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We investigate the nonlinear transport processes and hydrodynamization of a system of gluons
undergoing longitudinal boost-invariant expansion. The dynamics is described within the framework of the
Boltzmann equation in the small-angle approximation. The kinetic equations for a suitable set of moments
of the one-particle distribution function are derived. By investigating the stability and asymptotic resurgent
properties of this dynamical system, we demonstrate, that its solutions exhibit a rather different behavior for
large (UV) and small (IR) effective Knudsen numbers. Close to the forward attractor in the IR regime the
constitutive relations of each moment can be written as a multiparameter transseries. This resummation
scheme allows us to extend the definition of a transport coefficient to the nonequilibrium regime naturally.
Each transport coefficient is renormalized by the nonperturbative contributions of the nonhydrodynamic
modes. The Knudsen number dependence of the transport coefficient is governed by the corresponding
renormalization group flow equation. An interesting feature of the Yang-Mills plasma in this regime is that
it exhibits transient non-Newtonian behavior while hydrodynamizing. In the UV regime the solution for the
moments can be written as a power-law asymptotic series with a finite radius of convergence. We show that
radius of convergence of the UV perturbative expansion grows linearly as a function of the shear viscosity
to entropy density ratio. Finally, we compare the universal properties in the pullback and forward attracting
regions to other kinetic models including the relaxation time approximation and the effective kinetic
Arnold-Moore-Yaffe theory.
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I. INTRODUCTION

Relativistic fluid dynamics is an effective theory which
describes long-wavelength phenomena. It is widely
accepted that its regime of validity is restricted to systems
near local thermal equilibrium. However, this traditional
paradigm has recently been challenged by the overwhelm-
ing success of hydrodynamic models in describing exper-
imental data in high energy nuclear collisions [1–7] as well
as cold atom systems [8–11]. In these systems the initial
state is far from local thermal equilibrium, and it is not fully
understood how hydrodynamic behavior emerges. The
search for a kinetic framework that describes far-from-
equilibrium plasmas has been one of the most important
research subjects in high energy nuclear collisions and
condensed matter physics [12–14].

An important development in nonequilibrium dynamics
was the discovery of emergent hydrodynamic behavior in
far-from-equilibrium conditions which can be understood
in terms of the mathematical theory of resurgence [15]. In
this work the authors consider an extended hydrodynamic
model, the Israel-Stewart equation [16], and apply it to a
strongly coupled plasma undergoing Bjorken expansion.
Subsequently, similar findings were obtained in many other
transport models. These results show a deep connection
between nonlinear relaxation toward hydrodynamic behav-
ior, also known as “hydrodynamization,” and transasymp-
totics and transseries [17–26].
Since then a very interesting and rich physical picture

has emerged: The nonlinear relaxation process toward
hydrodynamic behavior, also known as hydrodynamiza-
tion, is driven by the decay of nonhydrodynamic degrees of
freedom. Once the nonhydrodynamic modes have died out
the system enters into the hydrodynamic attractor which is
entirely determined by the standard asymptotic gradient
expansion. This new insight might be able to explain why
hydrodynamic models work very well when applied in
extreme experimental scenarios such as ultrarelativistic
heavy ion collisions [27,28].
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Another interesting development in the understanding of
far-from-equilibrium attractors in relativistic nonequilibrium
dynamics is a phase space analysis using the language of
nonautonomousdynamical systems1 [29–32].This particular
point of view allows us to characterize in simple terms the
behavior of the solutions, described as flows, either at early or
at late times. For instance, a global and local phase space flow
analysis led to the conclusion that a large class of kinetic
models undergoing Bjorken expansion [33] hydrodynamize
in the long-time limit [21,31,32,34], whereas systems under-
going Gubser flow [35,36] never do [29,32]. Moreover, the
flow structure in phase space togetherwith the symmetries of
the dynamical system constrains the asymptotic behavior of
the solutions of the ordinary differential equations (ODEs).
For example, for weakly coupled boost-invariant systems it
was demonstrated [31] that the solutions of the moments’
equations admit power-law series expansions at early times,
while at late times linear perturbations of themoments decay
exponentially [21,30,31,37]. This is due to the nature of the
early- and late-time attractors.
Attractors are understood as regions in phase space

where flows accumulate either in the long- or short-time
limit. However, in nonautonomous dynamical systems the
past and future of the evolution are not the same since time
translation invariance is explicitly broken. Each flow
solution ϕ≡ ϕðϕ0; t; t0Þ is written in terms of its initial
value ϕ0 and its initial and final times, t0 and t, respectively.
In this context, it is important to differentiate the backward
and forward asymptotic regions of the dynamical system.
We refer to a forward attractor as an asymptotic limit of the
flows at which solutions converge when t → ∞ while the
initial time t0 is fixed. In contrast, the pullback attractor is
defined in the limit t0 → 0 while keeping t fixed. It is
important to emphasize that for nonautonomous dynamical
systems both limits do not commute [38,39].
Most previous work on the convergence properties of

kinetic equations in relativistic transport theory was based
on very simple collision terms, e.g., the relaxation time
approximation (RTA). In this work we study the resurgent
asymptotic properties of the Boltzmann equation for a
boost-invariant Yang-Mills plasma governed by the weak
coupling collision term in the small-angle approximation.
In this limit the Boltzmann equation can be written as a
nonlinear Fokker-Planck equation.

The Fokker-Planck equation (FPE) for gluons is of great
interest since it captures essential aspects of the early-time
dynamics of QCD matter produced in ultrarelativistic
heavy ion collisions [40,41]. Due to the highly nonlinear
structure of the collision kernel in the small-angle approxi-
mation, the FPE has been solved mostly by numerical
means [42–48]. Very few analytical solutions for rapidly
expanding systems are known in the literature [49]. One of
the main achieved goals in this work is to fill this gap.
Following Grad’s method [50] we map the mathematical

problem of solving the FPE onto finding solutions to the
kinetic equations for the Legendre moments cl [29–32]. The
moment method turns out to be not only quickly convergent
from a numerical point of view (see Appendix G of
Ref. [31]), but it also provides a unique approach to under-
stand nontrivial aspects of hydrodynamization. New solu-
tions to the equations of motion of Legendre moments are
derived by employing methods developed in the context of
stability analysis of nonautonomous dynamical systems
[38,39], as well as techniques from superasymptotic and
hyperasymptotic analysis [51–54]. These tools allow us to
analyze the hydrodynamization process in two distinct
regimes characterized by the size of dissipative corrections:
Kn ≫ 1 (UV, early time) and Kn ≪ 1 (IR, late time).
The solutions of the kinetic equations for the Legendre

moments enable us to extend the definition of transport
coefficients to the far-from-equilibrium regime. Within our
approach transport coefficients depend on the deformation
history of the fluid, i.e., its rheology, and their values
change as a function of the Knudsen number. Such
dependence of the transport coefficients on the typical
gradient size is a salient property of non-Newtonian fluids.
Our findings provide further evidence for the connection
between hydrodynamization and the transient rheological
behavior of the plasma [30,31].
An interesting aspect of our study is the fact that the

evolution of the transport coefficients is determined by a
RG flow equation where the role of the RG scale is played
by the Knudsen number. Our work draws inspiration from
recent arguments that any RG flow can be viewed as a
dynamical system [55,56]. We show that, conversely,
certain dynamical systems can be understood as RG flows,
provided the existence of the slow invariant manifold. This
idea was first explored in the case of boost-invariant
plasmas governed by a Boltzmann equation in the RTA
approximation [30–32].
Finally, our study naturally explains the origin of the UV

power series expansion considered first in [31] and later
studied in [26,57–59]. The power series emerges by
analyzing the stability behavior of solutions close to the
UV fixed point. It is shown that the finite radius of
convergence of the UV power series expansion depends
on the value of the shear viscosity over entropy ratio η=s.
We also outline the intriguing universal properties of the
FPE related to the pullback and forward attractors and

1A nonautonomous dynamical system corresponds to a general
set of ODEs for the vector a of the generic form

da
dλ

¼ Hða; λÞ;

where H is a function that depends explicitly on both a and λ.
When the affine parameter λ does not appear explicitly in the rhs
of the previous expression it is said that the system is autono-
mous.
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compare them with other kinetic models such as the RTA
and the full leading-order Arnold-Moore-Yaffe (AMY)
kinetic theory [60].
The outline of this work is as follows. In the next section

we review the basic ideas behind the Fokker-Planck (FP)
equation and introduce the expansion of the distribution
function in terms of its moments whose evolution equations
are derived. For pedagogical purposes we study extensively
a truncation of this dynamical system in Sec. III where we
present in detail the transasymptotic techniques studied in
this article. In Sec. IV we demonstrate that the general
solutions of the Fokker-Planck equation are written in terms
of multiparameter transseries after resumming the fluctua-
tions around the UV and IR regimes, respectively. We
analyze the universal properties of nonequilibrium Yang-
Mills attractors of different theories in Sec. V. We conclude
by giving final remarks. The technical details of our work
are presented in the Appendixes.

II. YANG-MILLS TRANSPORT EQUATION IN THE
SMALL-ANGLE APPROXIMATION

We consider an interacting gluon plasma described by
the Boltzmann equation in the small-angle approximation
[61]. We focus our discussion on the case of an expanding
system with longitudinal boost invariance [33]. The
dynamics is invariant under the ISOð2Þ ⊗ SOð1; 1Þ ⊗
Z2 symmetry group. The symmetry becomes manifest in
Milne coordinates xμ ¼ ðτ; x; y; ςÞ, where τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is

the longitudinal proper time, and ς ¼ tanh−1ðz=tÞ is the
spatial rapidity. In this coordinate system the metric is
simply gμν ¼ ð−1; 1; 1; τ2Þ. In Milne coordinates the
Fokker-Planck equation for the one-particle distribution
fðτ; pT; pς=τÞ≡ fp is [40,46,47]

∂τfp ¼ C½fp�: ð1Þ

The collision kernel C½fpðτÞ� in the small-angle approxi-
mation takes the form [40,46]

C½fp� ¼ λ2YMlCb∇p ·

�
J∇pfp þK

p
p
fpð1þ fpÞ

�
; ð2Þ

where we introduce the ‘t Hooft coupling λYM ¼
g2Nc ≡ 4παsNc. The integrals J and K are given by

J ¼ J ðτÞ ¼
Z

d3p
ð2πÞ3 fp½1þ fp�; ð3aÞ

K ¼ KðτÞ ¼ 2

Z
d3p
ð2πÞ3

fp
p
: ð3bÞ

The Coulomb logarithm lCb in the rhs of Eq. (2) is a
divergent integral of the form

lCb ¼
Z

pmax

pmin

dp
p

¼ log

�
pmax

pmin

�
: ð4Þ

The IR momentum divergence originates from 2 → 2
scattering with small momentum transfer. In QCD these
divergences are regularized by static and dynamic screen-
ing. The corresponding mass scale is on the order of the
Debye mass. Near equilibrium, and for particles obeying
Bose-Einstein statistics, we have [62]

m2
D ¼ 4Ncg2

Z
d3p
ð2πÞ3

feq:p

p
¼ 2

ζð2ÞΓð2Þ
π2

λYMT2; ð5Þ

where ζðnÞ and ΓðnÞ are the Riemann and Gamma
functions, respectively. The UV momentum cutoff is taken
to be the mean p2

T , which close to equilibrium is

hp2
Ti ¼

R
d3pp2

Tf
eq:
pR

d3pfeq:p
¼ 2

ζð5ÞΓð5Þ
ζð3ÞΓð3ÞT

2: ð6Þ

As a result, near equilibrium the Coulomb logarithm (4) is
approximately given by

lCb ¼
Z ffiffiffiffiffiffiffi

hp2
Ti

p

mD

dp
p

¼ log

� ffiffiffiffiffiffiffiffiffiffi
hp2

Ti
p
mD

�
∼
1

2
log

�
A
λYM

�
; ð7Þ

with A ¼ 72ζð5Þ=ζð3Þ ≈ 62.1. This estimate gives a
Coulomb logarithm which is a constant, independent of
the energy density of the medium, but logarithmically
dependent on the coupling constant. This approximation
has been used in many previous studies [45,46,59,63].
Replacing feq:p with the general nonequilibrium fp in (5)
and (6) and evaluating the integrals numerically at each
time step allowed the authors of Refs. [42,48] to account for
the time dependence of the UV and IR momentum cutoffs.
The approximation of a constant Coulomb logarithm

gives the correct dependence of the shear viscosity on the
coupling constant in the near-equilibrium, weak coupling
limit. However, the numerical prefactor does not agree with
calculations based on the full hard thermal loop (HTL)
result [64,65]. This issue was addressed in [66], where the
authors propose a simple regulator that reproduces the
leading-order HTL result for drag and momentum diffusion
in soft 2 → 2 scattering. This is a useful prescription, but it
does not affect the late-time emergent hydrodynamic
behavior. We shall comeback to this issue in Sec. V.

A. Ansatz for the distribution function

One of the most widely used methods to solve the
Boltzmann equation was developed decades ago by Grad
[50]. In this approach the problem of solving the
Boltzmann equation is converted into a set of nonlinear
partial differential equations (PDEs) for moments of the
one-particle distribution function. This approach is very
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useful when analyzing the resurgence properties of the
nonlinear ODEs for the moments [29–32].
In this work we will consider the following ansatz for the

distribution function in a boost-invariant system [30–32]:

fp ¼ feqp
Xþ∞

l¼0

clðτÞP2lðcos θpÞ; ð8Þ

where pτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þ ðpς=τÞ2
q

, cos θp ¼ pζ=ðτpτÞ, and
P2l are the Legendre polynomials. In Eq. (8) the equilib-
rium distribution function feqp is

feqp ¼ νeff
1

ep
τ=TðτÞ − 1

; ð9Þ

where T is the temperature of the system which is defined
below via the Landau matching condition and νeff are the
effective degrees of freedom which for simplicity we set to
be νeff ≡ 1. We implicitly assume that fp is independent of
spin and color. The ansatz (8) is consistent with the
restrictions imposed by ISOð2Þ ⊗ SOð1; 1Þ ⊗ Z2. In par-
ticular, the distribution function is invariant under the
action of the Killing vectors ϕi of this symmetry group,
i.e., ∂fp=∂ϕi ¼ 0 [30–32]. For simplicity we fixed μ≡ 0 in
the equilibrium distribution function (9). Furthermore, the
ansatz (8) does not carry information about the nonlinear
relaxation of the transient high energy tails of the distri-
bution function which have been studied previously within
the moment method [30–32,46,47,67–70]. A more general
ansatz which encodes some of the information on the high
energy tails was discussed recently in Ref. [45].
The Legendre moments cl are directly determined by

Eq. (8),

cl ¼ 30ð4lþ 1Þ
π2T4

hð−u · pÞ2P2lðcos θpÞi; ð10Þ

where we denote h� � �iX ≡ R
p � � � fXp and the momentum

measure is
R
p≡

R
d2pTdpς=½ð2πÞ3τpτ�. If the system reaches

the thermal equilibrium state, the moments ceq:l ¼ δl0.
For the Bjorken flow the energy-momentum tensor

Tμν ¼ hpμpνi is given by [30–32,71,72]

Tμν ¼ ϵuμuν þ PLlμlν þ PTΞμν; ð11Þ

where we denote the timelike vector identified with the
fluid velocity uμ ¼ ð1; 0; 0; 0Þ (with uμuμ ¼ −1), the
spacelike normal vector pointing along the ς direction is
lμ ¼ ð0; 0; 0; 1Þ (with lμlμ ¼ 1) and the projection operator
Ξμν ¼ gμν þ uμuν þ lμlν which is orthogonal to both uμ and
lμ, respectively. The energy density ϵ, longitudinal and
transverse pressures,PL andPT , respectively, are written in
terms of the angular moments as follows:

ϵ ¼ hð−u · pÞ2i ¼ π2

30
c0T4; ð12aÞ

PT ¼
�
1

2
Ξμνpμpν

�
¼ ϵ

�
1

3
−

1

15
c1

�
; ð12bÞ

PL ¼ hðl · pÞ2i ¼ ϵ

�
1

3
þ 2

15
c1

�
: ð12cÞ

It follows that ϵ ¼ 2PT þ PL as expected. The Landau
matching condition for the energy density ϵ ¼ ϵeq: ≡ hð−u ·
pÞ2ieq: implies c0 ≡ 1. For the Bjorken case the normalized
pressure anisotropy is the ratio of the independent shear
viscous tensor over the energy is written in terms of the
Legendre moment c1, i.e.,

Δ ¼ τ2πςς

ϵ
¼ 2

15
c1: ð13Þ

Moreover, the non-negativity property of the longitudinal
and transverse pressures PLðTÞ ≥ 0 implies −5=2 ≤ c1 ≤ 5.
This bounds the basin of attraction from below and above
and is satisfied in general only by the exact kinetic solution
to the FP equation (2). Nonetheless, it is known that any
perturbative approach which aims to find an approximate
solution to the Boltzmann equation does not necessarily
obey this constraint [73].

B. Evolution equation of the Legendre
moments evolution

We truncate the expansion in Legendre polynomials at
order L and write the Legendre moments as a vector
cðτÞ≡ ðc1ðτÞ;…; cLðτÞÞ⊤. Following the procedure out-
lined in [30–32] we find that the evolution equations for the
temperature and the Legendre moments are given by the
following coupled nonlinear ODEs:

dT
dτ

¼ −
T
3τ

�
1þ c1

10

�
; ð14aÞ

dc
dτ

¼ FðT; c; τÞ; ð14bÞ

with

FðT; c; τÞ ¼ −
2

3

�
1

τ
fXðcÞcþ Γg

þ fΛþYðcÞ þ ZðcÞgTc
�

ð15Þ

and

XðcÞ ¼ X̄ −
1

5
c1ðτÞ1L; ð16aÞ
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X̄ ¼ 3

2

0
BBBBBBBB@

B1 A1

C2 B2 A2

. .
. . .

. . .
.

CL−1 BL−1 AL−1

CL BL

1
CCCCCCCCA
: ð16bÞ

The matrix elements are defined by

Al ¼ −
ð2l − 1Þð2lþ 1Þð2lþ 2Þ

ð4lþ 3Þð4lþ 5Þ ; ð17aÞ

Bl ¼
2ð14l2 þ 7l − 2Þ
ð4l − 1Þð4lþ 3Þ −

4

3
; ð17bÞ

Cl ¼ 2lð2l − 1Þð2lþ 2Þ
ð4l − 3Þð4l − 1Þ : ð17cÞ

The Lyapunov exponents and the vector Γ are defined by

Λ ¼ diag:ðλð1Þ;…; λðLÞÞ; ð18aÞ

Γ ¼ ð3C1=2; 0;…; 0Þ⊤ ¼ ð4; 0;…; 0Þ⊤: ð18bÞ

Finally, we have defined the matrices

YðcÞ ¼ κ̂

0
BBBBBBBBBB@

P
2
m¼1 Ω1m1cmðτÞ � � � P

1þn
m¼n−1Ω1mncmðτÞ � � � P

1þL
m¼L−1 Ω1mLcmðτÞ

..

. . .
. ..

. . .
. ..

.

Plþ1
m¼l−1 Ωlm1cmðτÞ � � � Plþn

m¼Max½jl−nj;1� ΩlmncmðτÞ � � � PlþL
m¼L−l ΩlmLcmðτÞ

..

. . .
. ..

. . .
. ..

.

PLþ1
m¼L−1 ΩLm1cmðτÞ � � � PLþn

m¼L−n ΩLmncmðτÞ � � � P
2L
m¼1 ΩLmLcmðτÞ

1
CCCCCCCCCCA
; ð19aÞ

Ωlmn ¼
αm−nþlαnþm−lαn−mþl

αnþmþl
·

4lþ 1

2ðnþmþ lÞ þ 1
; with αl ¼ ð2l − 1Þ!!

l!
; ð19bÞ

ZðcÞ ¼ κ̂
Xþ∞

n¼1

ð2l − 1Þðlþ 1Þ
3ð4nþ 1Þ cnðτÞ21L: ð19cÞ

In the previous expressions the parameters κ, θ0 and κ̂ are
given by, respectively,

κ ¼ π2=3 − 2ζð3Þ; θ−10 ¼ 5

8π5
λ2YMlCb;

κ̂ ¼ 3κ

2θ0
; λðlÞ ¼ 3

2θ0

�
κ þ lð2lþ 1Þ

3
π2
�
: ð20Þ

The derivation of the equations of motion (14) is presented
in Appendix A. The set of ODEs (14) constitutes a
nonlinear nonautonomous dynamical system [38,39] due
to the explicit dependence on the proper time τ in the rhs of
these equations. The strength of the effect of the collisions
enters in the ODEs via the parameter θ0 (20); we thus will
vary this parameter instead of the ‘t Hooft coupling λYM
when showing the numerical results. The nonlinear nature
of the FP equation (1) is manifest in the mode-mode
couplings among different moments and in the temperature
appearing in the rhs of Eq. (14). Finally, the time evolution
of the energy-momentum tensor (11) can be fully

reconstructed from the solutions of the temperature T
and the full set of Legendre moments cl.
The equations of motion of the Legendre moments (10)

for the conformal Boltzmann equation within the RTA are
given by (see [30,31])

dc
dτ

¼ FRTAðT; c; τÞ;

FRTAðT; c; τÞ ¼ −
2

3

�
1

τ
fXðcÞcþ Γg þ ΛRTATc

�
;

ΛRTA ¼ 3

2Θ0

diag:ð1; 1;…; 1Þ: ð21Þ

Here Θ0 is a proportionality constant between the relax-
ation time and the shear viscosity over entropy ratio. This
constant can be determined from relativistic kinetic theory
methods which for the conformal RTA approximation gives
us τr ¼ 5

T
η
s [31,74–85], i.e., Θ0 ≡ 5η=s.

At linear order the form of the evolution equations for
the Legendre moments for the RTA and FP, Eqs. (21)
and (14), respectively, is very similar. At this order the main
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difference between the two models lies in the specific
relaxation scale of the associated mode cl. For the RTA
approximation all modes decay with the same relaxation
scale τr while in the Fokker-Planck case each cl has a
characteristic relaxation scale λðlÞ−1 which increases as a
function of the l [see Eq. (20)]. Therefore for the FPE there
is a clear hierarchy of fast and slow modes.2

The nonlinearities of the FPE are encoded in the mode
coupling between moments of different order and in the
implicit dependence of the temperature on c1. These effects
drive the system away from equilibrium and delay the
relaxation to the equilibrium state. For instance, for the
RTA Boltzmann equation a new nonhydrodynamic mode
survives in the long wavelength limit due to a nonlinear
coupling to the shear viscous tensor [31]. This result
contradicts the common assumption of taking the typical
relaxation timescale of a mode as a guide for constructing
effective theories in the long-time limit.

C. Dimensional reduction

There is an important simplificationof the nonlinearODEs
(14) which makes the asymptotic analysis simpler. It is
possible to dimensionally reduce this dynamical system from
Lþ 1 → L by introducing the variable3 w ¼ τTðτÞ ∈ Rþ.
Sincew ∼ Kn−1 [29–32], the variablew encodes the strength
of the dissipative corrections. This fact will be important for
reinterpreting the dynamical system of ODEs as RG flows in
Sec. III B 1. In terms of w Eqs. (14) can be written as

TðwÞ ¼ Dðw;w0ÞT0; ð22aÞ

Dðw;w0Þ ¼ exp

�
−
1

2

Z
w

w0

dw0

w0
ð1þ c1ðw0Þ

10
Þ

ð1 − c1ðw0Þ
20

Þ

�
;

dc
dw

¼ Fðc; wÞ; ð22bÞ

Fðc; wÞ ¼ −
1

1 − 1
20
c1ðwÞ

�
1

w
fXðcÞcðwÞ þ Γg

þfΛþYðcÞ þ ZðcÞgcðwÞ
�
: ð22cÞ

The dynamics of this dimensionally reduced systemofODEs
depends only on the Legendre moments cl

4 and does

not involve the temperature variable explicitly. It is important
to emphasize that the dimensionally reduced dynamical
system does not preserve the topological properties of the
original nonlinear ODEs (14). For instance, a new coordinate
singularity emerges when c1 ¼ 20 [see the denominator in
the integrand of the damping functionDðw;w0Þ in Eq. (22a)]
which does not exist in the τ variable. Furthermore, in the w
variable, one can find a set of bounded solutions at w0 → 0
for a fixed w, the so-called pullback attractor [31,32];
whereas the singularity at τ ¼ 0 forbids the existence of
any bounded solutions in the UV. This is of course expected
on many grounds but a simple explanation is that the system
undergoes a topological change under τ → w that lifts the
τ ¼ 0 singularity at the expense of introducing a new
singularity at c1 ¼ 20 [31,32].

III. TRANSASYMPTOTIC ANALYSIS: THE
TRUNCATED L= 1 CASE

Before presenting the transseries solutions for the non-
linear ODEs (22) we first illustrate our techniques by
considering the case where the system is truncated to a
single nonhydrodynamic degree of freedom. Physically,
this degree of freedom corresponds to the viscous shear
tensor. This warm-up exercise illustrates the main aspects
of the general asymptotic analysis to be discussed
in Sec. IV.
Let us assume that the moments cl ≡ 0 for l > 1. In

terms of the variable w, the truncated l ¼ 1 case read as

dc1
dw

¼ F1ðw; c1Þ; ð23aÞ

F1ðw; c1Þ ¼ −
1

ð1 − 1
20
c1Þ

�
1

w

�
4þ 5

7
c1 −

1

5
c21

�

þλð1Þc1 þ
2κ̂

7
c21 þ

2κ̂

15
c31

�
: ð23bÞ

Before discussing the transasymptotic analysis we would
like to comment on the existence of the pullback and
forward attractors of the truncated ODE (23a). The exten-
sion to the full set of nonlinear ODEs (22) is similar but
more difficult to visualize [31]. For now, we note that we
can identify attractors by inspecting the flow diagram of the
ODE (23a). We will characterize the attractors more fully
below. In the top panel of Fig. 1 we observe that in the IR
regime all flows converge asymptotically toward the value
c1 → 0 when w ≫ 1 regardless of their origin. This shows
that there is only one IR fixed point associated with the
forward attractor.
In the UV limit, on the other hand, there are two fixed

points (black dots in Fig. 1) which are located along the c1
axis in the small w0 → 0 limit (w0 is the initial value of w).
The UV behavior of the flow lines in each fixed point is
rather different. For the UV fixed point located in the

2For hard spheres and within the kinetic theory framework
similar results have been found in the past. In those models a
hierarchy of scales between the fast and soft modes also emerges
[68–70].

3The resurgence analysis can also be studied in terms of the
original variable τ [31]. See the general Fokker-Planck case in
Appendix C and the RTA Boltzmann case is extensively
discussed in Appendixes A–D in Ref. [31].

4The index i of vectors and matrices runs from i ¼ 1; 2;…; L.
If one performs a truncation of the nonautonomous dynamical
system of Eq. (22) it is understood that cl ≡ 0 for l > L.
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positive c1 region one observes that the flow lines emerge
out of it in all the directions, and thus this fixed point is a
source. In the negative c1 region, we observe that near the
UV fixed point the flow lines coming from above or below
repel each other so the fixed point is a saddle. However,
although the flow lines repel each other, they merge quickly
in the vicinity of this fixed point. Thus, the UV fixed point
located in the negative c1 region is identified as the
pullback attractor.
We will see that the behavior of the transseries solution

near these fixed points is rather different. We note that the

behavior of the flows in the τ variable differs from the one
in w. In the former case the temperature is a dynamical
variable. It diverges in the limit τ → 0 due to the presence
of the singularity at τ ¼ 0; therefore there is no meaningful
definition of a pullback attractor in the τ variable (see
also [31,32]).

A. Transseries solution in the IR limit

The leading-order term of each Legendre moment in
Eqs. (22) is cl ¼ Oðw−lÞ∀ l > 0 in the IR regime [31].
Hence, Eq. (23a) admits the following asymptotic expan-
sion for c1:

c1 ¼
X∞
k¼0

uð0Þ1;kw
−k: ð24Þ

The coefficients uð0Þ1;k are obtained simply by inserting the IR
expansion into the original ODE (23a). For instance, the
first three coefficients are given by

uð0Þ1;0 ¼ 0; uð0Þ1;1 ¼ −
4

λð1Þ ;

uð0Þ1;2 ¼ −
8

7λð1Þ2
�
1þ 4

κ̂

λð1Þ
�
: ð25Þ

Here the reality condition of c1 was implicitly taken into
account. The hydrodynamic gradient expansion of the
shear viscous tensor [86] provides the following expression
for c1 [30,31]:

c1 ¼ −
40

3

1

w
η

s
−
80

9

1

w2

Tðητπ − λ1Þ
s

� � � ; ð26Þ

where we use Eq. (13). Comparing the previous expression
and Eqs. (25) one concludes

η

s
¼ 3

10

1

λð1Þ ;

Tðητπ − λ1Þ
s

¼ 9

70λð1Þ2
�
1þ 4

κ̂

λð1Þ
�
; ð27Þ

with λð1Þ and κ̂ given in Eqs. (20). We will see below that
λð1Þ is related to the rate at which fluctuations decay close
to the IR fixed point, i.e., the Lyapunov exponent. The

coefficients uð0Þ1;k that enter the IR expansion (24) are
understood as transport coefficients in the IR limit.
Furthermore, the set of the identities (27) turn out to be
of importance when generalizing the concept of a transport
coefficient to the far-from-equilibrium regime [30,31] as
we shall discuss in Sec. III B.
It is known that the IR expansion (24) is divergent since

its coefficients grow factorially [15]. These expansions are
merely formal expressions and emerge as asymptotic
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FIG. 1. Flow diagram of the differential equation for the
Legendre moment (23a) in the ðc1; wÞ space. Top, center, and
bottom panels show the flows close to the IR and two UV fixed
points, respectively. The black dots showed in each panel
correspond to the two UV fixed points of the ODE (23a).
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solutions of a certain class of differential equations [52]. In
order to see this let us simply perform a linear perturbation
around the perturbative expansion (24). Thus, by shifting
c1 → c̄1 þ δc1 with c̄1 ¼

P∞
k¼0 gkw

−k while keeping terms
up to Oðw−1Þ one obtains the following linearized differ-
ential equation for the perturbation δc1:

dδc1
dw

¼ ∂F1

∂c1
				
c1¼c̄1

δc1;

≈ −
�
λð1Þ þ 1

w

�
18

35
−
16

7

κ̂

λð1Þ
��

δc1; ð28Þ

whose solution reads

δc1ðwÞ ¼ σ1e−S1ww−b1 ;

S1 ≔ λð1Þ; b1 ≔
18

35
−
16

7

κ̂

λð1Þ ; ð29Þ

where σ1 is the integrating constant, S1 is recognized as the
Lyapunov exponent and b1 is the anomalous dimension.
The presence of the exponential terms is an indication that
in order to capture the transient behavior of the solutions it
is needed to go beyond the perturbative IR expansion (24).
The leading exponential term (29) is the first type of a

large set of exponentials terms that appear when summing
over the fluctuations around the IR fixed point. In order to
include systematically these type of terms we follow
Costin’s prescription [54]. First, notice that in the IR limit
the ODE (23a) takes the following asymptotic form:

dc1
dw

≈ −
X∞
n¼0

�
c1
20

�
n
�
1

w

�
4þ 5

7
c1 −

1

5
c21

�

þλð1Þc1 þ
2κ̂

7
c21 þ

2κ̂

15
c31

�
;

≈ −
�
λð1Þc1 þ

1

w

�
4þ 32

35
c1

��
þ Rðc1; wÞ; ð30Þ

where Rðc1; wÞ is a nonlinear polynomial function of c1
andw. The asymptotic limit of the differential equation (30)
coincides with the prepared form of the generic class of
differential equations studied by Costin [54]. Thus, given
the regularity of the solutions at w → ∞ as well as the
nonvanishing value for the Lyapunov exponent S1 (29),
Eq. (23a) has an exact transseries solution [54]

c1ðwÞ ¼
X∞
k¼0

X∞
n¼0

uðnÞ1;kw
−k½σ1ζ1ðwÞ�n; ð31aÞ

ζ1ðwÞ ¼ e−S1ww−b1 : ð31bÞ

From the physical point of view, the transseries (31)
describes deviations from thermal equilibrium due to expo-
nentially damped modes multiplied by gradient terms. The
exponential damped terms, usually called nonhydrodynamic
modes, play a role analogous to instantons in quantum field
theory and quantum mechanics. In order to determine the

coefficients uðnÞ1;k we simply equate (31) with Eq. (23a). As a
result we get the following recursive relation:

ð−mS1 þ λð1ÞÞuðmÞ
1;k þ

�
−mb1 − kþ 12

7

�
uðmÞ
1;k−1 þ 4δm;0δk;1

−
1

20

Xm1þm2¼m

m1;m2¼0

Xk1þk2¼k

k1;k2¼0

��
−m1S1 −

40κ̂

7

�
uðm1Þ
1;k1

þ ð−m1b1 − k1 þ 5Þuðm1Þ
1;k1−1

�
uðm2Þ
1;k2

þ 2κ̂

15

Xm1þm2þm3¼m

m1;m2;m3¼0

Xk1þk2þk3¼k

k1;k2;k3¼0

uðm1Þ
1;k1

uðm2Þ
1;k2

uðm3Þ
1;k3

¼ 0; ð32Þ

where uðmÞ
1;k ¼ 0 for k < 0 and we take uð1Þ1;0 ¼ 1 as the

normalization of the integration constant σ1. When m ¼ 0
and k ¼ 0, 1, 2 in the recursive relation (32) one reproduces
Eqs. (25) as expected.
We conclude this section by presenting some numerical

results. In Fig. 2we show the Legendremode c1 as a function
of w for the exact numerical solution (red line), Navier-
Stokes (NS, blue dotted line), NSþ second order (green
dashed line) and truncated transseries solutions where we
added two (orange dashed line) and five (magenta dashed
line) transmonomials to the first IR perturbative order. The
initial condition for the numerical solution of the ODE (23a)
was c1ðw0 ¼ 0.03Þ ¼ f6.60119; 0;−3.02976g while fixing

θ0 ¼ 1.5 Note that at each order of the resummed theory we
have to numerically match the transseries parameter σ. Very
few cases are knownwhere one can determine σ exactly [26].
In the present work we have determined σ using a numerical
least-square fit [31]. This leads to some uncertainty, which is
not unexpected given the difficulty of matching the IR
and UV data without performing an all-order resummation.
The shaded yellow area in Fig. 2 shows the variation of σ
between each truncated transseries solution.

5The values for c1ðw0 ¼ 0.03Þ ¼ f6.60119;−3.02976g cor-
respond to the UV fixed points, see Eq. (44).
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Figure 2 shows that the perturbative series at first and
second orders does not match the numerical results for
small values of w. On the other hand, the truncated
transseries (31) where only a few transmonomials
(n ¼ 2, 5, respectively) were included is very close to
the exact numerical result. We note that some care has to be
taken in making such comparisons. Any truncated

transseries will potentially exhibit large deviations from
the exact numerical result in some range of w. This is due to
the growth of the inherent error associated with any type of
truncation scheme, see Appendix B. Any resummed
perturbative series with a few transmonomials has a finite
radius of convergence. The full transseries solution coin-
cides with the exact theory only when summing over all the
nonperturbative sectors of the perturbative series [54].

B. Transasymptotic matching: l = 1 case

An interesting property of the IR transseries solution (31)
emerges when rearranging the terms close to the IR fixed
point. This procedure is known as “transasymptotic match-
ing,” and it is a well-known feature of transseries solutions
for a general class of differential equations [53,54]. In the
small w limit there is a one-to-one competition between the
exponentially decaying terms entering in the transseries and
the inverse powers in w. However, close to the IR fixed
point the instantonlike contributions are more suppressed
than the leading IR perturbative terms. It is in this regime
where one can indeed reshuffle and resum the small
exponential terms such that

c1ðwÞ¼ ½uð1Þ1;0σ1ζ1ðwÞþuð2Þ1;0½σ1ζ1ðwÞ�2þ����

þ 1

w
½uð0Þ1;1þuð1Þ1;1σ1ζ1ðwÞþuð2Þ1;1½σ1ζ1ðwÞ�2þ����

þ 1

w2
½uð0Þ1;2þuð1Þ1;2σ1ζ1ðwÞþuð2Þ1;2½σ1ζ1ðwÞ�2þ����þ���

≡Xþ∞

k¼0

G1;kðσ1ζ1ðwÞÞw−k; ð33Þ

with ζ1ðwÞ ¼ e−S1ww−b1 and the transasymptotic functions
Gkðσ1ζðwÞÞ given by

G1;kðσ1ζðwÞÞ ¼
X∞
n¼0

uðnÞ1;k ½σ1ζ1ðwÞ�n: ð34Þ

The transasymptotic functions Gkðσ1ζðwÞÞ effectively
resum the full set of instantonlike contributions at a given
order k in perturbation theory. Interestingly this matching
procedure is not only valid close to the IR but it extends up
to the UV, so in this sense it is transasymptotic [52]. Each
GkðζðwÞÞ is an analytic, Borel summable and convergent
functions even if one truncates at a given order the IR
perturbative expansion Eq. (33). The full transseries sol-
ution (33) is not Borel summable due to the singularity of
the original differential equation (23a). This singularity can
be easily determined by taking the inverse Laplace trans-
formation of the ODE (23a) (cf. Ref. [32]). The trans-
asymptotic matching procedure coincides with the exact
solution of the ODE only when summing over all the
perturbative and nonperturbative sectors, i.e., k; n → ∞ in
the upper limit of the sums of Eq. (33) [52–54]. In general,

FIG. 2. Evolution of the nonhydrodynamic mode c1 in terms of
w for the exact numerical result (red line), truncated transseries
solutions by adding n ¼ 2 transmonomials to k ¼ 1 perturbative
order (blue dotted line) and n ¼ 15 transmonomials to k ¼ 3
perturbative order (green dashed line) orders in the IR perturba-
tive expansion, respectively, Navier-Stokes (orange dashed line)
and NSþ second order (magenta dashed line). See text for
further details.
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a truncation of the perturbative expansion leads to a
solution with a finite radius of convergence.
In the large w limit the transasymptotic functions

G1;kðσ1ζðwÞÞ is uniquely determined by the coefficients
of the asymptotic IR expansion, namely

lim
w→∞

G1;kðσ1ζðwÞÞ ¼ uð0Þ1;k: ð35Þ

If one uses Eqs. (25) and (27) for k ¼ 1, 2 in the previous
expression one finds the following identities which relate
the transport coefficients determined from linear response
theory with the asymptotic regime of the function
G1;kðσ1ζðwÞÞ in the IR regime [30,31]:

η

s
¼ −

3

40
lim
w→∞

G1;1ðσ1ζðwÞÞ;
Tðητπ − λ1Þ

s
¼ −

9

80
lim
w→∞

G1;2ðσ1ζðwÞÞ: ð36Þ

Thus, the transasymptotic matching procedure automati-
cally allows us to generalize the concept of a transport
coefficient beyond the linear regime by promoting the
functions G1;k to be an effective transport coefficient
[30,31]. For first- and second-order transport coefficients
we have, respectively,

�
η

s

�
r
¼ −

3

40
G1;1ðσ1ζðwÞÞ;

�
Tðητπ − λ1Þ

s

�
r
¼ −

9

80
G1;2ðσ1ζðwÞÞ: ð37Þ

As a result, a new physical picture for nonlinear transport
emerges: Summing over all the nonperturbative sectors at
each order of the IR expansion leads to an effective
renormalization of the transport coefficients. Each trans-
port coefficient exhibits a transient non-Newtonian behav-
ior while relaxing toward its asymptotic value in the IR.
This transient rheological behavior is described by a
dynamical RG flow equation. This result extends earlier
work in the context of the Boltzmann equation in the
relaxation time approximation [30,31]. We emphasize that
Eqs. (37) are modified when including higher-order
moments as we shall explain in Sec. IV B 2.
Numerical results for the renormalized transport coef-

ficients in Eqs. (37) are shown in Fig. 3. In order to obtain
these results we have to calculate the functions G1;k with
k ¼ f1; 2g using Eq. (34). In that expression the trans-

monomials are given by Eqs. (31) and the coefficients uðnÞ1;k

are numerically determined by solving order by order the
recursive relation (32). Figure 3 shows the w dependence of
the ratios between the dynamically renormalized transport
coefficient over its asymptotic value. The top panel shows
the shear viscosity over entropy density ratio, and the
bottom panel shows the second-order transport coefficients.

The values of the transasymptotic parameters were
determined by fitting the transseries solution (31) truncated
at k ¼ 3, n ¼ 15 to the numerical solution of the ODE for
c1 (23a) computed for θ0 ¼ 1. The initial condition for c1
was chosen as c1ðw0 ¼ 0.05Þ ¼ f6.60119; 0;−3.02976g.
The corresponding best fit transseries parameters are
σ ¼ f3.1; 1.31; 0.54g. Since the determination of the
transseries parameter was carried out by using a numerical
least-square fit [31,32] it leads to a highly nonlinear relation
between σ and c1ðw0Þ so both parameters are not propor-
tional to each other.
Both panels illustrate that regardless of the initial

condition each renormalized transport coefficient reaches
its asymptotic value as it is expected from the properties of
transasymptotic functions G1;k in Eq. (36). On the other
hand, prior to the relaxation to the asymptotic values both
renormalized transport coefficients feature a transient phase
which depends on the deformation history of the fluid and,
thus, its rheology. During this transient phase the transport
coefficients increase monotonically which is expected
mainly for two reasons: First, at the early stages the

FIG. 3. Ratio of the dynamically renormalized transport co-
efficient over its corresponding asymptotic value as a function of
w for the l ¼ 1 case and for different initial conditions. Top and
bottom panels correspond to the ratios of ðη=sÞr=ðη=sÞ and
½ðT=sÞðητπ − λ1Þ�r=½ðT=sÞðητπ − λ1Þ�, respectively. See text for
further details.
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expansion rate is larger than the collisional rate such that the
effective transport coefficients get reduce compared with
their corresponding asymptotic values. On the other hand, as
the system hydrodynamizes, entropy production always
increases so transport coefficients do the same until their
values reached out their asymptotic values determined by
linear response. Clearly the transient phase is not universal
since it depends on the initial condition. However, one
observes that both ratios shown in Fig. 4 saturate their value
to the unity aroundw ≈ 0.4. These results are consistent with
the ones shown in Fig. 2. It is important to mention that the
effective value of the renormalized transport coefficients
changewhen increasing the number ofmoments [30,31].We
shall come back to this subtlety issue in Sec. IV B.

1. Dynamical RG flow equation

When the transasymptotic matching condition is
imposed over the entire domain of w, a set of nonlinear
PDEs for the functions G1;k is obtained after inserting
Eq. (33) into the original ODE (23a),

ð−S1ζ̂ þ Λð1ÞÞG1;k þ
�
−β1ζ̂ − kþ 12

7

�
G1;k−1 þ 4δk;1

−
1

20

Xk1þk2¼k

k1;k2¼0

��
−S1ζ̂ −

40κ̂

7

�
G1;k1

þ ð−β1ζ̂ − k1 þ 5ÞG1;k1−1

�
G1;k2

þ 2κ̂

15

Xk1þk2þk3¼k

k1;k2;k3¼0

G1;k1G1;k2G1;k3 ¼ 0; ð38Þ

where ζ̂ ¼ ζ∂=∂ζ ¼ ∂=∂ log ζ. Solving these PDEs is
equivalent to summing over all fluctuation contributions
around the IR. More importantly, these PDEs can be
reinterpreted as RG flow equations for the transport
coefficients given the identities (36). This statement can
be rigorously proven within the gradient descent approach
to the RG flows of quantum field theories in the context of
dynamical systems, cf. [30,31,56]. Furthermore, a RG flow
picture from a global point of view holds for our original
dynamical system (22) provided the existence of an
effective potential for the ODEs, also known as the
Lyapunov function. Its mathematical existence is proven
in Appendix D.
Following Refs. [30,31] the ODE for c1 in terms of the w

variable, Eq. (23a) can be rewritten as

dc1
d logw

¼ β1ðc1; wÞ; ð39aÞ

β1ðc1; wÞ ¼ −
1

1 − c1
20



4þ 5

7
c1 −

1

5
c21

þ
�
1þ π2

κ
þ 2

7
c1 þ

2

15
c21

�
κ̂wc1

�
; ð39bÞ

where κ̂ is given in Eq. (20). The previous equation is the
RG equation for the moment c1 and the function β1ðc1; wÞ
encodes the dependence on the RG time w. The variable
w ∼ Kn−1 plays the analogous role of the energy scale in
Quantum Field Theory (QFT) since it determines the size
of deviations from the equilibrium state.
We can think of the fugacity ζ1 as independent of w [87],

so thatG1;kðσ1ζ1Þ can be regarded as a simple coefficient in
the transseries solution of c1 (31). Then, the following
identity follows [30,31]:

ζ̂1G1;kðσ1ζ1Þ

¼ −
1

2πi

I
jwj≪1

dw
wk−1

ðS1wþ b1Þ

×

�X∞
k0¼0

k0Gk0 ðσ1ζ1Þw−k0 þ β1ðc1ðσ1ζ1; wÞ; wÞ
�
; ð40Þ

FIG. 4. Top: jvkj−1=k vs k for different values of ð4πÞη=s ¼
f2; 4; 6; 8; 10g for magenta, orange, green, blue, and red
dots, respectively. Bottom: Numerical value of the radius of
convergence vs η=s. In this case the UV perturbative series
expansion (45) is carried out around the UV fixed point
c̄−1 ¼ ð25 − 3

ffiffiffiffiffiffiffiffi
505

p Þ=14.
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where we explicitly used Eq. (39a).6 The Cauchy integral
formula in the previous expression simply picks up the kth
coefficient of the term ζ̂1c1.
In order to determine the RG equation which describes

the transient behavior of the transport coefficients we
consider an arbitrary observable O ¼ OðG1;kðσ1ζ1ðwÞÞÞ.
Its change along w results in the following RG equation:

dOðG1;kðσ1ζ1ðwÞÞÞ
d logw

¼ −
X∞
k¼0

½ðb1 þ S1wÞζ̂1G1;kðσ1ζ1Þ�
∂O
∂G1;k

: ð41Þ

The renormalization of the observable O is obtained by
solving the previous equation. In this equation the term
ζ̂1G1;kðσ1ζ1Þ is given by the identity (40) which encodes
the dynamics of the original ODE via the beta function β1
(39a). By setting O ¼ − 3

40
G1 and O ¼ − 9

80
G2 in Eq. (41)

one determines the RG flow equations for the transport
coefficients η=s and Tðητπ−λ1Þ

s , respectively. We point out to
the reader that the RG flow equation is sensitive to the
number of moments involved in any truncation scheme and
its more generic form is derived in Sec. IV B.

C. Transseries solutions in the UV

In the previous section we showed that perturbations
decay exponentially in the vicinity of the IR fixed point
(29). For an arbitrarily chosen ODE linear perturbations do
not necessarily decay exponentially in the neighborhood of
a fixed point. For instance, consider a parameter x ∈ ð0;∞Þ
and a function yðxÞ which satisfies a well-defined ODE
dyðxÞ=dx ¼ Lðx; yðxÞÞ. If this ODE has a source fixed
point y0 in the limit x → 0, i.e., the Lyapunov exponent λ
close to y0 is positive in this limit, then the solutions in a
vicinity around it behave as yðxÞ ∼ eλx ∼

P∞
n¼0 ðλxÞn in the

limit x ≪ 1. This approximate solution is a power-law
series with a finite radius of convergence which can be
extended by analytic continuation.
The stability analysis of the RTA Boltzmann equation

indeed showed that, in the limit when the Knudsen number
is large, that is in the w → 0 limit, power-law series
solutions for the Legendre moments emerge [31].
Similar findings were reported in [57–59]. The power
series expansion is rather different from nonhydrodynamic
modes in the gradient expansion (24). As we shall see in
this section the main differences can be inferred from the

behavior of linearized perturbations around the UV and IR
fixed points, respectively. The case studied here illustrates
the importance of the flow structure in phase space in
controlling the functional form of solutions for generic
dynamical systems of ODEs [32]. In the following we will
explain more carefully the emergence of the power series
behavior in the case of the Fokker-Planck equation.

1. Perturbative power series in the UV

The limit w → 0 of Eq. (23a) can be understood by
changing variables w → 1=z in Eq. (23). We obtain the
following differential equation for c1ðzÞ:

dc1
dz

¼ F1ðc1; zÞ; ð42aÞ

F1ðc1; zÞ ¼
1

ð1 − 1
20
c1Þ

�
1

z

�
4þ 5

7
c1 −

1

5
c21

�

þ 1

z2

�
λð1Þc1 þ

2κ̂

7
c21 þ

2κ̂

15
c31

��
: ð42bÞ

In the limit z → ∞ the dominant term in the previous
expressions is Oðz−1Þ. It is straightforward to see that the
fixed points correspond to the roots of the polynomial that
multiplies the Oð1=zÞ term in Eq. (42b),

4þ 5

7
c̄1 −

1

5
c̄21 ≡ 0: ð43Þ

The UV fixed points are given by

c̄�1 ¼ ð25� 3
ffiffiffiffiffiffiffiffi
505

p
Þ=14 ¼



6.60119 ifþ;

−3.02976 if − :
ð44Þ

In analogy to what we did in the IR limit one can construct a
perturbative expansion in the limit z → ∞. We consider

c1ðzÞ ¼
X∞
k¼1

v1;k
zk

; ð45Þ

where v1;0 ¼ c̄�1 . A similar power series expansion was
discussed in the case of kinetic models undergoing Gubser
flow in [29,32]. Inserting the UV series expansion in
Eq. (45) into Eq. (42a) we obtain the following recursive
relation for the coefficients v1;k:

6The ordinary derivative respect to logw was rewritten as

d
d logw

¼ −ðb1 þ S1wÞζ̂1 þ
∂

∂ logw :

In this loop integration, ζ1 is temporarily regarded as an
independent variable on w.
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�
2

7
−k

�
v1;k−1−4δk;1−λð1Þv1;k−2

þ 1

20

Xk1þk2¼k

k1;k2¼0

½ðk1þ3Þv1;k1−1�v1;k2

−
2κ̂

7

Xk1þk2¼k−2

k1;k2¼0

v1;k1v1;k2 −
2κ̂

15

Xk1þk2þk3¼k−2

k1;k2;k3¼0

v1;k1v1;k2v1;k3 ¼0;

ð46Þ

where v1;k ≡ 0 if and only if k < 0 and v1;0 ¼ c̄�1 .

2. Stability analysis and radius of convergence

When performing asymptotic expansions it is important
to check the stability of the perturbative expansion. We
address this issue for the UV power series expansion (45)
by analyzing the linearized perturbations around it.
Linearizing Eq. (42b) around the UV fixed points, i.e.,
c1 → c̄�1 þ δc�1 , one finds the following evolution
equation for the linearized perturbations in the z → ∞
limit:

dδc�1
dz

¼ ∂F1

∂c1
				
c1¼c̄�

1

δc�1 þOðδc�1 =z2Þ

≈
8

ffiffiffiffiffiffiffiffi
505

p
ffiffiffiffiffiffiffiffi
505

p ∓ 85

δc�1
z

: ð47Þ

The solutions are

δc�1 ðzÞ ¼ μ�1 z
α�
1 ;

α�1 ¼ 8
ffiffiffiffiffiffiffiffi
505

p
ffiffiffiffiffiffiffiffi
505

p ∓ 85
≡


−2.87516 ifþ;

1.67278 if−
ð48Þ

where μ�1 is an integration constant associated with the
UV fixed points. The power-law behavior of the linearized
perturbations (48) is completely different from the behav-
ior in the IR limit (29). We note that the exponents α�1 do
not depend on the strength of the coupling, but they are
uniquely defined by the location of the UV fixed points. In
the limit z → ∞ the solution δcþ1 ¼ μþz−2.87516 (48)
follows a power-law decay. The linear perturbation δc−1 ¼
μ−z1.67278 (48) monotonically increases. This divergence
implies that the associated fixed point only admits a power
series of the form (47) which can be extended analytically
as it is shown below. Alternatively one may say that the
initial condition μ−1 for the fluctuation around c̄−1 vanishes
exactly, and thus the only possible expansion around c−1 is
a power series.
The formal power series in the z variable (45) has a finite

radius of convergence which can be estimated via the

Cauchy-Hadamard theorem7 [88]. We proceed to calculate
the radius of convergence of the power series expansion
(45) by considering first the expansion around c̄−1 . The case
around c̄þ1 is analyzed separately at the end of this section.
The radius of convergence R− is calculated by numerically
solving the recursive relation (46). In Fig. 4 (top panel) we
show the coefficients of the UV expansion jvkj−1=k vs the
order of the expansion k for different values of
ð4πÞη=s ¼ f2; 4; 6; 8; 10g.8 The coefficients jvkj−1=k stabi-
lize for k ≥ 25–30. This result confirms that the power
series (47) has a finite radius of convergence. We analyze
its dependence on the value of η=s in Fig. 4 (bottom panel).
This plots shows that R− depends linearly on the value of
the shear over entropy ratio η=s. The empirical relation
between these two quantities extracted from this plot is

R− ¼ 0.70515
�
4π

η

s

�
þ b−; ð49Þ

where the intercept b− > 0 is very small Oð10−8Þ and
consistent with zero. We verify the extracted numerical
value of the radius of convergence by increasing k up to
kmax ¼ 100. We found that the relative difference between
the saturated bound jvkj−1=k for k ¼ 25 and k ¼ 100 was
only 0.1%.
The linear growth of the radius of convergence as a

function of η=s is intuitively understood as follows: If η=s
or, equivalently, the mean free path are large then the rate of
collisions is small. As a result the Yang-Mills plasma will
expand freely for a longer period of time. This finding
might provide an explanation for the partial success of
phenomenological models at intermediate scales of
momentum larger than the typical temperature where the
expansion is carried out in terms of a small number of
scatterings [89–93].
In general the radius of convergence of a power series

can be extended by analytical continuation [88]. The idea is
to consider a power series of the form

7According to the Cauchy-Hadamard theorem [88], the radius
of convergence R of the formal power series of a function fðzÞ
around the point a (with bk; a ∈ C)

fðzÞ ¼
X∞
k¼0

bkðz − aÞk

is given by

R ¼ ½limn→∞ sup :jbnj1=n�−1:
8The asymptotic value of η=s and θ0 can be established via

Eq. (27) which leads to the following identity:

η

s
¼ θ0

5ðκ þ π2Þ ;

where we used explicitly Eqs. (20).
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c1ðwÞ ¼
X∞
k¼0

v1;kðw − w0Þk; ð50Þ

where both v1;k and w0 ∈ R, v1;0 ¼ c1ðw0Þ and in this case
w0 ≥ 0. The coefficients v1;k are determined explicitly by
plugging Eq. (50) into the ODE (23a) and finding the
associated recursive relation analogous to Eq. (46) which is
now evaluated at w ¼ w0. By construction the series (50)
has a finite radius of convergence R0 so the series will
diverge outside of jw − w0j < R0. One can thus expand
again the function at another point w1 located within a
distance R0 − δ (with δ > 0) centered at w0 and determine
the new coefficients of the power series. Successively
applying this approach one is extending the original power
series significantly beyond its original radius of conver-
gence R0. We apply this method to our solution by
initializing the expansion at w0 ¼ 0 around c̄−1 and θ0 ¼
1 (i.e., extremely low values of η=s → 0). The agreement
between the exact numerical result and the analytical
continuation of the perturbative expansion in the UV is
truly remarkable, as shown in Fig. 5.

3. Resummation of the fluctuations around c̄ +1
The power-law decay of linearized perturbations δcþ1 in

Eq. (47), together with the UV stability analysis, strongly
suggests a resummation scheme around the UV fixed point
c̄þ1 . The form of the equation in the z variable, see
Eq. (42a), resembles the corresponding results obtained
in the case of the RTA Boltzmann equation for Bjorken and
Gubser flows [31,32]. Following these approaches we
consider the following UV transseries ansatz:

c1 ¼
X∞
k¼0

X∞
n¼0

vðnÞ1;kφ
n
k; ð51Þ

where the UV transmonomial is

φn
k ≔ z−k½ξ1ðzÞ�n; ξ1ðzÞ ¼ μ1zα1 ; ð52Þ

with α1 ¼ −2.86516. We note that, unlike the IR transseries
where fluctuations decay exponentially close to the fixed
point, the transmonomials ξ1ðzÞ (52) are non-negligible
close to the UV fixed point. For instance, the first
fluctuation term zα1 ≈ z−2.87516 is comparable to terms of
order Oðz−3Þ. This implies that the complete solution near
c̄þ1 requires a double summation, over both the perturbative
exponent k as well as the transmonomials (52) [31,32]. We
also observe that the approximate UV solution (51) has a
finite radius of convergence even after resumming the
fluctuations around c̄þ1 [32]. Finally, in the UV regime it is
not possible to implement IR transasymptotic matching
(see Sec. III B) since the solution (51) is not valid for all
values of z given the finite radius of convergence.
The coefficients vðnÞ1;k in Eq. (51) are determined by

inserting this ansatz into Eq. (42a). We obtain the recursion
relation�
nα1 − kþ 2

7

�
vðnÞ1;k−1 − 4δn;0δk;1 − λð1ÞvðnÞ1;k−2

−
1

20

Xn1þn2¼m

n1;n2¼0

Xk1þk2¼k

k1;k2¼0

½ðn1α1 − k1 − 3Þvðn1Þ1;k1−1�v
ðn2Þ
1;k2

−
2κ̂

7

Xn1þn2¼n

n1;n2¼0

Xk1þk2¼k−2

k1;k2¼0

vðn1Þ1;k1
vðn2Þ1;k2

−
2κ̂

15

Xn1þn2þn3¼n

n1;n2;n3¼0

Xk1þk2þk3¼k−2

k1;k2;k3¼0

vðn1Þ1;k1
vðn2Þ1;k2

vðn3Þ1;k3
¼ 0: ð53Þ

For the UV transseries (51) the coefficients vð0Þ1;0 ¼ c̄þ1 and

the normalization of the integration constant is vð1Þ1;0 ¼ 1.

IV. TRANSASYMPTOTIC ANALYSIS: THE
GENERAL CASE

In this section we generalize the transasymptotic analysis
outlined in the previous section to the case when we
consider the full vector of Legendre moments c̄ ¼
ðc1;…; cLÞT with L ≥ 1. We briefly outline how to gen-
erate IR and UV transseries solutions for the nonautono-
mous dynamical system (23). The techniques presented in
the section were extensively discussed in [30–32], and we
will focus on issues specific to the Fokker-Planck equation.
More rigorous mathematical aspects of the techniques
outlined in this section can also be found in Refs. [52,54].

A. Transseries solutions in the IR

We seek to find multiparameter transseries solutions to
the ODEs (22) by following the generic procedure devel-
oped by Costin [52,54]. In the large w limit and for the
nonlinear ODEs (22) the Legendre moments admit IR
expansions of the form [30,31]

FIG. 5. Analytical continuation of the perturbative expansion
for c1ðwÞ in the UVaround the fixed point c̄−1¼ð25−3 ffiffiffiffiffiffiffiffi

505
p Þ=14.

We show the exact solution as we perturbative expansions around
the indicated values of w.
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c̄l ¼
X∞
l¼0

ul;k
wk : ð54Þ

By mathematical induction one can show that, by inserting
the expansion (54) into Eq. (22), and considering only the
linear regime of the ODE, then the leading large w behavior
of the moments cl is cl ∼Oðw−lÞ [30,31]. These results can
be used to linearize Eq. (22) by expanding around the IR
expansion (54), i.e., c → c̄þ δc where c̄ ¼ ðc̄1; � � � c̄LÞ.
Here, each c̄l is given by Eq. (54). By keeping only the
leading terms Oð1=wÞ we get the following linearized
equation for the IR perturbation δc:

dδc
dw

¼
XL
l¼1

∂Fðc; wÞ
∂cl

				
cl¼c̄l

· δcl;

≈ −
�
Λþ 1

w

�
X̄ −

8

Λð1Þ Ȳþ Λ
5λð1Þ −

Γ
20

��
δc

¼ −
�
Λþ 1

w
W

�
δc; ð55aÞ

W ¼ X̄ −
8

λð1Þ Ȳþ Λ
5λð1Þ −

Γ
20

; ð55bÞ

where

Ȳ ¼ κ̂

0
BBBBBBBB@

Ω111 Ω112

Ω211 Ω212 Ω213

. .
. . .

. . .
.

ΩL−11L−2 ΩL−11L−1 ΩL−11L

ΩL1L−1 ΩL1L

1
CCCCCCCCA
:

ð56Þ
We can check that the truncated l ¼ 1 linear equation (28)
is a special case of Eq. (55). In order to solve the linearized
equation (55) we perform a transformation in terms of the
pseudomodes δc̃ [52]

δc̃ ¼ ṼðwÞδc; ṼðwÞ ≔ 1L þ V
w
; ð57Þ

where V is a constant matrix. Thus, the equation of the
pseudomodes δc̃ is

dδc̃
dw

¼ −ṼðwÞ
�
Λþ 1

w
W

�
ṼðwÞ−1δc̃ðτ̂Þ þOðδc̃=w2Þ

¼ −
�
Λþ 1

w
ðWþ ½V;Λ�Þ

�
δc̃ðwÞ; ð58Þ

where the commutator ½A;B� ≔ AB − BA was introduced.
One can take diag:ðVÞ ¼ ð0;…; 0Þ, and the other compo-
nents can be chosen in such a way that one can diagonalize
the matrix W as follows:

Wþ ½V;Λ�∶ ↦ W̃ ≔ diag:ðw1;…;wLÞ: ð59Þ

Therefore, the solution of Eq. (58) is

δc̃lðwÞ ¼ σl
e−λðlÞw

wwl
⇒ δclðwÞ ¼ σl

e−λðlÞw

wwl
: ð60Þ

The Lyapunov exponents are the diagonal components of the
matrix Λ̂ (18a). These exponents govern the rate at which
each mode relaxes toward its equilibrium value,
w�
l ¼ ½λðlÞ�−1.We observe that for larger value of l relaxation

is faster, and that there is a clear hierarchy of scales
w�
1 > w�

2 > � � � > w�
L. For the FP equation the slowest non-

hydro mode is c1 which is proportional to the normalized
shear viscous tensor component. A commonmisunderstand-
ing in the literature is to assume that the existence of this
hierarchy of scales determines immediately the full set of the
slowest degrees of freedom of the physical system. Recent
studies [31,68] have shown that this assumption is incorrect
since nonlinear mode-to-mode coupling among moments
plays a relevant role close to the forward attractor, and thus
the determination of the slow invariant manifold of the
dynamical system is not uniquely determined by the mere
existence of a hierarchy of scales [31,32] in Eq. (13). The
eigenvalue wl ∈ Rþ of the matrix Ŵ is the anomalous
dimension of the linear perturbation δcl. Their values wl
depends explicitly of the coupling constant as well as the
truncation order L [30–32]; only in the limitL → ∞ do their
values coincide with the exact underlying microscopic
theory. We note that wl is not a universal constant. Its value
depends on the kinetic model and is sensitive to non-
linearities encoded in mode-to-mode couplings.
The general transseries solutions of the nonlinear

coupled ODEs (22) are constructed by rewriting these
equations in terms of the pseudomodes basis, i.e.,

c̃ ¼ ṼðwÞc; ð61Þ

where ṼðwÞ is given in Eq. (57). Under this transformation
the equation of the pseudomodes c̃ is

dc̃
dw

¼ F̃ðc̃; wÞ; ð62aÞ

F̃ðc̃; wÞ ¼ −
1

ð1 − c1
20
Þ

×

�
1

w
ðX̃ðcÞc̃þ Γ̃ðwÞÞ þ ðΛ̃þ ỸðcÞ þ Z̃ðcÞÞc̃

�

−
1

w2
VṼ−1ðwÞc̃; ð62bÞ

where c1ðwÞ¼
P

L
k¼1Ṽ

−1
1k ðwÞc̃kðwÞ. We have denoted matri-

ces in the pseudomode basis by M̃ðwÞ≡ ṼðwÞMṼ−1ðwÞ
and the vector Γ̃ðwÞ≡ ṼðwÞΓ. Having determined the
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linearized pseudomodes (60) we can write the solutions of
the pseudomodes as multiparameter transseries

c̃lðwÞ ¼
X
n∈NL

0

Xþ∞

k¼0

ũðnÞl;kΦn
k ; ð63aÞ

Φn
k ≔

�YL
j¼1

σ
nj
j ζ

nj
j

�
w−k; with ζj ≔

e−Sjw

wβj
; ð63bÞ

where n ¼ ðn1; n2;…; nLÞ is a vector where each compo-
nent ni is a non-negative integer which labels the non-
perturbative sectors of the pseudomodes, σi ∈ C is the
integration constant, and L ∈ N is the truncation order. The
term ζj in Eq. (63b) must match the linearized solutions
(60), and thus it determines the IR data

Sj ¼ λðjÞ; βj ¼ wj: ð64Þ

The set of ODEs for the pseudomodes (62a) satisfy the
asymptotic and regular conditions needed in Costin’s pre-
scription [54], and thus it justifies mathematically why the
exact solutions are indeed multiparameter transseries. Now,
given the solutions for the pseudomodes (63) one obtains the

ones corresponding to the Legendre moments cl as
follows:

clðwÞ ¼
XL
l0¼1

Ṽ−1
ll0 ðwÞc̃l0 ðwÞ ¼

X
n∈NL

0

Xþ∞

k¼0

uðnÞl;kΦn
k ; ð65aÞ

with uðnÞl;k ¼
XL
l0¼1

Xk
k0¼0

ð−1Þk0 ½Vk0 �ll0 ũðnÞl0;k−k0 : ð65bÞ

The reality condition on the distribution function implies that
the Legendremoments cl are real. Although the solutions for
the pseudomodes c̃l (63a) are complex the reconstructed
transseries solutions of cl (65a) are real since the following
conditions are satisfied ∀ j ≥ 1 [32]:
(1) λðjÞ ∈ Rþ [with λj given by Eq. (18a)] and λðjÞ ≠

λðj0Þ for any j ≠ j0.
(2) If βj ∈ Rþ which implies σj ∈ Rþ.
(3) If βj ∈ C then there should be a complex conjugate

pair βk ¼ β�j (j ≠ k) which implies σk ¼ σ�j .

Finally the coefficients ũðnÞl;k are determined by inserting the
transseries solution of the pseudomodes (63a) into its
corresponding Eq. (62a). As a result one gets the following
recursive relation:

− ðm · SÞũðmÞ
k − ðm · βþ kÞũðmÞ

k−1 þ
1

20

Xm1þm2¼m

m1;m2¼0

Xk1þk2¼k

k1;k2¼0

½ðm1 · SÞũðm1Þ
k1

þ ðm1 · βþ k1Þũðm1Þ
k1−1�u

ðm2Þ
1;k2

þ ½fΛ̃þ ỸðuÞ þ Z̃ðuÞg⋆ũ�ðmÞ
k þ ½X̃ðuÞ⋆ũþ Γ̃�ðmÞ

k−1 þ VuðmÞ
k−2 ¼ 0; ð66Þ

where ũðmÞ
k and uðmÞ

k are coefficients of c̃ and c, respec-

tively, ½•�ðmÞ
k denotes the coefficient for the basisΦm

k , which
can be projected out by the loop integrations as

aðmÞ
k ¼

I
jwj≪1

dw
2πi

wk−1
�YL
l¼1

I
jζlj≪1

dζl
2πi

ζ−ml−1
l

σml
l

�
A;

with A ¼
X
m∈NL

0

X∞
k¼0

aðmÞ
k Φm

k ; ð67Þ

and ⋆ denotes the convolution product summing over m
and k, equipping the usual matrix-vector product as well,
defined as

½a⋆b�ðmÞ
k ¼

Xm
m0≥0

Xk
k0¼0

aðm
0Þ

k0 bðm−m0Þ
k−k0 ;

with A¼
X
m∈NL

0

X∞
k¼0

aðmÞ
k Φm

k ; B¼
X
m∈NL

0

X∞
k¼0

bðmÞ
k Φm

k : ð68Þ

Here, we replaced the c dependence in the matrices with u,
and the multiplication between c (and also w) should be

replaced with the convolution product. Notice that Γ̃ðmÞ
k is

nonzero when m ¼ 0 and k ¼ 0, 1.

B. Transasymptotic matching: General case

In this section we present the transasymptotic matching
condition for the multiparameter transseries solutions of the
dynamical system (22). The rigorous mathematical dem-
onstration of the generalized transasymptotic matching
condition can be found in Refs. [52,54]. In this general
case it is more convenient to use the pseudomode basis
defined in Eq. (61). Following the same arguments outlined
in Sec. III B the solutions of the pseudomodes c̃i (with
i ¼ 1;…; L) can be written as

c̃iðwÞ ¼
X∞
k≥0

G̃i;kðσζðwÞÞw−k; ð69aÞ

with G̃i;k ¼
X
n∈NL

0

ũðnÞi;k

�YL
j¼1

σ
nj
j ζ

nj
j

�
: ð69bÞ
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The transasymptotic matching condition (69a) can be directly obtained from (66) by taking the summation of m after
putting

Q
L
l¼1 σ

mlζml in of the each terms, and it leads to the following first-order PDE for the functions
G̃k ≡ ðG̃0;k; G̃1;k;…; G̃L;kÞ:

− ðS · ζ̂ÞG̃k − ðβ · ζ̂ þ kÞG̃k−1 þ
1

20
½G1⋆ðS · ζ̂ÞG̃�k þ

1

20
½G1⋆ðβ · ζ̂ÞG̃�k−1 þ

1

20

Xk1þk2¼k

k1;k2¼0

k1G̃k1−1G1;k2

þ ½fΛ̃þ ỸðGÞ þ Z̃ðGÞg⋆G̃�k þ ½X̃ðGÞ⋆G̃þ Γ̃�k−1 þ VGk−2 ¼ 0; ð70Þ

where ½•�k denotes the coefficient for the basis w−k, and ⋆
denotes the convolution product summing only over k.

Notice that Γ̃k ¼ Γ̃ð0Þ
k . The functions G̃i;k depend only on

σiζi. The solution of this equation gives us automatically
the time evolution of any operator Oðc̃iÞ by including all
the transmonomials. If one increases the number of
moments it is not a trivial task to solve Eq. (70). In
principle, Eq. (70) is a nonlinear PDE which can be solved
provided a well-defined initial condition as well as a correct
choice for the eigenbasis (see Ref. [52] for technical
details). To the best of our knowledge, the only case
known in the literature where the transasymptotic matching
condition has been solved explicitly is the l ¼ 1 case for the
RTA Boltzmann equation [30,31]. However, one can
always reconstruct the functions Gi;k from their definition

)69 b) provided previous knowledge of the coefficients ũðnÞi;k
which are determined via the recursion relation (66). The
information of the IR data is encoded in the integration
constants σi which in principle can be determined from the
UV data.

1. Dynamical RG flow equation: General case

In this section we generalize the procedure of the RG flow
equation when the number of moments cl is l ≥ 1. Consider
an observable O≡OðcðwÞÞ with c ¼ ðc1;…; cLÞ. Starting
from the original ODE for the moments cl (22) and using
Eq. (62a), one finds that the change of O along the
RG time w is

dOðcðwÞÞ
d logw

¼ −
XL
i¼1

�X∞
k¼0

ðb̃þ wSÞ · ζ̂G̃i;k þ kG̃i;k

� ∂O
∂c̃i ;

¼
XL
i¼1

β̃i ·
∂O
∂c̃i ; ð71Þ

where F̃ ¼ ṼF being the matrix Ṽ the inverse of Ṽ−1 in
Eq. (61) [see also Eq. (62a)] and β̃ ¼ wF̃. In the previous
equation we use that d

d logw ¼ ðb̃þ wSÞ · ζ̂ þ ∂
∂ logw and we

denote ζ̂i ¼ ∂=∂ log ζi. The first line of Eq. (71) encodes the
scaling behavior of the observable O while the second one
encodes the dynamics of the nonlinear ODEs through β.
By solving this RG equation one sums over all the

nonperturbative contributions of the multiparameter transs-
eries and thus determines the renormalization of O.
We are seeking a RG flow equation of the transport

coefficients so it is more convenient to consider that
O ¼ OðGi;kÞ. As a result, the transport coefficients depend
intrinsically only on ζðwÞ. Thus, for this case the RG flow
equation of O reads as follows:

dOðGi;kðwÞÞ
d logw

¼−
XL
i¼1

�X∞
k¼0

ðb̃þwSÞ · ζ̂G̃j;k

�
·
∂O
∂G̃j;k

: ð72Þ

At this level the connection with the beta function β̃ is
highly nontrivial and thus, one must consider particular
cases like the l ¼ 1 case studied in Sec. III B (see also
Refs. [30,32] for further examples).

2. Renormalization of first- and second-order
transport coefficients

From the results derived in the previous section we have
the tools to study qualitatively the effect of adding more
moments on the renormalized transport coefficients. In
general, it is proven that the asymptotic leading-order
behavior of the moments cl ∼Oðw−lÞ. The perturbative
Chapman-Enskog expansion up to second order [78] leads
to the following asymptotic series expansion of the
moments c1 and c2 as follows [31,63,94]:

c1 ¼ −
40

3

1

w
η

s
−
80

9

1

w2

Tðητπ − λ1Þ
s

þOð1=w3Þ; ð73aÞ

c2 ¼
80

9

Tðλ1 þ ητπÞ
s

1

w2
þOð1=w3Þ: ð73bÞ

If we now implement the transasymptotic matching con-
dition (69a) together with the asymptotic expressions of the
moments we conclude

η

s
¼ −

3

40
lim
w→∞

G1;1ðσζðwÞÞ; ð74aÞ

T
s
ητπ ¼ −

9

160
lim
w→∞

ðG1;2ðσζðwÞÞ − G2;2ðσζðwÞÞÞ; ð74bÞ
T
s
λ1 ¼

9

160
lim
w→∞

ðG1;2ðσζðwÞÞ þG2;2ðσζðwÞÞÞ: ð74cÞ
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The previous expressions generalize the results derived for
the l ¼ 1 case, Eqs. (37). It is then straightforward to
implement the newly developed concept of nonequilibrium
transport coefficients when adding more moments as
follows:

�
η

s

�
r
¼ −

3

40
G1;1ðσζðwÞÞ; ð75aÞ

�
T
s
ητπ

�
r
¼ −

9

160
ðG1;2ðσζðwÞÞ −G2;2ðσζðwÞÞÞ; ð75bÞ

�
T
s
λ1

�
r
¼ 9

160
ðG1;2ðσζðwÞÞ þG2;2ðσζðwÞÞÞ: ð75cÞ

The RG evolution equations of the first- and second-order
transport coefficients are automatically determined by
using the previous expressions and replacing O → Or

i into
Eq. (72) where Or

i ¼ ððη=sÞr; ððT=sÞητπÞr; ððT=sÞλ1ÞrÞ.
These equations also illustrate that the inclusion of more
moments indeed affects the values of the renormalized
transport coefficients. One can also determine the renor-
malized transport coefficient by solving the recursive
relation (66) and then reconstructing the multiparameter
transseries as it was done in Fig. 3. However, the anoma-

lous dimension βi, the coefficients u
ðnÞ
l;k , and the integration

constants σi [see Eq. (31)] become very sensitive to the
number of moments added [31,32]. Furthermore, the
number of integration constants σ’s increase so the uncer-
tainty to compare the IR and UV data becomes more
cumbersome [31,32]. The only terms that are insensitive to
the changes in the number of dynamical variables are the
Lyapunov exponents λðlÞ. In general, any truncation
scheme would lead to a multiparameter transseries with
a finite radius of convergence (see Appendix D in Ref. [31]
and Sec. 3.3. in Ref. [32]). A possible way to circumvent
this problem was proposed recently [95] where the ratio
between the inverse Reynolds number and the Knudsen
number was determined numerically.

C. Transseries solutions in the UV

In this section we derive the UV transseries solutions by
generalizing the results of Sec. III C 1. We show that the
linear perturbations of the Legendre modes cl around the
UV fixed point, which is a source, follow a power-
law decay. We begin by discussing some features of the
stability of the dynamical system of ODEs (22c) in the UV
regime.
Consider the w → 0 limit of Eq. (22c) by first changing

the variable w ¼ 1=z. We get

dc
dz

¼ Fðc; zÞ; ð76aÞ

Fðc;zÞ¼ 1

ð1− c1
20
Þ
�
1

z
ðXðcÞcþΓÞþ 1

z2
ðΛ̂þYðcÞþZðcÞÞc

�
:

ð76bÞ

In the z → ∞ limit the dominant terms of the previous
equation are Oð1=zÞ. In this limit one can determine the
fixed points by solving the following equation:

XðcÞcþ Γ ¼ 0: ð77Þ

The solutions to this equation provides a set of vectors
c̄ ¼ ðc̄1;…; c̄LÞ which determine the UV fixed points of
the dynamical system. The solutions to Eq. (77) depend on
the truncation order lmax, so these are not necessarily real
and we need to impose the reality conditions. Furthermore,
the original FPE admits two UV fixed points for the
moment c1, which have the property that the transverse
and longitudinal pressures are minimized, c1 ¼ 5 and
c1 ¼ −5=2, respectively. We call these configurations max-
imally prolate and maximally oblate, respectively. The two
UV fixed points act as bounds for the basin of attraction from
above and below along the c1 ray in the infinite dimensional
space of the moments cl. Thus, any truncation scheme of the
distribution function can be considered a good approximate
solution of the Boltzmann equation if and only if the UV
stability properties are reproduced approximately. In this
case, the truncated dynamical systemofODEs should have at
least two UV fixed points for the moment c1.
In Fig. 6 we plot the real solutions to Eq. (77) for the

moment c̄1 at the fixed points as a function of the truncation
order lmax ∈ ½1; 10�. We find that if lmax is odd then the real
solutions for c̄1 come in pairs. As lmax increases (for odd
values) the UV fixed points approach the expectation for
the original FPE, c̄1 ¼ f5;−5=2g. On the other hand,
there is only one real solution for c̄1 if lmax is even.

FIG. 6. Distribution of the UV fixed points for the moment c̄1
as a function of the truncation order lmax. Black and red dots
correspond to lmax being either an odd or an even number,
respectively. Blue (c̄1 ¼ 5) and brown (c̄1 ¼ −5=2) dashed lines
correspond to the UV fixed points of the original FPE.
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These observations also hold for the UV fixed points of
higher-order moments c̄l. Thus, the standard idea of
obtaining a more accurate approximate solution to the
Boltzmann equation by adding more moments to the
distribution function is not necessarily correct. A good
truncation scheme must reproduce the flow structure of the
original Boltzmann equation in the IR and UV regimes.
Similar findings were reported for the RTA Boltzmann
equation [31,32]. In the rest of this section we will consider
the case that lmax is odd.
In the limit z → ∞ we linearized Eq. (76) around a

particular UV real fixed point c̄, namely c → c̄þ δc, which
leads to the following equation for the linear perturbations:

dδc
dz

¼
XL
k¼1

∂Fðc; wÞ
∂ck

				
ck¼c̄k

δck

¼ 1

1 − c̄1
20

2
666664
X̄ −

c̄1
5
1L −

1

5

0
BBBBB@

c̄1 0 � � � 0

c̄2 0 � � � 0

..

. ..
. . .

. ..
.

c̄L 0 � � � 0

1
CCCCCA

3
777775
�
δc
z

�

≡Tðc̄Þ ·
�
δc
z

�
; ð78Þ

where the matrixX is defined in Eq. (16a). Upon inspection
we find that Eq. (47) is a particular case of this linearized
equation for the perturbations. We introduce the linear
pseudomodes δc̃ ¼ Uδc so that U diagonalizes the matrix
Tðc̄Þ,

Tðc̄Þ → UTðc̄ÞU−1 ≡ T̃ðc̄Þ
with T̃ðc̄Þ ¼ diag:ðt̂1;…; t̂LÞ: ð79Þ

This procedure gives the equation for the linearized
pseudomodes

dδc̃
dz

¼ 1

z
T̃ðc̄Þ · δc̃: ð80Þ

Its solution is

δc̃i ¼ μizt̂i ; ð81aÞ

⇒ δci ¼ U−1
ij δc̃j ¼ U−1

ij μjw
−t̂j : ð81bÞ

This result shows that close to the UV fixed points the
linearized perturbations have a power-law behavior which
is opposite to their IR counterparts (60). In general the
eigenvalue t̂i and the integration constant μi, as well as the
matrix element Uij are complex numbers. The reality
condition of the linearized modes is satisfied since the
coefficients of the polynomial eigenvalue problem of the

matrix T are real, and thus, their complex eigenvectors and
eigenvalues come in complex conjugate pairs. When
summing over the complete eigenbases of pseudomodes
the linearized modes are real as expected. Moreover, what
happens in the vicinity of any UV fixed point c̄ along the
ray c̄i is encoded by the real part of the eigenvalues of the
matrix T, namely Rðt̂iÞ. In the limit z → ∞ the linearized
perturbation δc̃i decays rapidly as a power law ifRðt̂iÞ < 0

while δc̃i increases when Rðt̂iÞ > 0.
In order to generate approximate UV solutions in the

limit z → ∞ limit it is convenient to rewrite the equations
of motion in terms of the pseudomode basis c̃i ¼ Uijcj
[with U given by Eq. (79)]. In terms of the pseudomodes
the nonlinear ODEs (76) read

dc̃
dz

¼ F̃ðc̃; zÞ; ð82aÞ

F̃ðc̃;zÞ¼ 1

ð1− c1
20
Þ
�
1

z
ðX̃ðcÞc̃þ Γ̃Þþ 1

z2
ðΛ̃þỸðcÞþ Z̃ðcÞÞc̃

�
:

ð82bÞ

In the previous equation it must be understood that
c1 ¼

P
L
j¼1U

−1
1j c̃j. The transseries ansatz solution is built

up based on the solutions of the linearized perturbations
(81). These solutions can be taken as the transmonomials of
the transseries which carry out the information about the
nonperturbative contributions. Therefore, in the limit
z → ∞ the transseries ansatz is given by [31,32]

c̃lðzÞ ¼
X∞
jmj≥0

X∞
k¼0

ṽðmÞ
l;k φm

k ; ð83aÞ

φm
k ≔

1

zk

�YL
j¼1

ξ
mj

j

�
; with ξj ¼ μjzt̂j ; ð83bÞ

where m ∈ NL
0 , μi ∈ C is the integration constant and L ∈

N is the truncation order. The UV data are determined by
matching the transmonomial ξj with the linearized sol-
utions (81), and thus the anomalous dimensions αj entering
in the previous expression are the set of eigenvalues t̂ of the
linearization matrix T̂, Eq. (79), evaluated at the UV fixed
points c̄. A similar transseries ansatz was proposed for the
RTA Boltzmann equation in systems undergoing Bjorken
[31] and Gubser flow [32]. The solutions of the Legendre
moments in terms of the pseudomodes are given by

clðzÞ ¼
XL
l0¼1

U−1
ll0 c̃l0 ¼

X∞
jmj¼0

X∞
k¼0

vðmÞ
l;k φm

k ; ð84Þ

vðmÞ
l;k ¼

XL
r¼1

U−1
lr ṽ

ðmÞ
r;k : ð85Þ
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The coefficients ṽðmÞ
l;k entering in the transseries ansatz are determined entirely by inserting Eq. (83) into Eq. (82) which

leads to the following recursive relation:

ðm · t̂ − kþ 1ÞṽðmÞ
k−1 −

1

20

Xm1þm2¼m

m1;m2¼0

Xk1þk2¼k

k1;k2¼0

½ðm · t̂ − kþ 1Þṽðm1Þ
k1−1�v

ðm2Þ
1;k2

þ ½fΛ̃þ ỸðuÞ þ Z̃ðuÞg⋆ũ�ðmÞ
k−2 þ ½X̃ðuÞ⋆ũþ Γ̃�ðmÞ

k−1 ¼ 0; ð86Þ

where ⋆ denotes the convolution product. The normaliza-

tion condition is chosen to be ṽðnÞi;0 ¼ 1 when nj ¼ δj;i and

the coefficients ṽð0Þi;0 ¼ Uijc̄j since one expands around a

given UV fixed point c̄. In Eq. (86) ṽðmÞ
k and vðmÞ

k are

coefficients of c̃ and c, respectively, and ½•�ðmÞ
k denotes a

coefficient proportional to φm
k .

We emphasize that the transseries ansatz (83) is a
convergent series with a finite radius of convergence.
The rate of convergence depends on the anomalous
dimension αi ≡Rðt̂iÞ governing linearized perturbations
δc̃i (81). The lessons learned from the l ¼ 1 truncation
studied in Sec. III C (see also Refs. [31,32]) show that the
power-law transseries solutions (84) can be constructed if
and only ifRðt̂iÞ < 0. WhenRðt̂iÞ > 0 the best option is to
perform an analytical continuation while canceling the
transmonomial contributions in Eq. (83) by setting the
integration constant μi ≡ 0.

V. UNIVERSAL ASPECTS OF ATTRACTORS FOR
DIFFERENT KINETIC MODELS

In the previous sections we analyzed the behavior of the
solutions of the FPE in both the UV and IR limits. In this
section we study universal aspects of the attractors in the
FPE as well as the RTA Boltzmann equation and the AMY
kinetic theory [60].
Following the approach of Refs. [95,96] we consider a

distribution function which is squeezed along the beam
direction at early time.9 In this situation the initial longi-
tudinal pressure vanishes exactly, and thus this configura-
tion determines the pullback attractor of the distribution
function at early times [30,32]. Under this condition the
initial phase space distribution can be modeled as [95]

f0ðτ0; pT; pςÞ ¼ ð2πÞ3δðpςÞ
dN0

dςd2pTd2xT
: ð87Þ

The normalization constant is chosen such that the initial
energy density per unit rapidity per transverse area is
constant

dE0

dςd2xT
¼ lim

τ0→0
τ0eðτ0Þ ¼ ðτeÞ0 ¼ const: ð88Þ

The initial distribution function determines the initial
conditions for the Legendre moments

cl ¼ ð4lþ 1Þð−1Þl Γðlþ 1=2Þ
Γðlþ 1Þ : ð89Þ

Previous studies [86,96] have shown that universal behav-
ior of the numerical solutions can be by analyzed in terms
of observables that are less sensitive to the initial con-
ditions. Following Refs. [95,96] we study the following
observable:

E ¼ τ4=3ϵðτÞ
ðϵτ4=3Þhydro

;

ðϵτ4=3Þhydro ≡ lim
τ→∞

τ4=3ϵðτÞ: ð90Þ

We will analyze this observable as a function of the
variable w̃ ¼ τTðτÞ=½ð4πÞη=s�. In terms of this variable the
results are insensitive to the strength of the coupling.
Equation (90) has two interesting limits in the forward
and pullback attracting regions. The former is described by
a few terms of the nonhydrodynamic expansion [86], while
the latter is determined by expanding around the UV fixed
point where the longitudinal pressure vanishes [96],

Eðw̃Þ ¼


C−1
∞ w̃4=9 ðpullback attractorÞ;

1 − 2
3π

1
w̃ ðforward attractorÞ; ð91Þ

where the constant C∞ is determined from Eq. (51) in
Ref. [95]. Alternatively one can determine this constant by
fitting to the numerical data. We verified that both methods
lead to the same approximate value for this constant, see
also [95,96].
We numerically solved the evolution equations for the

Legendre moments, Eqs. (14) and (21), respectively,
together with the conservation law (14a). The solutions
for the Legendre moments cl were obtained by truncating

9For the RTA Boltzmann equation the form of the initial
distribution function does not play a major role. However
different processes of Yang-Mills plasmas, i.e., elastic and
inelastic interactions, affect the parametrization of the momentum
distributions [97,98]. In our approach these effects do not play a
role at the level of the moments since the free streaming
expansion dominates at early times over the collision rate of
the FPE as discussed in Sec. IV C.
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the expansion at l < lmax, setting cl ≡ 0 for l > lmax. This
method converges rapidly and no sizable deviations are
observed for lmax ≳ 35 for both the RTA Boltzmann and
FPE equations. In the case of the AMY-YM(Yang Mills)
theory we used publicly available numerical results10

[96,99,100].
In Fig. 7 we show numerical solutions of E as a function

of w̃ for the RTA Boltzmann equation (dashed green line),
FPE (dashed blue line), and AMY kinetic theory (red line).
The general behavior of the different kinetic models is quite
similar. They all exhibit a smooth transition from early-time
free streaming to universal late-time hydrodynamic behav-
ior. Deep in the UV regime the expansion (dashed gray
lines) dominates over collisions regardless of the under-
lying collision kernel, and the pullback attractor is deter-
mined by free streaming expansion. A more surprising fact
is that the interactions modify the expansion for similar
values of w̃ ≈ 0.08, i.e., at a large Knudsen number
Kn ≈ 12.5, independent of the underlying microscopic
theory. We note that the existence of a pullback attractor
is manifest only in the w variable. In the original proper
time variable τ the limit τ0 → 0 is not well defined because
the ODEs have an essential singularity at this point [31,32].
In the UV regime the main difference among the kinetic

models depicted in Fig. 7 is the values of the constantC∞ ¼
f0.98; 0.91; 0.89g for the AMY-YM, FPE, and RTA mod-
els, respectively. These values allows us to quantify the
difference among the predictions of RTA and FPE with
respect to the AMY-YM model. The former differs by
∼10%while the latter ∼8%. It is somewhat surprising that a
relatively simple approximation such as RTA captures

many aspects of the nonequilibrium dynamics compared
with AMY-YM kinetics. This observation was also noticed
previously in [95,96].
In the IR regime we observe in Fig. 7 that all kinetic

models reach the nonhydrodynamic behavior and thus, the
forward attractor is encoded by the late-time nonhydrody-
namic expansion. All the kinetic models reach the asymp-
totic hydrodynamic gradient expansion around w̃ ≈ 2, and
thus Kn ≈ 0.5 so the deviations from equilibrium are quite
large. This finding implies that one can reach the non-
hydrodynamic behavior without having local thermal
equilibrium.
Given that we find forward attractors for a number of

different kinetic equations, one may ask how general this
feature is. In Appendix E we discuss a sufficient set of
mathematical conditions which ensure its existence for
weakly coupled boost-invariant systems with highly non-
linear collision kernels beyond those studied in this work.

VI. DISCUSSION AND FINAL REMARKS

In this work we studied the hydrodynamization of a
boost-invariant system of gluons described by kinetic
equation derived from QCD in the small-angle, diffusive
approximation. We demonstrate that the physics of the
Fokker-Planck equation can be recast in terms of a set of
nonlinear ODEs for the Legendre moments of the one-
particle distribution function. We show that these kinetic
equations admit transseries solutions in both the UVand IR
regimes. These findings extend previous results obtained in
the context of the Boltzmann equation in the relaxation
time approximation [30–32].
We employ techniques from the theory of nonlinear

dynamical systems. Applying these methods to the kinetic
equations we investigate the stability properties of linear-
ized perturbations around the IR and UV fixed points. We
analyze the emergence of transseries solutions and show
that their functional form is a rather natural consequence of
the stability properties of the nonlinear ODEs around the
UV and IR fixed points, respectively.
In the IR regime we prove that the solutions of the

moments equations are multiparameter transseries. The
associated transmonomials are built up using the behavior
of linearized perturbations around the IR fixed point. These
perturbations involve the product of an integration constant,
an exponentially decaying term, and a power-law term. The
exponentially decaying term determines the rate at which
linearized perturbations decay near the IR fixed point. This
decay time is controlled by the product of the Lyapunov
exponent and the inverse Knudsen number. These terms
play an analogous role of instantons contributions in QFT.
The IR transseries effectively resums nonperturbative
dissipative contributions that are absent in the usual
perturbative gradient expansion. These results strongly
suggest that a consistent formulation of nonhydrodynamic

FIG. 7. Evolution of the normalized energy density (90) vs
w̃ ¼ τTðτÞ=½ð4πÞη=s�. We show the numerical results obtained
for the FPE (dashed blue line), AMY-YM kinetics (red line), and
RTA Boltzmann (dashed green line). In addition we present the
universal hydrodynamic behavior (dashed orange line) and early-
time free streaming (dotted gray line).

10The numerical data obtained in [96,99,100] are available at
[101]. We thank S. Schlichting for directing us to this site.
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theories in far-from-equilibrium regimes requires the inclu-
sion on nonperturbative physics.
In the IR regime the constitutive relations of each

Legendre moment cl contain the nonperturbative informa-
tion encoded in the multiparameter transseries. The result
suggests a nonperturbative dynamic renormalization
scheme which goes beyond standard linear response theory.
In this theoretical framework, transport coefficients can be
defined in far-from-equilibrium regimes when the Knudsen
number is large. At each order of the perturbative IR
expansion, transport coefficients are dynamically renor-
malized by nonperturbative corrections in the transseries, a
method known as transasymptotic matching in the resur-
gence literature. This approach has a nice interpretation in
terms of a RG flow.
From the physical point of view, the renormalized

transport coefficients depend on the rheology of the fluid.
They describe the relaxation of dissipative coefficients to
their values dictated by the linear response approach. Thus,
the fluid experiences transient non-Newtonian behavior
prior to hydrodynamization.
On the mathematical side, we explored the relation

between dynamical systems and RG flows. Indeed, it is
known that the field theoretical RG flows may be discussed
in the framework of autonomous dynamical systems
[55,56]. Our work shows that this link can be extended
to nonautonomous systems that hydrodynamize, where
time plays the role of scale parameter. In other words, a
nonautonomous dynamical system can be considered as a
RG flow equation provided there is a slow invariant
manifold, i.e., when the long-time physics is dominated
by slow degrees of freedom [32]. In the case studied here
and in [30–32] the invariant manifold is shown to exist if
the IR perturbations go to zero in the long-time limit, a fact
that points to the existence of a forward attractor. In
particular, there are bounded solutions at w → ∞ or τ →
∞ for a fixed initial time that approach the equilibrium
point. For expanding systems such as Gubser flow [29,32],
the system is completely perturbative so that full hydro-
dynamization does not occur. Therefore, there is no slow
invariant manifold, which in turn explains why the RG flow
paradigm for the transport coefficients is no longer
available.
In the UV regime the nonlinear ODEs for the moments

admit transseries solutions with a rather different behavior
compared to their counterparts in the IR limit. These
solutions are power series with a finite radius of conver-
gence. The radius of convergence R grows linearly with the
shear viscosity over entropy ratio η=s. The linear relation
between R and η=s provides a rather simple explanation of
previous numerical findings [72,75,76,102–108] where it
was noticed that initial conditions close to the maximally
oblate UV fixed point converge slowly to the forward
nonhydrodynamic attractor than the ones located in the
vicinity of the maximally prolate UV fixed point. The latter

is a saddle point for any viable truncation (e.g., if the
truncation bound for l is odd) and it is found that there is a
set of solutions for the Boltzmann equation that remain
bounded near this point. In contrast, the maximally oblate
UV fixed point is a source from which flow lines are
streaming away in w0 → 0 for a fixed w, meaning that there
are no attracting regions to probe in the past of the
dynamical system around this fixed point.
We show that the validity of the power series expansion

can be extended by analytic continuation. As an alternative,
we also introduce a new resummation scheme which
accounts for the nonperturbative physics of the power-
law behavior of the fluctuations around the UV fixed
points. We note that the UV stability analysis also unveils a
nontrivial aspect of truncating the moment expansion in
relativistic kinetic theory: In order to preserve the UV
structure of the original kinetic equation for Bjorken flow
we have to include an odd number of Legendre moments
L ¼ 2nþ 1 moments in the n → ∞ limit.
We discussed the general properties of the IR and UV

regimes of the Fokker-Planck equation in comparison to the
RTA Boltzmann and AMY kinetic equations. The pullback
attracting region is entirely determined by the free stream-
ing limit where the longitudinal extent of the distribution
function is negligible. The attracting region in the long-time
limit corresponds to hydrodynamization and can be char-
acterized by a few terms in the gradient expansion. There
are, however, minor differences between different models.
We find that the RTA and AMY differ by at most 10%
while the latter disagrees by up to 8% with the FPE result.
The techniques presented in this work are not necessarily

restricted to far-from-equilibrium systems undergoing
longitudinal boost-invariant expansion. Indeed, these meth-
ods can be applied to describe nonequilibrium dynamics in
other physical systems of relevance such as cold atoms
systems, condensed matter, and cosmology.
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APPENDIX A: EVOLUTION EQUATIONS FOR THE LEGENDRE MOMENTS cl

In this Appendix we briefly describe the main elements to derive the evolution equation for the Legendre moments cl.
Some important identities of the Legendre polynomials were used and are explicitly listed at the end of this section, see A 1.
The equation for the temperature is obtained from the conservation law which in our case reads as

dϵ
dτ

þ 1

τ
ðϵþ pLÞ ¼ 0 ⇒

dTðτÞ
dτ

¼ −
TðτÞ
3τ

�
1þ 1

10
c1ðτÞ

�
; ðA1Þ

where we used explicitly the matching condition for the energy (12a) with c0 ≡ 1. In order to obtain the equations for the
Legendre moments cl we multiply first both sides of the FPE (1) by

R
pð−u · pÞ2P2lðcos θpÞ. As a result we get

Z
p
ð−u · pÞ2P2lðcos θpÞ∂τfp ¼ λ2lCb

Z
p
ð−u · pÞ2P2lðcos θpÞ



∇p · ½J ðτÞ∇pfp þKðτÞ p

p
fpð1þ fpÞ�

�
: ðA2Þ

Now we equate in the previous expression the ansatz (8) into the previous expression. In the lhs of Eq. (A2) one simply gets

Z
p
ð−u · pÞ2P2lðcos θpÞ

∂fðτ;pÞ
∂τ ¼

Z
p
ð−u · pÞ2P2lðcos θpÞ

�Xþ∞

l0¼0

�
dcl0 ðτÞ
dτ

P2l0 ðcos θpÞfeqðτ;pÞ

þcl0 ðτÞ ∂P2l0 ðcos θpÞ
∂τ feqðτ;pÞ þ cl0 ðτÞP2l0 ðcos θpÞ

∂feqðτ;pÞ
∂τ

��
;

¼ ϵðτÞ
ð4lþ 1Þ

�
dclðτÞ
dτ

þ 1

τ



Ulclþ1ðτÞ þ

�
Bl −

2

15
c1

�
clðτÞ þ Clcl−1ðτÞ

��
; ðA3Þ

where we used explicitly the conservation law for the temperature (A1). In the previous expression the coefficients Ul, Bl,
and Cl are, respectively,

Al ¼ −
ð2l − 1Þð2lþ 1Þð2lþ 2Þ

ð4lþ 3Þð4lþ 5Þ ; Bl ¼
2ð14l2 þ 7l − 2Þ
ð4l − 1Þð4lþ 3Þ −

4

3
; Cl ¼ 2lð2l − 1Þð2lþ 2Þ

ð4l − 3Þð4l − 1Þ : ðA4Þ

The calculation of the momentum integrals in the rhs of Eq. (A2) simplifies if one replaces the ansatz (8) in the definition
of the integrals J and K, Eqs. (3), i.e.,

J ðτÞ ¼
Z

d3p
ð2πÞ3 fðτ;pÞ½1þ fðτ;pÞ� ¼ TðτÞ3

2π2

�
2ζð3Þ þ

Xþ∞

n¼0

π2 − 6ζð3Þ
3ð4nþ 1Þ cnðτÞ

2

�
; ðA5aÞ

KðτÞ ¼ 2

Z
d3p
ð2πÞ3

fðτ;pÞ
p

¼ TðτÞ2
6

; ðA5bÞ

where ζðnÞ is the Riemann zeta function and the Landau matching condition for energy density (12a) was explicitly used.
In order to perform the momentum integrals in the rhs of Eq. (A2) we change the variable pz ¼ pς=τ. This

results in changing the momentum measure d2pTdpς

τ → d2pTdpz as well as the comoving energy pτ → p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT

2 þ p2
z

p
.

Furthermore, this change of variable allows us to write the spatial components of the momentum as
pi ¼ pðcosϕp sin θp; sinϕp sin θp; cos θpÞ. For instance, one of the integrals in the rhs of Eq. (A2) gives us

Z
p
ð−u · pÞ2P2lðcos θpÞ∇2

pfðτ;pÞ ¼
Z

d3p
ð2πÞ3 pP2lðcos θpÞ

×

� ∂2

∂p2
þ 2

p
∂
∂pþ 1

p2

∂
∂ cos θp sin

2θp
∂

∂ cos θp
�
fðτ; p sin θp; p cos θpÞ

¼ −
TðτÞ2

6ð4lþ 1Þ ½lð2lþ 1Þ − 1�clðτÞ: ðA6Þ
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In the previous expression we make explicit use of the Bjorken constraints over the total distribution function, i.e.,
fp ¼ fðτ; jpT j; pς=τÞ → fðτ; p sin θp; p cos θpÞ after the aforementioned change of variable is carried out.
The remaining momentum integral in the rhs of Eq. (A2) reads as

Z
p
ð−u · pÞ2P2lðcos θpÞ∇p ·

p
p
fðτ;pÞð1þ fðτ;pÞÞ

¼ −
TðτÞ3

2π2ð4lþ 1Þ
�
2ζð3ÞclðτÞ þ

�
π2

3
− 2ζð3Þ

� Xjm−nj¼l

m;n¼0

ΩlmncmðτÞcnðτÞ
�
; ðA7Þ

where

Ωlmn ¼
αm−nþlαnþm−lαn−mþl

αnþmþl
·

4lþ 1

2ðnþmþ lÞ þ 1
; with αl ¼ ð2l − 1Þ!!

l!
: ðA8Þ

By equating Eqs. (A6) and (A7) together with Eqs. (A5) into the rhs in Eq. (A2) we finally get

Z
p
ð−u · pÞ2P2lðcos θpÞC½f� ¼ −

TðτÞϵðτÞ
ð4lþ 1Þθ0

�
2ζð3Þ þ

Xþ∞

n¼0

π2 − 6ζð3Þ
3ð4nþ 1Þ cnðτÞ

2

�
ðlð2lþ 1Þ − 1ÞclðτÞ

−
TðτÞϵðτÞ
ð4lþ 1Þθ0

�
2ζð3ÞclðτÞ þ

�
π2

3
− 2ζð3Þ

� Xjm−nj¼l

m;n¼0

ΩlmncmðτÞcnðτÞ
�
; ðA9Þ

with θ−10 ¼ 5
8π5

λ2YMlCb. Thus, by putting together the lhs (A3) and rhs (A9) of Eq. (A2) we get the following evolution
equations for the Legendre moments cl:

dclðτÞ
dτ

¼ −
1

τ

�
Alclþ1ðτÞ þ

�
Bl −

2

15
c1ðτÞ

�
clðτÞ þ Clcl−1ðτÞ

�

−
TðτÞ
θ0

�

κ þ π2lð2lþ 1Þ

3

�
clðτÞ þ κ

Xjm−nj≤l

m;n¼1

ΩlmncmðτÞcnðτÞ þ κ
Xþ∞

n¼1

ð2l − 1Þðlþ 1Þ
3ð4nþ 1Þ cnðτÞ2clðτÞ

�
:

After some redefinition of the variables and writing them in a matrix form one gets Eqs. (14).

1. Some useful identities of the Legendre polynomials

In the previous section we used explicitly the following identities of the Legendre polynomials:

PnðxÞ ¼ 2n
Xn
k¼0

�
n

k

�� nþk−1
2

n

�
xk ¼ 1

2n

Xn
k¼0

�
n

k

�
2

ðx − 1Þn−kðxþ 1Þk; ðA10aÞ

PnðxÞPmðxÞ ¼
XMin½n;m�

k¼0

αm−kαkαn−k
αnþm−k

·
2ðnþm − 2kÞ þ 1

2ðnþm − kÞ þ 1
· Pnþm−2kðxÞ: with αk ¼

ð2k − 1Þ!!
k!

; ðA10bÞ

Z þ1

−1
dxP2nðxÞP2mðxÞ ¼

2

4nþ 1
δn;m; ðA10cÞ

Z þ1

−1
dxP2nðxÞP2mðxÞP2lðxÞ ¼

αm−nþlαnþm−lαn−mþl

αnþmþl
·

2

2ðnþmþ lÞ þ 1
; ðA10dÞ

x2P2lðxÞ ¼
2lð2l − 1Þ

ð4l − 1Þð4lþ 1ÞP2l−2ðxÞ þ
8l2 þ 4l − 1

ð4l − 1Þð4lþ 3ÞP2lðxÞ þ
ð2lþ 1Þð2lþ 2Þ
ð4lþ 1Þð4lþ 3ÞP2lþ2ðxÞ; ðA10eÞ
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∂
∂ cos θp sin

2 θp
∂

∂ cos θp P2lðcos θpÞ

¼ −2lð2lþ 1ÞP2lðcos θpÞ: ðA10fÞ

APPENDIX B: ON THE INHERENT
EXPONENTIAL ERROR

We conclude this section by estimating the error made
when truncating the transseries solutions based on super-
and hyperasymptotics [51]. In Sec. III Awe observe a good
agreement between the numerical results and the IR
transseries solutions (see also Refs. [30–32]). Naively,
one might think that a better agreement between the
transseries and the numerical results can be obtained when
adding more transmonomials and/or higher orders in the
transseries. Nevertheless, this is not the case since in our
case the radius of convergence of the transseries is
finite [31,32].
Consider the truncated IR asymptotic expansion of the

Legendre mode c1, i.e.,

c1ðwÞ ∼
XK
k¼1

uð0Þ1;kw
−k þOðw−K−1Þ; with K ∈ N; ðB1Þ

where K is the order of the truncation. The IR perturbative
expansion (24) is asymptotically of Gevrey-1 class (see
discussion in Sec. III D of Ref. [31]). Thus, the asymptotic

form of the coefficients uð0Þ1;k entering in Eq. (24) are

juð0Þ1;kj ∼Mðθ̂0ÞS−kþβ1Γðk − β1Þ as k → þ∞; ðB2Þ

where Mðθ̂0Þ ¼ M0θ̂
β1
0 (M0 ∈ R) is an overall factor that

depends on the angle θ̂0 defined in the Borel plane. The
function KopðwÞ which optimizes the error between the
asymptotic series and the exact solution can be calculated
by evaluating the convergence rate as follows:

juð0Þ1;kjw−k > juð0Þ1;kþ1jw−k−1 ⇒ k < Swþ β1 ðB3Þ

⇒ KopðwÞ ¼ bSwþ β1c; ðB4Þ

where b•c is the floor function. Thus, the induced error
RKðwÞ in the truncated expansion (B1) is

RKop
ðwÞ

∼Mðθ̂0ÞS−ðKop−β1þ1ÞΓðKop−β1þ1Þw−ðKopþ1Þ

≈Mðθ̂0ÞΓðSwþ1ÞðSwÞ−SwS−1w−β1−1 ðKop≈Swþβ1Þ
∼

ffiffiffiffiffiffi
2π

p
Mðθ̂0ÞðSwÞ−1=2w−β1e−Sw as w→þ∞; ðB5Þ

whereweusedStirling’s formula for the last line.Clearly, this

estimate depends on the asymptotic behavior of juð0Þk j (B2).
In that case if k < Kop the error is small when juð0Þk j behaves
like in Eq. (B2) and depends explicitly on w. Thus, when
adding higher orders k > Kop to the truncated expansion
(B1) themismatch between transseries and the exact solution
increases. The situation gets more worrisome when solving
the general dynamical system (14). In this general case, the
leading-order perturbative contribution to clðτ̂Þ ¼ Oðτ̂−lÞ
[31]. As a result, the disagreement between the multipara-
meter transseries and the numerical solutions of the Legendre
moments clðτ̂Þ is larger and expected if l > Kop. This was
precisely what some of us observed and extensively dis-
cussed in Refs. [31,32].

APPENDIX C: IR TRANSSERIES SOLUTIONS IN
THE PROPER TIME τ VARIABLE

In Secs. III and IV we studied in detail the resurgent
properties of the nonlinear ODEs (23) in terms of the w
variable. However, one can also analyze the original
dynamical system in terms of the variable τ as it was done
for the RTA Boltzmann equation [30,31] for the detail. For
completeness we present this analysis in this section.
The IR fixed points of the Legendre moments are

c̄l ¼ 0∀l > 0, namely clðτÞ → 0 as τ → þ∞. From
Eq. (14a), one obtains the exact formal solution of TðτÞ, i.e.,

TðτÞ ¼ σTðσTτÞ−1=3 exp
�
−

1

30

Z
dτ
τ
c1ðτÞ

�

≕
σT
τ̂1=2

ð1þ T̄ðτ̂ÞÞ; ðC1Þ

where σT ∈ Rþ is the integration constant with dimensions
of energy and τ̂ ≔ ðσTτÞ2=3.11 Notice that τ̂ is dimensionless
and guarantees the scale invariance of cl in thew coordinate.
In addition, in the second line we expanded asymptotically
the solution of c1while satisfying that T̄ðτÞ → 0 as τ̂ → þ∞.
By substituting the solution (C1) into Eq. (14b), one obtains

11The integration and the series expansions are commutative
with each other up to the value of integration constant determined
from a given initial condition in general. In this sense, the value of
σT in a transseries is individually determined for each fixed point
from a given initial condition.
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dclðτ̂Þ
dτ̂

¼ Flðc; τ̂Þ;

Flðc; τ̂Þ ¼ −
3

2τ̂

�
Alclþ1ðτ̂Þ þ

�
B̄l −

2

15
c1ðτ̂Þ

�
clðτ̂Þ þ Clcl−1ðτ̂Þ

�

− ð1þ T̄ðτ̂ÞÞ
�
ΛðlÞclðτ̂Þ þ κ̂

Xjm−nj≤l

m;n¼1

Ωlmncmðτ̂Þcnðτ̂Þ þ κ̂
Xþ∞

n¼1

ð2l − 1Þðlþ 1Þ
3ð4nþ 1Þ cnðτ̂Þ2clðτ̂Þ

�
: ðC2Þ

It is straightforward to find that clðτ̂Þ ¼ Oðτ̂−lÞ by considering the asymptotic behavior of the solutions of Eqs. (14). For
instance, one obtains that c1 and T̄ behave asymptotically as follows:

c1ðτ̂Þ ∼ −
3C1

2Λð1Þτ̂ ¼ −
4

Λð1Þτ̂ ; T̄ðτ̂Þ ∼ −
1

20

Z
dτ̂
τ̂
c1ðτ̂Þ ∼ −

1

5Λð1Þτ̂ : ðC3Þ

As we proceeded in Secs. III and IV we rewrote the nonlinear ODEs (C2) in a matrix form, i.e.,

dc
dτ̂

¼ Fðc; τ̂Þ; ðC4Þ

where

cðτ̂Þ ¼ ðc1ðτ̂Þ;…; cLðτ̂ÞÞ⊤; ðC5aÞ

Fðc; τ̂Þ ¼ −
1

τ̂
½XðcÞcðτ̂Þ þ Γ� − ð1þ T̄ðτ̂ÞÞ½ΛþYðcÞ þ ZðcÞ�cðτ̂Þ: ðC5bÞ

Thematrices entering into the previous expressions are defined in Eqs. (16a) and (19). In order to build the transmonomials we
linearized the dynamical system (14) around the IR fixed point,

dδcðτ̂Þ
dτ̂

¼
XL
l¼1

∂Fðc; τ̂Þ
∂cl δclðτ̂Þ

¼ −
�
Λþ 1

τ̂

�
X̄ −

4Ȳ
Λð1Þ −

Λ
5Λð1Þ

��
δcðτ̂Þ − 1

τ̂
δY

0
BBBBB@

c1ðτ̂Þ
0

..

.

0

1
CCCCCA

þOðcδc=τ̂; δc=τ̂2Þ

¼ −
�
Λþ 1

τ̂
W̄

�
δcðτ̂Þ þOðcδc=τ̂; δc=τ̂2Þ; ðC6Þ

where

W̄ ≔ X̄ −
4

Λð1Þ
�
2Ȳþ Λ

20

�
; ðC7aÞ

δYðδcÞ¼ κ̂

0
BBBBBBBBBB@

P
2
m¼1Ω1m1δcmðτ̂Þ 0 � � � 0

..

. ..
. ..

.

Plþ1
m¼l−1Ωlm1δcmðτ̂Þ 0 � � � 0

..

. ..
. ..

.

PLþ1
m¼L−1ΩLm1δcmðτ̂Þ 0 � � � 0

1
CCCCCCCCCCA
; Ȳ¼ κ̂

0
BBBBBBBBBB@

Ω111 Ω112

Ω211 Ω212 Ω213

. .
. . .

. . .
.

ΩL−11L−2 ΩL−11L−1 ΩL−11L

ΩL1L−1 ΩL1L

1
CCCCCCCCCCA
: ðC7bÞ
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In order to find the behavior of the fluctuations close to the IR
fixed points it is needed to solve the eigenproblem for the
matrix W̄. FollowingCostin’s prescription [54]we introduce
the matrix V as follows:

δc̃ ≔ Ṽðτ̂Þδc; Ṽðτ̂Þ ≔ 1L þ V τ̂−1: ðC8Þ

Thus, the linearized equation Eq. (C6) is modified as

dδc̃
dτ̂

¼ −Ṽðτ̂Þ
�
Λþ 1

τ̂
W̄

�
Ṽðτ̂Þ−1δc̃ðτ̂Þ − VṼðτ̂Þ−1τ̂−2δc̃

¼ −
�
Λþ 1

τ̂
ðW̄þ ½V;Λ�Þ

�
δc̃ðτ̂Þ þOðδc̃=τ̂2Þ;

where the commutator between two matrices is denoted as
½A;B� ≔ AB − BA. One can take diag:ðVÞ ¼ ð0;…; 0Þ, and
the other components can be chosen such that

W̄þ ½V;Λ�∶ ↦ Ŵ ≔ diag:ðw1;…;wLÞ: ðC9Þ

Therefore, the solution of Eq. (C9) is given by

δc̃lðτ̂Þ ¼ σl
e−ΛðlÞτ̂

τ̂wl
⇒ δclðτ̂Þ

¼ σl
e−ΛðlÞτ̂

τ̂wl
þOðe−ΛðlÞτ̂=τ̂wlþ1Þ: ðC10Þ

From the solution of the linearized fluctuations, the transs-
eries takes the following form:

clðτÞ ¼
Xþ∞

jnj¼0

Xþ∞

k¼0

uðnÞl;kΦn
k ;

Φn
k ≔

�YL
j¼1

ζ
nj
j

�
τ̂−k; ζj ≔ σj

e−Sj τ̂

τ̂βj
; ðC11Þ

wheren ∈ NL
0 , σi ∈ C is the integration constant, andL ∈ N

is the truncation order of l, namely 1 ≤ l ≤ L.

APPENDIX D: ON THE EXISTENCE OF THE
LYAPUNOV FUNCTIONAL

In this section we present a proof of the existence of a
Lyapunov function for the dynamical system of ODEs (22).
Roughly speaking, Lyapunov functions are positive defi-
nite functions which are monotonically decreasing along
the trajectories of the flows in phase space. These functions
are used to determine the stability properties of ODEs and
PDEs. In the RG flow approach to dynamical systems the
Lyapunov function plays an analogous role of the c
function in QFT and/or the dynamical effective potential
in non-Newtonian mechanics. For a nonautonomous
dynamical system, the existence of the Lyapunov function
allows us to identify the dynamical system as a RG flow
from the global point of view.
In our approach the existence of the Lyapunov function

is inferred directly from the dynamical system of ODEs
(22). First, we promote this nonautonomous dynamical
system to an autonomous one of one dimension higher by
introducing an ODE for w in terms of a new flow time ρ as
follows:

dcðρÞ
d log ρ

¼ βðcðρÞ; wðρÞÞ≡ −
∂V
∂ci ; ðD1aÞ

dwðρÞ
d log ρ

¼ βwðwðρÞÞ≡ −
∂V
∂w ; ðD1bÞ

where in the rhs of the previous expressions we introduce
a positive definite differentiable function V. It is straight-
forward to show that the function V decreases monotoni-
cally, i.e.,

dVðcðρÞ; wðρÞÞ
d log ρ

¼
XL
i¼1

dci
d log ρ

:
∂VðcðρÞ; wðρÞÞ

∂ciðρÞ þ dwðρÞ
d log ρ

:
∂VðcðρÞ; wðρÞÞ

∂wðρÞ ;

¼ −
�XL
i¼1

jβiðcðρÞ; wðρÞÞj2 þ jβwðcðρÞ; wðρÞÞj2
�
≤ 0: ðD2Þ

Therefore, V satisfies the properties required to be a
candidate for the global Lyapunov function of the
dynamical system (22) [see Eq. (B9) in Ref. [31] ].
Although we have proven its existence for the studied
case here, it is in general extremely difficult to calculate
the exact Lyapunov function (cf. [29]) and this is beyond
the scope of this work.

APPENDIX E: EXISTENCE OF THE FORWARD
ATTRACTOR AND HIGHER NONLINEARITIES

OF TEH COLLISIONAL KERNAL

In this section we outline the generic conditions that
ensure the existence of a nonequilibrium forward attractor
for systems undergoing Bjorken expansion described by
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relativistic kinetic theory within different approximations
for the collisional kernel. Right now we have strong
numerical evidence of this type of attractor for systems
undergoing Bjorken expansion described microscopically
within the relativistic kinetic theory framework and for
different types of collisional kernels [12,45,48,58,59,63,
94,96,99,100,109–118].
Let us assume that the distribution function can be

expanded around the thermal equilibrium while the devia-
tions from this state are written in terms of a set of Legendre
moments like in Eq. (8). The conservation law is the same
for any physical system regardless of the collisional kernel
(14a). On the other hand, the dynamical system of ODEs
for the Legendre moments must satisfy certain symmetries
given the constraints of the Bjorken flow. In this case, the
dilation τ → γτ (being γ a constant) together with the
conformal dimensionality of the Legendre moments and
the temperature ðΔc;ΔTÞ ¼ ð0; 1Þ restricts strongly the
form of the differential equation. In addition, and given
the results outlined in Fig. 7, one can assume that the small
τ limit is dominated by singular terms which go likeOðτ−1Þ
such that the collision of kernel is Oðτ0Þ. Thus, the generic
equation which satisfies these constraints is written generi-
cally as12

dcðτÞ
dτ

¼ Fðc; τÞ; ðE1aÞ

Fðc; τÞ ¼ −
1

τ
½XðcÞcðτÞ þ Γ� −Gðc; T; τÞ; ðE1bÞ

where the terms entering into the matrix operator
XðcÞcðτÞ þ Γ are given by Eqs. (16a) and (18b), respec-
tively, while GðcÞ is a generic function determined
uniquely by the collisional kernel. This function depends
on the moments, proper time, and temperature and its
generic form must respect the symmetry restrictions
mentioned above. Thus, the following general form of
GðcÞ is

GðcÞ¼
XH
h¼0

XN
n¼1

XL
l1≥���≥ln¼1

gðl1;…;lnÞ
h;n Thþ1τh

Yn
n0¼1

cln0 ; ðE2Þ

where H ∈ N0 and N ∈ N. In addition, gðl1;…;lnÞ
l;h;n ∈ R is a

dimensionless coefficient.13 The dynamical system of
ODEs for the RTA Boltzmann (21) and FPE (14b) cases
are a particular case of the previous expression.
Our transasymptotic analysis discussed in this work and

in Refs. [29–32] shows that the existence of the forward
attractor is ensured if the following conditions are satisfied:
(1) If the fixed point equation for the long-time limit

given by

XN
n¼1

XL
l1≥���≥ln¼1

gðl1;…;lnÞ
H;n

Yn
n0¼1

c̄ln0 ¼ 0 ðE4Þ

has a trivial solution, i.e., c̄ ¼ 0, then the IR fixed
point corresponds to the local thermal equilib-
rium state.

(2) If the eigenvalues of the matrix gðl1Þ
H;1 , around c̄ ¼ 0

are all positive, then the fixed point gives a (local)
forward attractor.

(3) In case there is a subset of either exactly vanishing or

positive eigenvalues of the matrix gðl1Þ
H;1 , then there

exists a sub(local)forward attractor M in the phase
space of dynamical variables ðc; T; τÞ space. In this
case, dim½M� ¼ Lþ 2 − p where p is the number
of zeros or negative eigenvalues. In the ðc; wÞ
space, dim½A� ¼ Lþ 1 − p.

(4) In addition to the previous conditions, ifH ¼ 1, then
the transmonomials in the transseries are of the form
(31b) like in the RTA and FPE cases, respectively.

On the other hand, the pullback attractor will be determined
by the term Oðτ−1Þ in Eq. (E1). Notice however that in the
most general case it is not necessarily ensured that there is
only one invariant flow (generally dubbed as “attractor
solution”) that connects the UV and IR. A more careful
analysis needs to be made by considering techniques based
on Morse theory, cf. [32], and center manifolds [38,39] if
there are vanishing eigenvalues for the collisional kernel.

12If one can consider a more general ansatz which encodes
information about the high energy tails like the one taken in
Ref. [45], one gets a set of nonlinear ODEs which mathematically
resembles our general ODE (E1).

13gðl1Þ
H;1 is the linearized version of the collisional kernel in the

eigenmodes and it corresponds to an L-by-L matrix of the form

gðl1Þ
H;1 ¼

0
BB@

gð1Þ1;H;1 � � � gðLÞ1;H;1

..

. . .
. ..

.

gð1ÞL;H;1 � � � gðLÞL;H;1

1
CCA: ðE3Þ
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