quark mass,
including contributions from the self-energies computed
here. Parameters of terms in the expansion that are
analytical in the quark mass can be determined from
fitting to lattice QCD data on baryon masses, but once
these are determined the baryon masses can be used to
derive σ-terms using the Feynman-Hellmann theorem,
σBq ¼ mq∂MB=∂mq. A detailed analysis of the σ-terms
will be presented elsewhere [56].
Further applications involve coupling the meson–baryon

system to external currents, such as photons, to study the
effects of meson loops on electromagnetic elastic and
transition form factors. Moreover, coupling the meson–
baryon states to nonlocal currents can provide information
about the physical origin of the flavor asymmetries in
parton distribution functions for the external octet and
decuplet [57,58] states, as well as about sea quark con-
tributions to generalized parton distributions.
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APPENDIX A: COUPLING CONSTANTS

In this Appendix, we summarize for convenience the full
set of coupling constants for octet and decuplet baryon
transitions to meson-baryon intermediate states, in terms
of the couplings defined in the Lagrangian in Eq. (1).
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For transitions from octet baryon external states, the
coupling constants CBB0ϕ and CBT 0ϕ are given in
Table II, while for decuplet baryon external states
the coupling constants CTT 0ϕ and CTB0ϕ are given in
Table III.

APPENDIX B: INTEGRAL RELATIONS

There are several useful integral relations involving
propagators that occur in different expressions for self-
energies that we summarize for convenience here. The
common integrals seen in the self-energy equations (33),

TABLE II. Coupling constants CBB0ϕ and CBT 0ϕ for transitions from octet external states B to intermediate states
with octet (B0) and (T 0) decuplet baryons, respectively, and a pseudoscalar meson ϕ, in terms of the couplings D, F
and C defined in Eq. (1).

External state B

p Λ Σþ Ξ0

(B0ϕ) ðpπ0Þ ðDþFÞ
2

(pK−) − ðDþ3FÞffiffiffiffi
12

p (pK̄0) ðD−FÞffiffi
2

p (Σ0K̄0) ðDþFÞ
2

(nπþ) ðDþFÞffiffi
2

p (nK0) − ðDþ3FÞffiffiffiffi
12

p (ΞKþ) ðDþFÞffiffi
2

p (ΣþK−) ðDþFÞffiffi
2

p

(ΣþK0) ðD−FÞffiffi
2

p (Σþπ−) 1ffiffi
3

p D (Σþπ0) F (Ξ0π0) ðD−FÞ
2

(Σ0Kþ) ðD−FÞ
2

(Σ0π0) 1ffiffi
3

p D (Σ0πþ) −F (Ξ−π−) ðD−FÞffiffi
2

p

(ΛKþ) − ðDþ3FÞffiffiffiffi
12

p (Σ−π−) 1ffiffi
3

p D (Σþη) 1ffiffi
3

p D (Ξ0η) − ðDþ3FÞffiffiffiffi
12

p

(pη) − ðD−3FÞffiffiffiffi
12

p (Ξ0K0) − ðD−3FÞffiffiffiffi
12

p (Λπþ) 1ffiffi
3

p D (ΛK̄0) − ðD−3FÞffiffiffiffi
12

p

(Ξ−Kþ − ðD−3FÞffiffiffiffi
12

p

(Λη) 1ffiffi
3

p D

(T0ϕ) (Δþþπ−) 1ffiffi
2

p C (Σ�þπ−) 1
2
C (ΔþþK−) − 1ffiffi

2
p C (Σ�þK−) − 1ffiffi

6
p C

(Δþπ0) − 1ffiffi
3

p C (Σ�−πþ) 1
2
C (ΔþK̄0) − 1ffiffi

6
p C (Σ�0K̄0) − 1ffiffiffiffi

12
p C

(Δ0πþ) − 1ffiffi
6

p C (Σ�0π0) 1
2
C (Σ�þπ0) 1ffiffiffiffi

12
p C (Ξ�0π0) − 1ffiffiffiffi

12
p C

(Σ�þK0) 1ffiffi
6

p C (Ξ�0K0) − 1
2
C (Σ�0πþ) 1ffiffiffiffi

12
p C (Ξ�−πþ) 1ffiffi

6
p C

(Σ�0Kþ) − 1ffiffiffiffi
12

p C (Ξ�−Kþ) 1
2
C (Ξ�0Kþ) 1ffiffi

6
p C (Ξ�0η) − 1

2
C

(Σ�þη) 1
2
C (Ω−Kþ) 1ffiffi

2
p C

TABLE III. Coupling constants CTB0ϕ and CTT 0ϕ for transitions from decuplet external states T to intermediate
states with octet (B0) and (T 0) decuplet baryons, respectively, and a pseudoscalar meson ϕ, in terms of the couplings
C and H defined in Eq. (1).

External state T

Δþ Σ�þ Ξ�0 Ω−

(B0ϕ) (pπ0) 1ffiffi
6

p C (pK̄0) 1ffiffi
6

p C (ΣþK−) 1ffiffi
6

p C (Ξ0K−) − 1ffiffi
2

p C

(nπþ) − 1ffiffi
3

p C (Ξ0Kþ) 1ffiffi
6

p C (Σ0K̄0) − 1ffiffiffiffi
12

p C (Ξ−K̄0) 1ffiffi
2

p C

(ΣþK0) − 1ffiffi
6

p C (Σþπ0) − 1ffiffiffiffi
12

p C (Ξ0π0) 1ffiffiffiffi
12

p C

(Σ0Kþ) 1ffiffi
3

p C (Σ0πþ) 1ffiffiffiffi
12

p C (Ξ−πþ) − 1ffiffi
6

p C

(Σþη) 1
2
C (Ξ0η) 1

2
C

(Λπþ) − 1
2
C (ΛK̄0) − 1

2
C

(T0ϕ) (Δþþπ−) 1ffiffi
6

p H (ΔþþK−) 1ffiffi
6

p H (Ξ�−πþ) 1ffiffiffiffi
18

p H (Ξ�−K̄0) 1ffiffi
6

p H

(Δþπ0) 1
6
H (ΔþK̄0) 1ffiffiffiffi

18
p H (Ξ�0π0) 1

6
H (Ξ�0Kþ) 1ffiffi

6
p H

(Δ0πþ)
ffiffi
2

p
3
H (Ξ�0Kþ)

ffiffi
2

p
3
H (Ξ�0η) − 1ffiffiffiffi

12
p H (Ω−η) − 1ffiffi

3
p H

(Δþη) 1ffiffiffiffi
12

p H (Σ�þπ0) 1
3
H (Σ�þK−)

ffiffi
2

p
3
H

(Σ�þK0) 1ffiffiffiffi
18

p H (Σ�0πþ) 1
3
H (Σ�0K̄0) 1

3
H

(Σ�0Kþ) 1
3
H (Ω−Kþ) 1ffiffi

6
p H
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(40), (51), and (55) generally contain some combination of
the baryon propagator DB0, meson propagator Dϕ, and the
Λ propagator from the form factor DΛ, where B0 is under-
stood to represent either an octet (B0) or decuplet (T 0)
baryon. Terms containing bothDB0 andDϕ orDΛ have poles
in different half-planes, so that using Cauchy’s integral
formula one can choose a contour in either the upper or
lower half-plane to perform the k− integration analytically.
Taking the pole in the baryon propagator, one can show thatZ

d4k
1

DϕDB0D4
Λ
¼ iπ2

Z
dydk2⊥

ȳ4

DBϕB0D4
B0ΛB0

; ðB1Þ

and Z
d4k

1

DB0D4
Λ
¼ −iπ2

Z
dydk2⊥

ȳ3

D4
BΛB0

; ðB2Þ

where

DBϕB0 ¼ k2⊥ −M2
ByȳþM2

B0yþm2
ϕȳ;

DBΛB0 ¼ k2⊥ −M2
ByȳþM2

B0yþ Λ2ȳ ðB3Þ
are theϕ andΛ propagators, respectively, taken at theDB0 ¼
0 pole.
Terms with only Dϕ and DΛ have poles on the same

half-plane and the integral vanishes when kþ ≠ 0. When
kþ ¼ 0, however, the integral is divergent and must be
handled more carefully. Using the Feynman parametriza-
tion, one can rewrite this term asZ

d4k
1

DϕD4
Λ
¼
Z

d4k
1

3!

� ∂
∂Λ2

�
3 1

DϕDΛ

¼
Z

d4k
1

3!

� ∂
∂Λ2

�
3
� ∂
∂Ω

�Z
1

0

dz
ðk2−Ωþ iϵÞ ;

ðB4Þ
where

Ω ¼ zΛ2 þ ð1 − zÞm2
ϕ: ðB5Þ

Using the relation [59]Z
dk−

1

k2 −Ωþ iϵ
¼ 2πi log

�
k2⊥ þ Ω

μ2

�
δðkþÞ; ðB6Þ

one can then reduce the integration in Eq. (B4) to yieldZ
d4k

1

DϕD4
Λ
¼ −iπ2

Z
dkþdk2⊥

Z
1

0

dz
z3

ðk2⊥ þ ΩÞ4 δðk
þÞ:

ðB7Þ
Since the techniques and steps are the same, one can also
generalize these results for all powers of Dn

Λ, where n > 1.
In this case by performing the k− integrations one obtains
the relations

Z
d4k

1

DϕDB0Dn
Λ
¼ iπ2

Z
dydk2⊥

ð−ȳÞn
DBϕB0Dn

BΛB0
; ðB8aÞ

Z
d4k

1

DBDn
Λ
¼ iπ2

Z
dydk2⊥

ð−ȳÞn−1
Dn

BΛB0
; ðB8bÞ

Z
d4k

1

DϕDn
Λ
¼ iπ2

Z
dkþdk2⊥

Z
1

0

dz
ð−zÞn−1

ðk2⊥ þΩÞn δðk
þÞ;

ðB8cÞZ
d4k

1

Dn
Λ
¼ iπ2

Z
dkþdk2⊥

ð−1Þn
ðn − 1Þ!

1

ðk2⊥ þ Λ2Þn−1 δðk
þÞ:

ðB8dÞ

APPENDIX C: EXAMPLE OF DECAY
RATE DERIVATION

To demonstrate the relation between the decay rate and
the imaginary part of the self-energy, we give here an
explicit derivation for the decay rate of a spin-1=2 nucleon
resonance to a nucleon and a pion, N0 → Nπ. (A specific
example of such a decay could be the Roper Nð1440Þ
resonance.) The invariant amplitude for this decay process
is given by

iM ¼ ūðpN; sNÞ
gA
2fπ

γ5=pπτuðpN0 ; sN0 Þ; ðC1Þ

where uðpN0 ; sN0 Þ and uðpN; sNÞ are the spinors of the
initial resonance and the nucleon, respectively, pπ ¼ pN0 −
pN is the pion momentum, and τ represents the isospin
matrices. Computing the spin average of the amplitude
squared jMj2, we get

hjMj2i ¼ g2A
4f2π

M2
NN0 ðΔ2

N0N −m2
πÞ; ðC2Þ

where the mass difference between the resonance N0 and
the nucleon N is larger than the pion mass, ΔN0N ¼
M0 −M > mπ , which ensures that hjMj2i > 0. Since the
decay rate is given by the phase space integration,

Γ ¼ 1

2M0
1

ð2πÞ2
Z

d3pN
1

EN

Z
d3pπ

1

2Eπ

× δ4ðpN0 − pN − pπÞhjMj2i

¼ 1

16πM03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM02 þM2 −m2

πÞ2 − 4M02M2

q
hjMj2i;

ðC3Þ
using Eq. (C2) we arrive at

Γ¼ 3g2A
64πf2π

M2
NN0

M3
ðΔ2

N0N −m2
πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

NN0 −m2
πÞðΔ2

N0N −m2
πÞ

q
:

ðC4Þ
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To relate the decay rate with the imaginary part of the
self-energy, we consider the self-energy of the octet →
octet transition given by Eq. (33), since the stateN0 has spin
1=2. Here we note that the imaginary contribution to the
self-energy arises from the 1=ðDϕDB0D4

ΛÞ type term.
Specifically, the k− and k⊥ integration of 1=ðDϕDB0D4

ΛÞ
produces the logarithmic term,

Z
1

0

dy logð−D̃Þ; ðC5Þ

where D̃ ¼ yȳM2
B − yM2

B0 − ȳm2
ϕ. It should be noted that

terms in the self-energies proportional to just 1=ðDϕD4
ΛÞ or

1=ðDB0D4
ΛÞ cannot give imaginary contributions because

the k− and k⊥ integration produce no such negative
logarithm term. This feature of each term with respect to
the imaginary contribution is independent of the regulari-
zation method used for the loop calculation, and depends
only on whether the mass difference ΔBB0 between the
initial and intermediate baryons is larger or smaller than the
mass of the intermediate meson mϕ. To see the character-
istic of each term in Eq. (33) more transparently, we take
the pointlike limit Λ → ∞ of Eq. (33) with MB ¼ M0,
MB0 ¼ M and mϕ ¼ mπ , and obtain

Σ ¼ −i
3g2A

8f2πM0

Z
d4pπ

ð2πÞ4
�
M2

NN0 ðΔ2
N0N −m2

πÞ
DNDπ

þM2
NN0

DN
þMNN0ΔN0N

Dπ

�
; ðC6Þ

where the p · k=Dπ term is odd under k ↔ −k and vanishes
after integration. (Note also the sign flip −ΔB0B ¼ ΔBB0 ¼
ΔN0N for the last term with respect to the corresponding last
term in Eq. (33) due to the notation correspondence.) As the
numerators in Eq. (C6) are now constants, for convenience
we can use dimensional regularization to compute each of
the terms individually. It is easy to verify that neither the
1=DN term nor the 1=Dπ term can yield an imaginary part
of Σ, while the 1=ðDNDπÞ term provides the characteristic
nonvanishing ℑmΣ when ΔN0N > mπ . In fact, from the
dimensional regularization with D ¼ 4 − 2ϵ dimensions,
we can write

Z
d4pπ

ð2πÞ4
1

Dπ
¼ μ4−D

Z
dDpπ

ð2πÞD
1

Dπ

¼ im2
π

16π2

�
1

ϵ
þ 1 − γ − log

m2
π

μ2
þOðϵÞ

�
; ðC7Þ

where the factor μ4−D is introduced to keep the dimension
of the integral the same as in four dimensions. Similarly,
shifting the integration variable from pπ to pN ¼ pN0 − pπ ,
we have

Z
d4pπ

ð2πÞ4
1

DN
¼ μ4−D

Z
dDpN

ð2πÞD
1

DN

¼ iM2

16π2

�
1

ϵ
þ 1 − γ − log

M2

μ2
þOðϵÞ

�
; ðC8Þ

while the 1=ðDNDπÞ term providesZ
d4pπ

ð2πÞ4
1

DNDπ
¼ μ4−D

Z
dDpπ

ð2πÞD
1

DNDπ

¼ i
16π2

�
1

ϵ
− γ − log π

−
Z

1

0

dy log

�
−Dcov

μ2

�
þOðϵÞ

�
; ðC9Þ

where Dcov ¼ yȳM02 − yM2 − ȳm2
π corresponds to D̃ in

Eq. (C5) with the replacements MB → M0, MB0 → M and
mϕ → mπ. This confirms that neither the 1=DN term nor
the 1=Dπ term can yield an imaginary part of Σ, with
the imaginary part coming from the 1=ðDNDπÞ term for the
region of y integration in Eq. (C9) where Dcov > 0. The
condition for Dcov > 0 is given by ymin < y < ymax, where

ymin ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

NN0 −m2
πÞðΔ2

N0N −m2
πÞ

q
þM02 −M2 þm2

π

2M02

ðC10Þ

and

ymax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

NN0 −m2
πÞðΔ2

N0N −m2
πÞ

q
þM02 −M2 þm2

π

2M02 :

ðC11Þ

The imaginary part of Σ therefore arises from the region of
the y integration for the logð−1Þ ¼ iπ term in Eq. (C9),

Z
ymax

ymin

dy logð−1Þ ¼ iπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

NN0 −m2
πÞðΔ2

N0N −m2
πÞ

q
M02 :

ðC12Þ

This contribution amounts to

ℑmΣ ¼ 3g2A
128f2ϕ

M2
NN0

M03 ðm2
π − Δ2

N0NÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

NN0 −m2
πÞðΔ2

N0N −m2
πÞ

q
: ðC13Þ

Comparing this result with the decay rate given by Eq. (C4)
confirms the relation

Γ ¼ −2ℑmΣ: ðC14Þ
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