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We investigate the electromagnetic form factor Fðq2Þ of the meson by using the solvable ϕ3 scalar field
model in (1þ 1) dimensions. As the transverse rotations are absent in (1þ 1) dimensions, the advantage of
the light-front dynamics (LFD) with the light-front time xþ ¼ x0 þ x3 as the evolution parameter is
maximized in contrast to the usual instant form dynamics (IFD) with the ordinary time x0 as the evolution
parameter. In LFD, the individual xþ-ordered amplitudes contributing to Fðq2Þ are invariant under the
boost, i.e., frame independent, while the individual x0-ordered amplitudes in IFD are not invariant under the
boost but dependent on the reference frame. The LFD allows us to get the analytic result for the one-loop
triangle diagram which covers not only the spacelike (q2 < 0) but also timelike (q2 > 0) region. Using the
analytic results, we verify that the real and imaginary parts of the form factor satisfy the dispersion relations
in the entire q2 space. Comparing with the results in (3þ 1) dimensions, we discuss the transverse
momentum effects on Fðq2Þ. We also discuss the longitudinal charge density in terms of the boost-invariant
variable z̃ ¼ pþx− in LFD.
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I. INTRODUCTION

The formulation of light-front dynamics (LFD) based on
the equal light-front time xþ ¼ x0 þ x3 quantization has
shown remarkable advantages for calculations in elemen-
tary particle physics, nuclear physics, and hadron physics.
In particular, the light-front (LF) formulation is an essential
theoretical tool for the three-dimensional imaging and
femtography efforts in the 12 GeV upgraded Thomas
Jefferson National Accelerator Facility (JLab) and in the
future Electron-Ion Collider project, with the investigation
of the form factors, the generalized parton distributions
(GPDs), the transverse momentum distributions of hadrons,
etc. Taking advantage of the LFD, one of the new experi-
ments planned at JLab is to measure the transverse charge
densities of hadrons [1], which are defined by the two-
dimensional Fourier transforms of the electromagnetic
(EM) form factors describing the distribution of charge

andmagnetization in the plane perpendicular to the direction
of a fast-moving hadron [2]. Because of the Lorentz
invariance of the transverse distance and momentum under
the longitudinal boost, the relativistically invariant analysis
of the transverse charge density can be straightforwardly
attained in the (3þ 1)-dimensional LFD. The transverse
charge densities are also related to the GPDs [3–5], and their
properties have been explored in a number of works [6–14].
In particular, it was demonstrated that the transverse charge
density defined by the two-dimensional Fourier transform
can be obtained from the so-called Drell-Yan-West (DYW)
frame (qþ ¼ 0 andq2 ¼ −q2⊥ ¼ −Q2 < 0) inLFDusing the
scalar ϕ3 model in (3þ 1) dimensions [7]. Although its
utility is limited only to the spacelike region (q2 < 0) due to
the intrinsic kinematic constraint qþ ¼ 0, the DYW formu-
lation [15–19] may be regarded as the most rigorous and
well-established framework to compute the exclusive proc-
esses since it involves typically the particle number con-
serving valence contribution. Various studies of two-body
bound states in the (3þ 1)-dimensional LFD can also be
found in the framework of scalar [20–28] and fermion field
[28–31] models.
On the other hand, the LFD analysis of the longitudinal

charge density is not as straightforward as in the analysis of
the transverse charge density due to the nontrivial space-
time mixture of the LF spatial distance x− ¼ x0 − x3 as well
as its conjugate momentum pþ ¼ p0 þ p3. It is noteworthy

*homyoung@knu.ac.kr
†crji@ncsu.edu
‡yohphy@knu.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 076002 (2021)

2470-0010=2021=103(7)=076002(16) 076002-1 Published by the American Physical Society

https://orcid.org/0000-0003-1604-7279
https://orcid.org/0000-0002-3024-5186
https://orcid.org/0000-0001-9822-8975
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.076002&domain=pdf&date_stamp=2021-04-01
https://doi.org/10.1103/PhysRevD.103.076002
https://doi.org/10.1103/PhysRevD.103.076002
https://doi.org/10.1103/PhysRevD.103.076002
https://doi.org/10.1103/PhysRevD.103.076002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


that the new variable z̃ ¼ pþx− was recently introduced
[32] for the boost-invariant analysis in the longitudinal
direction. Although the same level of significant progresses
as in the case of the transverse charge density is yet to be
expected in the analysis of the longitudinal charge density,
it may be worthwhile to facilitate the scalar ϕ3 model in the
(1þ 1)-dimensional LFD extending the previous LFD
analyses in (1þ 1) dimensions [33–35] restricted only
for the spacelike momentum transfer region now to the
entire kinematic regions including the timelike momentum
transfers as well. We note that the advantage of LFD is
indeed maximized in (1þ 1) dimensions due to the absence
of the transverse rotations which are not kinematical but
dynamical in LFD. As evidenced in solving the (1þ 1)-
dimensional QCD with largeNc limit [36], the solution was
provided even analytically in LFD first [36,37] well before
its canonical formulation [38] was presented in the instant
form dynamics (IFD) based on the equal-time x0 quantiza-
tion and later numerically solved in IFD [39–41]. While in
IFD the individual x0-ordered amplitudes contributing to
the form factor FðQ2Þ are not invariant under the boost, i.e.,
dependent on the reference frame, the advantage of the
LFD with the LF time xþ as the evolution parameter is
maximized due to the frame independence or the boost
invariance of the individual xþ-ordered amplitudes con-
tributing to FðQ2Þ.
The dramatic difference of LFD analysis of form factors

in (1þ 1) dimensions compared to the case of (3þ 1)
dimensions may also be attributed to the fact that the DYW
frame cannot be taken as it is restricted to q2 ¼ 0 in (1þ 1)
dimensions. As the qþ ≠ 0 frame must be used in (1þ 1)
dimensions for Q2 ≠ 0, it is inevitable to encounter the
nonvalence diagram arising from the particle-antiparticle
pair creation (the so-called Z graph). That is, both valence
and nonvalence contributions should be included simulta-
neously for the form factor analysis in (1þ 1) dimensions.
As mentioned earlier, the LFD analyses of the scalar ϕ3

model in (1þ 1) dimensions were reported in Refs. [33–
35] which were though restricted only for the spacelike
momentum transfer region. Once the qþ ≠ 0 frame is
chosen, however, one does not need to restrict the analysis
only for the spacelike region.
We may also compare the (1þ 1)-dimensional results

with the previous (3þ 1)-dimensional results [42] within
the same solvable scalar ϕ3 model since it was shown
numerically that the (3þ 1)-dimensional results analyti-
cally continued from the spacelike ðq2 < 0Þ region
coincide exactly with the results directly obtained in the
timelike ðq2 > 0Þ region. Stemming from the detailed
analysis of the solvable and manifestly covariant model
within the framework of the (3þ 1)-dimensional LF
calculations, we have also developed a new method to
explore the timelike region directly in the qþ ≠ 0 frame for
the transition form factor FMγðq2Þ in the meson-photon
transition process,MðpÞ → γ�ðqÞ þ γðp0Þ [43]. Our direct

calculation in the timelike region showed the complete
agreement not only with the analytic continuation result
from the spacelike region but also with the result from the
dispersion relation (DR) between the real and imaginary
parts of the form factor [43]. This direct method of
analyzing the timelike region appears to advance our
previous analysis of a solvable model in (3þ 1) dimensions
for the phenomenologically more realistic LF quark
model (LFQM).
In this work, we present the (1þ 1)-dimensional analysis

of the form factor in the solvable model both for the
spacelike region and the timelike region, obtaining the
analytic results both for the valence and nonvalence
contributions. Our model is essentially the (1þ 1)-dimen-
sional quantum field theory model of Sawicki and
Mankiewicz [33,34], which was reinvestigated by several
others. (See, for example, Refs. [18,19,35,44–47].) In this
model, the wave function is obtained as the solution of the
covariant Bethe-Salpeter (BS) equation in the ladder
approximation with a relativistic version of the contact
interactions [18,19]. The covariant model wave function is
a product of two free single-particle propagators, the Dirac
delta function for the overall momentum conservation, and
a constant vertex function. Consequently, all our form
factor calculations show various ways of evaluating the
Feynman triangle diagrams in scalar field theory. Previous
results reported in Ref. [35] in the spacelike region were
confirmed, but now the results are extended to the timelike
region. In particular, the anomalous threshold is observed
in the timelike region as in the case of (3þ 1)-dimensional
analysis. Apparent satisfaction of DR is explicitly shown
analytically. Longitudinal charge density is clearly identi-
fied with respect to “intrinsic” versus “apparent” charge
densities. We also discuss the LF longitudinal charge
density in terms of the newly introduced boost-invariant
variable z̃ of Ref. [32].
This paper is organized as follows. In Sec. II, we derive

the analytic forms for both spacelike and timelike EM form
factors using the scalar ϕ3 model in (1þ 1) dimensions.
We obtain the explicit form of the imaginary part of the
form factor in the timelike region so that the DR relation
between the real and imaginary parts of the form factor can
be tested. In Sec. III, we discuss the difference between the
intrinsic longitudinal charge density obtained from the
Fourier transform of the form factor and the apparent
charge density including the relativistic corrections such
as the Lorentz contraction in the so-called Breit frame.
The explicit form of mean-square charge radius in the
longitudinal direction is also derived from the slope of
the charge form factor. We then discuss the LF longitudinal
charge density in terms of the boost-invariant variable z̃.
Section IV presents our numerical results for the intrinsic
longitudinal charge densities for scalar ðπ; K;DÞ mesons
and their EM form factors in both spacelike and time-
like regions comparing them with the previous (3þ 1)
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dimensional results of Ref. [42]. We summarize and
conclude in Sec. V. The explicit analytic forms of the
valence and nonvalence contributions to the form factor are
presented in the Appendix.

II. FORM FACTOR FOR SCALAR ϕ3 MODEL
IN (1 + 1) DIMENSIONS

A. Form factor in spacelike region

The EM form factor FS
Mðq2Þ of a scalar particle M, a

bosonic qQ̄ bound state, for the process of MðpÞ þ
γ�ðqÞ → Mðp0Þ in spacelike momentum transfer (q2 < 0)
region is defined by the local current JμSð0Þ through

JμSð0Þ ¼ ðpþ p0ÞμFS
Mðq2Þ; ð1Þ

where p ðp0Þ is the 4-momentum of the initial (final) state
scalar particle M and q ¼ p0 − p is the 4-momentum
transfer of the virtual photon (Q2 ≡ −q2 > 0). The EM
local current JμSð0Þ in (1þ 1) dimensions obtained from
the covariant diagram of Fig. 1(a) is represented by
JμSð0Þ ¼ eqIμðmq;mQ̄Þ þ eQ̄I

μðmQ̄;mqÞ, where

Iμðmq;mQ̄Þ ¼ ig2
Z

d2k
ð2πÞ2

2kμ þ qμ

NkNkþqN̄k−p
; ð2Þ

with Nk ¼ k2 −m2
q þ iε and N̄k ¼ k2 −m2

Q̄ þ iε coming
from the bosonic quark and antiquark propagators of mass
mq andmQ̄, respectively,which carry the internalmomentum
k. The normalization constant g is fixed by the condition
that FS

Mðq2 ¼ 0Þ ¼ eq þ eQ̄. Exchanging mq and mQ̄ in
Iμðmq;mQ̄Þ gives IμðmQ̄;mqÞ.
In LF calculations, we use the metric convention that

k · q ¼ 1
2
ðkþq− þ k−qþÞ. Using this metric and choosing

the plus component of the currents, JþS , the Cauchy
integration over k− in Eq. (2) gives the two time-ordered
contributions to the residue calculations, i.e., one coming
from the region S1 ð0 < kþ < pþÞ [Fig. 1(b)] and the other
from the region S2 ð−qþ < kþ < 0Þ [Fig. 1(c)]. In the
region of S1 (S2), the residue is at the pole of k− ¼ k−b
(k− ¼ k−r ), which is placed in the upper (lower) half of

complex k− plane. Therefore, the Cauchy integration of
Iþðmq;mQ̄Þ in Eq. (2) over k− in S1 and S2 leads to

IþS1 ¼ −
g2

4π

Z
pþ

0

dkþ
2kþ þ qþ

Ckðk−b − k−l Þðk−b − k−r Þ
;

IþS2 ¼
g2

4π

Z
0

−qþ
dkþ

2kþ þ qþ

Ckðk−r − k−l Þðk−r − k−b Þ
; ð3Þ

where Ck ¼ kþðkþ þ qþÞðkþ − pþÞ and

k−l ¼ m2
q

kþ
− i

ε

kþ
;

k−b ¼ p− þ
m2

Q̄

kþ − pþ − i
ε

kþ − pþ ;

k−r ¼ −q− þ m2
q

kþ þ qþ
− i

ε

kþ þ qþ
: ð4Þ

We note that Eq. (3) is obtained from the condition that
qþ > 0, which means that the virtual photon is moving to
the positive z direction.
In the spacelike region (q2 ¼ qþq− ¼ −Q2 < 0) of

(1þ 1) dimensions, the momentum transfer Q2 is defined
as

Q2 ¼ M2β̄2=β; ð5Þ

where β ¼ p0þ=pþ ¼ 1þ qþ=pþ, β̄ ¼ β − 1, and M2 ¼
p2 ¼ p02. This allows β to have two different solutions,

β� ¼
�
1þ Q2

2M2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ Q2

2M2

�
2

− 1

s
; ð6Þ

which leads to β� ¼ 1 (or β̄� ¼ 0) whenQ2 ¼ 0. Using the
longitudinal momentum fraction kþ ¼ xpþ for the struck
quark and β for an external momentum transfer, we obtain

(a) (b) (c)

FIG. 1. One-loop Feynman diagrams that contribute toMðpÞ þ γ�ðqÞ → Mðp0Þ. The covariant diagram (a) is the same as the sum of
the two LF time-ordered diagrams (b) and (c).
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IþS1 ¼
pþg2

4π

Z
1

0

½dx�
ð1 − x0Þ

ð2xþ β̄Þ
ðM2 −M2

0ÞðM2 −M02
0 Þ

;

IþS2 ¼
pþg2

4π

Z
1

0

½dy�
ð1þ β̄yÞ

ð2y − 1Þββ̄�
Q2 þ m2

q

yð1−yÞ
�
ðM2 −M2

β̄y0 Þ
; ð7Þ

where ½dZ� ¼ dZ
Zð1−ZÞ and M2

0 ¼
m2

Q̄

1−x þ
m2

q

x , M
02
0 ¼ m2

Q̄

x0 þ
m2

q

1−x0,

and M2
β̄y0 ¼

m2
Q̄

1−β̄y0 þ
m2

q

β̄y0 with x0 ¼ ð1 − xÞ=β and y0 ¼
ð1 − yÞ=β. The change of variable, x ¼ −β̄y, is made to
derive IþS2 as given in Eq. (7). While each contribution, IþS1
and IþS2, is independent of the choice on β, we take β ¼ βþ
in Eq. (7) since they are obtained using the constraint
qþ > 0. Although we do not explicitly show the results
with qþ < 0, where the virtual photon is moving to the
negative z direction, we confirmed that IþS1 and IþS2 are
indeed independent of the choice of β, so that β ¼ βþ and
β ¼ β− lead to the same results.
We then further evaluate the integration over the vari-

ables ðx; yÞ in Eq. (7) and combine both contributions as
IS ¼ ðIþS1 þ IþS2Þ=ðpþ p0Þþ, to obtain the fully analytic
form of FS

MðQ2Þ in (1þ 1) dimensions as

FS
MðQ2Þ ¼ eqI

q
SðQ2Þ þ eQ̄I

Q
S ðQ2Þ; ð8Þ

with

IqSðQ2Þ ¼ g2

8πm2
qm2

Q̄ð1 − ω2 þ γQÞ

×

�
Cω þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γQ

p
ffiffiffiffiffi
γQ

p tanh−1
� ffiffiffiffiffi

γQ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γQ

p ��
; ð9Þ

where

Cω ¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
	
tan−1

�
ωqffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
þ tan−1

�
ωQffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�


;

ð10Þ

and ωq ¼ M2þm2
q−m2

Q

2mqmQ̄
, ωQ ¼ M2−m2

qþm2
Q

2mqmQ̄
, and ω ¼ M2−m2

q−m2
Q

2mqmQ̄

are kinematic factors. We note that the momentum transfer
Q2 in Eq. (9) comes in only through the factor γQ ¼
Q2=4m2

q. The second part IQS ðQ2Þ of Eq. (8) can be
obtained from Eq. (9) by replacing γQ with Q2=4m2

Q̄.
It should be noted that our LF result in Eq. (8) is identical
to the one obtained from the manifestly covariant calcu-
lations. The analytic forms of the valence and nonvalence
contributions, i.e., IqS1ðQ2Þ and IqS2ðQ2Þ, are given in
Appendix. As one can see from Eqs. (A1) and (A2), the
second term containing the tanh−1 function in Eq. (9)
comes from the nonvalence contribution. From the form
factor normalization FS

MðQ2 ¼ 0Þ ¼ eq þ eQ̄, which

means IqSðQ2 ¼ 0Þ ¼ IQS ðQ2 ¼ 0Þ ¼ 1, we can obtain the
normalization constant g as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πm2

qm2
Q̄ð1 − ω2Þ

Cω þ 1

s
: ð11Þ

In the limit of very high Q2, the leading contribution in

Eq. (9) comes from the tanh−1ð
ffiffiffiffiffiffiffiffi
γQ

1þγQ

q
Þ=γQ term in the

nonvalence diagram. Using the fact that tanh−1ð ffiffiffiffiffiffix
1þx

p Þ →
ln x as x → ∞, the leading asymptotic behavior of the form
factor reads

lim
Q2→∞

FS
MðQ2Þ ∼ lnQ2

Q2
; ð12Þ

which shows the power-law falloff modified by the
presence of a logarithmic function as was obtained in
Ref. [35]. In Ref. [7], the leading asymptotic behavior
of the form factor using the same ϕ3 model in (3þ 1)
dimensions was obtained as FS

MðQ2 → ∞Þ ∼ ln2 Q2=Q2,
which has one more logarithmic power than the result in
(1þ 1) dimensions, and this power difference appears due
to the effect of the transverse momentum. Apart from the
presence of a logarithmic function (approximately lnQ2),
both asymptotic results in (1þ 1) and (3þ 1) dimensions
satisfy the quark counting rules (approximately 1=Q2) for
the momentum transfer dependence of the quark and
antiquark bound state form factors. While one may avoid
the nonvalence contribution using the qþ ¼ 0 frame in the
(3þ 1) dimensions, the nonvalence contribution cannot be
avoided in the (1þ 1) dimensions since qþ ≠ 0 forQ2 ≠ 0.
It turns out that the nonvalence contribution dominates in
the large Q2 region due to its substantial lnQ2 behavior.
This appears the characteristic of the form factor in the
(1þ 1)-dimensional scalar field model that we discuss in
the present work.
Shown in Fig. 2 is the EM form factor for a “scalar

pion” in the spacelike region of 0 ≤ Q2 ≤ 2 GeV2. In
this model calculation, we use M ¼ 0.14 GeV and
mq ¼ mQ̄ ¼ 0.25 GeV. The dotted, dashed, and solid lines
represent the valence contribution IþS1, nonvalence contri-
bution IþS2, and the total result of the form factor, respec-
tively. We find that, while the valence contribution
dominates for smallQ2 region, the nonvalence contribution
takes over the valence one for Q2 ≥ 0.1 GeV2 and most of
the contribution to the form factor for high Q2 comes from
the nonvalence diagram, indicating significant contribu-
tions from the higher-Fock components.

B. Form factor in the timelike region

The process of MðpÞ þ γ�ðqÞ → Mðp0Þ in spacelike
momentum transfer (q2 < 0) region can be made to the

CHOI, CHOI, JI, and OH PHYS. REV. D 103, 076002 (2021)

076002-4



timelike ðq2>0Þ process such as γ�ðqÞ→ M̄ðpÞþMðp0Þ,
i.e., the reaction for a virtual photon decaying into a qQ̄
bound state scalar particle M and its antiparticle M̄ from
the principle of crossing symmetry. Therefore, the timelike
EM form factor FT

Mðq2Þ for γ�ðqÞ → M̄ðpÞ þMðp0Þ is
defined by the local current JμTð0Þ as

JμTð0Þ ¼ ðp − p0ÞμFT
Mðq2Þ; ð13Þ

where q ¼ pþ p0 is the 4-momentum transfer of the
virtual photon satisfying q2 ¼ qþq− > 0. The covariant
diagram describing the γ�ðqÞ → M̄ðpÞ þMðp0Þ process
is shown in Fig. 3(a), and the local current is obtained by
JμTð0Þ ¼ eqIμðmq;mQ̄Þ þ eQ̄I

μðmQ̄;mqÞ as in the case
of the MðpÞ þ γ�ðqÞ → Mðp0Þ process. Essentially,
Iμðmq;mQ̄Þ in this timelike process has the same form
given by Eq. (2) but with the overall sign changed.
In LF calculations, using the plus component of the

currents JþT , the Cauchy integration over k
− in Eq. (2) gives

two time-ordered contributions to the residue calculations:
one coming from the region T1 ð0 < kþ < pþÞ [Fig. 3(b)]
and the other coming from the region T2 ðpþ < kþ < qþÞ
[Fig. 3(c)]. In the region of T1 (T2), the residue is at the
pole of k− ¼ k−l (k− ¼ k0−r ), where k0−r is the same as k−r but
with replacing q by −q. The poles k−l and k0−r are in the
lower half and upper half of the complex-k− plane,
respectively. This allows one to obtain the Cauchy inte-
gration of Iþðmq;mQ̄Þ in Eq. (2) over k− in the regions T1
and T2 as

IþT1 ¼
g2

4π

Z
pþ

0

dkþ
2kþ − qþ

C0
kðk−l − k−b Þðk−l − k0−r Þ

;

IþT2 ¼ −
g2

4π

Z
qþ

pþ
dkþ

2kþ − qþ

C0
kðk0−r − k−l Þðk0−r − k−b Þ

; ð14Þ

where C0
k ¼ Ckðq → −qÞ.

In the timelike region of (1þ 1) dimensions, the
momentum transfer q2 is defined by

q2 ¼ M2ð1þ αÞ2=α; ð15Þ
where α ¼ p0þ=pþ ¼ qþ=pþ − 1 and the two solutions for
α are given by

α� ¼
�

q2

2M2
− 1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q2

2M2
− 1

�
2

− 1

s
: ð16Þ

This shows that both α� ¼ 1 correspond to the threshold
q2 ¼ 4M2. However, the EM form factor FT

Mðq2Þ is
independent of the subscript sign of α as in the case
of FS

MðQ2Þ given by Eqs. (8) and (9), which can be
seen below.
With α and kþ ¼ xpþ, we rewrite Eq. (14) as

IþT1 ¼ −
pþg2

4π

Z
1

0

½dx�
1þ α − x

αð1þ α − 2xÞ=ð1þ αÞ
ðM2 −M2

0xÞ
h
M2 − αm2

q

xð1þα−xÞ
i ;

IþT2 ¼
pþg2

4π

Z
1

0

½dx0�
1þ αx0

αð2αx0 − αþ 1Þ=ð1þ αÞ
ðM2 −M02

0xÞ
h
M2 − m2

q

ð1−x0Þð1þαx0Þ
i ;
ð17Þ

0 0.5 1 1.5 2

Q
2 

[GeV
2
]

0

0.2

0.4

0.6

0.8

1
F

π(Q
2 )

Contribution from I
+

S1

Contribution from I
+

S2

Total

FIG. 2. Scalar pion form factor (solid line) and its valence
(dotted line) and nonvalence (dashed line) contributions for 0 ≤
Q2 ≤ 2 GeV2 region.

(b) (c)(a)

FIG. 3. One-loop Feynman diagrams that contribute to γ�ðqÞ → M̄ðpÞ þMðp0Þ. The covariant diagram (a) is the same as the sum of
the two LF time-ordered diagrams (b) and (c).
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where M2
0x ¼ m2

q

x þ m2
Q̄

1−x and M02
0x ¼ M2

0xðmq ↔ mQ̄Þ. The
change of variable, x≡ αx0 þ 1, is made in the calculation
of IþT2.
Then, we further integrate over the variables ðx; x0Þ to

combine both contributions, IT ¼ ðIþT1 þ IþT2Þ=ðp − p0Þþ,
which leads to the fully analytic form of FT

Mðq2Þ in (1þ 1)
dimensions as

FT
Mðq2Þ ¼ eqI

q
Tðq2Þ þ eQ̄I

Q
T ðq2Þ; ð18Þ

where

IqTðq2Þ ¼
g2

8πm2
qm2

Q̄ð1 − ω2 − γqÞ

×

8<
:Cω þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γq
γq

s
tan−1

0
B@ 1ffiffiffiffiffiffiffi

1−γq
γq

q
1
CA
9=
;; ð19Þ

with γq ¼ q2=4m2
q. The second part I

Q
T ðq2Þ of Eq. (18) can

be obtained from Eq. (19) by replacing γq with q2=4m2
Q̄. It

can be easily seen that Eqs. (19) and (9) are essentially the
same through the analytic continuation from the spacelike
Q2 region to the timelike q2ð¼ −Q2Þ region. This shows
that the timelike EM form factor can be analytically
continued to the spacelike region by changing q2 → −q2
in the form factor and vice versa.
It should be noted that the threshold points of the

timelike form factor depend on the bound state condition.
That is, the denominator factor ð1 − ω2 − γqÞ in Eq. (19) is
always nonzero for a strong bound state satisfying both
M < mq þmQ̄ and M2 < m2

q þm2
Q̄. In this strong bound

state case, the imaginary part of IqðQÞ
T ðq2Þ starts to develop

at q2 ≥ 4m2
qðQ̄Þ. In other words, the thresholds for the strong

bound state are given by the “normal” threshold points, i.e.,
q2min ¼ 4m2

q and 4m2
Q̄ for γ�qq̄ and γ�QQ̄ vertices, respec-

tively. Furthermore, one can easily extract the analytic form
for the imaginary part of the timelike form factor from
Eq. (19) as

Im½IqTðq2Þ� ¼ −
g2θðγq − 1Þ

16m2
qm2

Q̄ð1 − ω2 − γqÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
γq − 1

γq

s
; ð20Þ

where θðγq − 1Þ is the Heaviside step function, i.e., θðγq −
1Þ ¼ 1 for γq > 1 and vanishes otherwise.
On the other hand, for the weakly bound state satisfying

M < mq þmQ̄ but M2 > m2
q þm2

Q̄, the singular q
2 point,

satisfying 1 − ω2 − γq ¼ 0, exists. Because of this, the
singularity for the weakly bound state starts at the “anoma-
lous” threshold points,

q2min ¼
1

m2
Q̄ðqÞ

½m2
qðQ̄Þ − ðM −mQ̄ðqÞÞ2�

× ½ðM þmQ̄ðqÞÞ2 −m2
qðQ̄Þ�; ð21Þ

for γ�qq̄ðγ�QQ̄Þ vertex prior to the normal thresholds. Our
result for the anomalous thresholds given by Eq. (21) is
exactly the same as the one in Ref. [48] for the analysis of
the one-particle matrix elements of a scalar current.
Especially, in this weakly bound state in (1þ 1) dimen-
sions, the real part of the timelike form factor diverges at
the anomalous threshold.
As a consistency check, we compare our direct result for

the form factor with the DRs given by

Re½Fðq2Þ� ¼ 1

π
P
Z

∞

−∞
dq02

Im½Fðq02Þ�
q02 − q2

;

Im½Fðq2Þ� ¼ −
1

π
P
Z

∞

−∞
dq02

Re½Fðq02Þ�
q02 − q2

; ð22Þ

where P stands for the Cauchy principal value. For the
strong bound state case, we confirm that the real part of the
form factor obtained from the direct calculation in Eq. (19)
is exactly the same as the one obtained from DR using the
analytic form of the imaginary part given by Eq. (20).
However, for the weakly bound state case, we note the
importance of taking into account the infinitesimal dimen-
sionless width Γ as ð1 − ω2 − γqÞ → ð1 − ω2 − γq − iΓÞ in
Eq. (19) for the timelike form factor in order to remedy the
singularity at the anomalous threshold point. With this care,
we explicitly obtain both the real and imaginary parts of the
timelike form factor for the weakly bound state as

Re½IqT� ¼
g2

8πm2
qm2

Q̄ðð1 − ω2 − γqÞ2 þ Γ2Þ

×

(
ð1 − ω2 − γqÞC̃q

ω −
π

2
Γ

ffiffiffiffiffiffiffiffiffiffiffiffi
γq − 1

γq

s
θðγq − 1Þ

)
;

Im½IqT� ¼
g2

8πm2
qm2

Q̄ðð1 − ω2 − γqÞ2 þ Γ2Þ

×

(
ΓC̃q

ω − ð1 − ω2 − γqÞ
π

2

ffiffiffiffiffiffiffiffiffiffiffiffi
γq − 1

γq

s
θðγq − 1Þ

)
;

ð23Þ
where

C̃q
ω ¼ Cω þ Re

2
64

ffiffiffiffiffiffiffiffiffiffiffiffi
γq − 1

γq

s
tanh−1

0
B@ 1ffiffiffiffiffiffiffi

γq−1
γq

q
1
CA
3
75: ð24Þ

For an explicit demonstration, we show in Fig. 4 the
timelike form factor for the weakly bound state pion
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obtained with M ¼ 0.14 GeV and mq ¼ mQ̄ ¼ 0.08 GeV
together with an infinitesimal dimensionless width
Γ ¼ 10−4. In this case, the normal threshold (q2 ¼ 4m2

q)
appears at q2 ¼ 0.0256 GeV2, while the anomalous thresh-
old defined in Eq. (21) appears at q2 ≃ 0.0184 GeV2. The
solid and dashed lines are the results for the real and
imaginary parts of the form factor obtained from Eq. (23).
The circle and square data represent the results for the real
and imaginary parts of the form factor obtained from the
DRs given by Eq. (22). This confirms that our direct results
presented in Eq. (23) are in complete agreement with
the DRs.

III. LONGITUDINAL CHARGE DENSITY AND
CHARGE RADIUS

The intrinsic size of the hadron is defined through the
slope of the form factor; i.e., the mean-square charge radius
in three-dimensional space is given by hr2i ¼ −6dFðQ2Þ=
dQ2jQ2¼0 ≡ −6F0ð0Þ. The size of the hadron may also be
computed from the intrinsic charge density ρðrÞ in three-
dimensional space within a nonrelativistic theory, defined
by the Fourier transform of the form factor,

ρðrÞ ¼ 1

ð2πÞ3
Z

d3Qe−iQ·rFðQ2Þ: ð25Þ

At relativistic energies, this interpretation becomes
obscured because of its dependence on the reference frame
[3,7,8,49,50]. With this caveat, the mean-square charge

radius hr2i may be defined as the second moment of the
intrinsic charge density ρðrÞ, which gives hr2i ¼R
r2ρðrÞd3r.
However, since the intrinsic charge density is inherently

nonrelativistic and requires relativistic corrections, the trans-
verse charge density ρðbÞ was proposed in Refs. [4,5,7,8] as
the true charge density without the need for relativistic
corrections, which is obtained by the two-dimensional
Fourier transform

ρðbÞ ¼ 1

ð2πÞ2
Z

d2q⊥e−iq⊥·bFðQ2 ¼ q2⊥Þ; ð26Þ

where b is the two-dimensional transverse variable and
FðQ2 ¼ q2⊥Þ is obtained from the DYW frame (i.e., qþ ¼ 0

and q2 ¼ −q2⊥ ¼ −Q2). This transverse density is also the
integral of the three-dimensional infinite-momentum frame
(IMF) density ρðx−; bÞ over all values of the longitudinal
position coordinate [8]. The central charge density of the
hadron is determined by ρðb ¼ 0Þ because of the Lorentz
contraction of the longitudinal dimension in the IMF. The
mean-square transverse radius hb2i is then given in terms of
ρðbÞ as hb2i ¼ R d2bb2ρðbÞ ¼ −4F0ð0Þ.
While the frame dependence of the intrinsic charge

density in the longitudinal direction due to relativistic
corrections, such as the Lorentz contraction, has been
widely discussed in Refs. [3,7,8], the explicit estimation
of the relativistic effect is yet to be fully discussed. The
purpose of this section is to apply our results for the EM
form factor in (1þ 1) dimensions to obtain the longitudinal
charge density ρðrzÞ and to understand the difference
between the intrinsic charge density obtained from the
one-dimensional Fourier transform of the charge form
factor FðQ2Þ and the relativistic version of the true static
charge density obtained from the (1þ 1)-dimensional
Fourier transform of J0ðQ2Þ ¼ ðpþ p0Þ0FðQ2Þ in the
so-called Breit frame (BF) where no energy is transferred
to the hadron, i.e., q ¼ ðq0; qzÞ ¼ ð0; QÞ, p ¼ ðE; pzÞ, and
p0 ¼ ðE;−pzÞ. In LFD, the longitudinal charge density
is discussed in terms of the boost-invariant variable
z̃ ¼ pþx−.

A. Intrinsic longitudinal charge density

The intrinsic longitudinal charge density (ILD)
ρILDðrzÞ may be defined by the one-dimensional Fourier
transform of the spacelike form factor FS

MðQ2Þ≡ FðQ2Þ as

ρILDðrzÞ ¼
1

2π

Z
dQe−iQrzFðQ2Þ; ð27Þ

where Q corresponds to the longitudinal component (i.e.,
Q ¼ qz) of momentum transfer. The intrinsic longitudinal
density ρILDðrzÞ represents the probability that electric

0.01 0.015 0.02 0.025 0.03

q
2 

[GeV
2
]

-4

-2

0

2

4

6

F
π(q

2 )
Re[F]
Im[F]
Re[F] from DR
Im[F] from DR

(M=140 MeV, m
q
=m

Q
=80 MeV)

Weakly bound state pion

FIG. 4. Timelike form factor for the weakly bound state pion
obtained with M ¼ 0.14 GeV and mq ¼ mQ̄ ¼ 0.08 GeV. The
direct results of real (solid line) and imaginary (dashed line) parts
of the form factor are compared with the real (circle) and
imaginary (square) parts obtained from the dispersion relations.
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charge is located at a longitudinal distance rz from the
longitudinal center of momentum with the normalization
condition

R
drzρILDðrzÞ ¼ Fð0Þ.

Using the inverse Fourier transform and the normaliza-
tion of ρILDðrzÞ, we obtain

FðQ2Þ ¼
Z

drzeiQrzρILDðrzÞ

¼ 1 −
1

2
Q2hr2ziILD þ � � � ; ð28Þ

where hr2ziILD ¼ R drzr2zρILDðrzÞ. From Eqs. (8) and (9),
we can explicitly obtain the analytic form of the mean-
square charge radius in the longitudinal direction rz, i.e.,
hr2ziILD ¼ −2∂F=∂Q2jQ2¼0, as

hr2ziILD ¼ 1

6

	
3

1 − ω2
−

1

1þ Cω


�
eq
m2

q
þ eQ̄
m2

Q̄

�
: ð29Þ

It is interesting to compare our result with that obtained
from the simple analysis of nonrelativistic quark model [51],
where the mean-square charge radius, hr2emi ¼ −6F0ð0Þ,
defined in three spatial dimensions is obtained as hr2emi ¼
ðeqm2

Q̄
þeQ̄m

2
qÞhδ2i

ðmqþmQ̄Þ2 with δ ¼ rq − rQ̄ being relative coordinate.

This result was derived from hr2emi ¼ hP2
i e

2
i ðri − RÞ2i, i.e.,

the deviation from the center-of-mass position R squared
weighted by the charge of the quark and antiquark constitu-
ents. While hr2iILD and hr2emi were derived from different
spacetime dimensions and different methods, both have the
common factor eqm2

Q̄ þ eQ̄m
2
q. From this common factor in

the charge radius, it is easy to find that the neutralmeson such
as K0ðds̄Þ has a negative square charge radius.1
Of particular interest, we also obtain hr2ziILD in terms of

binding energy B defined by M ¼ 2mq − B for equal
constituent mass case (mq ¼ mQ̄), which leads to

hr2ziILD ¼ 1

6m2
q

2
64 12

εð4 − εÞð2 − εÞ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð4 − εÞp ð2 − εÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εð4 − εÞp ð2 − εÞ þ 2ðε2 − 4εþ 2Þtan−1
h

2−εffiffiffiffiffiffiffiffiffiffi
εð4−εÞ

p
i
3
75; ð30Þ

where ε ¼ B=mq is the dimensionless parameter ranging
from zero binding (B ¼ 0) to maximal binding (i.e.,
B ¼ 2mq) limits. While hr2ziILD → ∞ in the zero binding
limit, it decreases monotonically to the minimum value
hr2ziILD → 1=ð5m2

qÞ as B → 2mq, which is consistent with
the observation made in Ref. [35]. As one can see, the
charge radius is getting smaller as the constituent mass mq

is getting larger.

B. Relativistic longitudinal charge density in BF

In (1þ 1) dimensions, the Fourier transform of the
current Jμ is given by

J̃μðt; rzÞ ¼
1

ð2πÞ2
Z

d2qJμðq2Þeiðq0t−q3rzÞ: ð31Þ

If we take the BF, where q0 ¼ 0 and q2 ¼ −ðq3Þ2 ¼ −Q2,
the momentum of incoming meson, p, and that of the
outgoing meson, p0 ¼ pþ q, are given by

ðp0; p3ÞBF ¼
1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þQ2

p
;−

ffiffiffiffiffiffi
Q2

p
Þ;

ðp00; p03ÞBF ¼
1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þQ2

p
;
ffiffiffiffiffiffi
Q2

p
Þ: ð32Þ

In the BF, only the time component of the currents Jμ in
Eq. (1) survives, and the space component is zero so that

J0BFðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þQ2

p
Fðq2Þ;

J3BFðq2Þ ¼ 0: ð33Þ
Then, the Fourier transform of the current J0 in the BF
results in

ρðrzÞ ¼
1

2π

Z
dQF ðQ2Þe−iQrz ; ð34Þ

where ρðrzÞ ¼
R
dtJ̃0ðt; rzÞ corresponds to the longitudinal

charge density and F ðQ2Þ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þQ2

p
FðQ2Þ. It should

be noted that the prefactor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þQ2

p
in F ðQ2Þ depends

on the reference frame while the form factor FðQ2Þ is
Lorentz invariant. Since Eq. (34) leads to the normaliza-
tion of ρðrzÞ as

R
drzρðrzÞ ¼ F ð0Þ ¼ 2M, we redefine

Eq. (34) as

ρBFðrzÞ ¼
1

2π

Z
dQFBFðQ2Þe−iQrz ; ð35Þ

where ρBFðzÞ ¼ ρðzÞ=2M and FBFðQ2Þ ¼ F ðQ2Þ=2M.
The above definition, Eq. (35), now satisfiesR
drzρBFðrzÞ ¼ 1 and FBFð0Þ ¼ 1.
Using the inverse Fourier transform and the normaliza-

tion of ρBFðrzÞ, we obtain

1A negative value for hr2emi happens when the lighter
negatively charged d quark is orbiting around the heavier
s̄ quark [51].
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FBFðQ2Þ ¼
Z

drzeiQrzρBFðrzÞ

¼ 1 −
1

2
Q2hr2ziBF þ � � � ; ð36Þ

where hr2ziBF ¼
R
drzr2zρBFðrzÞ. Comparing to hr2ziILD, we

find

hr2ziBF ¼ hr2ziILD −
1

4M2
: ð37Þ

We note that hr2ziBF is independent of time t and is smaller
than hr2ziILD due to the Lorentz contraction. For instance, if

the mass of the bound state is M ≃ 1 GeV, then hr2ziBF ¼
hr2ziILD − 0.01 fm2, and the relativistic correction is getting
larger (smaller) as M gets smaller (larger) as expected.
In Fig. 5, we compare the two longitudinal charge

densities, ρILDðrzÞ (solid line) and ρBFðrzÞ (dashed line),
for a strongly bound state πþ [Fig. 5(a)] and a weakly
bound state Dþ meson [Fig. 5(b)] in the range of
−1 ≤ rz ≤ 1 fm. These numerical results are estimated
with mu ¼ md ¼ 0.25 GeV and mc ¼ 1.8 GeV together
with the physical meson masses, i.e.,Mπþ ¼ 0.14 GeV and
MDþ ¼ 1.870 GeV. One can clearly see that ρBFðrzÞ are
more narrowly peaked near the longitudinal center of the
momentum than ρILDðrzÞ due to the Lorentz contraction,
which is more significant for πþ than for Dþ.
Other reference frames may be obtained by the Lorentz

transformation from the BF. For instance, the target rest
frame (TRF), where ðp0; p3ÞTRF ¼ ðM; 0Þ, can be obtained
from the BF by the following Lorentz transformation,

�
γ γβ

γβ γ

� 
pð0Þ0
BF

pð0Þ3
BF

!
¼
 
pð0Þ0
TRF

pð0Þ3
TRF

!
; ð38Þ

where the Lorentz factors are given by γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2þQ2

p
2M and

γβ ¼
ffiffiffiffiffi
Q2

p
2M , which leads to

ðp00; p03ÞTRF ¼
1

2M

�
2M2 þQ2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ð4M2 þQ2Þ

q �
: ð39Þ

In the TRF, both time and space components of the current
Jμ in Eq. (1) are nonvanishing, and explicitly they are
given by

J0TRFðq2Þ ¼
4M2 þQ2

2M
Fðq2Þ;

J3TRFðq2Þ ¼
ffiffiffiffiffiffi
Q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þQ2

p
2M

Fðq2Þ; ð40Þ

where q2 ¼ ðq0Þ2 − ðq3Þ2 ¼ −Q2. One should note, how-
ever, that the longitudinal charge density in TRF is not a
static quantity but depends on time because of the fact
that q0 ¼ γβQ ≠ 0.

C. Longitudinal charge density in LF coordinate space

Recently, a general procedure was introduced to obtain
frame-independent three-dimensional LF coordinate-space
wave functions [32]. In addition to the two-dimensional
transverse spatial variable b given by Eq. (26), the
longitudinal boost-invariant dimensionless spatial variable
z̃ ¼ pþx− was also introduced.
In the present (1þ 1)-dimensional model calculations,

the longitudinal charge density in LF coordinate space
evaluated at xþ ¼ 0, as a Fourier transform of the form
factor, can be defined by

-1 -0.5 0 0.5 1
r
z
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0

0.5

1

1.5

2

ρ π(r
z)

ρ
ILD

ρ
BF

(a)
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FIG. 5. Comparison of ρILDðrzÞ and ρBFðrzÞ for the strongly
bound state πþ in (a) and the weakly bound state Dþ
meson in (b).
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ρLFðx−Þ ¼
1

4π

Z
dqþFðq2Þei

2
qþx− ; ð41Þ

where ρLFðx−Þ satisfies
R
ρLFðx−Þdx− ¼ 1. Using qþ ¼

β̄pþ and Eq. (5), ρLF can be rewritten in terms of ðz̃; β̄Þ
modulo the pþ factor as

ρLFðz̃Þ ¼
1

4π

Z
dβ̄Fðβ̄Þei

2
β̄ z̃; ð42Þ

where 0 ≤ β̄þ ≤ ∞ for β̄ ¼ β̄þ and −1 ≤ β̄− ≤ 0 for
β̄ ¼ β̄−, respectively. Since β̄− has a closed range, which
takes advantage over β̄þ, we obtain ρLFðz̃Þ integrating over
β̄− in Eq. (42).
Figure 6 shows the longitudinal charge density ρLFðz̃Þ for

πþ in a wide range of −100 ≤ z̃ ≤ 100. This shows that
ρLFðz̃Þ has a very long and oscillating tail behavior of z̃,
which appears consistent with the result shown in Ref. [32]
for the case of two constituents of a Fock-space component.
From the inverse Fourier transform of Eq. (42),

Fðβ̄Þ ¼
Z

dz̃e−
i
2
β̄ z̃ρLFðz̃Þ

¼ 1 −
β̄2

8
hz̃2i þ � � � ; ð43Þ

one may obtain the mean-square charge radius in z̃ as
hz̃2i ¼ −8∂F=∂β̄2jβ̄2¼0, where hz̃2i ¼ R dz̃z̃2ρLFðz̃Þ.

IV. NUMERICAL RESULTS

In our numerical calculations, we analyze scalar π, K,
and D meson form factors. For these analyses, we use
the constituent quark and antiquark masses as mu ¼
md ¼ 0.25 GeV, ms ¼ 0.5 GeV, and mc ¼ 1.8 GeV as
in Ref. [42]. The used physical meson masses are
Mπ� ¼ 0.14 GeV, MK� ¼ 0.494 GeV, MK0 ¼ 0.497 GeV,
MD� ¼ 1.870 GeV, and MD0 ¼ 1.865 GeV, respectively.

It should be noted from our constituent masses that M2 <

m2
q þm2

Q̄ for π and K but M2 > m2
q þm2

Q̄ for D meson

case, while all the mesons satisfy the bound state condition,
M < mq þmQ̄. This means that π and K are strongly
bound states but D is a weakly bound state of which
properties will be discussed in the following numerical
calculations.
In the previous work for the ϕ3 model in (3þ 1)

dimensions [42], two of us analyzed the form factors in
three different reference frames, namely, (i) the purely
longitudinal (qþ ≠ 0 and q⊥ ¼ 0) frame defined in the
timelike q2 > 0 region, (ii) the purely longitudinal (qþ ≠ 0

and q⊥ ¼ 0) frame defined in the spacelike q2 < 0 region,
and (iii) the (qþ ¼ 0 with q2 ¼ −q2⊥) frame,2 to confirm
that all of three reference frames give exactly the same
numerical results for the form factor in the entire q2 region.
So, when we refer the “direct results” from (3þ 1)
dimensions, we mean the results obtained from any of
those three results in Ref. [42]. Likewise, the direct results
from (1þ 1) dimensions indicate those obtained by using
Eq. (9) or (19) in the present work. On the other hand, “DR
results” refer to those obtained from the dispersion relations
given by Eq. (22). Comparing the two results obtained from
both (1þ 1) and (3þ 1) dimensions, we shall also estimate
the effects of the transverse momenta k⊥ of the quark and
anitquark on the EM form factors.
Shown in Fig. 7 is the profile of the intrinsic longitudinal

charge density ρπðQ; rzÞ for πþ and its contour plot
in the phase space ðQ; rzÞ of −10 ≤ Q ≤ 10 GeV and
−1 ≤ rz ≤ 1 fm. The momentum-dependent ρðQ; rzÞ is
defined as ρðrzÞ ¼ 1

2π

R
FðQ2Þe−iQrzdQ≡ R ρðQ; rzÞdQ.

We also show in Fig. 8 the profiles of the intrinsic
longitudinal charge densities for ðKþ; K0Þ and ðDþ; D0Þ
in the phase space of −10 ≤ Q ≤ 10 GeV and −1 ≤ rz ≤
1 fm. These figures confirm that ρðQ; rÞ is symmetric

FIG. 6. The longitudinal charge density for πþ in LF coordinate
space z̃.

FIG. 7. Profile of the intrinsic longitudinal charge density
ρILDðQ; rzÞ for πþ and its contour plot in the phase space
ðQ; rzÞ of −10 ≤ Q ≤ 10 GeV and −1 ≤ rz ≤ 1 fm.

2The details can be found in Eqs. (10), (19), and (23) of
Ref. [42].
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under Q → −Q and rz → −rz as expected. The generic
structures of ρðQ; rzÞ for charged particles (πþ; Kþ; Dþ)
look similar to each other. Likewise, the generic structures
of neutral particles (K0, D0) are similar to each other. On
the other hand, the density profiles of charged particles are
quite different from those of neutral ones.
We present the intrinsic longitudinal charge densities

ρðrzÞ for charged ðπþ; Kþ; DþÞmesons in Fig. 9(a) and for
neutral ðK0; D0Þ mesons in Fig. 9(b). The gap between
ρπþðrzÞ (solid line) and ρKþðrzÞ (dotted line) is very small,

and it is hard to distinguish them in Fig. 9(a). Compared to
the light ðπ; KÞ mesons, the charge density of heavy D
meson is narrowly peaked around rz ¼ 0. Figure 9(b) also
shows the charge density behavior of neutral ðK0; D0Þ
mesons which satisfy

R
ρðrzÞdrz ¼ 0.

In Fig. 10, we show the EM form factor of the pion
obtained in (1þ 1) and (3þ 1) dimensions for
−2 ≤ q2 ≤ 4 GeV2. The black and blue lines represent
the direct results obtained from the form factors in (3þ 1)
and (1þ 1) dimensions, respectively. The corresponding
(3þ 1)- and (1þ 1)-dimensional results obtained from the
dispersion relations are denoted by black circles and blue
squares. Figure 10(a) represents Re½Fπðq2Þ�, and Fig. 10(b)
includes both Im½Fπðq2Þ� and jFπðq2Þj. Close inspection of
the figures leads to the following comments. First, our
direct results for both Re½Fπðq2Þ� and Im½Fπðq2Þ� in (1þ 1)
and (3þ 1) dimensions show complete agreement with the
DR results in corresponding dimensions, respectively.
Second, the imaginary parts (dashed lines) of the form
factors in Fig. 10(b) obtained from both (1þ 1) and
(3þ 1) dimensions start at the normal threshold
q2min ¼ 4m2

uðdÞ ¼ 0.25 GeV2, which is consistent with the

condition for M2 < m2
q þm2

Q̄ case. For high q2 region, the
imaginary parts of the form factors are shown to dominate
over the real part. Third, the total form factors jFπðq2Þj
(solid lines) in both (1þ 1) and (3þ 1) dimensions
produce a ρ meson-type peaks consistent with the vector
meson dominance (VMD). However, we do not claim that
this model indeed reproduces all the features of the VMD
phenomena since more realistic phenomenological models
may have to incorporate more complex mechanisms such
as the initial- and final- state interactions. Finally, as the
difference between the two results in (1þ 1) and (3þ 1)

FIG. 8. Profiles of the intrinsic longitudinal charge densities
ρILDðQ; rzÞ for ðKþ; K0Þ and ðDþ; D0Þ in the phase space of
−10 ≤ Q ≤ 10 GeV, −1 ≤ rz ≤ 1 fm, respectively.
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FIG. 9. The intrinsic longitudinal charge densities ρILDðrzÞ of (a) ðπþ; Kþ; DþÞ and (b) ðK0; D0Þ for −1 ≤ rz ≤ 1 fm.
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FIG. 10. EM form factor of the pion in (1þ 1) and (3þ 1) dimensions: (a) Re½Fπðq2Þ� and (b) Im½Fπðq2Þ� and jFπðq2Þj for −2 ≤
q2 ≤ 4 GeV2 compared with the results obtained from the dispersion relations.
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FIG. 11. EM form factors of Kþ and K0 mesons in (1þ 1)- and (3þ 1)-dimensions: (a) Re½FKþðq2Þ�, (b) Im½FKþðq2Þ� and jFKþðq2Þj,
(c) Re½FK0ðq2Þ�, and (d) Im½FK0ðq2Þ� and jFK0ðq2Þj for −2 ≤ q2 ≤ 4 GeV2.
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dimensions measures the effects of transverse momenta of
the constituents, one can see that the effects of k⊥ reduce
the slope of the form factor at Q2 ¼ 0 and broaden the
widths of the peaks. Therefore, while the qualitative
behaviors of the form factors in both dimensions are not
much different from each other, their quantitative behaviors
are quite sizable due to the effects of the transverse
momenta of the constituents.
Figure 11 shows the EM form factors of Kþðus̄Þ and

K0ðds̄Þ mesons obtained from (1þ 1) and (3þ 1) dimen-
sions for −2 ≤ q2 ≤ 4 GeV2. The same line codes are used
as in Fig. 10. The direct results and the DR results for the
unequal quark mass cases such as K and D mesons
coincide, and we do not explicitly display the DR results
in Fig. 11. As in the case of the pion, both Kþ and K0

have the normal singularities. However, K mesons have
two thresholds, namely, one at q2min ¼ 4m2

u (or 4m2
d) and the

other at q2min ¼ 4m2
s . While we have, in principle, two

vector-meson-type peaks (i.e., ρ and ϕ), one can see in
Fig. 11 that only the ϕ meson-type peak would be
observable for the timelike kaon EM form factors

above the physical threshold at q2min ¼ 4M2
Kþð0Þ as the ρ

meson-type peak is kinematically below the physical
threshold, i.e., 4m2

uðdÞ < 4M2
Kþð0Þ . Again, the differences

between the (1þ 1)- and (3þ 1)-dimensional results reside
in the effects of transverse momenta of the constituents
which play the role of broadening the widths and flatten the
heights of the form factors. The sign flips for both
Re½FK0ðq2Þ� and Im½FK0ðq2Þ� between the two peaks
come from the different sign of electric charges of d and
s̄ quarks. One can find that the K0 meson has the primary
and secondary peaks near the heavy s and light d quark
threshold q2min ¼ 4m2

sðdÞ, respectively, while it is the oppo-
site for the Kþ meson. The spacelike q2 region of
jFKþ;0ðq2Þj in Figs. 11(b) and 11(d) shows that Kþ has a
positive mean-square charge radius while K0 has a neg-
ative one.
We present the EM form factors of Dþðcd̄Þ and D0ðcūÞ

mesons obtained in (1þ 1) and (3þ 1) dimensions for
−5 ≤ q2 ≤ 20 GeV2 in Fig. 12. The same line codes are
used as in Fig. 10. Although the generic features of D

q
2 

[GeV
2
] q

2 
[GeV

2
]

q
2 

[GeV
2
] q

2 
[GeV

2
]

-5 0 5 10 15 20
-10

-5

0

5

10

15

R
e[

F D
+ (q

2 )]

Re[F
D

+] in (3+1) dim.

Re[F
D

+] in (1+1) dim.

(a)

-5 0 5 10 15 2010-1

100

101

102

103

104

D
+ (q

2

D
+(q

2

D
+(q

2

(b)

-5 0 5 10 15 20
-10

-5

0

5

10

15

R
e[

F D
0 (q

2 )]

Re[F
D

0] in (3+1) dim.

Re[F
D

0] in (1+1) dim.

(c)

-5 0 5 10 15 20

10-2

100

102

104

106

D
0 (q

2

D
0(q

2

D
0(q

2

|F
)|

| F in (3+1) dim.

| F

) | 

) | in (1+1) dim.

|F
)|

| F ) | in (3+1) dim.

| F ) | in (1+1) dim.

(d)

FIG. 12. EM form factors of Dþ and D0 mesons in (1þ 1) and (3þ 1) dimensions: (a) Re½FDþðq2Þ�, (b) Im½FDþðq2Þ� and jFDþðq2Þj,
(c) Re½FD0ðq2Þ�, and (d) Im½FD0ðq2Þ� and jFD0ðq2Þj for −5 ≤ q2 ≤ 20 GeV2.
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meson form factors are similar to the case of K mesons,
several comments are in order. As explained before, the
weakly bound state such as the D meson in the pre-
sent model calculation has anomalous thresholds. Both
(1þ 1)-and (3þ 1)-dimensional results of jFDþð0Þ ðq2Þj in
Figs. 12(b) and 12(d) indeed show the presence of
anomalous thresholds as given in Eq. (21), i.e., q2min ∼
0.24 GeV2 (compared to 4mdðuÞ ¼ 0.25 GeV2 for normal
case) and q2min∼12.4GeV2 (compared to 4mc¼12.96GeV2

for normal case) for the γ� − d̄ðūÞ and γ�-c vertices,
respectively. Both anomalous thresholds, however, appear
just before the normal thresholds, although the normal
thresholds for the light quark sector are hard to be seen in
Fig. 12. Similar to theK meson case, the EM form factors of
both charged and neutral D mesons have two unphysical
peaks, i.e., ρ and J=ψð1SÞ meson type peaks due to d̄ (or ū)
and c quarks, respectively. However, the timelike form
factors ofDmesons have no pole structures for the physical
q2 ≥ 4M2

D region. Finally, unlike the kaon case, the primary
peaks for bothDþ andD0 appear near the thresholds due to
the heavy c quark. Figures 12(b) and 12(d) also show thatDþ

has a positive mean-square charge radius, while D0 has a
negative one.

V. CONCLUSION

In the present work, we presented (1þ 1)-dimensional
analysis of EM form factors of scalar mesons both for the
spacelike and timelike region in the solvable model,
obtaining the analytic results of the one-loop triangle
diagram both for the valence and nonvalence contributions.
Since the qþ ≠ 0 frame should be used in (1þ 1) dimen-
sions, it is inevitable to encounter the nonvalence diagram
arising from the particle-antiparticle pair creation (the so-
called Z-graph). While the valence contribution dominates
for smallQ2 region, its role is taken over by the nonvalence
contribution as Q2 gets larger indicating significant con-
tributions from the higher-Fock components. The leading
asymptotic behavior of the form factor at highQ2 in (3þ 1)
dimensions [7] has one more logarithmic power than our
result FS

MðQ2 → ∞Þ ∼ lnQ2=Q2 in (1þ 1) dimensions,
which is ascribed to the effects of the transverse momentum.
Our analytic results both in the spacelike region and the
timelike region confirmed the analytic continuation fromQ2

in the spacelike region to −Q2 in the timelike region. In the
timelike form factor given by Eq. (18), the imaginary part of

IqðQÞ
T ðq2Þ starts to develop at the anomalous threshold given
by Eq. (21) for the weakly bound state withM < mq þmQ̄

but M2 > m2
q þm2

Q̄, while it starts at the normal threshold

q2 ≥ 4m2
qðQ̄Þ for the strongly bound state with M < mq þ

mQ̄ andM2 < m2
q þm2

Q̄. We confirm that the DRs given by

Eq. (22) are satisfied by the strongly bound state as well as
by the weakly bound state. In particular, we note the
importance of taking into account the infinitesimal width

to remedy the singularity at the anomalous threshold for the
weakly bound state as given by Eq. (23) in order to satisfy
the DRs as shown in Fig. 4.
Defining the intrinsic charge density ρðrÞ in three-

dimensional space, the transverse charge density ρðbÞ in
two-dimensional space and the longitudinal charge density
ρILDðrzÞ in one-dimensional space, respectively, in Eqs. (25),
(26) and (27), onemay convince that themean-square charge
radius hr2iem is given by the sum of the mean-square
transverse radius hb2i and the mean-square longitudinal
distance hr2ziILD, i.e., hr2iem ¼ hb2i þ hr2ziILD. While
hr2iILD and hr2iem are derived from different spacetime
dimensions and different methods, both have the common
factor eqm2

Q̄ þ eQ̄m
2
q. This observation allows us to under-

stand the negative value of mean-square charge radius of
neutral mesons such as K0ðds̄Þ which have negatively
charged light quark orbiting around the heavier s̄ quark
[51]. The generic structures of longitudinal charge den-
sities for charged particles (πþ, Kþ, and Dþ) are similar
to each other, although the density profiles of charged
particles are quite different from those of neutral ones (K0

andD0). For the case of equal constituent mass (mq ¼ mQ̄),
hr2ziILD given by Eq. (30) decreases monotonically to the
minimum value hr2ziILD → 1=ð5m2

qÞ in the maximal binding
limit, while hr2ziILD → ∞ in the zero binding limit, which
is consistent with the observation made in Ref. [35]. In
contrast to the intrinsic charge density, the apparent charge
density definedby the timecomponent of the current depends
on the reference frame, andwenote that hr2ziBF is smaller than
hr2ziILD due to the Lorentz contraction.
In terms of the newly introduced boost-invariant variable

z̃, we also define the longitudinal charged density in LFD as
given by Eq. (41), noting that the LF longitudinal momen-
tum fraction β̄ ¼ qþ=pþ is the variable conjugate to z̃.
From Fig. 6, we found that ρLFðz̃Þ has a very long and
oscillating tail behavior of z̃, consistent with the result
shown in Ref. [32] for the case of two-constituents of a
Fock-space component.
Comparing the results in (1þ 1) and (3þ 1) dimensions,

we note that the effects of transverse momentum k⊥ reduce
the slope of the form factor at Q2 ¼ 0 and broaden the
widths of the peaks in charge densities. While the quali-
tative behaviors of the form factors in both dimensions are
not much different from each other, their quantitative
behaviors are quite sizable due to the effects of the
transverse momenta of the quark and antiquark. We thus
conclude that the transverse momentum plays the role of
broadening the width of the resonance and significantly
flattens the height of the corresponding form factor.
Our analysis of the solvable scalar field model can be
extended to the phenomenologically more realistic LFQM
as we have shown for the transition form factor FMγðq2Þ
in the meson-photon transition process, MðpÞ → γ�ðqÞ þ
γðp0Þ [43].
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APPENDIX: ANALYTIC RESULTS OF THE
VALENCE AND NONVALENCE

CONTRIBUTIONS

In this Appendix, we present the analytic forms of the
valence and nonvalence contributions to the form factor in
the spacelike region. The explicit forms of IqS1;S2 are

IqS1 ¼
g2CS

4π

	
c1 tan−1

�
ωQffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
þ c2 tan−1

�
ωqffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�

þ c3 tan−1
�
M2ðβ − 2Þ − ðm2

q −m2
QÞβ

2mqmQβ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�

þ c4 ln
�

m2
qβ

2

βðm2
q þ β̄m2

QÞ −M2β̄

�

; ðA1Þ

IqS2 ¼
g2CS

4π

	
d1tanh−1

� ffiffiffiffiffi
γQ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γQ

p �
þ d2 tan−1

�
ωqffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�

þ d3 tan−1
�
M2ðβ − 2Þ − ðm2

q −m2
QÞβ

2mqmQβ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�

þ d4 ln

�
m2

qβ
2

βðm2
q þ β̄m2

QÞ −M2β̄

�

; ðA2Þ

where

CS ¼
1 − ω2

8M2m3
qm3

Qð1 − ω2 þ γQÞð1 − ω2Þ3=2ðβ2 − 1Þ ;

ðA3Þ

and

c1 ¼ 4mqmQωð2M2β̄ þ βQ2Þ;
c2 ¼ 8m2

qm2
Qð1 − ω2Þ þ 2β̄½M2ðm2

q þm2
QÞ − ðm2

q −m2
QÞ2�

þ ðM2 −m2
q þm2

QÞQ2β;

c3 ¼ −4mqmQM2ωβ̄

− 2mQ½4m2
qmQðω2 − 1Þ þmqωQ2 −mQQ2�β;

c4 ¼ mqmQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
ð2M2 þ 2m2

q − 2m2
Q þQ2Þβ; ðA4Þ

and

d1 ¼ 4M2mqmQðβ2− 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ω2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γQ

p
ffiffiffiffiffi
γQ

p ;

d2 ¼ 2mQ½ðβ2− 1ÞM2mqω− β̄2M2mQ− 4βm2
qmQð1−ω2Þ�;

d3 ¼−c3;

d4 ¼−c4: ðA5Þ

The corresponding results in the timelike region are readily
obtained by changing Q2 → −Q2 in Eqs. (A1) and (A2).
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