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We investigate the nonlinear transport processes and hydrodynamization of a system of gluons
undergoing longitudinal boost-invariant expansion. The dynamics is described within the framework of the
Boltzmann equation in the small-angle approximation. The kinetic equations for a suitable set of moments
of the one-particle distribution function are derived. By investigating the stability and asymptotic resurgent
properties of this dynamical system, we demonstrate, that its solutions exhibit a rather different behavior for
large (UV) and small (IR) effective Knudsen numbers. Close to the forward attractor in the IR regime the
constitutive relations of each moment can be written as a multiparameter transseries. This resummation
scheme allows us to extend the definition of a transport coefficient to the nonequilibrium regime naturally.
Each transport coefficient is renormalized by the nonperturbative contributions of the nonhydrodynamic
modes. The Knudsen number dependence of the transport coefficient is governed by the corresponding
renormalization group flow equation. An interesting feature of the Yang-Mills plasma in this regime is that
it exhibits transient non-Newtonian behavior while hydrodynamizing. In the UV regime the solution for the
moments can be written as a power-law asymptotic series with a finite radius of convergence. We show that
radius of convergence of the UV perturbative expansion grows linearly as a function of the shear viscosity
to entropy density ratio. Finally, we compare the universal properties in the pullback and forward attracting
regions to other kinetic models including the relaxation time approximation and the effective kinetic

Arnold-Moore-Yaffe theory.
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I. INTRODUCTION

Relativistic fluid dynamics is an effective theory which
describes long-wavelength phenomena. It is widely
accepted that its regime of validity is restricted to systems
near local thermal equilibrium. However, this traditional
paradigm has recently been challenged by the overwhelm-
ing success of hydrodynamic models in describing exper-
imental data in high energy nuclear collisions [1-7] as well
as cold atom systems [8—11]. In these systems the initial
state is far from local thermal equilibrium, and it is not fully
understood how hydrodynamic behavior emerges. The
search for a kinetic framework that describes far-from-
equilibrium plasmas has been one of the most important
research subjects in high energy nuclear collisions and
condensed matter physics [12-14].
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An important development in nonequilibrium dynamics
was the discovery of emergent hydrodynamic behavior in
far-from-equilibrium conditions which can be understood
in terms of the mathematical theory of resurgence [15]. In
this work the authors consider an extended hydrodynamic
model, the Israel-Stewart equation [16], and apply it to a
strongly coupled plasma undergoing Bjorken expansion.
Subsequently, similar findings were obtained in many other
transport models. These results show a deep connection
between nonlinear relaxation toward hydrodynamic behav-
ior, also known as “hydrodynamization,” and transasymp-
totics and transseries [17-26].

Since then a very interesting and rich physical picture
has emerged: The nonlinear relaxation process toward
hydrodynamic behavior, also known as hydrodynamiza-
tion, is driven by the decay of nonhydrodynamic degrees of
freedom. Once the nonhydrodynamic modes have died out
the system enters into the hydrodynamic attractor which is
entirely determined by the standard asymptotic gradient
expansion. This new insight might be able to explain why
hydrodynamic models work very well when applied in
extreme experimental scenarios such as ultrarelativistic
heavy ion collisions [27,28].
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Another interesting development in the understanding of
far-from-equilibrium attractors in relativistic nonequilibrium
dynamics is a phase space analysis using the language of
nonautonomous dynamical systems' [29-32]. This particular
point of view allows us to characterize in simple terms the
behavior of the solutions, described as flows, either at early or
atlate times. For instance, a global and local phase space flow
analysis led to the conclusion that a large class of kinetic
models undergoing Bjorken expansion [33] hydrodynamize
in the long-time limit [21,31,32,34], whereas systems under-
going Gubser flow [35,36] never do [29,32]. Moreover, the
flow structure in phase space together with the symmetries of
the dynamical system constrains the asymptotic behavior of
the solutions of the ordinary differential equations (ODEs).
For example, for weakly coupled boost-invariant systems it
was demonstrated [31] that the solutions of the moments’
equations admit power-law series expansions at early times,
while at late times linear perturbations of the moments decay
exponentially [21,30,31,37]. This is due to the nature of the
early- and late-time attractors.

Attractors are understood as regions in phase space
where flows accumulate either in the long- or short-time
limit. However, in nonautonomous dynamical systems the
past and future of the evolution are not the same since time
translation invariance is explicitly broken. Each flow
solution ¢ = ¢(¢py; 1, 1y) is written in terms of its initial
value ¢ and its initial and final times, 7, and ¢, respectively.
In this context, it is important to differentiate the backward
and forward asymptotic regions of the dynamical system.
We refer to a forward attractor as an asymptotic limit of the
flows at which solutions converge when ¢t — oo while the
initial time ¢ is fixed. In contrast, the pullback attractor is
defined in the limit #; — O while keeping ¢ fixed. It is
important to emphasize that for nonautonomous dynamical
systems both limits do not commute [38,39].

Most previous work on the convergence properties of
kinetic equations in relativistic transport theory was based
on very simple collision terms, e.g., the relaxation time
approximation (RTA). In this work we study the resurgent
asymptotic properties of the Boltzmann equation for a
boost-invariant Yang-Mills plasma governed by the weak
coupling collision term in the small-angle approximation.
In this limit the Boltzmann equation can be written as a
nonlinear Fokker-Planck equation.

'A nonautonomous dynamical system corresponds to a general
set of ODEs for the vector a of the generic form

da
— ="H(a,1),

where H is a function that depends explicitly on both a and 4.
When the affine parameter 4 does not appear explicitly in the ths
of the previous expression it is said that the system is autono-
mous.

The Fokker-Planck equation (FPE) for gluons is of great
interest since it captures essential aspects of the early-time
dynamics of QCD matter produced in ultrarelativistic
heavy ion collisions [40,41]. Due to the highly nonlinear
structure of the collision kernel in the small-angle approxi-
mation, the FPE has been solved mostly by numerical
means [42-48]. Very few analytical solutions for rapidly
expanding systems are known in the literature [49]. One of
the main achieved goals in this work is to fill this gap.

Following Grad’s method [50] we map the mathematical
problem of solving the FPE onto finding solutions to the
kinetic equations for the Legendre moments c; [29-32]. The
moment method turns out to be not only quickly convergent
from a numerical point of view (see Appendix G of
Ref. [31]), but it also provides a unique approach to under-
stand nontrivial aspects of hydrodynamization. New solu-
tions to the equations of motion of Legendre moments are
derived by employing methods developed in the context of
stability analysis of nonautonomous dynamical systems
[38,39], as well as techniques from superasymptotic and
hyperasymptotic analysis [51-54]. These tools allow us to
analyze the hydrodynamization process in two distinct
regimes characterized by the size of dissipative corrections:
Kn > 1 (UV, early time) and Kn < 1 (IR, late time).

The solutions of the kinetic equations for the Legendre
moments enable us to extend the definition of transport
coefficients to the far-from-equilibrium regime. Within our
approach transport coefficients depend on the deformation
history of the fluid, i.e., its rheology, and their values
change as a function of the Knudsen number. Such
dependence of the transport coefficients on the typical
gradient size is a salient property of non-Newtonian fluids.
Our findings provide further evidence for the connection
between hydrodynamization and the transient rheological
behavior of the plasma [30,31].

An interesting aspect of our study is the fact that the
evolution of the transport coefficients is determined by a
RG flow equation where the role of the RG scale is played
by the Knudsen number. Our work draws inspiration from
recent arguments that any RG flow can be viewed as a
dynamical system [55,56]. We show that, conversely,
certain dynamical systems can be understood as RG flows,
provided the existence of the slow invariant manifold. This
idea was first explored in the case of boost-invariant
plasmas governed by a Boltzmann equation in the RTA
approximation [30-32].

Finally, our study naturally explains the origin of the UV
power series expansion considered first in [31] and later
studied in [26,57-59]. The power series emerges by
analyzing the stability behavior of solutions close to the
UV fixed point. It is shown that the finite radius of
convergence of the UV power series expansion depends
on the value of the shear viscosity over entropy ratio 7/s.
We also outline the intriguing universal properties of the
FPE related to the pullback and forward attractors and
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compare them with other kinetic models such as the RTA
and the full leading-order Arnold-Moore-Yaffe (AMY)
kinetic theory [60].

The outline of this work is as follows. In the next section
we review the basic ideas behind the Fokker-Planck (FP)
equation and introduce the expansion of the distribution
function in terms of its moments whose evolution equations
are derived. For pedagogical purposes we study extensively
a truncation of this dynamical system in Sec. III where we
present in detail the transasymptotic techniques studied in
this article. In Sec. IV we demonstrate that the general
solutions of the Fokker-Planck equation are written in terms
of multiparameter transseries after resumming the fluctua-
tions around the UV and IR regimes, respectively. We
analyze the universal properties of nonequilibrium Yang-
Mills attractors of different theories in Sec. V. We conclude
by giving final remarks. The technical details of our work
are presented in the Appendixes.

II. YANG-MILLS TRANSPORT EQUATION IN THE
SMALL-ANGLE APPROXIMATION

We consider an interacting gluon plasma described by
the Boltzmann equation in the small-angle approximation
[61]. We focus our discussion on the case of an expanding
system with longitudinal boost invariance [33]. The
dynamics is invariant under the ISO(2) ® SO(1,1) ®
Z, symmetry group. The symmetry becomes manifest in
Milne coordinates x* = (z, x,y,¢), where 7 = V> — 7° is
the longitudinal proper time, and ¢ = tanh™!(z/7) is the
spatial rapidity. In this coordinate system the metric is
simply g, = (=1,1,1,7?). In Milne coordinates the
Fokker-Planck equation for the one-particle distribution
f(z. pr.p/7) = [, is [40,46,47]

arfpzc[ p]' (1)

The collision kernel C[f,(7)] in the small-angle approxi-
mation takes the form [40,46]

Clf,) = BglenVy [vaf,, kB pn)] @

where we introduce the ‘t Hooft coupling Ay, =
¢*N,. = 4rna,N,. The integrals 7 and K are given by

sz(r)—/(d )3f,,[ + fpls (3a)
K=K()=2 / (”2;’)’3%. (3b)

The Coulomb logarithm [, in the rhs of Eq. (2) is a
divergent integral of the form

Pmax dp Dmax
ley = / — =log <—> (4)
min V4 Pmin

The IR momentum divergence originates from 2 — 2
scattering with small momentum transfer. In QCD these
divergences are regularized by static and dynamic screen-
ing. The corresponding mass scale is on the order of the
Debye mass. Near equilibrium, and for particles obeying
Bose-Einstein statistics, we have [62]

oo [ L2

where ((n) and I'(n) are the Riemann and Gamma
functions, respectively. The UV momentum cutoff is taken
to be the mean p%, which close to equilibrium is

2y _ JEppife'
<pT> - fd3pf§q

As a result, near equilibrium the Coulomb logarithm (4) is
approximately given by

V P} dp

(p3) (p%>) 1 < A )
— =log| V— | ~=log| — |, 7
mp V4 g( mp 2 £ Aym ( )

with A =72{(5)/{(3) #62.1. This estimate gives a
Coulomb logarithm which is a constant, independent of
the energy density of the medium, but logarithmically
dependent on the coupling constant. This approximation
has been used in many previous studies [45,46,59,63].
Replacing fp" with the general nonequilibrium f, in (5)
and (6) and evaluating the integrals numerically at each
time step allowed the authors of Refs. [42,48] to account for
the time dependence of the UV and IR momentum cutoffs.
The approximation of a constant Coulomb logarithm
gives the correct dependence of the shear viscosity on the
coupling constant in the near-equilibrium, weak coupling
limit. However, the numerical prefactor does not agree with
calculations based on the full hard thermal loop (HTL)
result [64,65]. This issue was addressed in [66], where the
authors propose a simple regulator that reproduces the
leading-order HTL result for drag and momentum diffusion
in soft 2 — 2 scattering. This is a useful prescription, but it
does not affect the late-time emergent hydrodynamic
behavior. We shall comeback to this issue in Sec. V.

=2

le =

A. Ansatz for the distribution function

One of the most widely used methods to solve the
Boltzmann equation was developed decades ago by Grad
[50]. In this approach the problem of solving the
Boltzmann equation is converted into a set of nonlinear
partial differential equations (PDEs) for moments of the
one-particle distribution function. This approach is very
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useful when analyzing the resurgence properties of the
nonlinear ODEs for the moments [29-32].

In this work we will consider the following ansatz for the
distribution function in a boost-invariant system [30-32]:

+o0
fp =13 ce(r)Pos(cos b)), (8)
=0

where p* = \/p)zc + pﬁ + (pg/r)z, cosf, = p/(zp*), and
P, are the Legendre polynomials. In Eq. (8) the equilib-

rium distribution function fp? is

1
eq __
fP = Veff ePT/T(T) 1 ) (9)

where T is the temperature of the system which is defined
below via the Landau matching condition and v are the
effective degrees of freedom which for simplicity we set to
be v = 1. We implicitly assume that f), is independent of
spin and color. The ansatz (8) is consistent with the
restrictions imposed by ISO(2) ® SO(1,1) ® Z,. In par-
ticular, the distribution function is invariant under the
action of the Killing vectors ¢; of this symmetry group,
i.e., df,/0¢; = 0[30-32]. For simplicity we fixed = 0in
the equilibrium distribution function (9). Furthermore, the
ansatz (8) does not carry information about the nonlinear
relaxation of the transient high energy tails of the distri-
bution function which have been studied previously within
the moment method [30-32,46,47,67-70]. A more general
ansatz which encodes some of the information on the high
energy tails was discussed recently in Ref. [45].

The Legendre moments c, are directly determined by

Eq. (8),

30(41+ 1)

co = (= p)Pa(eosty)). (10)

where we denote (---)y = fp -+ fy and the momentum
measureis [, = [d*prdp./[(2z)’zp7]. If the systemreaches

the thermal equilibrium state, the moments ¢} = .
For the Bjorken flow the energy-momentum tensor
T = (p*p¥) is given by [30-32,71,72]

™" = ewu’ + P MY + PrE*, (11)

where we denote the timelike vector identified with the
fluid velocity w* = (1,0,0,0) (with w’u, = —1), the
spacelike normal vector pointing along the ¢ direction is
I* =(0,0,0,1) (with I#], = 1) and the projection operator
W = ¢g" + u'u” 4 [*1¥ which is orthogonal to both u# and
I, respectively. The energy density ¢, longitudinal and
transverse pressures, P; and Py, respectively, are written in
terms of the angular moments as follows:

2

T
e = ((-u-p)) =350l

1 11
Pr = <§:‘M pypu> = €<§_Ecl)a (12b)

'PL:((l-p)z):€<%+%cl>.

(12a)

(12¢)

It follows that ¢ = 2P + P; as expected. The Landau
matching condition for the energy density € = €., = ((—u -
p)2>eq_ implies ¢y = 1. For the Bjorken case the normalized
pressure anisotropy is the ratio of the independent shear
viscous tensor over the energy is written in terms of the
Legendre moment c;, i.e.,

2758 2
A= = —cy. 13
e 15 (13)

Moreover, the non-negativity property of the longitudinal
and transverse pressures Py ;) > 0 implies =5/2 < ¢; <5.
This bounds the basin of attraction from below and above
and is satisfied in general only by the exact kinetic solution
to the FP equation (2). Nonetheless, it is known that any
perturbative approach which aims to find an approximate
solution to the Boltzmann equation does not necessarily
obey this constraint [73].

B. Evolution equation of the Legendre
moments evolution

We truncate the expansion in Legendre polynomials at
order L and write the Legendre moments as a vector
c(7) = (¢(7),....,c (1)) 7. Following the procedure out-
lined in [30-32] we find that the evolution equations for the
temperature and the Legendre moments are given by the
following coupled nonlinear ODEs:

%:-%(H%), (14a)
% ~ F(T.c.7), (14b)
with
F(T,c.) —g E{X(c)c +T)
+{A+9(c) + 3(c)}Te| (15
and

(16a)
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20142 +7¢-2) 4
B, A B, = -, 17b
G; %; %, T @ar-1)4r+3) 3 (170)
- 3
== 20(2¢ - 1)(2€ + 2
x=3 , , (16b) ¢, -2 -1)@r+2) (17¢)
G,., B, A, (42 -3)(4¢ - 1)
G, B, The Lyapunov exponents and the vector I" are defined by
The matrix elements are defined by A = diag.(A(1), ..., A(L)). (18a)
(22 -1)(2¢+1)(2¢ +2) T T
A, = — (47 + 3)(42 +9) , (17a) I =(3¢,/2,0,...,0)" =(4,0,...,0)". (18b)
Finally, we have defined the matrices
2%1:1 Qimicm(7) :,:Zq Qi€ (7) ,anr:LL_l Qiurcm(7)
Q)(C) =k i;;lf_l Qfmlcm (T) f;,irllv[ax[‘f_n‘.l] Qfmncm (T) ZJ;LL_K QmeCm(T) P (193)
5111L—1 QLmlcm (T) ﬁ:i—n QLmncm (T) 2%11;1 QLmLcm (T)
47 +1 2¢ - 1)
Qfmn _ Xn—n+¢P¥ntm—¢Cn—m+¢ . + . with a, = ( ) ) (19]3)
Uit 2n+m+72)+1 Z!
22 -1)(f+1
ey =2y HoDEED ooy, (19¢)

n=1

In the previous expressions the parameters «, 6 and k are
given by, respectively,

5
o' =~
0 87

3k 3 120+1)

The derivation of the equations of motion (14) is presented
in Appendix A. The set of ODEs (14) constitutes a
nonlinear nonautonomous dynamical system [38,39] due
to the explicit dependence on the proper time 7 in the rhs of
these equations. The strength of the effect of the collisions
enters in the ODEs via the parameter 6, (20); we thus will
vary this parameter instead of the ‘t Hooft coupling Ay,
when showing the numerical results. The nonlinear nature
of the FP equation (1) is manifest in the mode-mode
couplings among different moments and in the temperature
appearing in the rhs of Eq. (14). Finally, the time evolution
of the energy-momentum tensor (11) can be fully

k=m"/3-2((3), Klen.

k:

3(4n+1)

|
reconstructed from the solutions of the temperature T
and the full set of Legendre moments c;.

The equations of motion of the Legendre moments (10)
for the conformal Boltzmann equation within the RTA are
given by (see [30,31])

dc
- = F T? ) 5
g rra(T, €, 7)

211
Frra(T,c,7) = 3 ;{X(c)c—i—l‘} + AgraTc|,

3
A = —diag.(1,1,...,1).
RTA 20, iag.( )

(1)
Here ®, is a proportionality constant between the relax-
ation time and the shear viscosity over entropy ratio. This
constant can be determined from relativistic kinetic theory
methods which for the conformal RTA approximation gives
us 7, = %% [31,74-85], i.e., ®y = 55/s.

At linear order the form of the evolution equations for
the Legendre moments for the RTA and FP, Egs. (21)
and (14), respectively, is very similar. At this order the main
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difference between the two models lies in the specific
relaxation scale of the associated mode c;. For the RTA
approximation all modes decay with the same relaxation
scale 7, while in the Fokker-Planck case each c¢; has a
characteristic relaxation scale A(/)~! which increases as a
function of the / [see Eq. (20)]. Therefore for the FPE there
is a clear hierarchy of fast and slow modes.”

The nonlinearities of the FPE are encoded in the mode
coupling between moments of different order and in the
implicit dependence of the temperature on c,. These effects
drive the system away from equilibrium and delay the
relaxation to the equilibrium state. For instance, for the
RTA Boltzmann equation a new nonhydrodynamic mode
survives in the long wavelength limit due to a nonlinear
coupling to the shear viscous tensor [31]. This result
contradicts the common assumption of taking the typical
relaxation timescale of a mode as a guide for constructing
effective theories in the long-time limit.

C. Dimensional reduction

There is an important simplification of the nonlinear ODEs
(14) which makes the asymptotic analysis simpler. It is
possible to dimensionally reduce this dynamical system from
L+ 1 — L by introducing the variable’ w = 7T (z) € R*.
Since w ~ Kn~! [29-32], the variable w encodes the strength
of the dissipative corrections. This fact will be important for
reinterpreting the dynamical system of ODEs as RG flows in
Sec. [II B 1. In terms of w Egs. (14) can be written as

T(w) = D(w,wy)Ty, (22a)
wong) — exp |- [ (L)
D( ’ 0)_e p|: 2/1/0 W/ (1_%)],
dc
= F(c,w), (22b)
1 1
F(c,w) = —m {W{X(c)c(w) +T}
+HA+9Y(e) + 8(c)}c(w)} ) (22¢)

The dynamics of this dimensionally reduced system of ODEs
depends only on the Legendre moments ¢, and does

?For hard spheres and within the kinetic theory framework
similar results have been found in the past. In those models a
hierarchy of scales between the fast and soft modes also emerges
[68-70].

The resurgence analysis can also be studied in terms of the
original variable z [31]. See the general Fokker-Planck case in
Appendix C and the RTA Boltzmann case is extensively
discussed in Appendixes A-D in Ref. [31].

The index i of vectors and matrices runs from i = 1,2, ..., L.
If one performs a truncation of the nonautonomous dynamical
system of Eq. (22) it is understood that ¢; =0 for [ > L.

not involve the temperature variable explicitly. It is important
to emphasize that the dimensionally reduced dynamical
system does not preserve the topological properties of the
original nonlinear ODEs (14). For instance, a new coordinate
singularity emerges when c¢; = 20 [see the denominator in
the integrand of the damping function D (w, wy) in Eq. (22a)]
which does not exist in the 7 variable. Furthermore, in the w
variable, one can find a set of bounded solutions at wy, — 0
for a fixed w, the so-called pullback attractor [31,32];
whereas the singularity at 7 = 0 forbids the existence of
any bounded solutions in the UV. This is of course expected
on many grounds but a simple explanation is that the system
undergoes a topological change under r — w that lifts the
7 =0 singularity at the expense of introducing a new
singularity at ¢; = 20 [31,32].

III. TRANSASYMPTOTIC ANALYSIS: THE
TRUNCATED L=1 CASE

Before presenting the transseries solutions for the non-
linear ODEs (22) we first illustrate our techniques by
considering the case where the system is truncated to a
single nonhydrodynamic degree of freedom. Physically,
this degree of freedom corresponds to the viscous shear
tensor. This warm-up exercise illustrates the main aspects
of the general asymptotic analysis to be discussed
in Sec. IV.

Let us assume that the moments ¢; =0 for [ > 1. In
terms of the variable w, the truncated [ = 1 case read as

dC1 -

oy = Filwer), (23a)
1of/s 1
Fiw,e))=——— |~ (442¢c, =2
e == o (450 -5)
%* 2%
+a(1)ey +7’<c% +1—§c?]. (23b)

Before discussing the transasymptotic analysis we would
like to comment on the existence of the pullback and
forward attractors of the truncated ODE (23a). The exten-
sion to the full set of nonlinear ODEs (22) is similar but
more difficult to visualize [31]. For now, we note that we
can identify attractors by inspecting the flow diagram of the
ODE (23a). We will characterize the attractors more fully
below. In the top panel of Fig. 1 we observe that in the IR
regime all flows converge asymptotically toward the value
¢y = 0 when w > 1 regardless of their origin. This shows
that there is only one IR fixed point associated with the
forward attractor.

In the UV limit, on the other hand, there are two fixed
points (black dots in Fig. 1) which are located along the ¢,
axis in the small wy, — 0 limit (wy, is the initial value of w).
The UV behavior of the flow lines in each fixed point is
rather different. For the UV fixed point located in the
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FIG. 1. Flow diagram of the differential equation for the

Legendre moment (23a) in the (¢, w) space. Top, center, and
bottom panels show the flows close to the IR and two UV fixed
points, respectively. The black dots showed in each panel
correspond to the two UV fixed points of the ODE (23a).

positive ¢; region one observes that the flow lines emerge
out of it in all the directions, and thus this fixed point is a
source. In the negative c; region, we observe that near the
UV fixed point the flow lines coming from above or below
repel each other so the fixed point is a saddle. However,
although the flow lines repel each other, they merge quickly
in the vicinity of this fixed point. Thus, the UV fixed point
located in the negative ¢; region is identified as the
pullback attractor.

We will see that the behavior of the transseries solution
near these fixed points is rather different. We note that the

behavior of the flows in the 7 variable differs from the one
in w. In the former case the temperature is a dynamical
variable. It diverges in the limit 7 — O due to the presence
of the singularity at 7 = 0; therefore there is no meaningful
definition of a pullback attractor in the t variable (see
also [31,32]).

A. Transseries solution in the IR limit
The leading-order term of each Legendre moment in
Egs. (22) is ¢; = O(w™) V1> 0 in the IR regime [31].
Hence, Eq. (23a) admits the following asymptotic expan-
sion for cy:

= Z ug?lgw_k. (24)
k=0

The coefficients ug?,z are obtained simply by inserting the IR

expansion into the original ODE (23a). For instance, the
first three coefficients are given by

4
0 0
ko = 0. A}:_MU’
(0) 8 s

= (1442, 25
7z<1>2< " m)) 25)

Here the reality condition of ¢; was implicitly taken into
account. The hydrodynamic gradient expansion of the
shear viscous tensor [86] provides the following expression
for ¢; [30,31]:

401n 801 T(nr,—4;)
=t — _m U 26
“ 9 w? s (26)
where we use Eq. (13). Comparing the previous expression
and Egs. (25) one concludes

n
A
T(nTn B /11)

= S (1 +4%>, (27)

with (1) and & given in Egs. (20). We will see below that
A(1) is related to the rate at which fluctuations decay close
to the IR fixed point, i.e., the Lyapunov exponent. The
coefficients ug(’),z that enter the IR expansion (24) are
understood as transport coefficients in the IR limit.
Furthermore, the set of the identities (27) turn out to be
of importance when generalizing the concept of a transport
coefficient to the far-from-equilibrium regime [30,31] as
we shall discuss in Sec. III B.

It is known that the IR expansion (24) is divergent since
its coefficients grow factorially [15]. These expansions are
merely formal expressions and emerge as asymptotic
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solutions of a certain class of differential equations [52]. In
order to see this let us simply perform a linear perturbation
around the perturbative expansion (24). Thus, by shifting
c; = ¢ + 8¢y withe; = > gow™ while keeping terms
up to O(w™!) one obtains the following linearized differ-
ential equation for the perturbation dc;:

d5C1 o 8F1
dw  Oc =2,

o

whose solution reads

56‘1,

dci(w) = o1e” 5w,
18 16 &

S, =a1), b SETRE T (29)

where o is the integrating constant, S; is recognized as the
Lyapunov exponent and b, is the anomalous dimension.
The presence of the exponential terms is an indication that
in order to capture the transient behavior of the solutions it
is needed to go beyond the perturbative IR expansion (24).
The leading exponential term (29) is the first type of a
large set of exponentials terms that appear when summing
over the fluctuations around the IR fixed point. In order to
include systematically these type of terms we follow
Costin’s prescription [54]. First, notice that in the IR limit
the ODE (23a) takes the following asymptotic form:
|

. 12
(—mS; +A(1))ul") + (—mbl —k+ 7)

my+my=m k| +k,=k A
LTS |:<_mlsl_40’<

~ [ﬂ(l)cl v]v (4 —f—%cl)] +Repw),  (30)

where R(c;,w) is a nonlinear polynomial function of ¢,
and w. The asymptotic limit of the differential equation (30)
coincides with the prepared form of the generic class of
differential equations studied by Costin [54]. Thus, given
the regularity of the solutions at w — oo as well as the
nonvanishing value for the Lyapunov exponent S; (29),
Eq. (23a) has an exact transseries solution [54]

:ii”n o li(w)]", (31a)
k=0 n=0
Li(w) = e Svwbr, (31b)

From the physical point of view, the transseries (31)
describes deviations from thermal equilibrium due to expo-
nentially damped modes multiplied by gradient terms. The
exponential damped terms, usually called nonhydrodynamic
modes, play a role analogous to instantons in quantum field

theory and quantum mechanics. In order to determine the
coefficients u(ln,g we simply equate (31) with Eq. (23a). Asa

result we get the following recursive relation:

W)+ 48,061,

”({,r/?l) + (=myby — ky + 5)u(1'111)_1 ”%22)

20 my,my=0 ky,ky=0 7
2% my+my+my=m ki +k,+k3=k (1), (ma) |
m my) (m
15 Ui g g =0, (32)

my,my,m3=0  ky,ky,k3=0

where uﬁ’? =0 for k <0 and we take ”(1(% =1 as the
normalization of the 1ntegrat10n constant ;. When m =0
and k = 0, 1, 2 in the recursive relation (32) one reproduces
Egs. (25) as expected.

We conclude this section by presenting some numerical
results. In Fig. 2 we show the Legendre mode ¢, as a function
of w for the exact numerical solution (red line), Navier-
Stokes (NS, blue dotted line), NS + second order (green
dashed line) and truncated transseries solutions where we
added two (orange dashed line) and five (magenta dashed
line) transmonomials to the first IR perturbative order. The
initial condition for the numerical solution of the ODE (23a)
was ¢ (wg = 0.03) = {6.60119,0, —3.02976} while fixing

0y = 1.° Note that at each order of the resummed theory we
have to numerically match the transseries parameter . Very
few cases are known where one can determine o exactly [26].
In the present work we have determined ¢ using a numerical
least-square fit [31]. This leads to some uncertainty, which is
not unexpected given the difficulty of matching the IR
and UV data without performing an all-order resummation.
The shaded yellow area in Fig. 2 shows the variation of ¢
between each truncated transseries solution.

>The values for ¢;(wy = 0.03) = {6.60119,-3.02976} cor-
respond to the UV fixed points, see Eq. (44).
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FIG. 2. Evolution of the nonhydrodynamic mode ¢; in terms of
w for the exact numerical result (red line), truncated transseries
solutions by adding n = 2 transmonomials to k = 1 perturbative
order (blue dotted line) and n = 15 transmonomials to k = 3
perturbative order (green dashed line) orders in the IR perturba-
tive expansion, respectively, Navier-Stokes (orange dashed line)
and NS + second order (magenta dashed line). See text for
further details.

Figure 2 shows that the perturbative series at first and
second orders does not match the numerical results for
small values of w. On the other hand, the truncated
transseries (31) where only a few transmonomials
(n =2, 5, respectively) were included is very close to
the exact numerical result. We note that some care has to be
taken in making such comparisons. Any truncated

transseries will potentially exhibit large deviations from
the exact numerical result in some range of w. This is due to
the growth of the inherent error associated with any type of
truncation scheme, see Appendix B. Any resummed
perturbative series with a few transmonomials has a finite
radius of convergence. The full transseries solution coin-
cides with the exact theory only when summing over all the
nonperturbative sectors of the perturbative series [54].

B. Transasymptotic matching: /=1 case

An interesting property of the IR transseries solution (31)
emerges when rearranging the terms close to the IR fixed
point. This procedure is known as “transasymptotic match-
ing,” and it is a well-known feature of transseries solutions
for a general class of differential equations [53,54]. In the
small w limit there is a one-to-one competition between the
exponentially decaying terms entering in the transseries and
the inverse powers in w. However, close to the IR fixed
point the instantonlike contributions are more suppressed
than the leading IR perturbative terms. It is in this regime
where one can indeed reshuffle and resum the small
exponential terms such that

c1(w)=[ugor & (W) + w018 ()2 -]
1
) o Gy o0+ a2 Gy () ]
1
+ﬁ[”§%+u520151( )+“<12[01§1(W)]2+“']+“'
+00
=) Gilo g (w))w™, (33)
k=0

with £} (w) = e™5"w™"1 and the transasymptotic functions
Gi(01{(w)) given by

le 0'1§ 14” 01§1 . (34)
=0

n

The transasymptotic functions Gy(o({(w)) effectively
resum the full set of instantonlike contributions at a given
order k in perturbation theory. Interestingly this matching
procedure is not only valid close to the IR but it extends up
to the UV, so in this sense it is transasymptotic [52]. Each
G (¢(w)) is an analytic, Borel summable and convergent
functions even if one truncates at a given order the IR
perturbative expansion Eq. (33). The full transseries sol-
ution (33) is not Borel summable due to the singularity of
the original differential equation (23a). This singularity can
be easily determined by taking the inverse Laplace trans-
formation of the ODE (23a) (cf. Ref. [32]). The trans-
asymptotic matching procedure coincides with the exact
solution of the ODE only when summing over all the
perturbative and nonperturbative sectors, i.e., k,n — oo in
the upper limit of the sums of Eq. (33) [52-54]. In general,
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a truncation of the perturbative expansion leads to a
solution with a finite radius of convergence.

In the large w limit the transasymptotic functions
Gii(01¢(w)) is uniquely determined by the coefficients
of the asymptotic IR expansion, namely

1im Gy (o1£(w)) = ul)- (35)
If one uses Egs. (25) and (27) for k = 1, 2 in the previous
expression one finds the following identities which relate
the transport coefficients determined from linear response
theory with the asymptotic regime of the function
Gii(01¢(w)) in the IR regime [30,31]:

3 .
g:‘ﬁﬁﬂaﬂ““””
Tne, — A 9 ..
JLT_Q:_%ngAmHM) (36)

Thus, the transasymptotic matching procedure automati-
cally allows us to generalize the concept of a transport
coefficient beyond the linear regime by promoting the
functions G;, to be an effective transport coefficient
[30,31]. For first- and second-order transport coefficients
we have, respectively,

G):_%cu@amx

{M} _ _%Gmaw»- (37)

As a result, a new physical picture for nonlinear transport
emerges: Summing over all the nonperturbative sectors at
each order of the IR expansion leads to an effective
renormalization of the transport coefficients. Each trans-
port coefficient exhibits a transient non-Newtonian behav-
ior while relaxing toward its asymptotic value in the IR.
This transient rheological behavior is described by a
dynamical RG flow equation. This result extends earlier
work in the context of the Boltzmann equation in the
relaxation time approximation [30,31]. We emphasize that
Egs. (37) are modified when including higher-order
moments as we shall explain in Sec. IV B 2.

Numerical results for the renormalized transport coef-
ficients in Eqgs. (37) are shown in Fig. 3. In order to obtain
these results we have to calculate the functions G, ; with
k= {1,2} using Eq. (34). In that expression the trans-

monomials are given by Eqgs. (31) and the coefficients u(I",Z

are numerically determined by solving order by order the
recursive relation (32). Figure 3 shows the w dependence of
the ratios between the dynamically renormalized transport
coefficient over its asymptotic value. The top panel shows
the shear viscosity over entropy density ratio, and the
bottom panel shows the second-order transport coefficients.

— g=31
- 0=0.54
- og=131

—
[=]

| | |
=2 e 2o 9
S-SR

L L B DAL UL L B

|
>
=)

[T/s(r,—AD]/ T/s(qpr,— A1)

|
N
3]

FIG. 3. Ratio of the dynamically renormalized transport co-
efficient over its corresponding asymptotic value as a function of
w for the [ = 1 case and for different initial conditions. Top and
bottom panels correspond to the ratios of (3/s),/(n/s) and
(T/s)(ntz — 20)],/[(T/s)(n7, — 41)]. respectively. See text for
further details.

The values of the transasymptotic parameters were
determined by fitting the transseries solution (31) truncated
at k = 3, n = 15 to the numerical solution of the ODE for
¢q (23a) computed for 6y = 1. The initial condition for c;
was chosen as ¢;(wy = 0.05) = {6.60119,0,—-3.02976}.
The corresponding best fit transseries parameters are
o =1{3.1,1.31,0.54}. Since the determination of the
transseries parameter was carried out by using a numerical
least-square fit [31,32] it leads to a highly nonlinear relation
between ¢ and c¢;(wy) so both parameters are not propor-
tional to each other.

Both panels illustrate that regardless of the initial
condition each renormalized transport coefficient reaches
its asymptotic value as it is expected from the properties of
transasymptotic functions G, in Eq. (36). On the other
hand, prior to the relaxation to the asymptotic values both
renormalized transport coefficients feature a transient phase
which depends on the deformation history of the fluid and,
thus, its rtheology. During this transient phase the transport
coefficients increase monotonically which is expected
mainly for two reasons: First, at the early stages the
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FIG. 4. Top: |vi|~"/¥ vs k for different values of (4z)y/s =
{2,4,6,8,10} for magenta, orange, green, blue, and red
dots, respectively. Bottom: Numerical value of the radius of
convergence vs #/s. In this case the UV perturbative series
expansion (45) is carried out around the UV fixed point

&7 = (25 -31/505)/14.

expansion rate is larger than the collisional rate such that the
effective transport coefficients get reduce compared with
their corresponding asymptotic values. On the other hand, as
the system hydrodynamizes, entropy production always
increases so transport coefficients do the same until their
values reached out their asymptotic values determined by
linear response. Clearly the transient phase is not universal
since it depends on the initial condition. However, one
observes that both ratios shown in Fig. 4 saturate their value
to the unity around w = 0.4. These results are consistent with
the ones shown in Fig. 2. It is important to mention that the
effective value of the renormalized transport coefficients
change when increasing the number of moments [30,31]. We
shall come back to this subtlety issue in Sec. IV B.

1. Dynamical RG flow equation

When the transasymptotic matching condition is
imposed over the entire domain of w, a set of nonlinear
PDEs for the functions G;, is obtained after inserting
Eq. (33) into the original ODE (23a),

N o 12
(=$1C+A(1))Gyx + (‘ﬁlC -k +7>Gl,k—l + 40

ky+ky=k X
1 "R ~ 40k
- g -S¢-—|G
20 2 [( 16 7 ) 1.k,

+ (=Bl =k + 5>G1,k,—1:| Gy,

o brtkaths=k

1:K2,K3=

where ¢ = (0/0¢ = 8/dlog¢. Solving these PDEs is
equivalent to summing over all fluctuation contributions
around the IR. More importantly, these PDEs can be
reinterpreted as RG flow equations for the transport
coefficients given the identities (36). This statement can
be rigorously proven within the gradient descent approach
to the RG flows of quantum field theories in the context of
dynamical systems, cf. [30,31,56]. Furthermore, a RG flow
picture from a global point of view holds for our original
dynamical system (22) provided the existence of an
effective potential for the ODEs, also known as the
Lyapunov function. Its mathematical existence is proven
in Appendix D.

Following Refs. [30,31] the ODE for ¢, in terms of the w
variable, Eq. (23a) can be rewritten as

dc
Tlogy = Ar(e1w), (39)
1 5 1
Bi(cr.w) =— _;(1){4+§Cl —gc%

2 2 1.
+ |:1+K+701+ISC%:|KWCI}’ (39b)

where & is given in Eq. (20). The previous equation is the
RG equation for the moment ¢; and the function (¢, w)
encodes the dependence on the RG time w. The variable
w~ Kn~! plays the analogous role of the energy scale in
Quantum Field Theory (QFT) since it determines the size
of deviations from the equilibrium state.

We can think of the fugacity {; as independent of w [87],
so that G ;(1¢;) can be regarded as a simple coefficient in
the transseries solution of c¢; (31). Then, the following
identity follows [30,31]:

ElGl,k(GICI)
1 wk—l
= —— wW——
2ri w1 (Slw + bl)

) {Zk/Gk’(GICI)W_kI +pi(ei(e1.w).w) |, (40)
K=0
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where we explicitly used Eq. (392).° The Cauchy integral
formula in the previous expression simply picks up the kth
coefficient of the term 1C1-

In order to determine the RG equation which describes
the transient behavior of the transport coefficients we
consider an arbitrary observable O = O(G| x(6:{;(w))).
Its change along w results in the following RG equation:

dO(G, (6,{1(w)))

dlogw
N 5 20
- _; [(b1 + Slw)é’lGl,k(Ulé’l)]@. (41)

The renormalization of the observable O is obtained by
solving the previous equation. In this equation the term
£,Gy 4(01¢,) is given by the identity (40) which encodes
the dynamics of the original ODE via the beta function f;
(39a). By setting O = —%G] and O = —89—0G2 in Eq. (41)
one determines the RG flow equations for the transport
coefficients /s and LM , respectively. We point out to
the reader that the RG ﬂow equation is sensitive to the
number of moments involved in any truncation scheme and
its more generic form is derived in Sec. IV B.

C. Transseries solutions in the UV

In the previous section we showed that perturbations
decay exponentially in the vicinity of the IR fixed point
(29). For an arbitrarily chosen ODE linear perturbations do
not necessarily decay exponentially in the neighborhood of
a fixed point. For instance, consider a parameter x € (0, c0)
and a function y(x) which satisfies a well-defined ODE
dy(x)/dx = L(x,y(x)). If this ODE has a source fixed
point y, in the limit x — 0, i.e., the Lyapunov exponent 1
close to y, is positive in this limit, then the solutions in a
vicinity around it behave as y(x) ~ e ~ >~® ;(1x)" in the
limit x <« 1. This approximate solution is a power-law
series with a finite radius of convergence which can be
extended by analytic continuation.

The stability analysis of the RTA Boltzmann equation
indeed showed that, in the limit when the Knudsen number
is large, that is in the w — 0 limit, power-law series
solutions for the Legendre moments emerge [31].
Similar findings were reported in [57-59]. The power
series expansion is rather different from nonhydrodynamic
modes in the gradient expansion (24). As we shall see in
this section the main differences can be inferred from the

®The ordinary derivative respect to logw was rewritten as

d N d
dlogw ~(br+ Siwer + Ologw’

In this loop integration, {; is temporarily regarded as an
independent variable on w.

behavior of linearized perturbations around the UV and IR
fixed points, respectively. The case studied here illustrates
the importance of the flow structure in phase space in
controlling the functional form of solutions for generic
dynamical systems of ODEs [32]. In the following we will
explain more carefully the emergence of the power series
behavior in the case of the Fokker-Planck equation.

1. Perturbative power series in the UV

The limit w — 0 of Eq. (23a) can be understood by
changing variables w — 1/z in Eq. (23). We obtain the
following differential equation for ¢(z):

dc
d_;:Fl(ChZ)v (42a)
1 1 5 1
F )=——F—— |- |4 +=c —= 2
9=z [ (450759
1 2K 28
= [ (1)e; +7c1 + 15c§”. (42b)

In the limit 7 - oo the dominant term in the previous
expressions is O(z7!). It is straightforward to see that the
fixed points correspond to the roots of the polynomial that
multiplies the O(1/z) term in Eq. (42b),

N | —
(oY}
—
1
o
—~
~
(8]
S~—

5
4426 —
+ 7 C
The UV fixed points are given by

6.60119 if+,
¢F = (25 +3V/505)/14 = { _ (44)
—3.02976 if — .

In analogy to what we did in the IR limit one can construct a
perturbative expansion in the limit z — co. We consider

@) =Y Uk (45)

= <

where v, = = ¢f. A similar power series expansion was
discussed in the case of kinetic models undergoing Gubser
flow in [29,32]. Inserting the UV series expansion in
Eq. (45) into Eq. (42a) we obtain the following recursive
relation for the coefficients v, ;:
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2
<7—k> V1 ot =481 = A1) vy 2

ky+ky=k

1
30 [(ky +3)v14, 11011
ky.kr=0
ypkitha=k=2 opkithathy=k=2
7 E U1k, U1.ky 1 E Ul,klvl,kzyl,h:ov
k. k=0 ky.ka k3 =0

(40)

where v, = 0 if and only if k < 0 and v,y = ¢7.

2. Stability analysis and radius of convergence

When performing asymptotic expansions it is important
to check the stability of the perturbative expansion. We
address this issue for the UV power series expansion (45)
by analyzing the linearized perturbations around it.
Linearizing Eq. (42b) around the UV fixed points, i.e.,
¢ = & +6cf, one finds the following evolution
equation for the linearized perturbations in the z — oo
limit:

d5cli 8F1
1 S + S + /.2
dz Oc - ct +O0(6ct /%)
8v/505 5(:1i
N— (47)
V505 F 85 2
The solutions are
det(z) = uia,
i 8505 —2.87516 if+,
o = = . (48)
V505 F 85 1.67278 if—

where uf is an integration constant associated with the
UV fixed points. The power-law behavior of the linearized
perturbations (48) is completely different from the behav-
ior in the IR limit (29). We note that the exponents ai do
not depend on the strength of the coupling, but they are
uniquely defined by the location of the UV fixed points. In
the limit z > oo the solution &ci = ptz7287316 (48)
follows a power-law decay. The linear perturbation dc7 =
u~ 767278 (48) monotonically increases. This divergence
implies that the associated fixed point only admits a power
series of the form (47) which can be extended analytically
as it is shown below. Alternatively one may say that the
initial condition p for the fluctuation around ¢} vanishes
exactly, and thus the only possible expansion around c7 is
a power series.

The formal power series in the z variable (45) has a finite
radius of convergence which can be estimated via the

Cauchy-Hadamard theorem’ [88]. We proceed to calculate
the radius of convergence of the power series expansion
(45) by considering first the expansion around ¢7. The case
around ¢ is analyzed separately at the end of this section.
The radius of convergence R_ is calculated by numerically
solving the recursive relation (46). In Fig. 4 (top panel) we
show the coefficients of the UV expansion |v;|~'/% vs the
order of the expansion k for different values of
(47)n/s = {2.4.,6,8,10}.* The coefficients |v;|~"/* stabi-
lize for k > 25-30. This result confirms that the power
series (47) has a finite radius of convergence. We analyze
its dependence on the value of 77/s in Fig. 4 (bottom panel).
This plots shows that R_ depends linearly on the value of
the shear over entropy ratio #/s. The empirical relation
between these two quantities extracted from this plot is

R_ =0.70515 (4#) +b_, (49)
S

where the intercept b_ > 0 is very small O(107%) and
consistent with zero. We verify the extracted numerical
value of the radius of convergence by increasing k up to
kmax = 100. We found that the relative difference between
the saturated bound |v,|~"/* for k = 25 and k = 100 was
only 0.1%.

The linear growth of the radius of convergence as a
function of #/s is intuitively understood as follows: If #/s
or, equivalently, the mean free path are large then the rate of
collisions is small. As a result the Yang-Mills plasma will
expand freely for a longer period of time. This finding
might provide an explanation for the partial success of
phenomenological models at intermediate scales of
momentum larger than the typical temperature where the
expansion is carried out in terms of a small number of
scatterings [89-93].

In general the radius of convergence of a power series
can be extended by analytical continuation [88]. The idea is
to consider a power series of the form

7According to the Cauchy-Hadamard theorem [88], the radius
of convergence R of the formal power series of a function f(z)
around the point a (with by, a € €)

is given by
R = [lim,,_,, sup.|b,|'/"]7".

The asymptotic value of /s and 6, can be established via
Eq. (27) which leads to the following identity:

n___ 6
s S+’

where we used explicitly Egs. (20).
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FIG. 5. Analytical continuation of the perturbative expansion

for ¢;(w) in the UV around the fixed point ¢; =(25-3+/505)/14.
We show the exact solution as we perturbative expansions around
the indicated values of w.

a0 = oy w— o) (50)
k=0

where both v, ; and wy € R, v, = ¢;(wy) and in this case
wo > 0. The coefficients v, ; are determined explicitly by
plugging Eq. (50) into the ODE (23a) and finding the
associated recursive relation analogous to Eq. (46) which is
now evaluated at w = w,. By construction the series (50)
has a finite radius of convergence R, so the series will
diverge outside of |[w —wgy| < Ry. One can thus expand
again the function at another point w; located within a
distance Ry — 6 (with 6 > 0) centered at w, and determine
the new coefficients of the power series. Successively
applying this approach one is extending the original power
series significantly beyond its original radius of conver-
gence R,. We apply this method to our solution by
initializing the expansion at wy, = 0 around ¢] and 0y =
1 (i.e., extremely low values of /s — 0). The agreement
between the exact numerical result and the analytical
continuation of the perturbative expansion in the UV is
truly remarkable, as shown in Fig. 5.

3. Resummation of the fluctuations around ¢{

The power-law decay of linearized perturbations dc; in
Eq. (47), together with the UV stability analysis, strongly
suggests a resummation scheme around the UV fixed point
Ef. The form of the equation in the z variable, see
Eq. (42a), resembles the corresponding results obtained
in the case of the RTA Boltzmann equation for Bjorken and
Gubser flows [31,32]. Following these approaches we
consider the following UV transseries ansatz:

S ol (51)

0 n=0

cp =
k

0

where the UV transmonomial is

op = z27E (2)]" i(z) = mz™, (52)

with @; = —2.86516. We note that, unlike the IR transseries
where fluctuations decay exponentially close to the fixed
point, the transmonomials &(z) (52) are non-negligible
close to the UV fixed point. For instance, the first
fluctuation term z% ~ 77237316 is comparable to terms of
order O(z73). This implies that the complete solution near
¢| requires a double summation, over both the perturbative
exponent k as well as the transmonomials (52) [31,32]. We
also observe that the approximate UV solution (51) has a
finite radius of convergence even after resumming the
fluctuations around ¢, [32]. Finally, in the UV regime it is
not possible to implement IR transasymptotic matching
(see Sec. III B) since the solution (51) is not valid for all
values of z given the finite radius of convergence.

The coefficients Uﬁ”,i in Eq. (51) are determined by
inserting this ansatz into Eq. (42a). We obtain the recursion
relation

2 n n
("0!1 —k+ 5) ”E,k-l — 46,001 — /1(1)”5.12-2

1n1+n2:mk1+k2:k (n1) (1)
n ny
E [(nyoy —ky — 3)”1,k1—1]vl,k2

ny,n=0 ky,ky=0

20

A Ny +ny=n k;+ky=k—2
_ ) (1)
7 Lk; “1,ky
ny,np=0  ky,ky=0
%" ny+ny+n3=n k| +ky+ky=k-2

-5 2 STl =0 (53)

ny,ny,n3=0 ky.ky,k3=0
For the UV transseries (51) the coefficients v% =¢{ and
the normalization of the integration constant is v(llg) =1

B

IV. TRANSASYMPTOTIC ANALYSIS: THE
GENERAL CASE

In this section we generalize the transasymptotic analysis
outlined in the previous section to the case when we
consider the full vector of Legendre moments ¢ =
(ciy...cr)T with L > 1. We briefly outline how to gen-
erate IR and UV transseries solutions for the nonautono-
mous dynamical system (23). The techniques presented in
the section were extensively discussed in [30-32], and we
will focus on issues specific to the Fokker-Planck equation.
More rigorous mathematical aspects of the techniques
outlined in this section can also be found in Refs. [52,54].

A. Transseries solutions in the IR

We seek to find multiparameter transseries solutions to
the ODEs (22) by following the generic procedure devel-
oped by Costin [52,54]. In the large w limit and for the
nonlinear ODEs (22) the Legendre moments admit IR
expansions of the form [30,31]
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»\»

(54)

By mathematical induction one can show that, by inserting
the expansion (54) into Eq. (22), and considering only the
linear regime of the ODE, then the leading large w behavior
of the moments ¢; is ¢; ~ O(w™") [30,31]. These results can
be used to linearize Eq. (22) by expanding around the IR
expansion (54), i.e., ¢ > € + 8¢ where ¢ = (¢,---Cp).
Here, each ¢, is given by Eq. (54). By keeping only the
leading terms O(1/w) we get the following linearized
equation for the IR perturbation dc:

d&c OF(c,w)
Z - ocy,
dcy ¢
8 A r
- - Pr |5
[ <x INORAET0) zo>} ¢
[A +— ?IB} ¢ (55a)
w
_ 8 - A r
W =X —-—— _— 55b
20 2 50 20 (55b)
where
Qi Qi
Q1 L Q13
9«
Qi Qoniz—r Qo
Qi Qi
(56)

We can check that the truncated / = 1 linear equation (28)
is a special case of Eq. (55). In order to solve the linearized
equation (55) we perform a transformation in terms of the
pseudomodes o¢ [52]
- - Vv
5¢ = V(w)ée, V(w) =1, +—, (57)
w
where V is a constant matrix. Thus, the equation of the
pseudomodes &€ is

%§:4mwp+$%ﬁwm*&@+0wﬁw>

:_[M

where the commutator [A, B] := AB — BA was introduced.
One can take diag.(V) = (0, ...,0), and the other compo-
nents can be chosen in such a way that one can diagonalize
the matrix 28 as follows:

%(%3 + [V, A])} 5¢(w), (58)

B+ [V,A]: > B := diag.(wy,....,,).  (59)
Therefore, the solution of Eq. (58) is
_ e—ﬂ(f)w e—ﬂ(zf’)w
8¢s(w) =0, = bcy(w) =0, e (60)

The Lyapunov exponents are the diagonal components of the

matrix A (18a). These exponents govern the rate at which
each mode relaxes toward its equilibrium value,
wi = [A(1)]~!. We observe that for larger value of / relaxation
is faster, and that there is a clear hierarchy of scales
wj > wj > --- > wj . For the FP equation the slowest non-
hydro mode is ¢; which is proportional to the normalized
shear viscous tensor component. A common misunderstand-
ing in the literature is to assume that the existence of this
hierarchy of scales determines immediately the full set of the
slowest degrees of freedom of the physical system. Recent
studies [31,68] have shown that this assumption is incorrect
since nonlinear mode-to-mode coupling among moments
plays a relevant role close to the forward attractor, and thus
the determination of the slow invariant manifold of the
dynamical system is not uniquely determined by the mere
existence of a hierarchy of scales [31,32] in Eq. (13). The
eigenvalue w, € R* of the matrix 2B is the anomalous
dimension of the linear perturbation dc;. Their values w,
depends explicitly of the coupling constant as well as the
truncation order L [30-32]; only in the limit L — oo do their
values coincide with the exact underlying microscopic
theory. We note that w, is not a universal constant. Its value
depends on the kinetic model and is sensitive to non-
linearities encoded in mode-to-mode couplings.

The general transseries solutions of the nonlinear
coupled ODEs (22) are constructed by rewriting these
equations in terms of the pseudomodes basis, i.e.,

¢ =V(w)e, (61)

where V(w) is given in Eq. (57). Under this transformation
the equation of the pseudomodes ¢ is

jfv (e, w). (62a)
Lo 1
S (s
x [ (& (e)E + T(w) + (A +D(e) + (e))e
A (62b)

where ¢; (w)=Y"k_, V1! (w)&;(w). We have denoted matri-
ces in the pseudomode basis by M(w) = V(w)MV~!(w)
and the vector I'(w) = V(w)I. Having determined the
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linearized pseudomodes (60) we can write the solutions of
the pseudomodes as multiparameter transseries

- S e,

neng k=0

(63a)

(63b)

n - mj e My ,—k ; e
q)k = HGJ C] w -, with é’] = W,

J=1

where n = (ny,n,,...,n;) is a vector where each compo-
nent n; is a non-negative integer which labels the non-
perturbative sectors of the pseudomodes, o; € C is the
integration constant, and L € N is the truncation order. The
term {; in Eq. (63b) must match the linearized solutions
(60), and thus it determines the IR data

The set of ODEs for the pseudomodes (62a) satisty the
asymptotic and regular conditions needed in Costin’s pre-
scription [54], and thus it justifies mathematically why the
exact solutions are indeed multiparameter transseries. Now,
given the solutions for the pseudomodes (63) one obtains the
|

(64)

ones corresponding to the Legendre moments c¢; as
follows:

(65a)

S der

=1 neNj k=0

k
3 SVE

£=1K=0

(65b)

The reality condition on the distribution function implies that
the Legendre moments c; are real. Although the solutions for
the pseudomodes ¢; (63a) are complex the reconstructed
transseries solutions of ¢; (65a) are real since the following
conditions are satisfied V j > 1 [32]:
(1) A(j) € R* [with 1; given by Eq. (18a)] and A(j) #
A7) for any j # .
(2) If §; € R* which implies 6; € R*.
(3) If p; € C then there should be a complex conjugate
pair f; = f; (j # k) which implies o; = 0.

Finally the coefficients ﬁ;nlz are determined by inserting the

transseries solution of the pseudomodes (63a) into its
corresponding Eq. (62a). As a result one gets the following
recursive relation:

m;+m,=m k;+kr,=k

—(m-S)a™ — (m-g+ha™ + 20 S Y (m-s)ya™ +

+(my -+ k)™l

m; m,=0 ki.k=0

+ {A + D(u) + 3(u)}*d)™ + [E(u)*ii + I

where ﬁ,(cm) and u,(cm) are coefficients of ¢ and c¢, respec-
tively, [¢ ]< ) denotes the coefficient for the basis @, which

can be projected out by the loop integrations as

d L d —my—1
a]((m) _j{ _W.Wk—l {H]{ ¢, ¢, - ]A,
|w|<1 2ri 201 g1 277,'1 oy’

with A=Y ia,ﬁm)cpgl, (67)

L e
meNj k=0

and x denotes the convolution product summing over m
and k, equipping the usual matrix-vector product as well,
defined as

a*bm g gak, T, ,

m'>0k' =
with A=)~ Zak oP, B=) Zb Jpm.
meN) k=0 meN) k=

Here, we replaced the ¢ dependence in the matrices with u,
and the multiplication between ¢ (and also w) should be

m 4 va™) =0, (66)
|
replaced with the convolution product. Notice that f,((m) is

nonzero when m =0 and k =0, 1.

B. Transasymptotic matching: General case

In this section we present the transasymptotic matching
condition for the multiparameter transseries solutions of the
dynamical system (22). The rigorous mathematical dem-
onstration of the generalized transasymptotic matching
condition can be found in Refs. [52,54]. In this general
case it is more convenient to use the pseudomode basis
defined in Eq. (61). Following the same arguments outlined
in Sec. III B the solutions of the pseudomodes ¢; (with
i=1,...,L) can be written as

=Y Gl (69)
k>0
with G, = Zu,k (Ha i ) (69b)

neNj
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The transasymptotic matching condition (69a) can be directly obtained from (66) by taking the summation of m after

putting [[5_, 6™¢™ in of the each terms, and it leads to the following first-order PDE for the functions
G, = (GOIwlew--’GL.k):
A . 1 3 kitko=k
—(5-0)G,— (B C"’k)Gk—l""%[Gl*(S ¢)Gi + 2 [Gl*(ﬂ OGlit + 20 Z kiGi,-1G1 g,
Ky =0
+[{A+9(G) + 3(G)}*G], + [X(G)*G + I, + VG, =0, (70)

where [¢], denotes the coefficient for the basis w=*, and *
denotes the convolution product summing only over k.

Notice that T', = f,({0>. The functions Gi,k depend only on
0,;¢;. The solution of this equation gives us automatically
the time evolution of any operator O(¢;) by including all
the transmonomials. If one increases the number of
moments it is not a trivial task to solve Eq. (70). In
principle, Eq. (70) is a nonlinear PDE which can be solved
provided a well-defined initial condition as well as a correct
choice for the eigenbasis (see Ref. [52] for technical
details). To the best of our knowledge, the only case
known in the literature where the transasymptotic matching
condition has been solved explicitly is the / = 1 case for the
RTA Boltzmann equation [30,31]. However, one can
always reconstruct the functions G;; from their definition

69)b) provided previous knowledge of the coefficients ftl(';g

which are determined via the recursion relation (66). The
information of the IR data is encoded in the integration
constants ¢; which in principle can be determined from the
UV data.

1. Dynamical RG flow equation: General case

In this section we generalize the procedure of the RG flow
equation when the number of moments c; is [ > 1. Consider
an observable O = O(c(w)) with ¢ = (cy, ..., ¢, ). Starting
from the original ODE for the moments ¢; (22) and using
Eq. (62a), one finds that the change of O along the
RG time w is

dO(c(w)) K[ 00
Togr 21: z; (b+wS) - &G, + kG %
Lo 00
= S 1

where F = VF being the matrix V the inverse of V~! in
Eq. (61) [see also Eq. (62a)] and ﬁ = wF. In the previous
dlogw = (b + wS) -€‘+%gw and we
denote £; = 8/d1log ¢;. The first line of Eq. (71) encodes the
scaling behavior of the observable O while the second one

encodes the dynamics of the nonlinear ODEs through f.
By solving this RG equation one sums over all the

equation we use that —%—

nonperturbative contributions of the multiparameter transs-
eries and thus determines the renormalization of O.

We are seeking a RG flow equation of the transport
coefficients so it is more convenient to consider that
O = O(G, ;). As aresult, the transport coefficients depend
intrinsically only on {(w). Thus, for this case the RG flow
equation of O reads as follows:

dO(Giu(w)) [ 50
" dlogw ;LZ;(‘HWS) €G,k] T (72)

At this level the connection with the beta function B is
highly nontrivial and thus, one must consider particular
cases like the [ =1 case studied in Sec. III B (see also
Refs. [30,32] for further examples).

2. Renormalization of first- and second-order
transport coefficients

From the results derived in the previous section we have
the tools to study qualitatively the effect of adding more
moments on the renormalized transport coefficients. In
general, it is proven that the asymptotic leading-order
behavior of the moments ¢; ~ O(w™). The perturbative
Chapman-Enskog expansion up to second order [78] leads
to the following asymptotic series expansion of the
moments ¢; and ¢, as follows [31,63,94]:

401n 801 T(m,[—ﬂl)_i_

Cl=—F————

97 g O(1/w?), (73a)

T 1
@M_2+@(1/W3).

73b
9 s w (73b)

Cyr =

If we now implement the transasymptotic matching con-
dition (69a) together with the asymptotic expressions of the
moments we conclude

T~ 1im Gy (ot (), (74a)
Lt = =120 1im (Gya(o2(w)) = Gaa(aE(w),  (74b)
Ly =25 1im (G a6t () + Gaalot(w).  (740)
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The previous expressions generalize the results derived for
the [ =1 case, Egs. (37). It is then straightforward to
implement the newly developed concept of nonequilibrium
transport coefficients when adding more moments as
follows:

(1) =-gGuteon. (s
(§72) == 1e5(Gralotln) = Gaslatle)). (750
(3 = 165(Gralato) + Gaaog ). (750

The RG evolution equations of the first- and second-order
transport coefficients are automatically determined by
using the previous expressions and replacing O — OF into
Eq. (72) where Of = ((n/s),. (T/s)nzz).. (T/5)41),)-
These equations also illustrate that the inclusion of more
moments indeed affects the values of the renormalized
transport coefficients. One can also determine the renor-
malized transport coefficient by solving the recursive
relation (66) and then reconstructing the multiparameter

transseries as it was done in Fig. 3. However, the anoma-

lous dimension f;, the coefficients ugf;{), and the integration

constants o; [see Eq. (31)] become very sensitive to the
number of moments added [31,32]. Furthermore, the
number of integration constants ¢’s increase so the uncer-
tainty to compare the IR and UV data becomes more
cumbersome [31,32]. The only terms that are insensitive to
the changes in the number of dynamical variables are the
Lyapunov exponents A(l/). In general, any truncation
scheme would lead to a multiparameter transseries with
a finite radius of convergence (see Appendix D in Ref. [31]
and Sec. 3.3. in Ref. [32]). A possible way to circumvent
this problem was proposed recently [95] where the ratio
between the inverse Reynolds number and the Knudsen
number was determined numerically.

C. Transseries solutions in the UV

In this section we derive the UV transseries solutions by
generalizing the results of Sec. III C 1. We show that the
linear perturbations of the Legendre modes c; around the
UV fixed point, which is a source, follow a power-
law decay. We begin by discussing some features of the
stability of the dynamical system of ODEs (22c¢) in the UV
regime.

Consider the w — 0 limit of Eq. (22¢) by first changing
the variable w = 1/z. We get

dc_

T =Fe.2), (76a)

é(%(c)c+F)+Z—12(/A\+2)(C) +3(¢))e].
(76b)

In the 7 — oo limit the dominant terms of the previous
equation are O(1/z). In this limit one can determine the
fixed points by solving the following equation:

X(c)e+I'=0. (77)

The solutions to this equation provides a set of vectors
¢ = (¢4, ...,¢;) which determine the UV fixed points of
the dynamical system. The solutions to Eq. (77) depend on
the truncation order /., so these are not necessarily real
and we need to impose the reality conditions. Furthermore,
the original FPE admits two UV fixed points for the
moment c;, which have the property that the transverse
and longitudinal pressures are minimized, ¢; =5 and
c; = —5/2, respectively. We call these configurations max-
imally prolate and maximally oblate, respectively. The two
UV fixed points act as bounds for the basin of attraction from
above and below along the c; ray in the infinite dimensional
space of the moments c;. Thus, any truncation scheme of the
distribution function can be considered a good approximate
solution of the Boltzmann equation if and only if the UV
stability properties are reproduced approximately. In this
case, the truncated dynamical system of ODEs should have at
least two UV fixed points for the moment c;.

In Fig. 6 we plot the real solutions to Eq. (77) for the
moment ¢; at the fixed points as a function of the truncation
order ., € [1,10]. We find that if /,, is odd then the real
solutions for ¢; come in pairs. As [, increases (for odd
values) the UV fixed points approach the expectation for
the original FPE, ¢, = {5,-5/2}. On the other hand,
there is only one real solution for ¢; if /[, is even.

lmax

FIG. 6. Distribution of the UV fixed points for the moment ¢
as a function of the truncation order /... Black and red dots
correspond to [, being either an odd or an even number,
respectively. Blue (¢, = 5) and brown (¢, = —5/2) dashed lines
correspond to the UV fixed points of the original FPE.
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These observations also hold for the UV fixed points of
higher-order moments ¢;. Thus, the standard idea of
obtaining a more accurate approximate solution to the
Boltzmann equation by adding more moments to the
distribution function is not necessarily correct. A good
truncation scheme must reproduce the flow structure of the
original Boltzmann equation in the IR and UV regimes.
Similar findings were reported for the RTA Boltzmann
equation [31,32]. In the rest of this section we will consider
the case that /,,, is odd.

In the limit z » oo we linearized Eq. (76) around a
particular UV real fixed point ¢, namely ¢ — ¢ + d¢, which
leads to the following equation for the linear perturbations:

d&c OF(c,w)
Z p) ocy
k=1 Ck Cr=Cy,
) 0
= lz-l x_ilL_l " O 0 <5_c>
% 5 : z
& 0 0
o
=%() - <—c> (78)
Z

where the matrix X is defined in Eq. (16a). Upon inspection
we find that Eq. (47) is a particular case of this linearized
equation for the perturbations. We introduce the linear
pseudomodes 6¢ = Udc so that U diagonalizes the matrix
Z(c),

with Z(¢) = diag.(t;,....1,). (79)

This procedure gives the equation for the linearized
pseudomodes

déc 1 -
¢ _ &) - se. (80)
dz 2
Its solution is
55[. = H[Zfi, (81&)
= 8¢; = W50, = U pwh (81b)

This result shows that close to the UV fixed points the
linearized perturbations have a power-law behavior which
is opposite to their IR counterparts (60). In general the
eigenvalue f; and the integration constant y;, as well as the
matrix element ;; are complex numbers. The reality
condition of the linearized modes is satisfied since the
coefficients of the polynomial eigenvalue problem of the

matrix ¥ are real, and thus, their complex eigenvectors and
eigenvalues come in complex conjugate pairs. When
summing over the complete eigenbases of pseudomodes
the linearized modes are real as expected. Moreover, what
happens in the vicinity of any UV fixed point ¢ along the
ray ¢; is encoded by the real part of the eigenvalues of the
matrix €, namely R(;). In the limit z — oo the linearized
perturbation 6¢; decays rapldly as a power law if R(f;) < 0
while 6¢; increases when R(t;) > 0.

In order to generate approximate UV solutions in the
limit z — oo limit it is convenient to rewrite the equations
of motion in terms of the pseudomode basis ¢; = U;;c;
[with UL given by Eq. (79)]. In terms of the pseudomodes
the nonlinear ODEs (76) read

fl—j =F(&.z2). (82a)
F(e,2) = | L (&(e)e+ )+ 5 (A +9(e) + 3(0))
( 20) < Z
(82b)

In the previous equation it must be understood that

= ZJL L uyl ; ¢;. The transseries ansatz solution is built
up based on the solutions of the linearized perturbations
(81). These solutions can be taken as the transmonomials of
the transseries which carry out the information about the
nonperturbative contributions. Therefore, in the limit

7z — oo the transseries ansatz is given by [31,32]

a@) =33 i e, (83a)
|m|>0 k=0
1/
or _?<Hff'>’ with & =pu;zli,  (83b)
j=1

where m € N, y; € C is the integration constant and L €
N is the truncation order. The UV data are determined by
matching the transmonomial &; with the linearized sol-
utions (81), and thus the anomalous dimensions ; entering
in the previous expression are the set of eigenvalues t of the
linearization matrix ‘i, Eq. (79), evaluated at the UV fixed
points €. A similar transseries ansatz was proposed for the
RTA Boltzmann equation in systems undergoing Bjorken
[31] and Gubser flow [32]. The solutions of the Legendre
moments in terms of the pseudomodes are given by

L 0 0
=D Upler =Y uel. (84)
I'=1

|m|=0 k=0

L
o) = 3 w; ™. (85)
r=1
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The coefficients 13512)
leads to the following recursive relation:

entering in the transseries ansatz are determined entirely by inserting Eq. (83) into Eq. (82) which

m; . m,=0 k;.k,=0

+ A+ D(u) + B(u)}xal™)

where x denotes the convolution product. The normaliza-

tion condition is chosen to be @f'(? = 1 when n; = §;; and

. ~(0 S
the coefficients Uz(o> = U,;,c; since one expands around a

ij*j
given UV fixed point ¢. In Eq. (86) V,im) and V,({m) are

coefficients of ¢ and ¢, respectively, and [,]]((m) denotes a
coefficient proportional to ¢}".

We emphasize that the transseries ansatz (83) is a
convergent series with a finite radius of convergence.
The rate of convergence depends on the anomalous
dimension a; = R(7;) governing linearized perturbations
o¢; (81). The lessons learned from the [/ = 1 truncation
studied in Sec. III C (see also Refs. [31,32]) show that the
power-law transseries solutions (84) can be constructed if
and only if R(7;) < 0. When R(7;) > 0 the best option is to
perform an analytical continuation while canceling the
transmonomial contributions in Eq. (83) by setting the
integration constant u; = 0.

V. UNIVERSAL ASPECTS OF ATTRACTORS FOR
DIFFERENT KINETIC MODELS

In the previous sections we analyzed the behavior of the
solutions of the FPE in both the UV and IR limits. In this
section we study universal aspects of the attractors in the
FPE as well as the RTA Boltzmann equation and the AMY
kinetic theory [60].

Following the approach of Refs. [95,96] we consider a
distribution function which is squeezed along the beam
direction at early time.” In this situation the initial longi-
tudinal pressure vanishes exactly, and thus this configura-
tion determines the pullback attractor of the distribution
function at early times [30,32]. Under this condition the
initial phase space distribution can be modeled as [95]

dN,

_— 87
ded*prd*xy (87)

fO(TO’ Prs pg) = (2”)35(pg)

For the RTA Boltzmann equation the form of the initial
distribution function does not play a major role. However
different processes of Yang-Mills plasmas, i.e., elastic and
inelastic interactions, affect the parametrization of the momentum
distributions [97,98]. In our approach these effects do not play a
role at the level of the moments since the free streaming
expansion dominates at early times over the collision rate of
the FPE as discussed in Sec. IV C.

+ [E(u)xd + )™ =0, (86)

The normalization constant is chosen such that the initial
energy density per unit rapidity per transverse area is
constant

dE,
dgdz(;(T = limzpe(z) = (ze)o = const.  (88)

The initial distribution function determines the initial
conditions for the Legendre moments

T(1+1/2)

ce = @+ DD T

(89)

Previous studies [86,96] have shown that universal behav-
ior of the numerical solutions can be by analyzed in terms
of observables that are less sensitive to the initial con-
ditions. Following Refs. [95,96] we study the following
observable:

_ Be(r)
(674/3 ) hydro

(7% ) pyaro = limz*3¢(7). (90)

’

We will analyze this observable as a function of the
variable w = tT(z)/[(47)n/s]. In terms of this variable the
results are insensitive to the strength of the coupling.
Equation (90) has two interesting limits in the forward
and pullback attracting regions. The former is described by
a few terms of the nonhydrodynamic expansion [86], while
the latter is determined by expanding around the UV fixed
point where the longitudinal pressure vanishes [96],

Clw*? (pullback attractor),

91
1 =21 (forward attractor), ®1)

E(w) = {

3zw

where the constant C,, is determined from Eq. (51) in
Ref. [95]. Alternatively one can determine this constant by
fitting to the numerical data. We verified that both methods
lead to the same approximate value for this constant, see
also [95,96].

We numerically solved the evolution equations for the
Legendre moments, Eqs. (14) and (21), respectively,
together with the conservation law (14a). The solutions
for the Legendre moments c¢; were obtained by truncating
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FIG. 7. Evolution of the normalized energy density (90) vs
w = 1T(7)/[(47)n/s]. We show the numerical results obtained
for the FPE (dashed blue line), AMY-YM Kkinetics (red line), and
RTA Boltzmann (dashed green line). In addition we present the
universal hydrodynamic behavior (dashed orange line) and early-
time free streaming (dotted gray line).

the expansion at [ < [, setting ¢; =0 for [ > [,,,. This
method converges rapidly and no sizable deviations are
observed for /., = 35 for both the RTA Boltzmann and
FPE equations. In the case of the AMY-YM(Yang Mills)
theory we used publicly available numerical results'
[96,99,100].

In Fig. 7 we show numerical solutions of £ as a function
of w for the RTA Boltzmann equation (dashed green line),
FPE (dashed blue line), and AMY kinetic theory (red line).
The general behavior of the different kinetic models is quite
similar. They all exhibit a smooth transition from early-time
free streaming to universal late-time hydrodynamic behav-
ior. Deep in the UV regime the expansion (dashed gray
lines) dominates over collisions regardless of the under-
lying collision kernel, and the pullback attractor is deter-
mined by free streaming expansion. A more surprising fact
is that the interactions modify the expansion for similar
values of w=0.08, i.e., at a large Knudsen number
Kn ~12.5, independent of the underlying microscopic
theory. We note that the existence of a pullback attractor
is manifest only in the w variable. In the original proper
time variable 7 the limit 7, — 0 is not well defined because
the ODESs have an essential singularity at this point [31,32].

In the UV regime the main difference among the kinetic
models depicted in Fig. 7 is the values of the constant C, =
{0.98,0.91,0.89} for the AMY-YM, FPE, and RTA mod-
els, respectively. These values allows us to quantify the
difference among the predictions of RTA and FPE with
respect to the AMY-YM model. The former differs by
~10% while the latter ~8%. It is somewhat surprising that a
relatively simple approximation such as RTA captures

“The numerical data obtained in [96,99,100] are available at
[101]. We thank S. Schlichting for directing us to this site.

many aspects of the nonequilibrium dynamics compared
with AMY-YM Kkinetics. This observation was also noticed
previously in [95,96].

In the IR regime we observe in Fig. 7 that all kinetic
models reach the nonhydrodynamic behavior and thus, the
forward attractor is encoded by the late-time nonhydrody-
namic expansion. All the kinetic models reach the asymp-
totic hydrodynamic gradient expansion around w = 2, and
thus Kn =~ 0.5 so the deviations from equilibrium are quite
large. This finding implies that one can reach the non-
hydrodynamic behavior without having local thermal
equilibrium.

Given that we find forward attractors for a number of
different kinetic equations, one may ask how general this
feature is. In Appendix E we discuss a sufficient set of
mathematical conditions which ensure its existence for
weakly coupled boost-invariant systems with highly non-
linear collision kernels beyond those studied in this work.

VI. DISCUSSION AND FINAL REMARKS

In this work we studied the hydrodynamization of a
boost-invariant system of gluons described by kinetic
equation derived from QCD in the small-angle, diffusive
approximation. We demonstrate that the physics of the
Fokker-Planck equation can be recast in terms of a set of
nonlinear ODEs for the Legendre moments of the one-
particle distribution function. We show that these kinetic
equations admit transseries solutions in both the UV and IR
regimes. These findings extend previous results obtained in
the context of the Boltzmann equation in the relaxation
time approximation [30-32].

We employ techniques from the theory of nonlinear
dynamical systems. Applying these methods to the kinetic
equations we investigate the stability properties of linear-
ized perturbations around the IR and UV fixed points. We
analyze the emergence of transseries solutions and show
that their functional form is a rather natural consequence of
the stability properties of the nonlinear ODEs around the
UV and IR fixed points, respectively.

In the IR regime we prove that the solutions of the
moments equations are multiparameter transseries. The
associated transmonomials are built up using the behavior
of linearized perturbations around the IR fixed point. These
perturbations involve the product of an integration constant,
an exponentially decaying term, and a power-law term. The
exponentially decaying term determines the rate at which
linearized perturbations decay near the IR fixed point. This
decay time is controlled by the product of the Lyapunov
exponent and the inverse Knudsen number. These terms
play an analogous role of instantons contributions in QFT.
The IR transseries effectively resums nonperturbative
dissipative contributions that are absent in the usual
perturbative gradient expansion. These results strongly
suggest that a consistent formulation of nonhydrodynamic
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theories in far-from-equilibrium regimes requires the inclu-
sion on nonperturbative physics.

In the IR regime the constitutive relations of each
Legendre moment c¢; contain the nonperturbative informa-
tion encoded in the multiparameter transseries. The result
suggests a nonperturbative dynamic renormalization
scheme which goes beyond standard linear response theory.
In this theoretical framework, transport coefficients can be
defined in far-from-equilibrium regimes when the Knudsen
number is large. At each order of the perturbative IR
expansion, transport coefficients are dynamically renor-
malized by nonperturbative corrections in the transseries, a
method known as transasymptotic matching in the resur-
gence literature. This approach has a nice interpretation in
terms of a RG flow.

From the physical point of view, the renormalized
transport coefficients depend on the rheology of the fluid.
They describe the relaxation of dissipative coefficients to
their values dictated by the linear response approach. Thus,
the fluid experiences transient non-Newtonian behavior
prior to hydrodynamization.

On the mathematical side, we explored the relation
between dynamical systems and RG flows. Indeed, it is
known that the field theoretical RG flows may be discussed
in the framework of autonomous dynamical systems
[55,56]. Our work shows that this link can be extended
to nonautonomous systems that hydrodynamize, where
time plays the role of scale parameter. In other words, a
nonautonomous dynamical system can be considered as a
RG flow equation provided there is a slow invariant
manifold, i.e., when the long-time physics is dominated
by slow degrees of freedom [32]. In the case studied here
and in [30-32] the invariant manifold is shown to exist if
the IR perturbations go to zero in the long-time limit, a fact
that points to the existence of a forward attractor. In
particular, there are bounded solutions at w — oo or 7 —
oo for a fixed initial time that approach the equilibrium
point. For expanding systems such as Gubser flow [29,32],
the system is completely perturbative so that full hydro-
dynamization does not occur. Therefore, there is no slow
invariant manifold, which in turn explains why the RG flow
paradigm for the transport coefficients is no longer
available.

In the UV regime the nonlinear ODEs for the moments
admit transseries solutions with a rather different behavior
compared to their counterparts in the IR limit. These
solutions are power series with a finite radius of conver-
gence. The radius of convergence R grows linearly with the
shear viscosity over entropy ratio #7/s. The linear relation
between R and 7/s provides a rather simple explanation of
previous numerical findings [72,75,76,102—108] where it
was noticed that initial conditions close to the maximally
oblate UV fixed point converge slowly to the forward
nonhydrodynamic attractor than the ones located in the
vicinity of the maximally prolate UV fixed point. The latter

is a saddle point for any viable truncation (e.g., if the
truncation bound for / is odd) and it is found that there is a
set of solutions for the Boltzmann equation that remain
bounded near this point. In contrast, the maximally oblate
UV fixed point is a source from which flow lines are
streaming away in wy — 0 for a fixed w, meaning that there
are no attracting regions to probe in the past of the
dynamical system around this fixed point.

We show that the validity of the power series expansion
can be extended by analytic continuation. As an alternative,
we also introduce a new resummation scheme which
accounts for the nonperturbative physics of the power-
law behavior of the fluctuations around the UV fixed
points. We note that the UV stability analysis also unveils a
nontrivial aspect of truncating the moment expansion in
relativistic kinetic theory: In order to preserve the UV
structure of the original kinetic equation for Bjorken flow
we have to include an odd number of Legendre moments
L =2n+ 1 moments in the n — oo limit.

We discussed the general properties of the IR and UV
regimes of the Fokker-Planck equation in comparison to the
RTA Boltzmann and AMY kinetic equations. The pullback
attracting region is entirely determined by the free stream-
ing limit where the longitudinal extent of the distribution
function is negligible. The attracting region in the long-time
limit corresponds to hydrodynamization and can be char-
acterized by a few terms in the gradient expansion. There
are, however, minor differences between different models.
We find that the RTA and AMY differ by at most 10%
while the latter disagrees by up to 8% with the FPE result.

The techniques presented in this work are not necessarily
restricted to far-from-equilibrium systems undergoing
longitudinal boost-invariant expansion. Indeed, these meth-
ods can be applied to describe nonequilibrium dynamics in
other physical systems of relevance such as cold atoms
systems, condensed matter, and cosmology.
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APPENDIX A: EVOLUTION EQUATIONS FOR THE LEGENDRE MOMENTS ¢,

In this Appendix we briefly describe the main elements to derive the evolution equation for the Legendre moments c;.
Some important identities of the Legendre polynomials were used and are explicitly listed at the end of this section, see A 1.
The equation for the temperature is obtained from the conservation law which in our case reads as

%+%@+m)—o:igﬁ——%?<r+%q@0, (A1)

where we used explicitly the matching condition for the energy (12a) with ¢y = 1. In order to obtain the equations for the
Legendre moments ¢; we multiply first both sides of the FPE (1) by || (- p)?Py(cosB,). As a result we get

/ (_” : p)2P2l(COS ep)arfp = lleb/ (_u : p)ZPZI(COS ep){vp : [j(T)fop + ,C(T) pr(l +fp)]} (A2)
P P p

Now we equate in the previous expression the ansatz (8) into the previous expression. In the lhs of Eq. (A2) one simply gets

—+00
/p (=t~ p)*Pas(cost),) afg; D) _ /p (=u- p)*Pas(cos0,) LZO <dCZT(T)P2ﬂ(COS 0p)feq(7.P)
+cp(7) Wﬂq(ﬁ p) + cp(t)Pyp(cosb,) w>] ,
~ D e+ (8- e et + S ] 43

where we used explicitly the conservation law for the temperature (A1). In the previous expression the coefficients ;, B;,
and G, are, respectively,

26 -1)(2¢+1)(2¢ +2) 2(14¢* +7¢ = 2)

B _2£4(2¢ - 1)(2¢ +2)
(42 +3)(4+5) 7 @ -1)(4¢ +3)

’ £ (e =-3)ar-1)

Qlf - - —g (A4)

The calculation of the momentum integrals in the rths of Eq. (A2) simplifies if one replaces the ansatz (8) in the definition
of the integrals 7 and K, Egs. (3), i.e.,

3 T 3 +o ﬂz _
760 = [ s+ s =5 (2 + Y S (Asa)
[ fen) T
K@)g/nﬂ3 BT (A5b)

where {(n) is the Riemann zeta function and the Landau matching condition for energy density (12a) was explicitly used.
In order to perform the momentum integrals in the rhs of Eq. (A2) we change the variable p, = p./7. This

. . d*prdp, ”) : 2 2
results in changing the momentum measure ——— — d°prdp, as well as the comoving energy p* — p = /pr~ + p.

Furthermore, this change of variable allows us to write the spatial components of the momentum as
p' = p(cos¢,sinb,,sing,sinb,,cosd,). For instance, one of the integrals in the rhs of Eq. (A2) gives us

3

/p (mu- p)*Py(cos6,) V31 (z.p) = / (‘2’7’;3;71021<cos 0,)

? 20 1 0

— - 7 4 in2
% [apZ + pop + p>dcosh, -

9”800591, f(z.psing,, pcosb,)

= g 2+ 1) = 1e(). (A6)
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In the previous expression we make explicit use of the Bjorken constraints over the total distribution function, i.e.,
fo = [z, ) = f(z.psin,, pcos @) after the aforementioned change of variable is carried out.
The remaining momentum integral in the rhs of Eq. (A2) reads as

/ (- pPa(c0s0,)9 -2 Flrp)(1 + £(r.)
|

T(T)3 2 |m—n|=¢
=————12{(3 — =2 Q A7
et X0+ (520 S Smenan], (A7)
where
_ _p 0, 47+ 1 20— 1)
Qfmn _ Xn—n+PXnt+m—¢ En—m+¢ . + , with a, = ( ) ) (AS)
At 2n+m+2)+1 !

By equating Egs. (A6) and (A7) together with Egs. (AS) into the rhs in Eq. (A2) we finally get

[ prpateosopicis = - 12N (2000 +f;‘6c“ W(07) (€02 + 1) = g0

p r (42 + 1)6, +1)
(©e e
et [0k + (5-20) Y Caene] @9

with g5 = 857/1%,”,1@. Thus, by putting together the lhs (A3) and rhs (A9) of Eq. (A2) we get the following evolution
equations for the Legendre moments c¢;:

dey(7) _ _% |:2[fcf+l( ) + (235 —361( )) co(7) + chf—l(f)]

dr 15
; 2 |m—n|<£ +o0 _
16 H”@}W 53 Qo) +K;%cmw .

After some redefinition of the variables and writing them in a matrix form one gets Egs. (14).

1. Some useful identities of the Legendre polynomials

In the previous section we used explicitly the following identities of the Legendre polynomials:

(" n+§_1 R AL ? k k
P — on 1 o 1 N
Y ;;(k)( " >x 2nk0<k> (o= e+ 15, (A10a)
P,(x)P,(x) Minim} Ayt QO 2(n+m—2k) + 1 » ® " (2 — 1)1 .
n\X) (X)) = . P (). with a = 2R DR
k=0 Xyt m—k Z(n +m — k) + 1 +m—2k ;i 0
+1 )
/_l d.xPZn(x)sz(-x) = m&n’m, (AIOC)
+1 u . . ,
AxPoy (X)Pom (X) P = ot Cnbm o m Alod
/_1 P - 2in+m+2)+1 (A10d)
v " P Al0
o) = (42 -1)(4c +1) 2e2(x) + (47 —1)(4¢ + 3) 20(x) + ( )(4f-|- 3) 2042(X), ( e)
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0
i, ——— Py, (cos 0
dcos b, s P dcos o, 2¢(¢030,)

= —2£(2¢ + 1)Pyy(cos0,). (A10f)

APPENDIX B: ON THE INHERENT
EXPONENTIAL ERROR

We conclude this section by estimating the error made
when truncating the transseries solutions based on super-
and hyperasymptotics [51]. In Sec. III A we observe a good
agreement between the numerical results and the IR
transseries solutions (see also Refs. [30-32]). Naively,
one might think that a better agreement between the
transseries and the numerical results can be obtained when
adding more transmonomials and/or higher orders in the
transseries. Nevertheless, this is not the case since in our
case the radius of convergence of the transseries is
finite [31,32].

Consider the truncated IR asymptotic expansion of the
Legendre mode ¢, i.e.,

Jwok + O(w K1), with KeN, (BI)

where K is the order of the truncation. The IR perturbative
expansion (24) is asymptotically of Gevrey-1 class (see
discussion in Sec. III D of Ref. [31]). Thus, the asymptotic

form of the coefficients ”(1?12 entering in Eq. (24) are

M(0))S™ P (k—p) as k— +co, (B2)

el ~
where M (@0) = Moég‘ (M, € R) is an overall factor that
depends on the angle 90 defined in the Borel plane. The
function K,,(w) which optimizes the error between the

asymptotic series and the exact solution can be calculated
by evaluating the convergence rate as follows:

0 _ 0 e
W > [ul®, W = k< Sw+p (B3)

= K,(w) =

[Sw+p1]. (B4)

where [¢] is the floor function. Thus, the induced error
Ry (w) in the truncated expansion (B1) is

RKOP(W)
~M(0p) S~ K P (K, = fy + 1w Kot D)
~M(0p)T(Sw+1)(Sw)™"S~'w =1 (K~ Sw+p))

~V27M () (Sw) ™ PwPreS" as w— 4o, (BS)

where we used Stirling’s formula for the last line. Clearly, this
estimate depends on the asymptotic behavior of |u,((0)| (B2).

In that case if k < K, the error is small when |u,((0)| behaves
like in Eq. (B2) and depends explicitly on w. Thus, when
adding higher orders k > K, to the truncated expansion
(B1) the mismatch between transseries and the exact solution
increases. The situation gets more worrisome when solving
the general dynamical system (14). In this general case, the
leading-order perturbative contribution to c,(z) = O(37)
[31]. As a result, the disagreement between the multipara-
meter transseries and the numerical solutions of the Legendre
moments c,(7) is larger and expected if £ > K. This was
precisely what some of us observed and extensively dis-
cussed in Refs. [31,32].

APPENDIX C: IR TRANSSERIES SOLUTIONS IN
THE PROPER TIME 7 VARIABLE

In Secs. III and IV we studied in detail the resurgent
properties of the nonlinear ODEs (23) in terms of the w
variable. However, one can also analyze the original
dynamical system in terms of the variable 7 as it was done
for the RTA Boltzmann equation [30,31] for the detail. For
completeness we present this analysis in this section.

The IR fixed points of the Legendre moments are
¢, =0V >0, namely c,(r) >0 as 7 — +oo0. From
Eq. (14a), one obtains the exact formal solution of 7'(z), i.e.,

T(z) = op(or7) 3 exp [—% / %cl(f)]

o _
::%I—/TZ(I +7(2)), (C1)
where 67 € R™ is the integration constant with dimensions
of energy and 7 = (o,7)%/3."! Notice that 7 is dimensionless
and guarantees the scale invariance of ¢, in the w coordinate.
In addition, in the second line we expanded asymptotically
the solution of ¢; while satisfying that 7(z) — 0as? — +oo.
By substituting the solution (C1) into Eq. (14b), one obtains

""The integration and the series expansions are commutative
with each other up fo the value of integration constant determined
from a given initial condition in general. In this sense, the value of
or in a transseries is individually determined for each fixed point
from a given initial condition.
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]
Folert) = =5 [Uecra(®) + (Be - 2 (0) o) + Grerms )
[m—n|<¢ +00
- . . R Re-1e+1) o, .
—(14+T(1)|A(f)cy () + & QpunCm(T)c,(T) + & —————2¢,(T)7cy(7)]|. Cc2
1+ TE) (A0 5 3 Lmen(®en(®) +2) Pl e ored]. @

It is straightforward to find that c,(z) = O(37%) by considering the asymptotic behavior of the solutions of Eqgs. (14). For
instance, one obtains that ¢, and T behave asymptotically as follows:

3¢, 4 - 1 [dz 1
T ~ — = — T 7 ~ —_—— _ T ~ —
)~ =380 = T AR (2) 20/ 70~ ~53m% (©3)
As we proceeded in Secs. III and IV we rewrote the nonlinear ODEs (C2) in a matrix form, i.e.,
d
d—; — F(c.?), (C4)
where
c(?) = (c;(®),...,c.(?)T, (C5a)
. 1 . = .
F(c,?2) = ~ [X(c)e(®) +T] - (1+TE%)[A+Y(c)+ 3(c)]e(?). (C5b)

The matrices entering into the previous expressions are defined in Egs. (16a) and (19). In order to build the transmonomials we
linearized the dynamical system (14) around the IR fixed point,

it _§Ore)

dz — Ocy
01(%)
[ 1/ 49 A 1 0
=—|A+-(X-—————)|6c(?) —=6 O(cde /%, 5¢ /72
_ +%<I A 5A(1))] c(?) 3 2 + O(cde/z,6¢/7%)
0
-
=- A—i—;ﬁﬁ]éc(%)+0(c5c/%,5c/%2), (Co)
T
where
_ 4 A
= - (2 I
W®m ¥ A(1)<2)+20>, (CTa)
2 %
Zmzlglmlécm(f) 0 0 Qi Qi
: : : Qy11 Qopp Q13
69 (5¢) =k o Qube,(7) 0 - 0|, 9=k . (C7b)
: : : Q1122 Qr-11z-1 L1z
LAl Qumbc,(3) 0 - 0 Qrizo1r Quir
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In order to find the behavior of the fluctuations close to the IR
fixed points it is needed to solve the eigenproblem for the
matrix 28. Following Costin’s prescription [54] we introduce
the matrix V as follows:

8¢ = V(2)de,

V() =1, + Vel (C8)

Thus, the linearized equation Eq. (C6) is modified as

V(2) {A + iiﬁ] V(2)7168(2) — VV(2)~'4726€
- —{ LBV, A])]&c( )+ 0(5¢/22),

where the commutator between two matrices is denoted as

wheren € NX, 6; € Cis the integration constant, and L € N
is the truncation order of #, namely 1 < ¢ < L.

APPENDIX D: ON THE EXISTENCE OF THE
LYAPUNOV FUNCTIONAL

In this section we present a proof of the existence of a
Lyapunov function for the dynamical system of ODEs (22).
Roughly speaking, Lyapunov functions are positive defi-
nite functions which are monotonically decreasing along
the trajectories of the flows in phase space. These functions
are used to determine the stability properties of ODEs and
PDE:s. In the RG flow approach to dynamical systems the
Lyapunov function plays an analogous role of the c¢
function in QFT and/or the dynamical effective potential

[A, B] :== AB — BA. One can take diag.(V) = (0,...,0),and  in non-Newtonian mechanics. For a nonautonomous
the other components can be chosen such that dynamical system, the existence of the Lyapunov function
_ R allows us to identify the dynamical system as a RG flow
W+ [V, A]: = W == diag.(wy,...,w;).  (C9)  from the global point of view.
) o In our approach the existence of the Lyapunov function
Therefore, the solution of Eq. (C9) is given by is inferred directly from the dynamical system of ODEs
R (22). First, we promote this nonautonomous dynamical
52,(3) = o e MO = Se,(2) system to an autonomous one of one dimension higher by
‘ T ‘ introducing an ODE for w in terms of a new flow time p as
AR R follows:
=0, + O(e MO jpmetl), (C10)
de(p) oV

From the solution of the linearized fluctuations, the transs- dlogp plelp). wip)) = By (D)

eries takes the following form:

dw(p) 2%

+00 +oo dlogp_ﬂW( ( )) E_%a (le)

=D D ufier.
n|=0 k=0 where in the ths of the previous expressions we introduce
L. e=Sit a positive definite differentiable function V. It is straight-
O} = (H ¢ j])%_k’ {j=o0; ot (C11)  forward to show that the function V' decreases monotoni-

j=1 cally, i.e.,
dV(e(p XL: de; OV(elp).w(p)) , dwlp) IV(e(p).w(p))
dlogp — dlog/) 86 i(p) dlogp ow(p)
L

[ e
i=1

Therefore, V satisfies the properties required to be a
candidate for the global Lyapunov function of the
dynamical system (22) [see Eq. (B9) in Ref. [31]].
Although we have proven its existence for the studied
case here, it is in general extremely difficult to calculate
the exact Lyapunov function (cf. [29]) and this is beyond
the scope of this work.

P)IP + 1Bu(c(p). w(p)?| <0. (D2)

[
APPENDIX E: EXISTENCE OF THE FORWARD
ATTRACTOR AND HIGHER NONLINEARITIES

OF TEH COLLISIONAL KERNAL

In this section we outline the generic conditions that
ensure the existence of a nonequilibrium forward attractor
for systems undergoing Bjorken expansion described by
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relativistic kinetic theory within different approximations
for the collisional kernel. Right now we have strong
numerical evidence of this type of attractor for systems
undergoing Bjorken expansion described microscopically
within the relativistic kinetic theory framework and for
different types of collisional kernels [12,45,48,58,59,63,
94,96,99,100,109-118].

Let us assume that the distribution function can be
expanded around the thermal equilibrium while the devia-
tions from this state are written in terms of a set of Legendre
moments like in Eq. (8). The conservation law is the same
for any physical system regardless of the collisional kernel
(14a). On the other hand, the dynamical system of ODEs
for the Legendre moments must satisfy certain symmetries
given the constraints of the Bjorken flow. In this case, the
dilation 7 — yz (being y a constant) together with the
conformal dimensionality of the Legendre moments and
the temperature (A, A7) = (0,1) restricts strongly the
form of the differential equation. In addition, and given
the results outlined in Fig. 7, one can assume that the small
7 limit is dominated by singular terms which go like O(z!)
such that the collision of kernel is O(z°). Thus, the generic
equation which satisfies these constraints is written generi-
cally as'?

dz(:) — F(c,7), (Ela)
Flc,7) = —% X(c)e(r) + 1] = G(e,T,7),  (EIb)

where the terms entering into the matrix operator
X(c)e(r) + T are given by Egs. (16a) and (18b), respec-
tively, while G(c) is a generic function determined
uniquely by the collisional kernel. This function depends
on the moments, proper time, and temperature and its
generic form must respect the symmetry restrictions
mentioned above. Thus, the following general form of

G(c) is

G(c)zfjfj Z g,ii;"""””Th*‘rhﬁcfn,, (E2)
h=0 n=1¢,>->¢,=1 =1

"If one can consider a more general ansatz which encodes
information about the high energy tails like the one taken in
Ref. [45], one gets a set of nonlinear ODEs which mathematically
resembles our general ODE (El).

where H € Ny and N € N. In addition, g%‘l;l“’f") €Risa

dimensionless coefficient.” The dynamical system of
ODE:s for the RTA Boltzmann (21) and FPE (14b) cases
are a particular case of the previous expression.

Our transasymptotic analysis discussed in this work and
in Refs. [29-32] shows that the existence of the forward
attractor is ensured if the following conditions are satisfied:

(1) If the fixed point equation for the long-time limit

given by

has a trivial solution, i.e., ¢ = 0, then the IR fixed
point corresponds to the local thermal equilib-
rium state.

(2) If the eigenvalues of the matrix gg‘l), around ¢ =0
are all positive, then the fixed point gives a (local)
forward attractor.

(3) Incase there is a subset of either exactly vanishing or

positive eigenvalues of the matrix gg'l), then there

exists a sub(local)forward attractor I in the phase

space of dynamical variables (¢, T, 7) space. In this

case, dim[I] = L +2 — p where p is the number

of zeros or negative eigenvalues. In the (c,w)
space, dim[2A| =L + 1 — p.

(4) In addition to the previous conditions, if H = 1, then

the transmonomials in the transseries are of the form

(31b) like in the RTA and FPE cases, respectively.

On the other hand, the pullback attractor will be determined

by the term O(z~!) in Eq. (E1). Notice however that in the

most general case it is not necessarily ensured that there is

only one invariant flow (generally dubbed as “attractor

solution”) that connects the UV and IR. A more careful

analysis needs to be made by considering techniques based

on Morse theory, cf. [32], and center manifolds [38,39] if

there are vanishing eigenvalues for the collisional kernel.

13gg11) is the linearized version of the collisional kernel in the

eigenmodes and it corresponds to an L-by-L matrix of the form

gl =1 : | (E3)
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