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We discuss an exact false vacuum decay rate at one loop for a real and complex scalar field in a quartic-
quartic potential with two tree-level minima. The bounce solution is used to compute the functional
determinant fromboth fluctuations.We obtain the finite product of eigenvalues and remove translational zero
modes. The orbital modes are regularizedwith the zeta function andwe end upwith a complete renormalized
decay rate. We derive simple expansions in the thin and thick wall limits and determine their validity.

DOI: 10.1103/PhysRevD.102.125017

I. INTRODUCTION

Tunneling phenomena are among the most fascinating
physical processes. They initiate cosmological first order
phase transitions, where an unstable ground state—a false
vacuum (FV)—transforms into an energetically favorable
one. A bubble of true vacuum forms, expands quickly,
collides with other bubbles and fills up the entire universe.
Theoretical studies of such transitions were initiated by

Langer [1] and applied to field theory by [2] and notably by
Coleman [3]. The decay rate was shown to be

Γ ∝ Ae−S0ð1þOðℏÞÞ; ð1Þ

where S0 is the saddle point Euclidean action and A is a
dimensionful prefactor.
Understanding bubble nucleation is crucial for several

reasons. In the early universe, particles form a hot plasma,
whose thermal effects can drive the transition [4] and
dynamically generate the observed dominance of matter
over antimatter, e.g., in electroweak baryogenesis [5–8].
Apart from creating baryons, colliding bubbles may pro-
duce observable gravitational wave signals [9–14] and
primordial magnetic fields [15–19]. Current aLIGO [20]
and aVIRGO [21] observatories are operating at frequen-
cies that are mostly insensitive to TeV scale first order
phase transitions, but upcoming detectors, such as LISA
[22,23], DECIGO [24] and BBO [25,26], will have the
ability to test such scenarios. Historically, vacuum stability
played an important role in understanding the Higgs mass

bounds of the Standard Model (SM) from stability [27,28]
and longevity [29]; see the recent works [30,31] and
references therein.
The semiclassical picture in (1) is analogous to the path

integral in quantum mechanics [32,33], with the role of the
classical trajectory replaced by the bounce. The bounce is a
nontrivial unstable [34] configuration that extremizes the
action and interpolates between the two minima of the
potential. In [3], the bounce was found in the thin wall
(TW) approximation, valid when the two vacua are nearly
degenerate. It was also proven [35] that the dominant
contribution to the rate isOð4Þ symmetric, which simplifies
the problem. Finding a closed form solution is in general
impossible because one is dealing with a stiff nonlinear
second order differential equation. Nonetheless, one can
find exact solutions for specific potentials, including the
Fubini-Lipatov instanton [36,37] and its generalization
[38], linear [39,40], polygonal [41], logarithmic [42–44],
pure quartic [45] and the quartic-quartic potential [46]. The
situation becomes more involved with multiple scalar
fields, where the bounce traverses a nontrivial path in field
space. Nevertheless, the problem is understood and a
number of tools [47–51] are available for a fast and stable
evaluation of the action.
Phenomenologically, piecewise potentials have been

used to estimate the bounce solutions, where closed-form
results are not readily available. The triangular potential
[39] was employed in estimating metastable supersymmet-
ric minima, e.g., in [52,53], in the context of dark energy
[54] and gravitational wave production [55,56]. The
quartic-quartic potential [46,57] and other combinations
were studied in inflationary settings [46], where such glued
bounce solutions are used [58,59] as well. Other physically
motivated examples [60] of false vacuum decay include the
non-perturbative effects in 2 and 3 dimensions [61,62].
The prefactor A is a bit more challenging. It involves the

calculation of a functional determinant [63], related to
the operator that describes quantum fluctuations around the
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bounce. Not many closed form solutions exist, usually one
estimates the dimensionful pre-factor A by the inverse
radius of the bounce solution. To get a more precise result,
one can compute the rate numerically at zero [64–66] and
finite temperatures [67,68]. For multifields, the bounce
action is still Oð4Þ symmetric [69] and recently progress
was made in numerical calculations for gauge theories [70].
An analytic estimate for the prefactor in the TW limit

was found in [71] (see also [72–74]), while the issues with
gauge and scale invariance of the unstable quartic in the SM
were worked out recently [30,31,75,76] and the Fubini-
Lipatov was studied in [77]. The prefactor also cancels the
renormalization scale-dependence of the Euclidean action
and stabilizes the bubble nucleation rate, see [78] for a
recent work on the uncertainties regarding gravitational
wave production. However, to our knowledge, an exact
solution for a potential with two separate tree level minima
appears to be missing. We fill this gap here by finding such
a new result for the decay rate of a quartic-quartic potential
and its complexified version. We find a simple formula,
where the energy scale of the FV factorizes and the rest of
the prefactor depends only on the ratios of vevs and quartic
couplings between the false and true vacuum. This setup
can be considered as a benchmark for understanding the
impact of finite one loop corrections, needed for a con-
sistent evaluation of the total rate at one loop. In particular,
one can easily derive the behavior in the thin and thick wall
limits, thereby providing generic expectations for the class
of potentials, which are approximately scale-invariant
around the two minima.
There are a couple of subtleties that make the calculation

of the functional determinant involved. The rate depends on
an infinite product of eigenvalues of the fluctuation
operator around the bounce, normalized to the FV ones.
It turns out that it is not necessary to find the complete
eigen-system with fixed boundary conditions. Instead, one
can rely on the Gel’fand-Yaglom [79] theorem and solve a
related differential equation with Cauchy boundary con-
ditions. Evaluating it at the second boundary is equal to the
product of eigenvalues. This is a considerably simpler
procedure, even when it cannot be performed in closed
form, which is typically the case.
The resulting spectrum contains a single negative eigen-

value [80] that describes the unstable direction of the
expanding bubble. In addition, any symmetry (transla-
tional, scale or internal global invariance) of the bounce
is reflected in the number of zero eigenvalues [81,82]. The
quartic-quartic potential has no classical scale invariance,
thus we only have to remove the four translational zero
modes, which is done by a perturbative deformation of the
homogeneous solution. This relates the dimensional pre-
factor to the energy scale in the theory and is proportional
to the bounce action.
The final result is still infinite, as usual for quantities with

a tree-level counterterm. We regularize it by subtracting the

divergent asymptotic terms, expanded in a consistent power
counting scheme. The asymptotic terms are added back in
the UV, using the same power counting. This can be done
with the effective action and Feynman diagrams or via the
zeta function.We use the latter, where the zeta is defined via
a contour integral [83] and its asymptotic form is calculated
perturbatively in powers of the fluctuation potential [84].We
extend [84] to include the discontinuity of the quartic-
quartic fluctuation potential by going to higher orders in
orbital eigenvalues to subtract all the infinities.
Finally, the UV terms need to be renormalized, either by

computing the one loop counter-terms or by requiring the
analyticity of the zeta function. Both correspond to the
same renormalization scheme, i.e., to dimensional regu-
larization in the MS and give the same answer for the single
quartic case.
We introduce the theoretical basis for the FV decay rate

with quantum fluctuations in Sec. II. In Sec. III we define
the quartic-quartic potential, set up the notation and review
the bounce field configuration and the Euclidean action.
Section Sec. IV deals with the functional determinants: the
general formalism, exact expressions for the product of
eigenvalues, removal of zeroes and the finite sum. In
Sec. VA we review the zeta function formalism via the
contour integral, then calculate the expansion around the
FV in Sec. V B and get the finite and renormalized terms.
Final result and thin/thick wall expansions are summarized
in Sec. VI, with the complexified version in Sec. VI B. The
outlook for further developments is discussed in Sec. VII
and technical details are left to the Appendices A and B.

II. FALSE VACUUM DECAY RATE

The false vacuum decay rate was derived in [63] (see
also [85]) and explained in more detail in Coleman’s
lectures [86,87] and classic textbooks [88,89]. A recent
rederivation [90,91] used a more direct approach via the
path integral formulation. The decay rate per space-time
volume can be written as

Γ
V
¼ Im

R
Dφe−S½φ̄�R

Dφe−S½φFV� ¼
�
S0

2π

�
2

e−S0Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detOFV

det0O

r
ð1þOðℏÞÞ;

ð2Þ

were
R
Dφ is the path integral over scalar field fluctuations

and S½φ� is the action functional in Euclidean space-time.
The numerator is the path integral for real scalar fluctua-
tions around the bounce field configuration, with an
imaginary component, while the denominator is the FV
normalization.
The Euclidean action S½φ� is expanded around the

bounce φ ¼ φ̄þ ψ to second order

S½φ� ≃ S½φ̄� þ 1

2
ψOψ þ…; O ¼ δ2S

δφ2
½φ̄�: ð3Þ
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The first derivative is zero because φ̄ extremizes the action.
The operator O is the fluctuation operator, defined as the
second derivative of the action, evaluated on the bounce,
while OFV is given in the FV.
Expanding ψ in a set of eigenfunctions ψn of the

fluctuation operator Oψn ¼ γnψn, we perform the
Gaussian integral in (2) and end up with the ratio of
functional determinants [63]. The final step is to remove
the translational zeromodes by integrating over the collective
coordinates [31,92–95], which produces the space-time
volume factor V on the left hand side of (2) and theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0=ð2πÞ

p
for every dimension of space-time. We thus

end up with (2), where the prime in det0 corresponds to the
four removed eigenvalues, each with dimension of mass2,
which gives the correct dimension of the decay rate.

III. THE BOUNCE SOLUTION

The leading semiclassical approximation, i.e., the S0

coefficient in (1) and (2), is given by the bounce field
configuration φ̄ðρÞ. The manifest dependence on ρ2 ¼
t2 þP

x2i takes care of Euclidean spherical symmetry
[35]. Extremizing the action S½φ� leads to the bounce
equation

φ̈þ 3

ρ
_φ ¼ V 0ðφÞ; ð4Þ

where V 0 ¼ dV=dφ and with the boundary conditions
_̄φð0;∞Þ ¼ 0, where the bounce interpolates between the
true φ̄ð0Þ ¼ φ0 ≃ φTV and the false vacuum φ̄ð∞Þ ¼ φFV.
Let us consider the exact bounce solution for the quartic-

quartic potential

V ¼ 1

4
ðλ2v42 − λ1v41 þ λ1ðφþ v1Þ4ÞHð−φÞ

þ λ2
4
ðφ − v2Þ4HðφÞ: ð5Þ

where H is the step function. The two segments are
joined at φ ¼ 0 into a continuous V with the minima
located at −v1 and v2. We assume that v2 > 0 is the FV
with Vðv2Þ ¼ 0 to simplify the bounce calculation.
Furthermore, for v1 > 0 to be the true vacuum (TV), we
need λ1;2 > 0 and require λ1v41 > λ2v42 such that Vðv1Þ < 0.
The derivative of the potential that enters in (4) is

V 0 ¼ λ1ðφþ v1Þ3Hð−φÞ þ λ2ðφ − v2Þ3HðφÞ: ð6Þ

The Dirac deltas, coming from the derivative of the step
function in (5), vanish due to the continuity of V at φ ¼ 0.
Such potential was studied in [46] and admits an exact
solution consisting of two pieces, glued together at ρ ¼ RT

φ̄¼
X2
s¼1

�
ð−1Þsvsþ

ffiffiffiffi
8

λs

s
Rs

R2
s −ρ2

�
Hðð−1Þsðρ−RTÞÞ: ð7Þ

For later convenience, we define two dimensionless
quantities x and y from v1¼xv2¼xv, and λ1 ¼ yλ2 ¼ yλ.
Demanding the potential to be convex,1 implies x > 0; y > 0

and x4y > 1. Near the equality x4y ≃ 1, we approach the TW
limit, where theminima are degenerate and the rate vanishes.
The bounce parameters R1;2;T are obtained by matching the
solution to φ ¼ 0, and requiring φ̄ to be continuous and
differentiable at ρ ¼ RT . The resulting Euclidean radii are

R1;2;T ¼ 2

v

ffiffiffi
2

λ

r
1þ x
x4y − 1

(
x2

ffiffiffi
y

p
; 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ x4y
1þ x

s )
: ð8Þ

Their size is set by 1=v, as expected on dimensional grounds
since v is the relevant mass scale. Moreover, the radii are
positive and diverge in the TW limit x4y → 1þ, where the
tunneling rate goes to zero. The resulting bounce action is

S0 ¼ 2π2
Z

∞

0

dρρ3
�
1

2
_̄φ2 þ Vðφ̄Þ

�
ð9Þ

¼
�
8π2

3λ

�
1þyþx3yð4þxyð−3þ6x2þð3þ4xÞx4yÞÞ

yðx4y−1Þ3 :

ð10Þ

The factor of 8π2=ð3λÞ is the well-known single quartic
result,which getsmultiplied by a function that divergeswhen
x4y → 1 and thus Γ ∝ e−S0 → 0. With the bounce at hand,
we can proceed to make sense of the quantum fluctuations.

IV. FUNCTIONAL DETERMINANTS

As discussed in Sec. II, we are interested in calculating
the spectra of eigenvalues of the fluctuation operator O,
appearing in (3). To this end, we employ the radial
decomposition in four dimensions and get the product of
eigenvalues for a fixed orbital momentum mode l, by use of
the Gel’fand-Yaglom theorem [79].

A. Radial mode separation and exact product
of eigenvalues

We would like to find the product of eigenvalues γn,
associated to O

O ¼ −□þ V 00ðφ̄Þ; Oψn ¼ γnψn; ð11Þ

where□ is the Laplace operator in flat 4D Euclidean space-
time. Here, n is a collective index for the relevant quantum

1One can also consider negative λ and reproduce the SM
instability, as we will see below.
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numbers that come about when the boundary conditions
ψnð0Þ ¼ ψnð∞Þ ¼ 0 are imposed. The fluctuation poten-
tial follows from (6)

V 00 ¼ 3ðλ1ðφþ v1Þ2Hð−φÞ þ λ2ðφ − v2Þ2HðφÞÞ
− ðλ1v31 þ λ2v32ÞδðφÞ; ð12Þ

and contains a delta function due to the discontinuity of V0
at the origin. The V 00ðφ̄ðρÞÞ is 4D symmetric, therefore we
can separate the radial and orbital part of ψn, where the
latter is described by hyperspherical harmonics. These are
eigenfunctions of the total orbital momentum operator with
orbital quantum numbers l ¼ 0;…;∞ that are ðlþ 1Þ2-
fold degenerate [33]. According to the Gel’fand-Yaglom
theorem [79], we have to find the zero eigenmode of the
fluctuation operator

Olψ l ¼ −ψ̈ l −
3

ρ
_ψ l þ

lðlþ 2Þ
ρ2

ψ l þ V 00ðφ̄Þψ l ¼ 0; ð13Þ

and evaluate ψ l at the boundary when ρ → ∞. This gives
the log of the ratio of determinants

ln

�
detO
detOFV

�
¼
X∞
l¼0

ðlþ1Þ2 lnRlð∞Þ; Rl≡ ψ l

ψFV
l

: ð14Þ

Let us see how the fluctuations behave. In the FV, we
have V 00

FV ¼ 0 and the solution of (13) is ψFV
l ¼ ρl. We

dropped the part that diverges at ρ ¼ 0 and assigned the
arbitrary multiplication constant to 1. The general solution
of (13), when the fluctuation potential is evaluated around
the bounce, is instead given by

ψ ls ¼ Als
ρlR4

s

ðR2
s −ρ2Þ2

�
1− 2

�
l− 1

lþ 2

�
ρ2

R2
s
þ lðl−1Þ
ðlþ 2Þðlþ 3Þ

ρ4

R4
s

�

þBls
Rlþ4
s

ðR2
s − ρ2Þ2

Rlþ2
s

ρlþ2

×

�
1− 2

�
lþ 3

l

�
ρ2

R2
s
þðlþ 2Þðlþ 3Þ

lðl− 1Þ
ρ4

R4
s

�
: ð15Þ

where s ¼ 1, 2 denotes the two segments of the quartic-
quartic potential.
On the first segment with s ¼ 1, regularity of ψ ls at ρ ¼ 0

requires Bl1 ¼ 0, and we choose the normalization Al1 ¼ 1,
such that we normalize to the FVat ρ ¼ 0. This part reduces
to the unstable single potential of the SM [30,31], where we
can easily read off the ratio Rlð∞Þ ¼ limρ→∞ ψ l1=ρl from
the only term remaining in (15) at high ρ

λφ4∶ Rlð∞Þ ¼ ψ l1ð∞Þ
ψFV
l ð∞Þ ¼

lðl − 1Þ
ðlþ 2Þðlþ 3Þ : ð16Þ

On general grounds [80], we expect the l ¼ 0mode to be
negative, corresponding to the expanding bubble. On the

other hand, the four l ¼ 1 eigenvalues should vanish
because of the translational invariance of the center of
the bubble (or the bounce solution, which depends only on
ρ). The Rlð∞Þ in (16) indeed contains a zero mode at
l ¼ 1, but also has an additional zero at l ¼ 0, due to the
classical scale invariance [30,31].
Let us move on to the second segment and glue the two

solutions. The fluctuation potential contains a Dirac delta,
therefore the derivative of ψ l changes discontinuously.

2 The
appropriate boundary conditions to join ψ l1;l2 at ρ ¼ RT are
given by

ψ l1¼ψ l2; _ψ l1¼ _ψ l2þμVψ l1; μV ¼
λ1v31þλ2v32

_̄φðRTÞ
: ð17Þ

These fix the remaining parameters A2l; B2l that ultimately
determine the behavior of Rl as ρ → ∞. We arrived to our
main result for the fluctuation determinant

Rlð∞Þ ¼ Al2
lðl − 1Þ

ðlþ 2Þðlþ 3Þ

¼ ðl − 1Þðl3 þ c2l2 þ c1lþ c0Þ
ðlþ 1Þðlþ 2Þ2ðlþ 3Þ ; ð18Þ

with the three coefficients ci that depend only on dimen-
sionless ratios x and y:

c0 ¼
12ð1þ xÞ2x4yð1þ x3yÞ2

ðx4y − 1Þ3 ; ð19Þ

c1 ¼
2xð1þ ð1þ 2xÞx2yÞð2þ 3xþ ð3þ 4xÞx3yÞ

ðx4y − 1Þ2 ; ð20Þ

c2 ¼
1þ 4xþ ð4þ 7xÞx3y

x4y − 1
: ð21Þ

All ci are real and positive because x4y > 1, which follows
from the construction of the potential. Similarly to the radii
R1;2;T , the ci diverge in the TW limit.
The zero eigenvalue of the scale invariant single quartic

in (16) at l ¼ 0 is now gone, it got absorbed by the Al2 ∝ l
in (18). This happens because the quartic-quartic contains
mass scales v1;2 that break scale invariance, thereby the
l ¼ 0 mode in (18) becomes negative

R0ð∞Þ ¼ −
c0
12

< 0; ð22Þ

as required from the instability of the bounce solution.
It follows from (18) thatRlð∞Þ⟶l≫1 1 and the sum over l

in (14) diverges quadratically in the UV—after all, we are

2Integrating (13) around RT , we have
R RTþϵ
RT−ϵ dρOlψ l ¼

0⟶ϵ→0 _ψ lðRTþϵÞ− _ψ lðRT−ϵÞ¼−ðλ1v31þλ2v32Þ
R RTþϵ
RT−ϵ dρδðφ̄ðρÞÞψ l.
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computing a one loop quantity with a tree level counter-
term. In Sec. V B we will regularize the sum by subtracting
the terms divergent in l and calculate the finite part. Before
that, let us deal with the removal of the translational zero
eigenvalues of the l ¼ 1 modes.

B. Removing the zero modes

As discussed in Sec. II, the prefactor is proportional to
the reduced determinant, where the four translational zero
eigenvalues are subtracted. The reduced contribution from
the l ¼ 1 modes is defined as

Olψ l ¼ γnψ l ⇒ R0
1ð∞Þ ¼

Q∞
n¼2 γnQ∞
n¼1 γ

FV
n

: ð23Þ

Omitting the zero modes is a straightforward procedure
when γn are known for the principal quantum numbers n.
However, with the Gel’fand-Yaglom approach, the eigen-
values are regrouped in terms of orbital l modes. Thus the
zero from translations has to be removed carefully because
it multiplies all the other eigenvalues with l ¼ 1. This can
be done perturbatively [31,75,76,95] by off-setting the
fluctuation potential with a small dimensionful parameter
μ2ε and finding the corresponding eigenfunctions of

ðO1 þ μ2εÞψε
1 ¼ 0: ð24Þ

Instead of approaching zero, the ratio of determinants is
then given by

Rε
1ð∞Þ¼ ψε

1ð∞Þ
ψFV
1 ð∞Þ≃

ðμ2ε þ γ1Þ
Q∞

n¼2 γnQ∞
n¼1 γ

FV
n

¼ μ2εR0
1ð∞Þ; ð25Þ

because the μ2ε shift does not affect γn>1 and γFVn . In other
words, we need to compute

R0
1ð∞Þ ¼ lim

μ2ε→0

1

μ2ε
Rε

1ð∞Þ: ð26Þ

The eigenfunctions ψε
1 are infinitesimally close to ψ1 and

we can perform a perturbative expansion ψε
1 ≃ ψ1 þ μ2εδψ1,

which enters in (24), such that

ðO1 þ μ2εÞðψ1 þ μ2εδψ1Þ ≃O1ψ1 þ μ2εðψ1 þO1δψ1Þ ¼ 0:

ð27Þ

The general solution ψ ls in (15) is singular for l ¼ 1, so we
rederive it

ψ1s ¼
R4
sρ

ðR2
s − ρ2Þ2

�
A1s þ B1s

�
ρ4

R4
s
− 8

ρ2

R2
s

þ 24 log ρþ 8
R2
s

ρ2
−
R4
s

ρ4

��
: ð28Þ

On the first segment with s ¼ 1, the ψ11 needs to be regular
at ρ ¼ 0 and normalized to the FV, therefore A11 ¼ 1 and
B11 ¼ 0. Matching to the second segment at RT gives
A12 ¼ x6y2 and B12 ¼ 0. The value at infinity is then given
by ψ12ð∞Þ ∝ B12 ¼ 0, as it should be since we are looking
at the zero eigenvalue and R1ð∞Þ ∝ ψ12ð∞Þ ¼ 0.
Now that we have the l ¼ 1 fluctuation, let us move on to

perturbations δψ1s, given by the nonhomogeneous equation
Oδψ1 ¼ −ψ1 that comes from (27) and get

δψ1s ¼
3R6

sρ

4ðR2
s − ρ2Þ2

�
δA1s þ

δB1s

18

�
ρ4

R4
s
− 8

ρ2

R2
s

þ 24 log ρþ 8
R2
s

ρ2
−
R4
s

ρ4

�

−
A1s

18

�
6
ρ2

R2
s
− 18 − 24 log ρ −

R2
s

ρ2
þ R4

s

ρ4

��
: ð29Þ

The boundary conditions δψ11ð0Þ¼ _δψ11ð0Þ¼0 fix δA11 ¼
δB11 ¼ −1 on the first segment3 and the same matching
conditions required for ψ l in (17), apply to δψ l. These
determine the remaining δA12 and δB12 ¼ 3λ=ð8π2ÞS0x6y2.
In fact, it is δB12 that gives the reduced determinant after

plugging the expansion in (26)

R0
1ð∞Þ ¼ lim

μ2ε→0

1

μ2ε

ψ1 þ μ2εδψ1

ψFV1

����
ρ¼∞

¼ δψ1

ψFV1

����
ρ¼∞

¼ R2
2

24
δB12

¼ R2
2

24

�
3λ

8π2

�
S0x6y2; ð30Þ

where we used the fact that ψ1ð∞Þ ¼ 0 and R2 was
calculated in (8). Note that the R0

1 is proportional to S0,
which cancels with the prefactor in (2). The reduced
determinant has the correct dimension of mass−2, set by
the dimensional R2, which in turn is proportional to 1=v,
the energy scale of the model. The dimensionless δB12

serves as the numerical pre-factor that diverges in the TW
limit and gives an additional suppression to the rate. With
the l ¼ 1 zero removed, we can proceed to the finite part.

C. Finite sum

With Rl in (14) at hand, the finite part can be computed
in some generality. Let us consider a generic form of Rl,
given by a ratio of polynomials of order n

Rlð∞Þ ¼
Yn
i¼1

lþ 1 − ai
lþ 1 − bi

; ð31Þ

3The single quartic case limρ→∞ δψ11=ρ ¼ −R2=24 becomes
consistent with the SM [30,31] after flipping the sign of V 00,
because we assumed λ > 0.
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which covers the two cases in (16) and (18). The number of
roots and poles must be the same, a consequence of the
normalization to the FV in (14). To get the finite part of
(14), we first find the asymptotic behavior of Rl by
expanding the log of the determinant for large l. The
degeneracy factor goes as l2, therefore the lnRl has to be
expanded up to 1=l3 to account for the quadratic, linear and
log divergencies.
It turns out that the asymptotics of the zeta function, used

for renormalization, will be given in powers of ν ¼ lþ 1,

therefore it is convenient to define Ra
l by expanding (14)

in 1=ν up to Oðν−3Þ. This is subtracted from (14) and
we get

Σf ¼
X∞
ν¼1

ν2ðlnRlð∞Þ − lnRa
l ð∞ÞÞ; ð32Þ

which is convergent and can be computed4 in a
closed form

Σf ¼
Xn
i¼1

�
a3i
3
γE −

ai
12

ð1þ 3ai − 6a2i Þ − ζ0Rð−2; 3 − aiÞ − 2aiζ0Rð−1; 3 − aiÞ − a2i ζ
0
Rð0; 3 − aiÞ − ða → bÞ

�

þ lnR0ð∞Þ þ 4 lnR0
1ð∞Þ: ð33Þ

Here, ζ0Rðs; aÞ is the derivative over s of the generalized Riemann zeta function and γE is the Euler’s constant. The three
roots ai of the polynomial in (18) are

ai ¼ 1 − ðc2 þ χiðc22 − 3c1Þ=θ þ χ�i θÞ=3; ð34Þ

with θ3¼9=2ðc1c2−3c0−2=9c32þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð27c20þ4c31−18c0c1c2−c21c

2
2þ4c0c32Þ=3

p
Þ and χ ¼ f−1; ð1� i

ffiffiffi
3

p Þ=2g, while ci are
given in (19)–(21). This completes the finite part of the decay rate. Next, we are going to recover the asymptotic terms Ra

l
that were subtracted in (32) using the zeta function regularization.

V. ZETA FUNCTION REGULARIZATION

The decay rate in (2) is a physical quantity that depends
on the parameters of the potential VðφÞ in S½φ�. These need
to be renormalized to make connections between measure-
ments, such as decay rates and scattering cross sections,
observed at the minimum of the potential. Most commonly,
the renormalization is done perturbatively via Feynman
diagrams and dimensional regularization. It introduces an
arbitrary renormalization scale μ to keep the mass dimen-
sions for any D and ascribes 1=ð4 −DÞ poles to divergent
parts of the momentum integrals. Within a chosen sub-
traction scheme, such as MS, on-shell or other, the
renormalized parameters (or counterterms) will remove
infinities in physical quantities.
The above holds for the FV decay rate in (2) as well

[86]. One can compute the UV part of the determinant
with Feynman diagrams [31,64,65,75,76,96] for scalars,
fermions and gauge bosons. The counterterms used for
other processes, will also make the effective action and
therefore the rate, finite. For the effective action, which
describes the UV part of the FV decay rate, to be

consistent with the finite sum over the eigenvalues, the
asymptotic parts are computed by expanding in terms of
V 00ðρÞ insertions. In the SM this is equivalent to inser-
tions of the quartic and gauge couplings, which defines
the power counting.
Alternatively, the UV part of the determinant can be

defined by the zeta function [97,98], see [99] for a review.5

The zeta function formalism was applied to FV decay in the
early works [71] and more recently in [84]. We will review
its introduction via the contour integral [100,101,103–105]
in the following section. Similarly to dimensional regu-
larization, the renormalization scale is introduced for
dimensional reasons to define the zeta function for any
value of its argument. As with Feynman diagrams, the UV
part is computed perturbatively in powers of V 00. However,
contrary to the diagrammatic approach, the UV part of zeta
is an expansion in powers of l and therefore serves as a
convenient UV regulator. Finally, the renormalization is
performed by an analytic continuation of the zeta function
and follows from the analyticity of the Riemann zeta
function. We will see that the final result for the single
quartic rate via Feynman diagrams agrees with the zeta
function approach.

4Technically, we do the sum over Rlð∞Þ from ν ¼ 3 up to a
large finite regulator to skip the l ¼ 0, 1 modes, which are then
added by hand. The sum over Ra

l ð∞Þ starts from ν ¼ 1 as in the
renormalization procedure. After the summation, the regulator
disappears and can be taken to infinity.

5For a pedagogical introduction with examples regarding the
use of spectral functions/functional determinants in physical
settings, see [33,100–102].
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A. Zeta function via contour integral

Let us begin by redefining the sum over the eigenvalues
of O in terms of the zeta function

ln detO ¼
X
n

ln γn ¼ −
d
ds

X
n

�
μ2

γn

�
s
����
s¼0

¼ −
d
ds

ðμ2sζOðsÞÞ
����
s¼0

; ð35Þ

where n stands for all the quantum numbers and μ is the
renormalization scale, which keeps the sum over eigen-
values dimensionless for all values of s. As found in [84], it
corresponds to the same scale arising from dimensional
regularization in the MS scheme [64]. The zeta function
associated to the ratio of determinants is given by the
difference

ζ ¼ μ2sðζO − ζOFV
Þ and ln

�
detO
detOFV

�
¼ −

d
ds

ζðsÞ
����
s¼0

:

ð36Þ

The sum over eigenvalues in (35) converges if ReðsÞ >
D=2 [106]. However, to analytically continue ζ to the
region of interest s ¼ 0, we have to regularize the integral.
To obtain the analytical structure of ζ in the range

ReðsÞ ≤ 2, we rewrite the sum in (35) as a contour integral.
For this purpose, let us consider Oψðρ; γÞ ¼ γψðρ; γÞ,
where γ is a continuous complex parameter. The ψðγÞ is
a generalization of ψn in the sense that when the boundary
conditions in (11) are imposed, γ becomes quantized and
ψn is recovered with γ → γn. Now the zeta function is
defined as a contour integral

ζO ¼
X
n

1

γsn
¼ 1

2πi

I
dγ
γs

d
dγ

lnψð∞; γÞ: ð37Þ

The sum over eigenvalues γ−sn is recovered because the
simple poles are set by d lnψ=dγ ¼ ψ 0=ψ and the boundary
condition ψð∞; γÞ⟶γ→γn

0. Thus, by the residue theorem, the
integral in (37) sums up all the eigenvalues, as long as
the integration contour runs counterclockwise and encloses
the entire real axis, as shown by the solid red line in Fig. 1.
As explained above, we have to deform the contour

from the positive real axis, which encloses all the eigen-
values, to the negative one. For this purpose, we split the
contour in two paths, parametrized in the complex plane by
expð�iθÞγ. As shown in Fig. 1, we start with a path that
runs along the positive real axis,

ζO ¼ 1

2πi

�Z
∞

0

dγ
eiθs

γs
d
dγ

lnψð∞; e−iθγÞ

þ
Z

0

∞
dγ

e−iθs

γs
d
dγ

lnψð∞; eiθγÞ
�
; ð38Þ

and deform it to the negative real axis by taking the limit
θ → π. We get

ζO ¼ sin πs
π

Z
∞

0

dγ
γs

d
dγ

lnψð∞;−γÞ; ð39Þ

where we assume that ψ is continuous around the negative
real axis, such that ψðρ; e�iπγÞ ¼ ψðρ;−γÞ. Finally, since
we are considering a hyperspherically symmetric potential,
we can separate the variables

Olψ lðρ; γÞ ¼ γψ lðρ; γÞ; ð40Þ

and take into account the degeneracy of the orbital modes.
Using (36) and (39), the zeta function for the ratio of
determinants is

ζ ¼ sin πs
π

μ2s
X
ν

ν2
Z

∞

0

dγ
γs

d
dγ

ln

�
ψ lð∞;−γÞ
ψFV
l ð∞;−γÞ

�
: ð41Þ

Alas, a closed form solution of ψ lðρ; γÞ cannot be
obtained in general, even for the single quartic potential.
Since we are only interested in the asymptotic behavior
ψ lð∞; γÞ near the FV, it is enough to consider the expansion
around the FV, where the solution of (40) is

ψFV
l ðρ;−γÞ ¼ Iνð

ffiffiffi
γ

p
ρÞ=ρ: ð42Þ

The Kν part is discarded due to regularity at ρ ¼ 0 and the
normalization factor is chosen to be one. When ρ → ∞, the
fluctuation potential approaches the FV6 and we can set up
an approximate solution

ψ lðρ;−γÞ ≃ flðγÞψFV
l ðρ;−γÞ; ð43Þ

Re

Im

ei

ei

e i ... n

FIG. 1. Deformation of the integration contour in (37) from the
positive real axis to the negative one. The red dots represent the
location of the poles, such that ψð∞; γÞ ¼ 0.

6In general, one should subtract V 00
FV from V 00 and shift the

eigenvalues γ → γ − V 00
FV in (39) and (40), modifying the lower

limit of integration. For quartic potentials V 00
FV ¼ 0.
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where flðγÞ is a constant to be determined in the section
below. The Kν term was neglected, because it vanishes in
the asymptotic limit. With this ansatz, (41) becomes

ζ ¼ sin πs
π

μ2s
X
ν

ν2
Z

∞

0

dγ
γs

d
dγ

ln flðγÞ; ð44Þ

which is valid for ReðsÞ > 2. In order to make it well
defined around s ¼ 0, we have to find the asymptotic form
of fl and renormalize it.

B. Renormalization of the functional determinant

To perform the analytical continuation of ζ to s ¼ 0, we
define its asymptotic limit by expanding (44) in the large l
limit

ζa ¼
sin πs
π

μ2s
X
ν

ν2
Z

∞

0

dγ
γs

d
dγ

ln fal ðγÞ; ð45Þ

and compute fal perturbatively by expanding around the
FV. Once we have ζa, we subtract it from ζ, which removes
the leading l divergence and produces the finite result

ζf ¼ ζ − ζa; ð46Þ

similarly to what was done for the finite sum in Sec. IV C.
Finally, the divergent terms in ζa will be renormalized
using the analytic properties of the Riemann zeta function.

1. Asymptotic expansion of the zeta

As discussed above, we would like to compute (45) by
considering a double expansion. First, ρ → ∞ in (41),
which allows us to construct an implicit iterative solution
around the FV for a fixed angular mode l. Then the high-l
expansion can be performed and we end up with a closed
form expression for ζa.
False vacuum expansion. When approaching the FV,

(40) can be solved by starting from ψFV
l ðρ;−γÞ, given by

(42), and writing down the general ansatz

ψ lðρ;−γÞ¼ψFV
l ðρ;−γÞþ

Z
ρ

0

dρ1Gðρ;ρ1ÞV 00ðρ1Þψ lðρ1;−γÞ;

ð47Þ

Gðρ; ρ1Þ ¼
ρ21
ρ
ðIνð ffiffiffi

γ
p

ρÞKνð ffiffiffi
γ

p
ρ1Þ − Iνð ffiffiffi

γ
p

ρ1ÞKνð ffiffiffi
γ

p
ρÞÞ;

ð48Þ

where G is the Green function associated with Ol. This is a
self-referential integral equation, which can be solved
iteratively by starting in the FV and expanding in powers
of V 00. The iteration stops when the zeta function becomes

well defined in the asymptotic UV limit and describes all
the high l modes.
Actually, we already know from the normalization

in (14), and the discussion regarding the finite sum in
Sec. IV C, that the asymptotic terms need to go up to ν−3. In
the doubly asymptotic limit when ρ; ν → ∞, the Green
function is proportional to 1=ν, which follows from the
properties of Bessel functions in the Appendix A. Thus,
each insertion of V 00 in (47) comes with a factor of 1=ν and
it is enough to expand the zeta up to OðV 003Þ. Using (43)
and (47), we have

ψ lð∞;−γÞ
ψFV
l ð∞;−γÞ ¼ flðγÞ

¼ 1þ
Z

∞

0

dρρ2Kνð ffiffiffi
γ

p
ρÞV 00ðρÞψ lðρ;−γÞ;

ð49Þ

¼ 1þ fð1Þl þ fð2Þl þ fð3Þl þOðV 004Þ; ð50Þ

while expanding the log to the same order gives

ln flðγÞ ≃ fð1Þl −
1

2
ðfð1Þ2l − 2fð2Þl Þ

þ 1

3
ðfð1Þ3l − 3fð1Þl fð2Þl þ 3fð3Þl Þ: ð51Þ

The integrals fðnÞl are obtained by iterating (47)

fð1Þl ¼
Z

∞

0

dρ1ρ1V 00ðρ1ÞKνð
ffiffiffi
γ

p
ρ1ÞIνð

ffiffiffi
γ

p
ρ1Þ; ð52Þ

fð2Þl ¼
Z

∞

0

dρ1ρ21V
00ðρ1ÞKνð ffiffiffi

γ
p

ρ1Þ

×
Z

ρ1

0

dρ1G12V 00ðρ2Þ
Iνð ffiffiffi

γ
p

ρ2Þ
ρ2

; ð53Þ

fð3Þl ¼
Z

∞

0

dρ1ρ21V
00ðρ1ÞKνð ffiffiffi

γ
p

ρ1Þ
Z

ρ1

0

dρ1G12V 00ðρ2Þ

×
Z

ρ2

0

dρ2G23V 00ðρ3Þ
Iνð ffiffiffi

γ
p

ρ3Þ
ρ3

; ð54Þ

where Gij ¼ Gðρi; ρjÞ. This concludes the FVexpansion in
V 00 and we can focus on isolating the high-l behavior.
High-l expansion.Wewould like to expand fðiÞl for high l

up to Oðν−3Þ, while keeping ρ → ∞. To this end, we
evaluate the Bessel functions in (52)–(54) in the limit when
ν; ρ → ∞ with

ffiffiffi
γ

p
ρ=ν fixed, and use the saddle point

approximation, see (A1)–(A3) in the Appendix A for
technical details.
For continuous V 00, the integrals in (52)–(53) were

calculated by [65,84] and (54) was not needed. Here, we
extend the analysis to take into account the delta function
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V 00ðρÞ¼
X
s

V 00
s ðρÞHðð−1Þsðρ−RTÞÞ−μVδðρ−RTÞ: ð55Þ

Performing the integrals (52)–(54) requires some effort and
we leave the details to the Appendix B. The final result up
to Oð ffiffiffi

γ
p

=νÞ4 is fairly compact

lnfal ¼
X
s

Z
∞

0

dρρV 00
s

�
t
2ν

þ t3

16ν3
ð1−6t2þ5t4−2ρ2V 00

s Þ
�

×Hðð−1Þsðρ−RTÞÞ

−μVRT

�
t
2ν

þ t3

16ν3
ð1−6t2þ5t4ÞþμVRT

t2

8ν2

þðμVRTÞ2
t3

24ν3

�
1−

3

μ2V
ðV 00

1þV 00
2Þ
������

ρ¼RT

; ð56Þ

where t ¼ ð1þ γðρ=νÞ2Þ−1=2. The first line corresponds to
the continuous part of V 00 and reproduces the known results
of [84] when V 00

FV ¼ 0. The terms proportional to μV are
new because of the presence of the delta at RT . This
completes the asymptotic description of zeta and (56) can
be used to evaluate the finite sum and carry out the
renormalization.

2. Regularization of the finite zeta

The asymptotic form of the zeta function allows us to
regulate the large l infinities and compute the finite sum,
similarly to what we did in §IV C. From (45) and (46),
we have

ζf ¼ sin πs
π

X
ν

ν2μ2s
Z

∞

0

dγ
γs

d
dγ

ðln flðγÞ − ln fal ðγÞÞ; ð57Þ

which is finite and analytic in the neighborhood of s ¼ 0.
This means we can take the derivative with respect to s and
evaluate ζ0fð0Þ. In doing that, the terms proportional to sin πs
vanish, γ−s goes to one and the integral can be computed
trivially by evaluating the terms on the boundaries.
On the upper limit γ → ∞ and V 00ðρÞ in (40) vanishes,

thus ψ lðρ; γÞ goes to the FV solution and flðγ → ∞Þ → 1
for both log terms in (57), which go to zero. This leaves us
with the two terms on the lower boundary, when γ → 0 (and
ρ → ∞, as usual). First, from the definition of flðγÞ in (43)
and from (40), it becomes clear that we end up with the
same equation (13) that defined Rlð∞Þ. In other words,
flð0Þ ¼ Rlð∞Þ. Second, we need to evaluate the asymp-
totic part fal ð0Þ by setting γ ¼ 0 in (56) which sets t ¼ 1

and we can integrate over ρ for a specific fluctuation
potential. Now, the finite sum can be performed and we
reproduce Σf in (32), such that

−ζ0fð0Þ ¼
X
ν

ν2ðlnRlð∞Þ − ln fal ð0ÞÞ ¼ Σf; ð58Þ

for the single and the quartic-quartic potential. As a very
nontrivial cross-check of the asymptotics, we find that fal
computed from (56), which is defined directly in terms of
V 00, is precisely equal to the one from Rlð∞Þ in (31),
i.e., fal ð0Þ ¼ Ra

l ð∞Þ.
The procedure that gave (58) does not always reproduce

the finite sum Σf. In particular, when V00
FV ≠ 0, the lower

limit of integration over γ is shifted from 0 to
ffiffiffiffiffiffiffiffi
V 00
FV

p
, and

we have to evaluate fal ð
ffiffiffiffiffiffiffiffi
V 00
FV

p Þ. In this case, additional
terms appear in (56) because t ≠ 1. However, this is an
oversubtraction [84]—such terms are suppressed by 1=ν4

or more and get canceled by the renormalized parts below.

3. Renormalization of the asymptotic zeta

The asymptotic part of the zeta function can now be
renormalized. The integrals in (56) are evaluated using the
following identity, valid for ReðsÞ < 1

sin πs
π

μ2s
Z

∞

0

dγ
γs

d
dγ

tn ¼ −
Γðsþ n

2
ÞðμρÞ2s

ΓðsÞΓðn
2
Þ ν−2s: ð59Þ

The resulting expressions are plugged into (45) and we
perform the sum over ν. Each term that goes as ðt=νÞn gives
a Riemann zeta ζRð2sþ n − 2Þ. The analytic continuation
properties of ζR are well known and provide a mathematical
description of divergencies. Finally, we take the derivative
over s and send s to zero, ending up with

ζ0að0Þ ¼
X
s

1

8

Z
∞

0

dρρ3V 002
s

�
ln

�
μρ

2

�
þ γE þ 1

�

×Hðð−1Þsðρ − RTÞÞ

−
ðμVRTÞ2

16
þ ðμVRTÞ3

24

�
1 −

3

μ2V
ðV 00

1 þ V 00
2ÞjRT

�

×

�
ln

�
μRT

2

�
þ γE þ 1

�
: ð60Þ

This agrees with [84] for a continuous V 00 with μV ¼ 0 and
V 00
FV ¼ 0 and also reproduces the SM [31] when applied to

the single quartic. This also demonstrates that the Feynman
diagrammatic approach coincides with the zeta function
formalism. Another nontrivial check regards the cancella-
tion of divergences, i.e., we verify that terms proportional to
γE in Σf given by (33) cancel the ones in ζ0að0Þ above.
Let us comment on the renormalization scale dependence.

The FV decay is a physical process and the rate should not
depend on μ. Specifically, the μ dependence from the
prefactor cancels the ln μ from running of parameters in
the bounce action S0. For the single quartic case this is easy
to see. The first segment gives 1=2ζ0að0Þ ⊃ 3 ln μ, while the
running of the quartic βλ ¼ dλ=d ln μ ¼ 9λ2=ð8π2Þ is solved
for λðμÞ and plugged into the bounce action−8π2=ð3λðμÞÞ to
cancel the μ dependence of the prefactor. While running the

EXACT ONE-LOOP FALSE VACUUM DECAY RATE PHYS. REV. D 102, 125017 (2020)

125017-9



quartic-quartic potential couplings is beyond the scope of
this work, we confirm that the leading order running of λ1;2
with the above beta functions cancels the μ dependence of
the continuous part of (60) in theweakly coupled limit when
x and y are small.

VI. SUMMARY OF DECAY RATES

The final result for the renormalized log of the functional
determinant is

ln

�
detO
detOFV

�
¼ −ζ0ð0Þ ¼ −ζ0fð0Þ − ζ0að0Þ; ð61Þ

where −ζ0fð0Þ ¼ Σf can be found in (33) and ζ0að0Þ in (60).
Therefore, the total decay rate per 4D unit volume is

Γ
V
¼

�
S0

2π

�
2

e−S0þ1
2
ζ0ð0Þ ¼ v4e−S0−S1 ; ð62Þ

where the S0 comes from (9) and ζ0ð0Þ is the sum of (33)
and (60). As we will see, having a closed form result is
particularly useful to study the behavior of the rate in the
TW limit as well as for the large scale separation x ≫ 1,
corresponding to a rather flat potential.

A. Real quartic

To complete the calculation for the real scalar part, we
evaluate the integral in (60) in a closed form with R1;2;T and
μV given by (8) and (17), respectively. This is a straightfor-
ward calculation, but we omit the entire expression for
brevity7 and instead show the negative log of the normal-
ized rate − lnΓ=V=v4 in Fig. 2. The total rate is shown by
the black solid line on Fig. 2 for a fixed λ1 ¼ λ2 ¼ 1 as
x ¼ v1=v2 interpolates from the TW x ∼ 1 to the thick wall
and a flat potential when x ≫ 1. We assume that all the
couplings are defined at v and set the renormalization scale
to μ ¼ v. In this case, the rate is insensitive to v, apart from
the overall normalization factor v4, which is factorized in
the plot.
The contribution from the semiclassical action S0 in the

first term of (63), coming from the bounce action is shown
in dashed red and tends to dominate for small x, as long as λ
is small. The prefactor correction S1 is plotted in dashed
yellow. It is subdominant for small values of x and starts to
dominate for x ∼ 4, the rate drops and then rises logarithmi-
cally. Strictly speaking, these two are not separate con-
tributions, i.e., running the parameters in S0 will exactly
cancel the μ dependent part of S1. Of course, once this is
done, one has to include all the corrections of the same
order, in particular the logR and finite parts—they all
contribute with the same power of the coupling constant.

The fact that the running of couplings, or alternatively the
μ-dependent part of the prefactor, becomes important for
large x, is not surprising. After all, this is happening in the
regime v1 > v2, where a large separation of scales is
present. This is exactly analogous to any quantum field
theoretic calculation, where large logs appear when scales
are separate and one needs to resum them, even in
perturbative theories like quantum electrodynamics.
However, this does not imply a breakdown of the

semiclassical approximation—the leading bounce contri-
bution will always dominate for a small enough λ. In any
case, lowering λ2 results in a higher S0 which dominates the
S1 for larger values of x, as shown by the purple shaded
region. The variation of y, on the other hand, results in a
shift of the entire curve to larger x, as shown by the brown
shaded region, because the thin wall pole in the rate
happens when x4y ≃ 1.
The behavior of the rate simplifies considerably in these

two limits. Near the thin wall x4y ∼ 1 (TW: x ∼ 1þ ε;
y ¼ 1), the ai become large and negative, thus the asymp-
totic expansion of ζ0ðs; 3 − aiÞ in (A4)–(A6) can be used.
Conversely, the ai become nearly constant when x ≫ 1
(flat) and we have

− ln
Γ
V

1

v4
≃

8<
:

1
ε3

�
2π2

3λ þ 2
9
þ π

2
ffiffi
3

p − 1
12
ln 2λv2

μ2

�
; TW;

7
12
− 2ζ0Rð−1Þ þ 1

3
ln y2λ2v4x6

32π3μ4
; Flat:

ð63Þ

The leading TW functional dependence goes as ε−3,
which is the same as in the TW approximation of the
displaced quadratic potential [71], with different numerical

1 2 5 10

1

10

100

1000

104

FIG. 2. The FV decay rate for the quartic-quartic potential in
(5). The black solid line shows the total rate, while the dashed
ones show the semiclassical part S0 in red and the finite
renormalized prefactor S1 in dark yellow. The dotted lines
correspond to the TW leading expansion, where we set y ¼
λ1=λ2 ¼ 1 and expand up to ðx − 1Þ−3 in dark green, additional
corrections up to ðx − 1Þ0 in light green and the flat potential limit
x ¼ v1=v2 ≫ 1 in blue. The shaded regions show the variation of
λ2 ∈ f0.1; 1g in purple and λ1=λ2 ∈ f0.5; 1g in light brown.

7We provide a completeMathematica notebook with the entire
calculation as ancillary material [107].
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coefficients and an additional log term. The TW series can
easily be extended to arbitrary order in ε; we plot the
leading ε−3 and the expansion up to ε0 with the dotted green
lines in Fig. 2. These two are fairly good proxies and cover
a significant portion of parameter space, as seen
from Fig. 2.

B. Complexified quartic

Let us extend the analysis to the complexified version of
the model and examine the effect of transverse fluctuations,
coming from the imaginary field component.
As we will see, when restricted to the single quartic, we

are dealing with a global Uð1Þ symmetric theory with a
massless Goldstone and obtain an additional zero eigen-
value. This situation is somewhat similar to the SM,
however one should be careful with the comparison, since
the equations of motion and the would-be-Goldstone
masses are gauge-dependent [31,76,108]. Once we add
the second quartic segment, the global Uð1Þ disappears
together with the zero eigenvalue.
Consider a complex scalar field Φ ¼ ðφþ iφ⊥Þ=

ffiffiffi
2

p
and

the complexified version of the potential

VðΦÞ ¼ ðλ2v42 − λ1v41 þ λ1jΦþ v1j4ÞHðΦ̃ −ΦÞ
þ λ2jΦ − v2j4HðΦ − Φ̃Þ; ð64Þ

where Φ̃ðΦÞ describes the boundary between the two
regions. It is chosen such that V is continuous in the
φ − φ⊥ plane and Φ̃ goes to zero on the φ⊥ ¼ 0 axis,
reproducing (5). Parameters of the potential are still real
and the bounce for the real component φ stays the same, as
does the determinant.
The perpendicular component φ⊥ carries no vev, because

v1;2 ∈ R, and its bounce is zero. The fluctuations ψ⊥
l are

nonzero and obey

O⊥ψ⊥
l ¼ −ψ̈⊥

l −
3

ρ
_ψ⊥
l þ lðlþ 2Þ

ρ2
ψ⊥
l þ V 00⊥ðφ̄Þψ⊥

l ¼ 0;

V 00⊥ ¼ 1

3
V 00: ð65Þ

The FV normalization stays the same ψFV⊥
ls ¼ ρl, while the

transverse fluctuations are simpler than the real scalar ones

ψ⊥
ls ¼

ρlR2
s

R2
s − ρ2

�
A⊥
ls

�
1 −

�
l

lþ 2

�
ρ2

R2
s

�

þ B⊥
ls
R2lþ2
s

ρ2lþ2

�
1 −

�
lþ 2

l

�
ρ2

R2
s

��
: ð66Þ

The boundary conditions fix A⊥
l1 ¼ 1; B⊥

l1 ¼ 0, such that
dividing by ρl and taking the limit ρ → ∞, we recover the
single quartic global Goldstone [31]

λjΦj4∶ R⊥
l ð∞Þ ¼ l

lþ 2
; ð67Þ

where the zero eigenvalue at l ¼ 0 appears due to the Uð1Þ
symmetry. Proceeding to the second segment and taking
into account the matching conditions, we end up with

R⊥
l ð∞Þ ¼ A⊥

l2
l

lþ 2
¼ l3 þ c⊥2 l2 þ c⊥1 lþ c⊥0

ðlþ 1Þðlþ 2Þ2 : ð68Þ

After adding the second segment, the Uð1Þ symmetry gets
broken and the zero eigenvalue in (67) disappears. The
coefficients are then given by c⊥0 ¼ c0=9 and

c⊥1 ¼ 2xðð2xþ 1Þx2yþ 1Þðð4xþ 1Þx3yþ x − 2Þ
3ðx4y − 1Þ2 ;

c⊥2 ¼ ð13xþ 4Þx3yþ 4x − 5

3ðx4y − 1Þ : ð69Þ

The R⊥
l ð∞Þ goes to 1 as l ≫ 1 and the ratio of determi-

nants diverges. To get the total rate, we proceed as for the
real quartic above. The solutions to the cubic polynomial in
(68) are given by the same expression in (34) with replacing
ci → c⊥i and the fluctuation potential V 00⊥ → V 00=3. Again,
the asymptotic behavior is simple

S⊥
1 ≃

8<
:

1
972ε3

�
152 − 8 ln 27 − 12

ffiffiffiffiffi
11

p
arctan

ffiffiffiffiffi
11

p
− 57 ln 2λv2

μ2

�
; TW;

322
81

ln 2 − 1
324

− ζRð3Þ
8π2

− 5
2
ln 3þ 2

81
ln λyx3v2

μ2
− ζ0Rð−2;73Þ

2
− 2ζ0Rð−1;73Þ

3
− 2ζ0Rð0;73Þ

9
; Flat;

ð70Þ

and the total rate is obtained by adding S⊥
1 to S1 in (62).

It turns out that the correction from the transverse fluctua-
tions are rather small and subdominant with respect to the
real scalar ones, as seen from the orange dashed line on
Fig. 2.

VII. CONCLUSIONS AND OUTLOOK

We presented a closed-form solution for the total decay
rate at one loop for a potential with two tree level minima of
a quartic-quartic potential. Our approach is based on the
Gel’fand-Yaglom theorem that circumvents the need to
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obtain individual eigenvalues of the fluctuation operator.
The existing renormalization procedure had to be gener-
alized to include the delta functions in the fluctuation
potential. To this end, an appropriate expansion of the
fluctuation functions to the maximal 1=l3 term had to be
performed to extract the UV behavior and regularize the
determinant. It might be of interest to reproduce this result
with the Feynman diagrammatic approach and also obtain
the RGE running of parameters for this particular case.
The final expression for the FV decay rate in (62)

consists of the semiclassical action S0 and the finite and
renormalized corrections S1. Both are calculated for a
complete range of parameters of the potential—thus we get
an exact one loop result for the renormalized decay rate.
The main result of our work is summarized in Fig. 2, where
the behavior of the rate for thin and thick walls becomes
apparent, as well as the range of validity of the simple
approximations that were derived from the exact result.
Perhaps the main take-away message here is that for a large
separation of scales, one has to include the running of
parameters in S0 and subsequently compute the renorm-
alization scale dependent prefactor, such that the total rate
becomes μ-independent. Note that this does not signal the
breakdown of perturbativity, which instead is governed by
the overall size of the quartic coupling λ.
We also included the effects of the imaginary component

of the complex field, which are found to be subdominant in
general. Similarly to the SM, which corresponds to the
single quartic, the effect of fermions and gauge bosons
could be taken into account. To this end, the known results
[31,75,76], for spin 1=2 and 1 fluctuations should be
extended to include the second quartic segment while
taking into account the presence of Dirac delta, in complete
analogy to the imaginary complex scalar.
The present calculation relies on an exact bounce

solution that can be found in D ¼ 4. It may be of interest
to extend its validity via dimensional continuation to other
dimensions,D ¼ 3 in particular. This may be possible to do
perturbatively, similarly to the bounce [109], near the thin
wall, where the 1=ρ term does not play a significant role.
Likewise, one may consider other solvable bounces, such
as the log potential [42,44], quadratic-quadratic [54],
binomial [43] and (extended) polygonal [41]. The latter
is particularly interesting because the fluctuation potential
is smooth and avoids the delta function. At the same time, it
can serve as a universal estimator of the total rate and might
be extended to multifields [110], where only recently [70]
progress was made.
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APPENDIX A: BESSEL, SADDLE-POINT AND
ZETA FUNCTION APPROXIMATIONS

1. Bessel functions

To perform the high-l expansion in Sec. V B 1, we used
the mathematical properties of the Bessel functions that
can be found on p. 378 of [111] Eqs. (9.7.7) and (9.7.8).
Expanding for large ν and ρ, while keeping ρ=ν fixed, we
have up to Oðν−4Þ

Iνð ffiffiffi
γ

p
ρÞKνð ffiffiffi

γ
p

ρÞ ¼ t
2ν

þ t3

16ν3
ð1 − 6t2 þ 5t4Þ; ðA1Þ

and up to ð1þOðν−1ÞÞ

I2νð ffiffiffi
γ

p
ρÞ ¼ t

2πν
e2νη; K2

νð ffiffiffi
γ

p
ρÞ ∼ πt

2ν
e−2νη; ðA2Þ

with η ¼ t−1 þ ln ð ffiffiffi
γ

p
ρ=ν=ð1þ t−1ÞÞ.

Saddle-point approximation can be found on p. 362 of
[100,101] Eq. E.14. It can be used to expand the integrals in
Sec. V B 1 in powers of 1=ν when the leading contribution
is dominated by the exponential high-l terms from (A2).
Expanding up to Oðν−2Þ

Z
ρ

0

dρ1fðρ1ÞeνBðρ1Þ ¼ eνBðρÞ
fðρÞ
ν

�
dBðρÞ
dρ

�
−1
: ðA3Þ

2. Generalized Riemann zeta function

A useful asymptotic expansion of the derivatives of the
generalized zeta function, is applicable in the TW limit
a ≫ 1 and can be found in Eqs. (18) and (19) of [112]

ζ0Rð0; aÞ ¼ lnΓðaÞ − ln 2π
2

∼ −aþ a loga −
log a
2

; ðA4Þ

ζ0Rð−1; aÞ ∼ −
a2

4
þ a2 log a

2
−
a log a

2
þ log a

12
þ 1

12

−
X∞
k¼1

B2kþ2a−2k

ð2kþ 2Þð2kþ 1Þ2k ; ðA5Þ

ζ0Rð−2; aÞ ∼ −
a3

9
þ a3 log a

3
−
a2 log a

2
þ a
12

þ a log a
6

þ
X∞
k¼1

2B2kþ2a−ð2k−1Þ

ð2kþ 2Þð2kþ 1Þ2kð2k − 1Þ ; ðA6Þ

where Bk are the Bernoulli numbers.
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APPENDIX B: DERIVATION OF THE HIGH-l
EXPANSION OF f l

This section is devoted to the derivation of ln fal in (56)
from the high-l expansion of ln fl in (51) up to Oðν−4Þ,
while keeping ρ → ∞. For this purpose, let us first plug V 00
from (55) into (51) and separate the integrals in three parts:
the terms proportional to the delta function, to the
Heaviside unit step function and the cross terms.
Delta function terms come purely from the discontinuity

of the first derivative of the potential φ̄ðRTÞ ¼ 0. One can
compute the integrals exactly and perform the high-l
expansion from (A1). This gives the terms proportional to
μVRT in (56), one for each insertion of V 00. For instance, the
last three terms of (51), which are of third order in V 00 are

ln fal ⊃ −
1

3
ðμVRTIνð ffiffiffi

γ
p

ρÞKνð ffiffiffi
γ

p
ρÞÞ3

∼ −
1

3

�
t
2ν

μVRT

�
3

; ðB1Þ

where we kept all the terms up to Oðν−4Þ.
Heaviside terms belong to the continuous part of V 00.

They were first computed by [65,84] and contribute to the
first term of (56). Let us proceed to compute each term of
(51) by neglecting the delta terms.
The leading order terms in V 00 can be computed simply

by using the Bessel expansions in (A1). The second order
terms in V 00 can first be simplified byZ

∞

0

dρ1

Z
∞

ρ1

dρ ¼
Z

∞

0

dρ
Z

ρ

0

dρ1; ðB2Þ

since V 00 is continuous, as shown in the Appendix E of
[100,101]. At Oðν−4Þ, this leads to

ln fal ⊃
X
s

Z
∞

0

dρρ

×
Z

ρ

0

dρ1ρ1K2
νð

ffiffiffi
γ

p
ρÞV 00

s ðρÞV 00
s ðρ1ÞI2νð

ffiffiffi
γ

p
ρ1Þ ðB3Þ

∼
t3

8ν3
X
s

Z
∞

0

dρρ3V 002
s Hðð−1Þsðρ − RTÞÞ; ðB4Þ

where we used the exponential behavior of Iν and Kν in
(A2) and the saddle-point approximation (A3) in the last
step. Finally, the third order terms go as Oðν−4Þ and do not
contribute to fal since each pair of Bessel functions (A2) as
well as the saddle-point approximation (A1) come with a
factor of 1=ν.
Cross terms require a careful treatment in the integration

of the delta function since it brings a Heaviside that affects
the limits of integration of the second integration. Then we
perform the asymptotic expansion of the Bessel functions
and the saddle-point approximation as in the previous
calculations with (A2) and (A3). These correspond to
the last two terms of (56). For example, the last term of
(56) is given by

ln fal ⊃
X
s

Z
∞

0

dρρK2
νð

ffiffiffi
γ

p
ρÞV 00

s ðρÞ

×
Z

ρ

0

dρ1ρ1μVδðρ − RTÞI2νð
ffiffiffi
γ

p
ρ1Þ

¼ μVRTI2νð
ffiffiffi
γ

p
RTÞ

X
s

Z
∞

RT

dρρK2
νð

ffiffiffi
γ

p
ρÞV 00

s ðρÞ

×Hðρ − RTÞ

∼
1

μ2V

�
t
2ν

μVRT

�
3

V 00
2ðRTÞ; ðB5Þ

where in the second line, the integration limits have changed
due to the previous integration of the delta function, which
picksV 00

2 .
8 Then we used the saddle point approximation that

evaluates the potential at RT and provides the last line.
The next to last term of (56) can be computed completely

analogously, while the remaining terms in (51) cancel
among themselves or go asOð1=ν4Þ. After collecting all the
results, we are left with the final expression given in (56).
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