
 

Geometric unification of Higgs bundle vacua

Mirjam Cvetič,1,2,* Jonathan J. Heckman,1,† Thomas B. Rochais ,1,‡ Ethan Torres ,1,§ and Gianluca Zoccarato1,∥
1Department of Physics and Astronomy, University of Pennsylvania,

Philadelphia, Pennsylvania 19104, USA
2Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor 2000, Slovenia

(Received 19 May 2020; accepted 21 October 2020; published 12 November 2020)

Higgs bundles are a central tool used to study a range of intersecting brane systems in string
compactifications. Solutions to the internal gauge theory equations of motion for the corresponding
worldvolume theories of branes give rise to different low energy effective field theories. This has been
heavily used in the study of M-theory on local G2 spaces and F-theory on local elliptically fibered Calabi-
Yau fourfolds. In this paper we show that the 3D N ¼ 1 effective field theory defined by M-theory on a
local spin(7) space unifies the Higgs bundle data associated with 4D N ¼ 1 M- and F-theory vacua. This
3D system appears as an interface with finite thickness between different 4D vacua. We develop the general
formalism of M-theory on such local spin(7) spaces and build explicit interpolating solutions. This provides
a complementary local gauge theory analysis of a recently proposed approach to constructing spin(7)
spaces from generalized connected sums.
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I. INTRODUCTION

One of thevery promising features of string theory is that it
contains all of the qualitative ingredients necessary to couple
the Standard Model of particle physics to quantum gravity.
That being said, there could in principle be more than one
way that our 4D world—or some close approximation
thereof—might emerge from this fundamental framework.
One of the lessons of string dualities is that seemingly

different string compactifications may nevertheless describe
aspects of the same physical system, just in different (and
possibly overlapping) regimes of validity. With this in mind,
it is therefore natural to ask whether there is a common
feature present in different approaches to realizing the
Standard Model in string theory. This would in turn provide
a more unified approach to constructing and studying string
vacua of phenomenological relevance.
Canonical approaches to realizing 4DN ¼ 1 vacua from

strings include compactification of heterotic strings on
Calabi-Yau threefolds [1], M-theory on singular G2 spaces
[2,3], and F-theory on elliptically fibered Calabi-Yau

fourfolds [4,5]. At first glance, the actual methods used
in studying the resulting low energy effective field theories
appear quite different, in tension with expectations from
string dualities.
There are, however, some striking similarities between

these different approaches, especially in the particle physics
and “open string sector.” At a practical level, the actual
method for constructing many string vacua begins with the
gauge theory of a spacetime filling brane wrapped on a
compact manifold in the extra dimensions. For example, in
the large volume approximation, heterotic strings are
captured by a Hořava-Witten nine-brane wrapped on a
Calabi-Yau threefold equipped with a stable holomorphic
vector bundle, in M-theory it is intersecting six-branes
wrapped on three-manifolds, and in F-theory it is intersect-
ing seven-branes wrapped on Kähler surfaces. There are
localized versions of dualities which connect these different
constructions. For example, heterotic strings on a T2 is dual
to F-theory on an elliptically fibered K3 surface, and this
can be used to provide a physical justification for the
spectral cover construction of holomorphic vector bundles
used in heterotic models [6]. In local M- and F-theory
constructions, these different approaches are captured by
Higgs bundles. This suggests a close connection between
these different approaches to realizing 4D physics.
In the resulting 4D effective field theory generated by

such a compactification, the general expectation is that
specific details of a given compactification will be encoded
in the Wilson coefficients of higher-dimension operators.
At a formal level, one can consider slowly varying these
coefficients as a function of position in a 4D N ¼ 1
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supersymmetric effective field theory. Such interpolating
profiles would then provide a way to directly connect the
corresponding 4D string vacua obtained from different
compactifications. On general grounds, such interpolating
profiles could at best preserve 3D Lorentz invariance and
3D N ¼ 1 supersymmetry. Let us emphasize here that, in
the 4D effective field theory, these interfaces need not be
associated with a domain wall, since the interpolating mode
may not be a light state. Instead, it can appear as an
interpolating profile of Kaluza-Klein modes.
In this paper we place these general expectations on firm

footing by generating such interpolating solutions for the
Higgs bundles used in the construction of 4D N ¼ 1
models based on local M- and F-theory constructions. To
accomplish this, we make use of the fact that M-theory on a
spin(7) space results in a 3D N ¼ 1 effective field theory
on the spacetime R2;1. The internal gauge theory in
question arises from a local four-manifold of ADE singu-
larities, as captured by a spacetime filling six-brane
wrapped on this four-manifold.1

Here, we consider some further specializations in the
structure of this four-manifold so that it is locally a product
of a three-manifold and an interval. Reduction on the
interval leads to the three-dimensional gauge theory system
for local M-theory models [9] which we shall refer to as the
“PW system.”We also show that if the four-manifold has an
asymptotic region in which it is well approximated by a
Kähler surface, then the four-dimensional gauge theory
reduces to that used in the study of 4D F-theory models
[4,5,10,11] which we will refer to as the “BHV system.” In
each of these specializations, some of the fields of the local
spin(7) system asymptotically approach zero. In this way,
the local spin(7) Higgs bundle configuration serves as a
way to glue together Higgs bundles used in the construction
of 4D vacua.
This also provides a complementary perspective on

geometric approaches to constructing special holonomy
spaces from lower-dimensional spaces. For example, the
twisted connected sums construction ofG2 manifolds given
in Ref. [12] (see also [13]) makes use of asymptotically
cylindrical Calabi-Yau threefolds which are glued together.
In the generalized connected sums proposal for spin(7)
manifolds given in Ref. [14], the building blocks include
asymptotically cylindrical spaces XCY4

and YG2
× S1, with

XCY4
a Calabi-Yau fourfold and YG2

a G2 space.
A local version of the twisted connected sum construc-

tion enters our analysis of interpolating Higgs bundles. In
the case of local M-theory constructions specified by a six-
brane on a three-manifold Q, the ambient space is the
noncompact Calabi-Yau threefold T�Q. In the case of local
F-theory constructions, with seven-branes wrapped on a

Kähler surface S, it is the noncompact Calabi-Yau threefold
given by the canonical bundleOðKSÞ → S, and in the local
spin(7) models on a four-manifold M, it is instead the
noncompact G2 space defined by the bundle of self-dual
two-formsΩ2þ → M. From the perspective of a 4D effective
field theory, we can parametrize these different choices in
terms of a noncompact coordinate Rt with local coordinate
t such that in the asymptotic region t → −∞, we approach a
local BHV system, while in the asymptotic region
t → þ∞, we approach a local PW system. In this fibration,
the F-theory region of the compactification is specified by a
local spacetime coordinate on a line RF-th which becomes
part of the internal compactification geometry in the local
PW system. Conversely, in the M-theory region of the
compactification, there is a local spacetime coordinate on a
line RM-th which becomes part of the internal compactifica-
tion geometry in the local BHV system. Viewed in this way,
the gluing region specified by the ambient G2 space for the
local spin(7) Higgs bundle amounts to a gauge theoretic
generalization of the twisted connected sum construction, in
which various S1 factors have been decompactified. See
Fig. 1 for a depiction of this local interpolating profile.
One of the benefits of this local gauge theory analysis is

that it also provides a systematic tool for extracting the
physical content from singular spaces of special holonomy.
This is especially helpful in the context of local G2 and
spin(7) spaces since holomorphic techniques used in the
study of Calabi-Yau spaces are unavailable. Indeed, our
gauge theory analysis allows us to make further predictions
for the sorts of singularities one should expect to encounter in
local spin(7) spaces. We find that matter fields of the 3D
effective field theory can localize on real two-cycles as well
as real one-cycles of a compact four-manifold. Interactions

FIG. 1. Depiction of an interpolating profile between F-theory
on a noncompact elliptically fibered Calabi-Yau fourfold (left)
and M-theory on a noncompact G2 space (right). In the 4D
effective field theory, this involves an interpolating profile in a
directionRt. In the transition between the F- and M-theory vacua,
the local coordinate of the 4D spacetime becomes part of the
internal geometry on the opposite side of the interpolating region.
These interpolating profiles are captured by a local BHV system
(see [4]) in the F-theory region and a local PW system (see [9]) in
the M-theory region. The interpolating profile between these two
4D vacua is captured by M-theory on a local spin(7) geometry.

1The corresponding Higgs bundle for this system was studied
recently in Ref. [7] (see also [8]) in the context of 4D “N ¼ 1=2”
F-theory backgrounds.
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between these matter fields can receive various quantum
corrections controlled by expansion in large volume param-
eters of the four-manifold. This is in accord with the fact that
the superpotential of a 3DN ¼ 1 theory is not protected by
holomorphy. Interpreting our 3D theories as specifying
interpolating profiles between 4D vacua, the resultingmatter
fields correspond to localized degrees of freedom trapped at
the interface between different 4D vacua.
The rest of this paper is organized as follows. In Sec. II

we introduce the Higgs bundles associated with 5D, 4D,
and 3D vacua, and then turn in Sec. III to the interpretation
in effective field theory. In Sec. IV we specialize to a class
of “Abelian” solutions in which the Higgs field is diago-
nalizable, analyzing the geometry of intersecting branes
and localized matter in these systems. We then turn in
Sec. V to some examples of interfaces in 5D and 4D vacua
associated with the PW system, and in Sec. VI we construct
interpolating solutions between BHV and PW systems.
Section VII contains our conclusions. Some additional
technical details on the analysis of solutions to the local
spin(7) equations are presented in the Appendix.

II. HIGGS BUNDLE VACUA

In this section we introduce the different Higgs bundles
associated with local M- and F-theory models. We refer to
the corresponding effective field theories generated by
these compactifications as “Higgs bundle vacua.” As a
warmup, we first discuss the case of 5D N ¼ 1 vacua as
generated by M-theory on a curve of ADE singularities. We
then turn to local models for M- and F-theory which result
in 4D vacua, and then turn to 3D vacua.

A. 5D N = 1 vacua

As a warmup, we first discuss the case of M-theory on a
noncompact Calabi-Yau threefold given by a curve of ADE
singularities. This is by far the most well-studied class of
examples and will also be used here as an underlying
building block in our more general considerations.
With this in mind, consider a Calabi-Yau threefold given

by C a complex curve of ADE singularities. The singularity
type of this fibration can degenerate at points of the curve,
and this is associated with localized hypermultiplets. The
corresponding Higgs bundle data are in this case captured
by the Hitchin system with gauge algebra of ADE type
coupled to point-localized defects. We remark that more
general nonsimply laced gauge algebras are possible when
the fibration has nontrivial monodromy which would
interchange some of the divisors in the resolved fiber.
We will not dwell on this possibility here, but it is always
available.
Physically, we can view this configuration as defining a

six-brane wrapped on the curve C which intersects other
six-branes at points of the curve. Indeed, this analysis
generalizes what one expects from a IIA background with

D6-branes wrapped on the noncompact Calabi-Yau twofold
T�C. In a holomorphic presentation, we can also write this
Calabi-Yau as the total space of the canonical bundle,
namely OðKCÞ → C.
Returning to the Higgs bundle formulation of this

system, we have a gauge field as well as an adjoint-valued
)1,0 )-form ϕHit. The Bogomol'nyi-Prasad-Sommerfield

(BPS) equations of motion governing the six-brane are

∂̄AϕHit ¼ 0; ð2:1Þ

FA þ i
2
½ϕ†

Hit;ϕHit� ¼ 0; ð2:2Þ

and 5D vacua are specified as solutions to the BPS
equations of motion modulo gauge transformations.2

Contributions from localized matter can also be included
as source terms on the right-hand side of these equations.
The eigenvalues of ϕHit are (1,0)-forms and define

sections (possibly meromorphic) of KC. This in turn means
that the ambient space in which the six-brane “moves” is
OðKCÞ → C. One can also work in terms of a symplectic,
rather than holomorphic presentation, in which case the
Higgs field is an adjoint-valued one-form. Then, the
ambient space would be presented as T�C in a presentation
as a symplectic space.
As a final remark, we note that the same structure also

appears in 6D vacua of F-theory models. In that case, we
have an elliptically fibered Calabi-Yau threefold, and a
component of the discriminant locus will correspond to a
seven-brane wrapping a curve. Supersymmetric vacua of
the 6D theory are then governed by the same Hitchin
equations. We also note that upon circle reduction of the 6D
system, we reduce to the 5D configuration, as captured by a
local M-theory model.

B. 4D N = 1 vacua

We now turn to some of the different possible routes to
realizing 4DN ¼ 1 vacua using Higgs bundles. One of our
goals will be to use the analogous Higgs bundle con-
structions for 3D N ¼ 1 vacua to generate interpolating
profiles between these 4D vacua.
Recall that in type IIA and IIB vacua, the open string

sector arises from intersecting branes, possibly in the
presence of nontrivial gauge field fluxes. D6-branes in
Calabi-Yau threefolds which wrap special Lagrangian
three-cycles can intersect at points. At such points, chiral
matter is localized. D7-branes in Calabi-Yau threefolds
which wrap holomorphic surfaces intersect along curves

2A note on convention. Here and in the following we choose a
unitary frame, meaning that the dagger operation is simply the
Hermitian conjugate. Moreover throughout the paper we will take
the generators of the Lie algebra to be anti-Hermitian.
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and in the presence of suitable gauge field fluxes also give
rise to 4D chiral matter.
These constructions have a natural lift to M- and

F-theory, where the structure of intersecting branes is
instead encoded in geometry. In M-theory on a G2 space,
the gauge theory sector arises from a three-manifold of
ADE singularities, and further degenerations in the singu-
larity type at real one-cycles produce 5D hypermultiplets
compactified on the cycle, while enhancements at points of
the three-manifold give rise to 4D chiral matter. There is
clearly a close connection between the geometric enhance-
ments of singularity types and the physics of 4D spacetime
filling six-branes in the analogous IIA vacua. That being
said, the M-theory approach provides a more flexible
framework since additional nonperturbative effects can
be captured. This includes, for example, the appearance
of E-type gauge groups.
In F-theory on an elliptically fibered Calabi-Yau four-

fold, the gauge theory sector can be modeled as a Kähler
surface of ADE singularities, and further degenerations
along curves of the surface produce 6D hypermultiplets.
Switching on background gauge field fluxes through such
curves then leads to chiral matter in the 4D effective field
theory. Again, based on the dimensionality of various
enhancements, it is appropriate to refer to these gauge
theories as specified by 4D spacetime filling seven-branes,
in analogy with IIB vacua.
Higgs bundles provide a general way to model the vacua

generated by such intersecting brane configurations. The
essential point is that the existence of N ¼ 1 supersym-
metry in the uncompactified 4D spacetime dictates a unique
topological twist for the brane in the internal directions. In
the case of M-theory with intersecting six-branes wrapped
on a three-manifoldQ, the field content of the Higgs bundle
includes a gauge connection and an adjoint-valued one-
form ϕPW, as discussed by Pantev and Wijnholt (PW) in
Ref. [9]. There is a close connection to IIA strings on the
noncompact Calabi-Yau threefold T�Q. Indeed, the eigen-
values of the Higgs field of the local M-theory model take
values in the cotangent bundle and parametrize local
motion of the branes in the ambient geometry. Similarly,
in the case of F-theory with intersecting seven-branes, the
field content of the Higgs bundle includes a gauge con-
nection and an adjoint-valued (2,0)-form ϕBHV (Beasley-
Heckman-Vafa), as discussed in [4,5]. In this case, there is a
close connection to type IIB strings on the noncompact
Calabi-Yau threefold given by the total space of the
canonical bundle, namely OðKSÞ → S; the eigenvalues
of the (2,0)-form parametrize the motion of branes wrapped
on holomorphic surfaces in this noncompact threefold.
The “bulk” degrees of freedom of these gauge theories

can also be coupled to various lower-dimensional defects
localized on subspaces of a compactification. These appear
as additional source terms in the BPS equations of motion,
a point we shall return to soon. In fact, the appearance of

these localized sources can also be modeled in terms of a
corresponding Higgs bundle construction, being associated
with the spectrum of localized perturbations about a given
background solution.
To illustrate these general considerations and since we

will need to make use of them in more detail later, we now
turn to the specific bulk BPS equations of motion for local
M- and F-theory models. We refer to these as the PW and
BHV systems, respectively.

1. PW system

Consider first local M-theory models. The system of
equations appearing in [9] describes supersymmetric sol-
utions for six-branes compactified on a three-cycleQ inside
a G2 space. This again gives a 4D N ¼ 1 supersymmetric
theory. In this case the fields appearing are a gauge field A
and an adjoint-valued one-form ϕPW. The supersymmetric
equations of motion are

DAϕPW ¼ 0; ð2:3Þ

DA � ϕPW ¼ 0; ð2:4Þ

F ¼ ½ϕPW;ϕPW�: ð2:5Þ

Including matter fields amounts to adding in additional
source terms to the right-hand side of these equations.
Vacua are given by solutions to the supersymmetric
equations of motion modulo gauge transformations.
These vacua are also captured by the critical points of a
complexified Chern-Simons functional,

WPW ¼
Z
Q
Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
ð2:6Þ

modulo complexified gauge transformations. In the
above, we have introduced a complexified connection A ¼
Aþ iϕPW.
Though we shall often leave it implicit, the field content

of this gauge theory also provides important geometric
information on the local structure of M-theory compactified
on a G2 space with singularities. To see this, observe that,
for a three-manifold of ADE singularities, we can perform a
resolution of the singular fibers. This results in a basis of
compactly supported harmonic two-forms ωα which are in
correspondence with the generators of the Cartan for the
given gauge group. A variation in the associated three-form
Φð3Þ of the local G2 space results in a decomposition

δΦð3Þ ¼
X
α

ϕα
PW ∧ ωα; ð2:7Þ

namely, the eigenvalues of our adjoint-valued one-form
ϕPW directly translate to metric data of the local G2 space.
Off-diagonal elements are encoded in additional physical
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degrees of freedom such as M2-branes wrapped on col-
lapsing two-cycles.

2. BHV system

Turning next to local F-theory models, the system of
BPS equations derived in [4] controls supersymmetric
configurations of seven-branes wrapped on a Kähler sur-
face S. The field content of the Higgs bundle is specified by
fixing a gauge group G and consists of a gauge field A and
an adjoint-valued (2,0)-form ϕBHV. The BPS equations for
this system are

∂̄AϕBHV ¼ 0; ð2:8Þ

Fð0;2Þ ¼ 0; ð2:9Þ

JS ∧ F þ i
2
½ϕ†

BHV;ϕBHV� ¼ 0: ð2:10Þ

Here we introduced JS which is the Kähler form on the
four-cycle wrapped by the seven-branes. The last equation
is the equivalent for the BHV system of the usual equation
controlling stability of holomorphic vector bundles in
Calabi-Yau threefolds [15]. Matter fields localized on
complex curves, as well as cubic interactions between
these matter fields, can all be included by introducing
appropriate source terms on the right-hand side of these
equations of motion [4]. One can also characterize 4D
supersymmetric, Lorentz invariant vacua as critical points
of a superpotential,

WBHV ¼
Z
S
TrðϕBHV ∧ Fð0;2ÞÞ ð2:11Þ

modulo complexified gauge transformations.
Much as in the case of the localG2 construction, the field

content of this gauge theory also provides important
geometric information on the local structure of F-theory
compactified on a singular elliptically fibered Calabi-Yau
fourfold. To see this, observe that, for a Kähler surface of
ADE singularities, we can perform a resolution of the
singular fibers. This results in a basis of compactly
supported harmonic two-forms ωα which are in correspon-
dence with the generators of the Cartan for the given gauge
group. A variation in the associated holomorphic four-
form Ωð4;0Þ of the Calabi-Yau fourfold results in a decom-
position,

δΩð3;1Þ ¼
X
α

ϕα
ð2;0Þ ∧ ωα; ð2:12Þ

namely, the eigenvalues of our adjoint-valued (2,0)-form
directly translate to metric data.

C. 3D N = 1 vacua

Let us now turn to the related case of M- and F-theory
compactifications which generate 3DN ¼ 1 vacua, namely
systems with at least two real supercharges. One simple way
to generate examples with 3D N ¼ 2 supersymmetry (four
real supercharges) is to take a 4D N ¼ 1 theory and
compactify further on a circle. From the standpoint of
compactification, we can then consider M-theory on YG2

×
S1 or F-theory onXCY4

× S1 (in the obvious notation). Using
the standard duality between circle reductions of F- and
M-theory vacua, note that we can alternatively consider
M-theory compactified on the Calabi-Yau fourfold XCY4

, in
which the volume modulus of the elliptic fiber is now a
physical parameter (in a local model it is nondynamical).
This already provides us with two possible Higgs bundles,
one associated with the PW system (via compactification on
a G2 space) and the other associated with the BHV system
(via compactification on a Calabi-Yau fourfold).
We can also consider more general compactifications

which only preserve 3D N ¼ 1 supersymmetry by taking
M-theory on a spin(7) space (see e.g., [16–22]). The analog
of local models in this context involves a four-manifold M
of ADE singularities. There can also be local enhancements
in the singularity type along subspaces. Indeed, comparing
the 3DN ¼ 2 vacua obtained from XG2

× S1 and XCY4
, we

anticipate that enhancements in the singularity type could
occur over real one-cycles as well as over two-dimensional
Riemann surfaces. In M-theory, this will be captured by a
configuration of intersecting six-branes, possibly with
gauge field fluxes switched on. In this case, the appropriate
Higgs bundle involves a gauge field and an adjoint-valued
self-dual two-form ϕSD (see e.g., [7]).
Again, there is a close connection between the resulting

vacua and those obtained from IIA on a local G2 space. To
see this, observe that the eigenvalues of ϕSD take values in
Ω2þ → M. The bundle of self-dual two-forms leads to a
noncompact G2 space in the sense that there is a distin-
guished three-form Φð3Þ. Indeed, in the special case where
M is S4 or CP2 there is a corresponding complete metric on
this space [23]. More generally, however, the condition of
completeness can be relaxed, at the expense of introducing
some singularities. These are additional physical data of the
system associated with the appearance of light degrees of
freedom as one approaches a UV cutoff. For this reason, we
also view this more general class of seven-manifolds as
local G2 spaces.
We obtain 3DN ¼ 1 vacua from the corresponding BPS

equations of motion for this system [7,24] (for an analytic
perspective, see also [25]),

DAϕSD ¼ 0; ð2:13Þ

FSD þ ϕSD × ϕSD ¼ 0; ð2:14Þ
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where we can include the contributions from localized
matter by adding source terms to the right-hand sides of
these equations. Here, FSD ¼ 1

2
ðF þ �FÞ is the self-dual

part of the field strength. We have also introduced a cross
product which in local indices can be written as [24]

ðϕSD × ϕSDÞij ¼
1

4
½ϕSDik;ϕSDjl�gkl; ð2:15Þ

where gij refers to the metric onM. Using the distinguished
three-form ε on Ω2þðMÞ, we can also write [7]

ðϕSD × ϕSDÞa ¼ εabcϕ
b
SDϕ

c
SD; ð2:16Þ

where here, we are treating ϕa
SD as a three-component

vector in the vector space Ω2þ.
Much as in the case of the related 4D vacua, these vacua

are labeled by critical points of a 3DN ¼ 1 superpotential,

WSpinð7Þ ¼
Z
M
Tr

�
ϕSD ∧

�
FSD þ 1

3
ϕSD × ϕSD

��
ð2:17Þ

modulo gauge transformations. In this case, we note that
this object is a real function associated with a D-term
(integrated over the full superspace).
The field content of this gauge theory also provides

important geometric information on the local structure of
M-theory compactified on a singular spin(7) space. For a
four-manifold of ADE singularities, we can perform a
resolution of the singular fibers. This results in a basis of
compactly supported harmonic two-forms ωα which are in
correspondence with the generators of the Cartan for the
given gauge group. Avariation in the associated Cayley four-
form Ψð4Þ of the spin(7) space results in a decomposition

δΨð4Þ ¼
X
α

ϕα
SD ∧ ωα; ð2:18Þ

namely, the eigenvalues of the adjoint-valued self-dual two-
form directly translate to metric data. Observe also that self-

duality of the Higgs field directly descends from the
corresponding condition on the Cayley four-form.
Given a background solution to the local spin(7) equa-

tions, we can also study the spectrum of light degrees of
freedom. These are the “zero modes” of a given back-
ground. To write down the differential equations that
govern the profile of zero modes we take the BPS equations
and expand them at linear order in the fields

A ¼ hAi þ a; ð2:19Þ

ϕSD ¼ hϕSDi þ φ; ð2:20Þ

and keep only terms linear in ða;φÞ in the equations. Note
that, due to the topological twist, a and φ are each the real
scalar component of a 3D N ¼ 1 scalar multiplet and thus
specify the matter of the engineered effective field theory.
In the following, for the sake of notational simplicity, we
shall drop the h·i notation when we refer to background
values of the fields. The resulting zero-mode equations
are

Dþ
Aaþ ϕSD × φ ¼ 0; DAφ − ½ϕSD; a� ¼ 0: ð2:21Þ

Here Dþ
A ¼ DA þ �4DA. As we will discuss in detail later,

(2.21) has both bulk solutions when the commutators with
ϕSD vanish or localized modes centered around the zero
loci of the adjoint action of ϕSD. Solutions should be
considered equivalent when related to one another via an
infinitesimal gauge transformation

�
a ∼ aþDAξ

φ ∼ φþ ½ϕSD; ξ�
; ð2:22Þ

with ξ an adjoint-valued zero-form. Another way to phrase
this is to associate to the local spin(7) system the following
complex:

0 → Ω0ðadEÞ!δ0 Ω1ðadEÞ ⊕ Ω2þðadEÞ!
δ1 Ω2þðadEÞ ⊕ Ω3ðadEÞ → 0; ð2:23Þ

where adE denotes forms in the adjoint representation of
the Lie algebra. Moreover Ω2þ denotes the bundle of self-
dual two forms. The two differentials act as

δ0ðξÞ ¼
�
DAξ

½ϕSD; ξ�

�
; ð2:24Þ

δ1ðα; βÞ ¼
�
Dþ

Aαþ ϕSD × β

DAβ − ½ϕSD; α�

�
: ð2:25Þ

The space of infinitesimal deformations of the local spin(7)
system (namely, the tangent bundle to the moduli space) is
given by

TMSpinð7Þ ¼
ker δ1
imδ0

: ð2:26Þ

Note also that this complex naturally includes the 3DN ¼ 1
vector multiplets as ker δ0. This is so because the vector
multiplets are scalars onC and the associated gauge group is
the commutant which is not broken by a Higgs mechanism.
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1. Specialization to 3D N = 2 vacua

Having stated the general system of equations (as well as
linearized fluctuations) for local spin(7) spaces, we can also
see how further specialization can result in a 3D N ¼ 2

vacuum solution, as captured by M-theory on YG2
× S1 or

XCY4
. We begin with the PW system, and then turn to the

BHV system.
Reduction to PW system.—To relate the field content of

the local spin(7) equations to those of the PW system,
consider the special case where the four-manifold M of the
local spin(7) equations takes the form M ¼ Q × S1 with Q
a three-manifold. Denote by t the local coordinate on this
S1 factor.3 In this case, an adjoint-valued self-dual two-
form ϕSD on M descends to a decomposition of the form
ϕSD ¼ ϕ ∧ dtþ �3ϕ, with ϕ an adjoint-valued one-form
on Q. Observe also that the gauge field on Q × S1 has the
degrees of freedom associated with Q, as well as the
additional direction At. In terms of this decomposition,
the local spin(7) equations can be written as

F − ½ϕ;ϕ� þ �ðDtA − d3AtÞ ¼ 0; ð2:27Þ

DAϕþ �Dtϕ ¼ 0; ð2:28Þ

DA � ϕ ¼ 0: ð2:29Þ

Here, the Hodge star is always taken in the three directions
transverse to t and d3 denotes the exterior derivative in the
directions transverse to t. We see that we recover the PW
system upon setting At ¼ 0 and ∂tA ¼ ∂tϕ ¼ 0, meaning
that the PW system is the truncation of the spin(7) system to
solutions that are invariant under translations in the t
direction and with At ¼ 0 which is compatible with the
expectations from dimensional reduction.
Reduction to BHV system.—We now show that a differ-

ent truncation reproduces the BHV system of equations.
Along these lines, suppose the local four-manifold M is
actually a Kähler surface S. In this case, self-dual two-
forms decompose into (2, 0)-forms and a (1, 1)-form
proportional to the Kähler form

ϕSD → ϕð2;0Þ ⊕ ϕð1;1Þ ⊕ ϕ†
ð0;2Þ: ð2:30Þ

We recognize the (2, 0)-form as the same Higgs field
appearing in the BHV system. Here, ϕð1;1Þ ¼ ϕγ · JS with
ϕγ an adjoint-valued function and JS is the Kähler form of S.
In this decomposition, the local spin(7) equations become

∂̄Aϕð2;0Þ −
i
2
∂Aϕð1;1Þ ¼ 0; ð2:31Þ

Fð0;2Þ −
i
2
ϕð1;1Þ × ϕ†

ð0;2Þ ¼ 0; ð2:32Þ

JS ∧ F þ i
2
½ϕ†

ð0;2Þ;ϕð2;0Þ� ¼ 0: ð2:33Þ

Upon taking configurations forwhichϕγ ¼ 0, we recover the
BHV equations of motion.

D. Deformations of the Hitchin system

As the above examples illustrate, the structure of the
local spin(7) equations reduces, upon further specialization,
to the Higgs bundles of the PW and BHV systems for 4D
N ¼ 1 vacua. Similar considerations hold for reduction of
the PW system on a three-manifold Q given by a fibration
of a Riemann surface over an interval [26].
We now show that, starting from a solution to these more

specialized solutions, perturbations will in general produce
a trajectory in the moduli space of the spin(7) equations.
The related analysis for PW systems viewed as perturba-
tions of the Hitchin system was carried out in [26], and we
refer the interested reader there for further discussion of this
case. Specializing to the case of four-manifolds which can
be written as a Riemann surface C fibered over a cylinder
C� ≃ R × S1, we show that the BHV system of equations
can also be viewed as perturbations of the Hitchin system.
We then show that similar considerations hold for defor-
mations of the Hitchin system to the spin(7) equations.
To proceed with this analysis, it will be helpful to

introduce an explicit coordinate system. Let w ¼ tþ iθ
denote the coordinates of the cylinder, and x, y real
coordinates on C. We can then express the self-dual
two-form ϕSD on M as the triplet

ϕSD ¼ ϕαðdx ∧ dθ − dt ∧ dyÞ
þ ϕβðdt ∧ dxþ dy ∧ dθÞ
þ ϕγðdt ∧ dθ þ dx ∧ dyÞ: ð2:34Þ

Wewill assume that we have a flat metric and expand along
the t direction as follows:

Aiðx; y; θ; tÞ ¼
X∞
k¼0

AðkÞ
i ðx; y; θÞtk;

ϕiðx; y; θ; tÞ ¼
X∞
k¼0

ϕðkÞ
i ðx; y; θÞtk: ð2:35Þ

In what follows, we shall also work in a “temporal gauge”
where Atðx; y; θ; tÞ ¼ 0.

1. Generating BHV solutions

As a warmup, we first show how to generate BHV
solutions from perturbations of the Hitchin system. The
expanded BHV equations lead to nontrivial differential
equations on the coefficients,

3In our interpretation of interpolating vacua, we will soon
decompactify this direction.

GEOMETRIC UNIFICATION OF HIGGS BUNDLE VACUA PHYS. REV. D 102, 106012 (2020)

106012-7



GðjÞ
ab ≡ ∂xϕ

ðjÞ
β − ∂yϕ

ðjÞ
α

þ
Xj
n¼0

ð½Aðj−nÞ
x ;ϕðnÞ

β � − ½Aðj−nÞ
y ;ϕðnÞ

α �Þ ¼ 0;

HðjÞ
ab ≡ ∂xϕ

ðjÞ
α þ ∂yϕ

ðjÞ
β

þ
Xj−1
n¼0

ð½Aðj−nÞ
x ;ϕðnÞ

α � þ ½Aðj−nÞ
y ;ϕðnÞ

β �Þ ¼ 0; ð2:36Þ

together with five equations which fix the higher order
coefficients in terms of the preceding one,

ðjþ 1ÞAðjþ1Þ
θ ¼ −FðjÞ

xy þ ½ϕα;ϕβ�ðjÞ;
ðjþ 1ÞAðjþ1Þ

x ¼ −FðjÞ
yθ ;

ðjþ 1ÞAðjþ1Þ
y ¼ FðjÞ

xθ ;

ðjþ 1Þϕðjþ1Þ
α ¼ −DðjÞ

θ ϕðjÞ
β ;

ðjþ 1Þϕðjþ1Þ
β ¼ DðjÞ

θ ϕðjÞ
α : ð2:37Þ

We will assume that Að0Þ
x;y and ϕð0Þ

α;β are such that the zeroth
order differential equations from (2.36) are solved, and the
higher order coefficients are fixed by the linear Eqs. (2.37).

The one remaining free parameter is Að1Þ
θ , which sets the

“trajectory” of the solution. Once we have these initial data,

we can show that the BHV equations are automatically
solved to all orders in t (see the Appendix for further
details).
Indeed, it is sufficient to solve the zeroth order differ-

ential equations

Dð0Þ
x ϕð0Þ

β −Dð0Þ
y ϕð0Þ

α ¼ 0;

Dð0Þ
x ϕð0Þ

α þDð0Þ
y ϕð0Þ

β ¼ 0; ð2:38Þ

and then one can simply propagate through Eqs. (2.37) to
build up the higher order terms. Note that this pair of
differential equations is part of the Hitchin system on the
Riemann surface spanned by x and y as they are the real and
imaginary parts of Eq. (2.1). The last equation of the
Hitchin system, that is Eq. (2.2), is deformed to the zeroth
order of the first equation of (2.37): this equation implies
that an exact solution of the Hitchin system is obtained only

for Að0Þ
θ ¼ 0, meaning that the free parameter Að0Þ

θ controls
the deformation of the Hitchin system.

2. Generating local spin(7) solutions

Similarly, it is possible to build a local spin(7) system
that is neither just BHV or PW, via this power series
expansion. Making use of the power series expansion
(2.35), we can expand the spin(7) equations to yield a
single set of differential equations,

∂xϕ
ðjÞ
β − ∂yϕ

ðjÞ
α þ ∂θϕ

ðjÞ
γ þ

Xj
n¼0

ð½Aðj−nÞ
x ;ϕðnÞ

β � − ½Aðj−nÞ
y ;ϕðnÞ

α � þ ½Aðj−nÞ
θ ;ϕðnÞ

γ �Þ ¼ 0; ð2:39Þ

together with six recursion relations,

jAðjÞ
θ ¼ −∂xA

ðj−1Þ
y þ ∂yA

ðj−1Þ
x −

Xj−1
n¼0

ð½Aðj−1−nÞ
x ; AðnÞ

y � − ½ϕðj−1−nÞ
α ;ϕðnÞ

β �Þ;

jAðjÞ
x ¼ −∂yA

ðj−1Þ
θ þ ∂θA

ðj−1Þ
y −

Xj−1
n¼0

ð½Aðj−1−nÞ
y ; AðnÞ

θ � − ½ϕðj−1−nÞ
γ ;ϕðnÞ

α �Þ;

jAðjÞ
y ¼ ∂xA

ðj−1Þ
θ − ∂θA

ðj−1Þ
x þ

Xj−1
n¼0

ð½Aðj−1−nÞ
x ; AðnÞ

θ � þ ½ϕðj−1−nÞ
γ ;ϕðnÞ

β �Þ;

jϕðjÞ
γ ¼ −∂xϕ

ðj−1Þ
α − ∂yϕ

ðj−1Þ
β −

Xj−1
n¼0

ð½Aðj−1−nÞ
x ;ϕðnÞ

α � þ ½Aðj−1−nÞ
y ;ϕðnÞ

β �Þ;

jϕðjÞ
α ¼ −∂θϕ

ðj−1Þ
β þ ∂xϕ

ðj−1Þ
γ −

Xj−1
n¼0

ð½Aðj−1−nÞ
θ ;ϕðnÞ

β � − ½Aðj−1−nÞ
x ;ϕðnÞ

γ �Þ;

jϕðjÞ
β ¼ ∂θϕ

ðj−1Þ
α þ ∂yϕ

ðj−1Þ
γ þ

Xj−1
n¼0

ð½Aðj−1−nÞ
θ ;ϕðnÞ

α � þ ½Aðj−1−nÞ
y ;ϕðnÞ

γ �Þ: ð2:40Þ

Once again, it is possible to show that it is sufficient to solve the zeroth order differential equation
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Dð0Þ
x ϕð0Þ

β −Dð0Þ
y ϕð0Þ

α þDð0Þ
θ ϕð0Þ

γ ¼ 0; ð2:41Þ

and then one can simply propagate through Eqs. (2.40) to
build up the higher order terms (see the Appendix for more

details). Thus, if we are given Að0Þ
x;y;θ and ϕ

ð0Þ
α;β;γ such that the

zeroth order equations in (2.41) are solved, then we can
construct a full solution of the local spin(7) equations by
specifying all the higher order coefficients as in (2.40).

3. Abelian case

It is instructive to further specialize to the case where all
gauge fields vanish. We refer to this as an Abelian solution
because now the Higgs field has trivial cross product with
itself. Taking Ai ¼ 0 gives some major simplifications.
The local spin(7) recursion relations (2.40) now become
ðj − 1Þ=2

ϕðjÞ
α ¼ 1

j

� ð−1Þj=2ð∂2
x þ ∂2

y þ ∂2
θÞj=2ϕð0Þ

α ; if j is even

ð−1Þðj−1Þ=2ð∂2
x þ ∂2

y þ ∂2
θÞðj−1Þ=2ð∂xϕ

ð0Þ
γ − ∂θϕ

ð0Þ
β Þ; if j is odd

ϕðjÞ
β ¼ 1

j

� ð−1Þj=2ð∂2
x þ ∂2

y þ ∂2
θÞj=2ϕð0Þ

β ; if j is even

ð−1Þðj−1Þ=2ð∂2
x þ ∂2

y þ ∂2
θÞðj−1Þ=2ð∂θϕ

ð0Þ
α þ ∂yϕ

ð0Þ
γ Þ; if j is odd

ϕðjÞ
γ ¼ 1

j

� ð−1Þj=2ð∂2
x þ ∂2

y þ ∂2
θÞj=2ϕð0Þ

γ ; if j is even

ð−1Þðj−1Þ=2ð∂2
x þ ∂2

y þ ∂2
θÞðj−1Þ=2ð−∂xϕ

ð0Þ
α − ∂yϕ

ð0Þ
β Þ; if j is odd:

ð2:42Þ

III. EFFECTIVE FIELD THEORY OF
INTERPOLATING SOLUTIONS

In the previous section we introduced Higgs bundles for
minimally supersymmetric 5D, 4D, and 3D vacua. In
particular, we saw that many of these Higgs bundles admit
an interpretation as interpolating between perturbations of a
lower-dimensional Higgs bundle.
In this section we turn to the effective field theory

associated with these interpolating solutions. As a first
comment, we note that although we are clearly considering
a change in the vacuum of the higher-dimensional field
theory, this need not be directly associated with a domain
wall solution. The general reason for this is that the fields
participating in this interpolating profile could, a priori, be
quite heavy and actually higher than the Kaluza-Klein scale
for the effective field theory (EFT). From this perspective,
the appropriate description will instead be given by
integrating out these modes from the start. In the resulting
theory, this will instead leave its imprint in a profile of
possibly position dependent Wilson coefficients of the
effective field theory.
To show how this comes about, we begin by studying

interpolating solutions for 5D vacua from the standpoint of
the 4Deffective field theory generated by thePWsystem.We
then turn to interpolating solutions for 4D vacua from the
standpoint of the 3D effective field theory generated by the
local spin(7) system.To set notation, inwhat followswe shall
consider a D-dimensional theory “compactified” on either
the noncompact line R with local coordinate t or a cylinder
C� ≃ R × S1 with local coordinate w ¼ tþ iθ. Our general
strategy will be to package all of the fields of the higher-
dimensional theory in terms of lower-dimensional fields

labeled by points of this extra-dimensional geometry.
Writing down all possible interaction terms of the lower-
dimensional theory will then provide a general way to track
possible interpolating profiles between higher-dimensional
vacua obtained in the asymptotic limits as t → −∞
and t → þ∞.

A. Interpolating 5D vacua

To begin, we return to the case of interpolating 5D vacua,
as captured by M-theory on a noncompact Calabi-Yau
threefold specified by a curve of ADE singularities. As we
have already mentioned, the Higgs bundle in this case is the
Hitchin system coupled to defects. We take the interpolat-
ing gauge theory for this model to be a Pantev-Wijnholt
system on a three-manifold Q, given as a fibration of a
Riemann surface over a noncompact line. For simplicity,
we focus on the case where the metric is a product of that on
the Riemann surface and the interval.
Let us begin by packaging the field content of the Higgs

bundle fields of the six-brane gauge theory wrapped on a
curve C. Recall that the bosonic field content of the six-
brane gauge theory consists of a gauge field A7D as well as a
triplet of scalars. After compactifying on a Riemann
surface, we can sort all of these fields into 5D super-
multiplets. Owing to the topological twist, all fields in the
same supermultiplet must have the same differential form
content in the internal space. In the 5D N ¼ 1 effective
field theory, we have a 5D vector multiplet with a real
adjoint-valued scalar, which we label as ϕt, in accord with
its interpretation in the associated PW system defined on
Q ¼ Rt × C. In the 5D effective field theory, we also get
hypermultiplets indexed by points of C, coming from the
gauge field and Higgs field of the Hitchin system.
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In terms of 4D N ¼ 1 fields, the 5D vector multiplet
descends to a 4D N ¼ 2 vector multiplet. The complex
adjoint-valued scalar of this system is given by a com-
plexified gauge connection which we write as

Dt ¼ dt þ At þ iϕt ¼ dt þAt; ð3:1Þ
where in the last equality we have used the complexified
connection introduced earlier in our discussion of the PW
system. There are also the degrees of freedom of the
Hitchin system. These can also be packaged in terms of a
complexified connection which we write as

DC ¼ dC þ AC þ iϕC ¼ dC þAC: ð3:2Þ

Observe that on a Riemann surface, there are an equal
number of A- and B-cycles; these canonically pair to form
the degrees of freedom of a hypermultiplet. To emphasize
this, we write the pair as DA ⊕ DB. Summarizing, we have
found three adjoint-valued chiral multiplets.
In terms of 4D N ¼ 1 fields, the interaction terms of the

5D field theory are constrained by 4D N ¼ 2 supersym-
metry. In 4DN ¼ 1 language, the superpotential for the bulk
fields of the Hitchin system then takes the form (see e.g.,
[4,27–29])

Wbulk ¼
Z
R×C

ffiffiffi
2

p
TrðDA · Dt · DBÞ; ð3:3Þ

where the “·” indicates a wedge product operation as well as
multiplication of matrices in the adjoint representation of the
gaugegroup (i.e., by commutators in theLie algebra).We can
also couple this system to additional 5D hypermultiplets (in
some representation of the gaugegroup) localized at points of
C. This proceeds through the generalization

W ¼
Z
R×C

ffiffiffi
2

p �
TrðDA · Dt · DBÞ þ

X
p

δpHc
p · Dt · Hp

�
;

ð3:4Þ

in the obvious notation.
Supersymmetric vacua of the 5D system are recovered

from the F-term equations of motion coming from varying
Weff with respect to the different chiral superfields. Doing
so, we obtain the F-term equations of motion

½DA;DB� ¼
X
p

δpHc
p · Hp; ð3:5Þ

½Dt;DA� ¼ 0; ð3:6Þ

½Dt;DB� ¼ 0: ð3:7Þ

We recognize the first equation as that of the Hitchin system
coupled to defects. The remaining two equations are simply
those associated with the PW system on Q ¼ Rt × C.

At first, this might suggest that the resulting solutions
will generically preserve 4D N ¼ 2 supersymmetry rather
than justN ¼ 1 supersymmetry. We can see that this is not
the case based on the structure of possible solutions. In
N ¼ 2 terms, the Coulomb branch of the field theory
amounts to setting hypermultiplet vacuum expectation
values (VEVs) to zero, namely DA ¼ DB ¼ Hc

p ¼ Hp ¼
0 with Dt nonzero. The Higgs branch is specified by setting
Dt ¼ 0. There are mixed Coulomb-Higgs branch directions
in the moduli space, but these do not involve the same
directions in the gauge algebra. In the PW system, we can
have more general solutions since only N ¼ 1 supersym-
metry needs to be retained. Of course, if we treat the above
equations as simply specifying the field content of a 4D
effective field theory, we could only obtain N ¼ 2 vacua.
However, by allowing all modes of the higher-dimensional
theory to participate, there is no need to work exclusively in
terms of purely massless 4D fields. From this perspective,
the interpolating solutions we have introduced are, by
necessity, associated with massive modes of the higher-
dimensional theory.
Another way to state the same conclusion is to return to

the 5D effective field theory, but to allow position depen-
dent higher-dimension operators in the 5D effective
Lagrangian,

Leff ⊃
X
i

ciðtÞ
Oiðx4D; tÞ
ΛΔi−5

; ð3:8Þ

where Δi labels the dimension of some operator Oi. In
principle, we can write down all possible higher order terms
compatible with 4D N ¼ 1 supersymmetry. To illustrate
how this works in practice, let us return again to the
superpotential of Eq. (3.4), but now expanded around a
zero mode of the 4D theory,

DA ¼ δDA þ DðKKÞ
A ; ð3:9Þ

DB ¼ δDB þ DðKKÞ
B ; ð3:10Þ

Dt ¼ δDt þ DðKKÞ
t ; ð3:11Þ

Hp ¼ δHp þ HðKKÞ
p ; ð3:12Þ

Hc
p ¼ δHc

p þ HcðKKÞ
p : ð3:13Þ

In the above, we note that there could of course be multiple
zero modes and Kaluza-Klein (KK) modes. All of this has
been condensed in the present notation. Substituting these
expressions into the superpotential and integrating out all
massive modes, we obtain interaction terms such as
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W ¼
Z
R×Cð1Þ×Cð2Þ

ffiffiffi
2

p �
δDA · δDt · δDB þ

X
p

δpδHc
p · δDt · δHp

�
ð3:14Þ

þ
Z
R×Cð1Þ×Cð2Þ

ffiffiffi
2

p �
δDt · δDB ·

1

D0
A
· δDt · δDB þ δDt · δDA ·

1

D0
B
· δDt · δDA

�
ð3:15Þ

þ
Z
R×Cð1Þ×Cð2Þ

ffiffiffi
2

p �
δDA · δDB þ

X
p

δpδHc
p · δHp

�
·
1

D0
t
·

�
δDA · δDB þ

X
p

δpδHc
p · δHp

�
ð3:16Þ

where the expressions 1=D0 denote Green’s functions on
R × Cð1Þ × Cð2Þ with the zero modes omitted. In this
expression, we have also absorbed the different notions
of “trace.” Let us note that we have confined our answer to
dimension six operators because in the above, we have only
presented the F-terms. For the D-terms, there is no such
restriction, and it is also more difficult to perform the
corresponding effective field theory analysis.
The derivation of this expression for the effective super-

potential follows from using the F-term equations of
motion and then plugging these solutions back in. Such
a result is therefore exact in the F-terms, but it also
implicitly depends on unprotected (nonholomorphic) D-
term data. To illustrate how this works in practice, consider
for example the interaction term DA · Dt · DB. Substituting

in, we get terms such as δDA · DðKKÞ
t · δDB þMDKK

t · DKK
t .

In this case, the equation of motion for DðKKÞ
t is of the form

DðKKÞ
t ∼ δDA

1

M
δDB þ � � � ; ð3:17Þ

where the “� � �” refers to other terms obtained by varying

the superpotential with respect to DðKKÞ
t . Here, the factor of

“1=M” refers to the masses of the KK states. Now, feeding

this back into the terms δDA · DðKKÞ
t · δDB þMDKK

t · DKK
t ,

we arrive at one of the claimed interaction terms. Scanning
over all couplings between two zero modes and one KK
mode, we obtain the interaction terms indicated above.
Similar considerations hold when we integrate out the KK
modes associated with the other bulk degrees of freedom,
as well as the modes such asH ⊕ Hc which are localized on
a curve.
The key feature of these expressions is that these

propagators clearly involve a nontrivial dependence on
all three coordinates of the three-manifold Q. As such, we
should expect the 5D effective field theory to have position
dependent Wilson coefficients, thus demonstrating the
general claim. The global form of these expressions
involves integrating expressions for the zero-mode profiles
such as f1ðt; x1; y1Þ and f2ðt; x2; y2Þ against these Green’s
functions through schematic expressions such as

Z
R×Cð1Þ×Cð2Þ

f1ðt; x1; y1Þ
�
1

D0

�
ðtjx1; y1; x2; y2Þf2ðt; x2; y2Þ;

ð3:18Þ

and the associated Wilson coefficients for the superpoten-
tial are then given via

cquarticðtÞ

¼
Z
Cð1Þ×Cð2Þ

f1ðt; x1; y1Þ
�
1

D0

�
ðtjx1; y1;x2; y2Þf2ðt; x2; y2Þ;

ð3:19Þ

in the obvious notation.
On general grounds, we also expect that the appearance

of localized matter may also generate singularities in the
form of a given interpolating solution. As a first example,
observe that a background value for a localized hyper-
multiplet produces a delta function localized source term in
the Hitchin system coupled to defects. With this in mind,
the appearance of a singularity somewhere in the t direction
can also be interpreted—in the PW system—as a back-
ground expectation value for matter localized on some
lower-dimensional cycle in Q. The appearance of such
singularities is of course well known in other contexts and
determines a defect operator. We will return to the effect of
these defect operators on the background equations later in
Sec. IV C. Near these singularities, the profiles of the
higher-dimensional fields will also exhibit higher order
singularities. There is then some additional data associated
with the boundary conditions for fields.

B. Interpolating 4D vacua

In the previous subsection we showed that interpolating
profiles for Higgs bundles on a Riemann surface have a
natural interpretation in terms of 5D vacua with position
dependent Wilson coefficients for higher-dimension oper-
ators in the effective field theory. We now perform a similar
analysis in the case of Higgs bundles used to define 4D
vacua and the corresponding interpolating profiles. In this
case, there is already an important subtlety because we have
already mentioned two distinct ways to generate 4D vacua,
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namely from M-theory on localG2 spaces or from F-theory
on local Calabi-Yau fourfolds.
Our general expectation is that we can use the 3D

effective field theory defined by M-theory on a local
spin(7) space as the “glue” which can interpolate between
these different profiles. In the case of the PW system, this
interpretation is straightforward, since it is defined on a
three-manifold, and further fibering this over an interval
will result in a noncompact four-manifold. In the case of the
BHV system, however, additional care is required because
both the BHVand local spin(7) systems make reference to a
four-manifold.
Keeping these subtleties in mind, we shall therefore

reverse the order of analysis. We begin with the 3D N ¼ 1
effective field theory generated by M-theory compactified
on a spin(7) manifold. Wewill then use this starting point to
give an interpretation in terms of a compactification of a 4D
N ¼ 1 theory.
We start with the local spin(7) system and summarize the

field content of the six-brane gauge theory wrapped on a
four-manifold M. Owing to the topological twist, fields in
the same supermultiplet will again sort by their differential
form content. From the bulk of the six-brane gauge theory,
we have a 3D N ¼ 1 vector multiplet. Additionally, we
have a 3D N ¼ 1 scalar multiplet given by an adjoint-
valued self-dual two-form ΦSD, and another 3D N ¼ 1
scalar multiplet D given by dimensional reduction of the
internal components of the gauge connection on M. There
can also be matter fields localized on Riemann surfaces and
one-cycles, but in the interest of brevity we suppress these
contributions for now. Focusing on the scalar multiplets,
the superpotential of the 3D N ¼ 1 system is

Wbulk ¼
Z
M
Tr

�
ΦSD ∧

�
FSD þ 1

3
ΦSD ×ΦSD

��
; ð3:20Þ

in the obvious notation. Here, we have not distinguished
between the zero modes of a particular solution and all of
the Kaluza-Klein modes.
We now assume that our four-manifoldM can be written

as a product of a Riemann surface C and a cylinder, i.e.,
M ¼ C ×R × S1. The connection to a PW system is
straightforward: We take the three-manifold of the PW
system to be Q ¼ C × S1, fibered over the real line factor.
As we have already noted, the local spin(7) equations
specialize to those of the PW system. Including the
contributions in the R direction, we also clearly see that
there is a whole tower of KK modes which participate in
this process. This is quite analogous to what we already saw
in the context of 5D interpolating vacua for Hitchin systems
as specified by the PW system. Again, the interpretation is
in terms of a 4D effective field theory but with position
dependent coefficients for higher-dimension operators. By
using the local spin(7) system, we see that it is possible to
interpolate between different perturbations of PW systems.

Geometrically, this provides a way to glue together two
noncompact G2 spaces to produce a noncompact spin(7)
space. We refer to this as a “PW-PW” gluing. We will
discuss some examples of these interpolations in Sec. V C.
Consider next the other specialization in the local spin(7)

equations, as captured by the BHV system. We would like
to understand the effective field theory interpretation for
gluing two BHV solutions via a local spin(7) system, as
well as possible ways to glue a BHV solution to a PW
solution. Since we have already discussed how to glue
together PW solutions, it suffices to consider the gluing of a
PW and BHV system. The physical interpretation of this
situation is clearly more subtle because the Rt factor in the
BHV system remains inside the four-manifold. In what
sense, then, can we claim that there is an asymptotic limit
captured by a 4D N ¼ 1 effective field theory?
The important clue here is that the 4D interpretation of

the BHV system takes place in F-theory rather than M-
theory. Recall that in the standard match between M- and F-
theory, M-theory compactified on an elliptically fibered
Calabi-Yau X is dual to F-theory on X × S1. In this
correspondence, the volume of the elliptic curve on the
M-theory side of the correspondence is inversely related to
the size of the S1 on the F-theory side. In particular, the
component of the seven-brane gauge field along this S1

direction becomes “T-dual” in the local M-theory picture to
one of the components of the one-form Higgs field in the
PW system. Said differently, a direction in the cotangent
bundle T�Q of the local PW system is actually part of the
4D spacetime on the F-theory side.
With this in mind, we shall denote the spacetime direction

used for the interpolating profile by writing RM-th when
referring to 4D M-theory vacua obtained from compactifi-
cation on aG2 space andRF-th when referring to 4DF-theory
vacua obtained from compactification on an elliptically
fibered Calabi-Yau fourfold. As we have already remarked,
on the F-theory side RF-th is a spacetime direction, while
RM-th should be treated as an internal direction. Conversely,
on the M-theory side RM-th is a spacetime direction, while
RF-th should be treated as an internal direction.
In terms of the field content of the two local models,

there is a corresponding interchange in the gauge field and
scalar degrees of freedom. On the PW side, we have a 7D
gauge field which we split up as A7D ¼ A3D ⊕ AM-th ⊕ AQ
and a triplet of real scalars ϕ1;ϕ2;ϕ3. On the BHV side, we
have an 8D gauge field which we split up as A8D ¼ A3D ⊕
AF-th ⊕ AQ ⊕ A4 and a pair of real scalars ϕ1;ϕ2. The
nontrivial interchange is then

PW ↔ BHV; ð3:21Þ

AM-th ↔ A4; ð3:22Þ

ϕ3 ↔ AF-th: ð3:23Þ
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This is in accord with the twisted connected sums [12]
and generalized connected sums [14] constructions in
which an S1 in the base is interchanged with one in the
fiber. The main difference with these cases is that here we
have decompactified these two S1 factors. Additionally, we
have given a 4D spacetime interpretation, in accord with the
fact that it is actually connecting M- and F-theory vacua.
In all of these cases, we see that a quite similar analysis

of the effective field theory allows us to package the 4D
theory in terms of 3D fields, parametrized by an additional
spatial direction. In the effective Lagrangian, we therefore
have position dependent Wilson coefficients of the form

Leff ⊃
X
i

ciðtÞ
Oiðx3D; tÞ
ΛΔi−4

; ð3:24Þ

where Δi labels the dimension of some operator Oi in the
4D theory.

C. Domain walls for 4D vacua

A general point we have emphasized in the above
considerations is that the interpolating geometry of
spin(7) solutions will appear in the 4D effective field
theory as varying the profile of Wilson coefficients for
higher-dimension operators in the effective field theory.
Since these coefficients are not directly associated with
light degrees of freedom of the 4D theory, it is appropriate
to view these interpolating profiles as specifying “inter-
faces.” In subsequent sections we will construct some
explicit examples of such interpolating profiles.
Domain walls are also important and constitute a

qualitatively different sort of interpolating profile. In this
case, we have two distinct critical points for a 4D N ¼ 1
superpotential, indicating distinct vacua which cannot be
connected through any sort of adiabatic variation. Our aim
in this section will be to illustrate some general properties
of such domain wall solutions. Compared with interpolat-
ing profiles for parameters, establishing the existence of
such domain wall solutions is considerably more involved.
For this reason, we limit our discussion to general remarks,
leaving a more detailed analysis for future work.
Our starting point is a 4D N ¼ 1 theory with chiral

superfields Φi ¼ ϕi þ � � �, a superpotential W½ϕi�, and a
Kähler potential Kðϕi; ϕ̄iÞ. A half-BPS domain wall in the
direction t is characterized by the flow equation

Dtϕ
i ¼ eiηGi|̄∂ |̄W̄; ð3:25Þ

whereGi|̄ is the inverse Kähler metric on the target space of
the chiral multiplets of the theory. Here, η is a constant that
determines which linear combination of supercharges is
preserved by the domain wall. It is a well-known result [30]
that the tension of the domain wall is proportional to the
difference between the values of the superpotential in the

two vacua. In order to make contact with the 4D N ¼ 1
vacua defined by the PW and BHV systems, it is necessary
to know the superpotential in each case. We begin with the
PW system and then turn to the BHV system.
In the PW system on a three-manifold Q, the chiral

multiplets of the theory are given by the combination A ¼
Aþ iϕ and the superpotential is [9]

WPW ¼
Z
Q
Tr
�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
; ð3:26Þ

that is, the superpotential is nothing but the Chern-Simons
functional for the complexified connection A on the
internal three-manifold. Taking a flat Kähler metric this
gives the domain wall equations

DtA ¼ eiη �3 F̄ ; ð3:27Þ

where the Hodge star is in the internal manifold and F is
the curvature of the connectionA. This has to be combined
with the D-flatness conditionDA � ϕ ¼ 0. In the case when
η ¼ 0, one can exactly recover (3.27) from the local spin(7)
system after choosing an isomorphism Ω2

SDðQ ×RtÞ ≃
Ω1ðQÞ and fixing a gauge At ¼ 0. The appearance of
the η-phase in the domain wall BPS equations can be
explained as follows: the four-manifold Q ×Rt has a
reduced holonomy group and therefore there is a Uð1Þ
freedom in the choice of which supersymmetry generator is
preserved in 3D. These more general equations can be put
into the form of the Kapustin-Witten (KW) equations [31]

DA � ϕ ¼ 0; ð3:28Þ

ðF − ϕ ∧ ϕÞSD ¼ þuðDAϕÞSD; ð3:29Þ

ðF − ϕ ∧ ϕÞASD ¼ −u−1ðDAϕÞASD; ð3:30Þ

where the subscripts “SD” and “ASD” refer to self-dual and
anti-self-dual two-forms, ϕ is an adjoint-valued one-form,
u ¼ 1þcos η

sin η , and ϕt ¼ 0. This last condition is necessary to
recover Eq. (3.27), in addition to the fact that there is no
local spin(7) interpretation of ϕt.

4 Note that these equations
are also known as complexified instantons for a complex
gauge group GC, since they can be rewritten as
e−iη=2F ¼ �eiη=2F̄ , while imposing the moment map μ ¼
DA � ϕ ¼ 0 for G-gauge transformations. As noted in [32],
the flow equations (3.27) are believed to give rise to a sort
of complexificaton of instanton Floer homology, whose
gradient flows between critical points would exactly

4Imposing this condition on ϕt is actually much weaker than
what one might think because as shown in the original paper [31],
ϕt is covariantly constant and commutes with the other spacial
components ϕμ. Moreover, by a vanishing theorem, ϕt ¼ 0
follows from the boundary condition ϕtj�∞ ¼ 0.
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correspond to half-BPS domain walls for these 4D N ¼ 1
theories. In other words, given two complex flat connec-
tions onQ at each infinity,A− andAþ, such thatΔWðAÞ ≠
0 (implying that they belong to two different components of
the character variety of Q) counting the solutions to such
flows enumerates domain walls with tension ΔW.
Solutions are quite difficult to establish, and few examples

are known. Nevertheless, we can make some general state-
ments. The fact that Imðe−iηWÞ is constant along the flow
indicates that the existence of a solution is heavily reliant on
our choice of η. In fact, an index theory calculation [32]
implies that finitely many solutions are generically expected,
provided that we are allowed to vary η and that for some η0,
Imðe−iη0WðAþÞÞ ¼ Imðe−iη0WðA−ÞÞ. A detailed example
is presented in [32], in the case ofQ ¼ S3nK whereK is the
trefoil knot and GC ¼ SLð2;CÞ. The knot arises from a
Wilson operator and sources the complex curvature as
e−iηF
2π ¼ δKμR, leading to the following singularities in A
and ϕ (up to a gauge transformation on S3nK that removes a
dr
r singularity in ϕ):

A ¼ αdθ þ � � � ; ϕ ¼ −γdθ þ � � � ð3:31Þ

where α − iγ ¼ μR. Note that the singularities of the fields
are translationally invariant along Rt, so a flow between
minima5 of WðAÞ is an honest domain wall and not a
codimension-one disorder operator that will occupy more of
this paper. The details in deriving such a flow and properly
treating the gauge ambiguity ofWðAÞ is quite involved, even
in this “simple” example, so we refer the reader to Sec. (5.2)
of [32] for details. Defining a complexified Floer theory is of
deep mathematical interest and it would be intriguing to
explore the recentworkof [33,34] toderivemore examples of
these half-BPS domain walls in 4D N ¼ 1 systems (see
also [32]).
We can follow the same logic for the BHV system: now

the chiral multiplets are Φð2;0Þ and Dð0;1Þ ¼ ∂̄ þ A and the
superpotential is

WBHV ¼
Z

TrðΦð2;0Þ ∧ F ð0;2ÞÞ: ð3:32Þ

In this case the interpretation of the local spin(7) equations
as domain wall equations are a bit more subtle as both the
BHV and local spin(7) systems are on a four-manifold. As
we have already mentioned in our analysis of the 4D and
3D effective field theory, an additional direction emerges
from also including the volume modulus of the elliptic fiber

present in a local F-theory model. More concretely to
obtain the spin(7) equations from the BHV domain wall
equations one has to choose all fields to be independent of
the domain wall direction using only the connection in this
direction to break the 4d Lorentz group. This implies that
the covariant derivative becomes simply a commutator with
the component of the gauge field along the domain wall
direction, and as discussed before this component is
identified with the additional self-dual two-form ϕ3 appear-
ing in the spin(7) system. This does not fully capture the
spin(7) equations as gradients of ϕ3 in the internal direction
are not visible, however they will appear upon including in
the EFT massive modes of the gauge field coming from
dimensional reduction. Along these lines, we also see that
we can even expect domain walls which separate vacua
specified in different duality frames, as is the case in the
PW system (defined via IIA or M-theory) and the BHV
system (defined via IIB or F-theory).

IV. ABELIAN SOLUTIONS

Having presented some general observations on Higgs
bundle vacua and interpolating profiles, in this section we
turn to an analysis of Abelian solutions which solve the
local spin(7) equations, namely the special case where we
assume the Higgs field is diagonal.
Geometrically, this class of diagonalizable configura-

tions are those for which the classical geometry of a spin(7)
space is expected to match to the local gauge theory
description. In more general solutions as captured by
T-brane configurations (see e.g. [26,35–58]), some of the
gauge theory degrees of freedom come from M2-branes
wrapped on collapsing two-cycles. At a practical level,
another reason to focus on Abelian solutions is that they are
easier to analyze. Moreover, perturbations in such con-
figurations, as obtained from switching on localized matter
field VEVs lead to more general solutions. We leave the
latter point implicit in much of what follows, but we expect
the analysis to be quite similar to what occurs in the case of
T-brane vacua, as in Refs. [38–40,47].
We refer to an “Abelian configuration” as one in which

the data of the vector bundle and the Higgs field are
independent of one another. More precisely, in terms of the
gauge group G, we pick a subgroup H × K ⊂ G such that
the Higgs field takes nontrivial values in the Lie algebra of
H, with ϕSD × ϕSD ¼ 0. In this case, the local spin(7)
equations reduce to

FSD ¼ 0 and dϕSD ¼ 0: ð4:1Þ

This system of equations has the great advantage of being
linear and therefore it is much simpler to build solutions.
Moreover the gauge field configuration and the profile of the
self-dual two-form are independent. Therefore our low
energy effective field theory will consist of two decoupled
sectors: self-dual instantons and the profile of a harmonic

5Actually in this example, one must consider flows between
minima of WðAÞ þ IRðAÞ where the shift IRðAÞ captures the
Wilson operator insertion into the path integral. The M-theory
interpretation of the Wilson operator is a flavor brane, where after
a suitable un-Higgsing of G to some larger group, one could
derive this coupling by giving a zero mode localized along K (in
the representation R of G) a VEV.
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self-dual two-form. Viewed as an M-theory background, we
can relate the former with the presence of M2-brane charge.6

The moduli space of instantons is a well-studied object, and
so in what follows we primarily focus on the profile of the
Higgs field.
Turning next to the profile of the Higgs field, we see that

since we are dealing with a triplet of commuting matrices,
we can speak of rkðHÞ independent eigenvalues, each of
which is a self-dual two-form on M. In what follows, we
shall actually entertain two-forms which are singular along
a submanifold in M. Our reason for doing so is that such
solutions have a natural interpretation in terms of sources in
the local spin(7) equations.
Focusing on a linear combination of such eigenvalues,

which by abuse of notation we also refer to as ϕSD, we see
that at least locally, we can introduce an ansatz which
solves the equation dϕSD ¼ 0 by writing ϕSD ¼ dβ þ �dβ
where β is a one-form gauge potential for the noncompact
gauge group R�, i.e., the real noncompact form of Uð1Þ.
Letting Fncpct denote the field strength for this gauge
potential, we see that the condition dϕSD ¼ 0 is tantamount
to solving the Maxwell field equations for this gauge
theory, i.e.,

dFncpct ¼ 0 and d � Fncpct ¼ 0: ð4:2Þ

The analogy to the Maxwell equations also suggests
possible ways in which the right-hand side of this equation
may be modified in the presence of sources. In other local
gauge theory systems, such sources indicate the presence of
background matter fields which have nonzero VEV. For
example, in the PW system, we can have source terms
localized at points of the three-manifold. Extending these to
one-cycles in a four-manifold, such sources are the analog
of “electrons” with a worldline in Euclidean space. By a
similar token, the source terms of the BHV system
localized along a two-cycle are analogous to wires carrying
a current in Euclidean space. One might also ask whether it
is possible to introduce sources on codimension-one sub-
spaces. We find that this does not solve the differential
equations associated with the local triplet of self-dual two-
forms. As a final comment, we note that solutions to the
self-duality equations on a four-manifold M have a close
connection to the twistor space of M. This is not an
accident: In Sec. IVA we develop the related geometry of
spectral covers based on four-manifolds embedded in
Ω2þðMÞ. Note that the unit norm self-dual two-forms
determine an S2, and this total space is just the twistor
space of M.

Our plan in the rest of this section will be to further
explore this special class of Abelian configurations, focus-
ing almost exclusively on the behavior of the Higgs field
(since in this case it decouples from the gauge bundle). We
begin with an analysis of zero modes in such backgrounds
and also present some examples of localized matter in such
configurations. After this, we turn to the spectral cover for
these local spin(7) geometries. We also show how pertur-
bations away from a purely Abelian configuration produce
more general spectral covers.

A. Spectral covers

In this section we discuss some spectral methods for
analyzing the profile of intersecting brane configurations
generated from a nonzero Higgs field. In related contexts
such as intersecting seven-branes in F-theory [4,5,10,11,59]
and intersecting six-branes inM-theory [9,60], spectral cover
methods provide a helpful tool in analyzing the resulting
geometries.
Recall that for the local spin(7) system, the ambient

geometry experienced by a stack of six-branes is given by
the total space of the bundle of self-dual two-forms overM.
We pick a section v of Ω2þðMÞ such that ðv ¼ 0Þ ¼ M
specifies the location of the original brane system. For ease
of exposition, we fix our gauge group to be G ¼ SUðNÞ
and work with respect to the fundamental representation.
We will indicate some generalizations of these consider-
ations later.
In the fundamental representation of SUðNÞ, the Higgs

field is an N × N matrix. Introducing the N × N identity
matrix, the spectral equation is

det ðvIN − ϕN×NÞ ¼ 0: ð4:3Þ

It describes a four-dimensional subspace inside Ω2þðMÞ, as
specified by the spectral cover M̃ → M. Observe that as
written, line (4.3) determines three hypersurface constraints.
For representations other than the fundamental of SUðNÞ

one should construct a suitable matrix representation of the
action of ϕSD and construct a similar hypersurface. A
similar description also holds for different Lie algebras
replacing the determinant with a suitable polynomial in v
with the coefficients given by the Casimir invariants of ϕSD.
One can also work with the analogs of the parabolic and
cameral covers [61].
Now, in contrast to the case of the Hitchin system and

BHV system, there is no natural “holomorphic” combina-
tion of variables available. A similar issue also arises in the
case of the PW system, where there is also a triplet of real
constraints. This packaging in terms of real constraints also
complicates the interpretation in terms of intersecting
branes. For all of these reasons, we now focus on the case
of Abelian configurations for which ϕSD × ϕSD ¼ 0, in
which case many of these issues can be bypassed.

6The intuition comes from weakly coupled type IIA string
theory: in the D6-brane action there is a term of the formR
D6 C3 ∧ trðF ∧ FÞ (here we omitted some proportionality fac-
tors), meaning that a stack of D6-branes with an instanton
configuration on it will source D2-brane charge.
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In the case where the profile of ϕSD is Abelian, we can
choose the self-dual Higgs field to be valued in
Ω2þðMÞ ⊗ h, with h the Cartan subalgebra of g.
Returning to the case of H ¼ SUðNÞ, we pick ϕSD ¼
diagðλ1;…; λNÞ where the eigenvalues are self-dual two-
forms subject to the condition

P
N
i λi ¼ 0. In this case the

spectral cover in the fundamental representation simplifies
significantly, becoming

YN
i¼1

ðv − λiÞ ¼ 0: ð4:4Þ

This means that the spectral cover is the union of N sheets
[though the positions of only N − 1 sheets are independent
inside Ω2þðMÞ].
One of the useful applications of spectral cover methods

is to use the intersection pattern of sheets to glean some
information about the presence of localized matter. Indeed,
one expects that for generic values of ϕSD the gauge group
is completely Higgsed to its maximal torus. However on the
loci where two sheets meet there will be a local enhance-
ment of the gauge group which, following the unfolding
procedure of [62], indicates the presence of localized
matter. Geometrically we therefore expect to have localized
matter whenever two eigenvalues coincide, and this sheet
intersection can occur in different codimensions on M
depending on the profile of the eigenvalues. It is possible to
have matter localized on a codimension-two subspace
inside M, namely matter localized on a two-dimensional
cycle inside M, when two components of the triplet of the
eigenvalues become identical with the third one being zero.
Since locally one component of ϕSD vanishes, this is the
kind of localized matter appearing in BHV solutions
(matter on curves). The other case is to have matter
localized on a codimension-three subspace inside M,
namely matter localized on a one-dimensional cycle inside
M. This case requires all three components of a pair of
eigenvalues to coincide with no component being identi-
cally zero, and it is the kind of matter which appears in PW
systems.
We can also include “Abelian fluxes” in the same

geometric setting. Indeed, we are free to also consider
vector bundles which split up as a direct sum of bundles
with Uð1Þ structure group. For a gauge group SUðNÞ, this
will appear as a decomposition

V ¼ L1 ⊕ … ⊕ LN; ð4:5Þ

such that the first Chern class of V vanishes. This can also
be used to define a corresponding “universal line bundle”
on M̃, much as in other spectral cover constructions. In the
context of 4D BHV models, such fluxes are necessary to
realize a chiral matter spectrum, and this will also affect the
zero-mode spectrum of the 3D model.

Given the presence of localized matter at the intersection
of sheets one may wonder how the geometry is modified
when the matter fields acquire a nonvanishing vacuum
expectation value. This would result in a recombination of
different sheets, producing a T-brane configuration.
However, in contrast to the BHV system, the absence of
a holomorphic structure means the resulting spectral cover
may not be as useful in extracting the appearance of
localized matter. A similar issue was noted in PW systems
with T-brane configurations [26]. We leave a full analysis
of this case for future work.

B. Zero-mode profiles

In this section we turn to an analysis of the zero-mode
profiles generated from working around a fixed Higgs field
background. To have a nonzero Abelian configuration in
the first place we must assume that there is a suitable set of
harmonic self-dual two-forms on M. On a compact four-
manifold M, we thus require bþ2 > 0. We can also work
more generally by allowing singularities in the profile of
the Higgs field. Denoting by P the point set of singularities,
we only demand the existence of a harmonic self-dual two-
form on MnP. In the latter case, the condition of compact-
ness is instead replaced by a notion of suitable falloff for
fields near the deleted regions ofM. In what follows, we do
not dwell on this point and assume a sufficiently well-
behaved compactly supported cohomology theory in all
cases considered.
Given a solution to the local spin(7) equations, zero

modes correspond to linearized fluctuations,

A ¼ hAi þ a; ð4:6Þ

ϕSD ¼ hϕSDi þ φ: ð4:7Þ

Here, we will be interested in the special case where ϕSD
takes values in the Cartan subalgebra h ⊂ g. To understand
the matter content, it is convenient to decompose the
adjoint representation of G into representations of H × K
where K now refers to the commutant of H inside G. By
abuse of notation, we also write H ¼ Uð1Þr since now we
are dealing with Abelian configurations anyway. The
relevant breaking pattern is

G → K ×Uð1Þr ⇒ AdjðGÞ → AdjðKÞ0
⊕ 1⊗k

0 ⨁
i
ðRi;qi ⊕ R̄i;−qiÞ: ð4:8Þ

Here, Ri are some representations of K and qi denotes the
vector of Uð1Þ charges. To proceed further, we separate our
analysis into modes which have allUð1Þ charges zero (bulk
modes) and modes with at least one nonzero Uð1Þ charge
(localized modes).
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1. Bulk modes

We expect to have bulk modes corresponding to
uncharged representations which are not affected by the
background of ϕSD. Their zero-mode equations are

ðdaÞþ ¼ 0; dφ ¼ 0; ð4:9Þ

which for a generic metric implies da ¼ 0, therefore we
have bþ2 þ b1 bulk scalar multiplet zero modes in both the
adjoint representation of K and in the uncharged repre-
sentation 1⊗r

0 . By standard considerations we will also
generate a 3D N ¼ 1 vector multiplet for K × Uð1Þr.

2. Localized modes

Consider next the profile of fluctuations which have
nontrivial Uð1Þ charge. As per our discussion of spectral
covers, we expect these to be located at the intersection of
two sheets of the spectral cover (for a choice of some
representation R). Given a Higgs field ϕR in a representa-
tion R of H, we get a collection of eigenvalues
EigenðϕRÞ ¼ fλ1;…; λdimRg, each of which is a section
of Ω2þðMÞ. We expect to find localized matter at the
vanishing locus for

λij ≡ λi − λj: ð4:10Þ

Of course, this difference in eigenvalues is again a self-dual
two-form. To avoid overloading the notation, in what
follows we shall reference this difference in eigenvalues
as λSD. We will also compare with the related difference in
eigenvalues λBHV and λPW for the BHV and PW systems.
Harmonic self-dual two-forms such as λSD are objects of

some interest in the analytic gauge theory community.7

This is mainly because λSD can be treated as a so-called
near-symplectic form, which means that it is a symplectic
form on the complement of the vanishing locus Z≡
fλSD ¼ 0g in M. As we will confirm below, the locus Z
is where the zero modes are localized so its behavior is
crucial for understanding the resulting physics. Since λSD is
locally specified by three real degrees of freedom, Z will
generically be codimension-three, although with fine-tun-
ing it may enhance to (co)dimension-two (which is generic
from the BHV–holomorphic point-of-view). Because the
only compact one-dimensional object is S1, Z is generically
a collection of disjoint circles. As shown by Taubes [63],
for any class in H2þðM;RÞ and positive integer n, there is
some λSD with n circle components in Z. Essentially this
means that there is no global restriction on λSD when
knowing behavior in a local patch, and in fact an argument
in [63] says that if we know λSD and its Z-components in

some open set U we can perturb it slightly to generate any
number of Z-components on MnU. Interestingly, our
calculation of the 3D gauge theory zero modes is very
similar to the calculation of Gromov-Witten and Seiberg-
Witten invariants on Q × S1 for Q a three-manifold [64].
We now look at a local patch of a single circle in Z,

which will be B × S1, where B is the three-ball. As proved
in [65], there are exactly two possible forms that λSD may
take, the more obvious one is the so-called “untwisted
form” and a certain Z=2Z-quotient yields the “twisted
form.” The untwisted form can be described with coor-
dinates ðx1;…; x4Þ ∈ B × S1 as

λSD ¼ x1ðdx41 þ dx23Þ þ x2ðdx42 þ dx31Þ
− 2x3ðdx43 þ dx12Þ; ð4:11Þ

where in the above, we have used a condensed notation for
wedge products, writing for example dxab ¼ dxa ∧ dxb ¼
dxadxb. By inspection of Eq. (4.11), we observe that this can
be recast in terms of the one-form of PW as

λSD ¼ �3λPW þ dx4 ∧ λPW;

λPW ¼ x1dx1 þ x2dx2 − 2x3dx3: ð4:12Þ

This means that the untwisted circle generates 3Dmatter that
is a Kaluza-Klein reduction of a 4D chiral multiplet asso-
ciated with the vanishing locus of λPW on B, so our 3D zero
mode is actually the reduction of a 4D N ¼ 1 chiral
multiplet.
In a little more detail, the S1 isometry of the background

allows us to reduce the zero-mode equations to that of the
PW system, which thus yields an explicit solution in the
patch. To see how this comes about, let ωi (i ¼ 1; 2; 3) be
the local basis of self-dual two-forms in Eq. (4.11). Then,
we may write a candidate zero-mode fluctuation in the
Higgs field as φ ¼Pi φiωi ¼ �3φþ dx4 ∧ φ. By abuse of
notation, we shall refer to λ and φ interchangeably as either
self-dual two-forms on B × S1 or as one-forms on B.
Consider next the fluctuations of the gauge field A.
Since we are dealing with small perturbations, we can
choose to gauge away the fluctuation along the circle. The
field content is then captured by (φ, a), one-forms on B.
Normalizing the relevant Uð1Þ charge for the fluctuations
to one, the zero-mode equations reduce to

d3a − λ ∧ φ ¼ ∂4ð�3aÞ; ð4:13Þ

d3φþ λ ∧ a ¼ −∂4ð�3φÞ; ð4:14Þ

d†3φþ a · λ ¼ 0; ð4:15Þ

where the subscript “4” denotes the circle direction.
Because the background is invariant under the S1 rotation,
the right-hand side of each equation is zero for massless 3D

7In the case where M is compact and bþ2 > 0. We expect
similar considerations to also hold in cases where the self-dual
form has nontrivial poles.
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modes. We then see that our equations are exactly of the
form of the PW zero-mode equations, allowing us to
package the zero modes as ψ ≡ aþ iφ

dλψ ¼ 0; and d†λψ ¼ 0; ð4:16Þ
where dλ ≡ dþ iλ. We observe here that this really
describes four real equations whereas in the previous
treatment we only indicated three real equations in lines
(4.13)–(4.15). The first zero-mode equation dλψ ¼ 0
directly matches Eqs. (4.13) and (4.14), while the zero
modes in the conjugate representation of the 4D theory are
captured by Eq. (4.15) and an additional Lorentz-gauge-
type condition on a which has no bearing on the spectrum
of the physical theory.
As seen in (4.12), we have λ ¼ idf in B where f is a

harmonic Morse function of index þ1 but we could have
alternatively written down an f with index −1. This is
relevant because due to the partial topological twist of the
PW system on Q, system chiral modes are one-forms on Q
localized at the (þ1)-index critical points of f and anti-
chiral modes are two-forms localized at (−1)-index critical
points. See [9,60] and for more details. If in the coordinates
of (4.12), we have a localized 4D chiral mode, there is, in
this coordinate system, a Gaussian falloff proportional to
expð−ðx1Þ2 − ðx2Þ2 − ðx3Þ2Þ in the zero mode [9,60].
Including all fields in the same supermultiplet and dimen-
sionally reducing along the one-cycle, we obtain a 3D
N ¼ 2 chiral multiplet.
The other local possibility for ϕSD is the twisted form,

which gets its name because we can start with the untwisted
solution on B × ½0; 2π� which furthermore wraps a one-
cycle in M. We then glue the two ends of the interval as

x1 ↦ x1; x2 ↦−x2; x3 ↦−x3x4↦ x4−2π; ð4:17Þ

and we see that this will not lead to any 3D zero modes as
the wave functions in the previous paragraph are odd under
such a transformation and are gapped out in similar spirit to
a Scherk-Schwarz compactification. We note that while
Taubes proved that the total number of circles can be an
arbitrary number, we do have the somewhat weak con-
straint which is attributed to Gompf in Ref. [63],

No: ðuntwisted circlesÞ − 1þ b1 − b2þ ≡ 0 mod 2:

ð4:18Þ

C. Defects and singularities

In the previous subsection we presented a general
discussion on the local structure of matter obtained from
an Abelian Higgs field configuration. In addition to this
zero locus where sheets of the spectral cover meet, there
can also be various singularities present in the profile of the
Higgs field. In the BHV system, these singularities have a
natural interpretation as originating from VEVs of matter

fields localized on a subspace. In this section we develop an
analogous treatment for local spin(7) systems with matter
on a curve C as well as on a line L.
To begin, we need to work out the possible couplings

between bulk matter fields and defects of the system. Some
elements of this analysis were presented in [7], but we give
a more complete treatment here. Recall that we will have
two different kinds of matter fields depending on the
localization patterns inside M. For the case of matter fields
on a two-cycle C, these fields will appear as 5D hyper-
multiplets and it will be convenient to package them as
pairs of 4d N ¼ 1 chiral multiplets in conjugate repre-
sentations calling them χ and χc. The topological twist
implies that these fields will transform as sections of K1=2

C
(tensored with the restriction of vector bundles specified by
the six-branes). The presence of these defects introduces
new terms in the superpotential, specifically one gets the
interaction

WC ¼
Z
C
hχc; DCχi þ hχ̄c; DCχ̄i

þ
Z
C
i�CðϕSDÞ½μðχ̄; χÞ − μðχc; χcÞ�; ð4:19Þ

where the pairing h·; ·i contracts the matter field represen-
tations to give a gauge singlet and the moment map μ maps
a representation and its conjugate to the adjoint and
i�CðϕSDÞ denotes the pullback of the self-dual two-form
onto the curve C. Similarly, the notation DC refers to a
covariant derivative obtained from the pullback of the bulk
gauge connections on the six-branes to the curve C. Here
and in the following we will put a bar over any 4D N ¼ 1
chiral multiplet to denote its conjugate antichiral multiplet.
In addition to this there can be matter fields localized on

a one-cycle L inside M. In this case the matter fields will
appear as 4D N ¼ 1 chiral multiplets dimensionally
reduced along the line L. We refer to such fields as σ.
In this case the topological twist will be trivial and the
matter fields will simply be scalars on L. Again, when these
fields are present there will be additional superpotential
interactions

WL ¼
Z
L
hσ̄; DLσi; ð4:20Þ

where again the pairing h·; ·i contracts the matter field
representations to give a gauge singlet. See Fig. 2 for a
depiction of localized matter in a local spin(7) system.
The presence of localized matter fields generates a

corresponding source term in the local spin(7) equations.
Summing over possible curves and lines, we have the
modified equations of motion

FSD þ ϕSD × ϕSD ¼
X
C

δC½μðχ̄; χÞ − μðχc; χcÞ�; ð4:21Þ
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DAϕSD ¼
X
C

δCðhχc; χi þ hχc; χ̄iÞ þ
X
L

δLhσ̄; σi: ð4:22Þ

The presence of these source terms also means that the
Higgs field can now acquire possible singularities.
Solutions to the BPS equations in the presence of sources
follows directly appealing to self-dual classical electrody-
namics, albeit with the noncompact gauge group R�. Our
solution for a singular line with local coordinate x4 is (i.e.,
“the worldline of an electron”) has leading behavior

ϕ4i ∼ hσ̄; σi xi
2r3

and ϕij ∼ hσ̄; σiϵijk xk
2r3

; ð4:23Þ

where we have introduced local coordinates transverse to
the line x1, x2, x3 with r2 ¼ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2.
We can also entertain singularities along a Riemann

surface C. A singular surface can always be expressed
locally in complex coordinates; this is because one can
show using the conformal invariance of the BPS equations
that ϕSD specifies an almost complex structure on MnC
[65], so in a C2 patch we have the leading behavior

ϕSD ∼ hχc; χi dz ∧ dw
z

þ H:c:; ð4:24Þ

where w is a local coordinate along C and z is a coordinate
transverse to C such that C ¼ ðz ¼ 0Þ.
At the level of gauge theory solutions, one may also

consider twisted defects, but since there are no 3D massless
states that can have VEVs, we ignore this possibility. Also,
note that in the presence of defects we should really replace
all statements of Betti numbers, cohomology groups, and
so on with their relative cohomology analogs with respect
to the singular locus of ϕSD.

V. INTERFACES AND PW SOLUTIONS

In Sec. III we discussed in general terms how the PW
system can be viewed as defining an interpolating profile
between 5D N ¼ 1 vacua, as captured by the Hitchin
system, and that the local spin(7) system can be viewed as
defining an interpolating profile between 4DN ¼ 1 vacua,
as captured by the PW system. Having given a more
general discussion of singularities in local spin(7) systems,
we now turn to some explicit examples of this sort. As a
warmup, we first present an example of an interface
between 5D vacua, and we then turn to an example of
an interface between 4D vacua. In both cases, we find that
our Abelian Higgs field configuration contains singularities
in the interpolating region of the geometry. We show more
generally that Abelian interpolating configurations of this
sort always contain such singularities.

A. Codimension-one defects

Recall that earlier in Sec. III we mentioned that our
M-theory compactification gives a correspondence
between Floer-like solutions to the Kapustin-Witten equa-
tions on Q ×Rt that interpolate between two flat GC
connections on Q and half-BPS domain walls of 4D
N ¼ 1 systems with tension T ¼ jΔWj set by the differ-
ence in the value of the superpotential in the two minima.
These domain walls separate different vacua of the theory
and are associated with the interpolation of a light degree of
freedom, at least when its mass is below that set by T1=3.
This begs the question, what is the interpretation of the
domain wall solutions we discussed from the perspective of
a 4D observer who does not have access to the full higher-
dimensional system? When we integrate out to a scale
Λ ≪ T1=3, the dynamics of the domain wall may be
considered fixed and we end up in a situation of studying
a field theory in the presence of a codimension-one timelike
defect operator. This situation has several different incar-
nations in the field and string theory literature, and we will
fix our nomenclature by calling it an interface. We could
have also called this object a disorder operator because, in
analogy with the ‘t Hooft operators of 4D gauge theories,
its insertion in the path integral has the effect of changing
the space of fields one integrates over to include a certain
singularity along the operator, in addition to the fact that
they both have an interpretation as an infinitely massive
charged excitation. We also see a close relationship
between interfaces and boundary conditions; they are
essentially synonymous due to what is sometimes called
“flipping,” see for instance [66]. We call our field theory on
the right- and left-hand side of the wall with consistent
coupling to the interface at t ¼ 0 as TL and TR. This is
equivalent to considering a boundary condition forTR⊖TL
that exists just on the right-hand side, where the product⊖
means we take the decoupled sum of the theories but with a
t → −t action on TL.

FIG. 2. Depiction of the four-dimensional gauge theory on a
four-manifoldM associated with the local spin(7) system. Matter
fields can be localized on two-cycles C, as in the case of the BHV
system. It can also be localized along a real one-cycle L, which
amounts to taking matter of the PW system and compactifying
further on this line.
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B. 5D interfaces

We now turn to interfaces for 5D vacua as obtained from
compactifications of M-theory backgrounds. We primarily
focus on M-theory vacua obtained from a local curve of
ADE singularities, with local model given by the Hitchin
system.
We beginwith some general considerations. Recall that on

C a genus g curve with marked points, solutions to Hitchin’s
equations are given by complex flat connections with
prescribed holonomies around the marked points. This
means that the BPS solutions on C ×Rt with a nontrivial
interpolation must have some sort of singularities since flat
connections on this three-manifold can always be pulled
back to C. This agrees with the fact there should not be
domain walls interpolating between different vacua of a 5D
N ¼ 1 theory since π0ðMvac:Þ ¼ 1. To study a change in
monodromy, we must focus on singularities localized on a
one-cycle in C, at say t ¼ 0, because the effect of a point-
localized source can be decoupled by shifting counters
around the source, while a line-localized source cannot be
avoided by all of the one-cycle counters due to the non-
degenerate pairing on π1ðCÞ. These defects are known as
monodromy defect operators and for the case of 5D inter-
faces we can build up any representation ρ∶π1ðCÞ → GC,
and thus can interpolate between any two Hitchin solutions
given by representations ρL and ρR by complex conjugation
and t reflection.
More specifically, we define a monodromy defect

operator much as in [67] on some manifold X by excising
a codimension-two submanifold U and prescribing some
monodromy M ∈ GC around it in XnU with the lowest
order singularity possible in A. In our case of the three
manifold X ¼ C × Rt, the defect operator is a Wilson loop
with the singularity structure of (3.31). We can then
engineer any ρR from a trivial representation ρL ¼ 1 by
an interpolating representation ρint∶π1ðXnU; x0Þ → GC
where we chose a base point on the left side
ðz0; t0Þ≡ x0 ∈ C × ð−∞; 0Þ. The idea is that ρint is trivial
when restricting to paths on the left-hand side but paths that
only wrap cycles on the right-hand side will necessarily
wrap at least one component of U and have nontrivial
monodromy. Writing the generators of π1ðCÞ as Ai, Bi
where i ¼ 1;…; g, the automorphism Ai ↔ Bi allows us to
assign a holonomy to a path that wraps Ai for t > 0 given
by the monodromy MBi

, and similarly ρðBiÞ ¼ MAi
.

Because this assignment is at the level of generators we
can build any monodromy representation this way. See
Fig. 3 for a depiction of a monodromy defect operator.
We now provide an explicit interpolating example for the

Hitchin system on a curve C ¼ T2 with marked points. The
presence of marked points will be used to build a position
dependent Higgs field since in this case we have ϕHit as a
meromorphic section of KT2 ⊗ Oð−Pi piÞ. We take the
three-manifold of the interpolating PW system to beC ×R.
In what follows we keep the gauge field A switched off. The

BPS equations dϕPW ¼ d†ϕPW ¼ 0 are linear so we can
simply decompose a solution to the PW system as a linear
combination of “left and right” pieces, writing

ϕPW ¼ ϕL þ ϕR: ð5:1Þ

Introducing coordinates ðx; yÞ for the T2, we can define
complex coordinates u ¼ tþ ix and v ¼ tþ iy to take
advantage of the fact that the real or imaginary part of a
holomorphic function is harmonic in two dimensions. A
simple interpolating solution that behaves as ϕL;R → 0 for
t → �∞ is

ϕL¼Re

�
fL1 ðuÞ

− tanhðuÞþ1

2
duþfL2 ðvÞ

−cothðvÞþ1

2
dv

�
;

ð5:2Þ

ϕR ¼ Re

�
fR1 ðuÞ

tanhðuÞ þ 1

2
duþ fR2 ðvÞ

cothðvÞ þ 1

2
dv

�
;

ð5:3Þ

which solves the 5D BPS equations of motion because the
hyperbolic tangent function has simple poles with residue
þ1, while those of hyperbolic cotangent are −1. For

example, near u ¼ iπ=2, ϕR ∼ Re½ fR1 ðiπ=2Þ
2ðu−iπ=2Þ du�. Note also

that the periodicity in the T2 directions means that there are
an equal number of poles concentrated on the A- and
B-cycles of the T2. See Fig. 4 for a depiction of the fibered
Hitchin system and the resulting interpretation as an
interface for 5D vacua.

C. 4D interfaces

In the previous section we presented an interpolating
profile between two Abelian Hitchin systems. The main
feature of the solutions previously presented is that we
essentially summed up two distinct Hitchin system sol-
utions which only preserved a common 4D N ¼ 1 sub-
algebra along the interpolating profile coordinate of a
noncompact three-manifold.

FIG. 3. Depiction of a monodromy defect operator. This
structure occurs along a codimension-two subspace.
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In this section we present examples of Abelian PW
systems which are connected by an interpolating profile in
a local spin(7) system. To begin, we observe that the
“summing up Hitchin systems” construction generalizes to
three-manifoldsQ with marked one-cycles. The main point
is that we can write T3 as a product S1 × S1 × S1, and so we
can pick different pairs of S1 factors to generate curves for a
Hitchin system. Letting ðx; y; zÞ denote local real coordi-
nates on these three S1 factors, we can consider three T2

factors, namely Cð1Þ ¼ T2
ðy;zÞ, C

ð2Þ ¼ T2
ðz;xÞ, C

ð3Þ ¼ T2
ðx;yÞ.

For each of these Riemann surfaces, we can also include
marked points, which then specify marked one-cycles on
the three-manifoldQ. For each such factor we can specify a
corresponding Hitchin system which is trivial along the
complementary S1. Each such Hitchin system automatically
solves the PW equations and would, on its own, preserve
4D N ¼ 2 supersymmetry. The key point we wish to
emphasize is that we can switch on more than one Hitchin
system, and thus obtain a solution on a compact Q which
only retains 4D N ¼ 1 supersymmetry. Adding another
solution will not break any further supersymmetry.
Summarizing, we get a class of Abelian solutions on Q
(with marked one-cycles) by writing

ϕPW ¼ ϕð1Þ
Hit þ ϕð2Þ

Hit þ ϕð3Þ
Hit; ð5:4Þ

namely a sum of independent Hitchin system solutions on
the curves CðiÞ. See Fig. 5 for a depiction of a PW-PW
gluing.
The advantage of this presentation is that we can now use

our previous results on 5D interfaces to generate 4D

interfaces. Indeed, for each Hitchin system solution, we
can construct an alternative noncompact three-manifold
which we can label as QðiÞ ¼ CðiÞ ×R. For each case, we
can also construct an interpolating solution, since the
complementary circle is again a “spectator” in the analysis.
Now, each of these PW solutions can also be repackaged as
a self-dual two-form on the four-manifoldQðiÞ × S1ðiÞ, as per
our discussion in Sec. IV. Consequently, our solutions can
be summed, producing an interpolating spin(7) solution.

D. Interpolation singularities

In the previous examples of interpolating solutions we
saw the appearance of a singularity in the t direction, which
we interpret as the presence of a monodromy defect
operator in the internal gauge theory or, equivalently, as
a VEV for localized matter. It is natural to ask whether this
is an artifact of these particular solutions or whether the
appearance of such singularities is a more generic feature.
In what follows we again focus on Abelian configurations.
Along these lines, consider the local spin(7) equations on

the noncompact four-manifoldM ¼ Q ×R with Q a three-
manifold. We show that, if there are no singularities in the
profile of the Higgs field, we generate a contradiction. To
show this, we assume the contrary. Recall that the self-dual
two-form ϕSD can be repackaged as a one-form ϕPW of the
PW system

ðDt �3 ϕPW þ dϕPWÞ ∧ dt ¼ 0; d†ϕPW ¼ 0: ð5:5Þ

Integrating the first equation and taking the 3D Hodge dual
we have

ϕPWðt¼∞Þ−ϕPWðt¼−∞Þ¼ d†
�Z

∞

−∞
dt�3ϕPW

�
; ð5:6Þ

FIG. 5. Depiction of an interpolating profile between two 4D
N ¼ 1 vacua with a 3D interface. The compactification geometry
is captured by asymptotically G2 spaces given by a three-
manifold of ADE singularities. The interpolating geometry is a
noncompact spin(7) space. The local gauge theory associated
with these cases is a PW system on the left and right and a local
spin(7) system in the interpolating region.

FIG. 4. Depiction of an interpolating profile between two 5D
N ¼ 1 vacua with a 4D interface. The compactification geometry
is captured by asymptotically Calabi-Yau threefold geometries
given by a curve of ADE singularities. The interpolating
geometry is a noncompact G2 space. The local gauge theory
associated with these cases is a Hitchin system on the left and
right and a PW system in the interpolating region. We have also
indicated the locations of monodromy defect operators of the PW
system by orange lines, namely one-cycles in the noncompact
three-manifold.
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but by assumption, ϕPWðt ¼ �∞Þ is harmonic on Q
meaning that the right-hand side of (5.6) must vanish by
the Hodge decomposition. We note that this same argument
also extends to flat gauge field connections which commute
with the Higgs field. Note that by modifying the argument
one can see that the singularities in ϕPW that are transla-
tionally invariant along the R direction do not affect the
conclusion, but singularities localized in the t direction
violate the above assumptions. For example, there are
additional contributions to the integral of Eq. (5.6) in
this case.

VI. INTERPOLATING BHV-PW SOLUTIONS

In the previous sections we have shown that there is a
natural interpretation of the local spin(7) equations as
specifying an interpolating profile for Higgs bundle vacua
obtained from the PW and BHV systems. This is in accord
with the geometric proposal of Ref. [14], which argued that
there is a generalized connected sums construction of spin(7)
spaces via YG2

× S1 and XCY4
building blocks. The aim of

the present section will be to develop the analogous
construction in the local setting. One important feature of
these local models is that singularities are necessarily part of
the local geometry. One can thus view the present consid-
erations as a complementary approach to analyzing possible
interpolating vacua as generated by generalized connected
sums (GCS)-like constructions. Additionally, these local
models also provide some information on data such as
the metric through the profile of the interpolating Higgs
field. An additional feature of our considerations is that there
is also a close connection between the twisted connected
sums construction of G2 spaces and our local systems.
Indeed, the ambient geometry of the local spin(7) system is a
noncompactG2 space, and that of the PWand BHV systems
are noncompact Calabi-Yau threefolds.
Our strategy for realizing the local model analog of the

GCS construction will be to actually start with deforma-
tions of the Hitchin system on a curve C and to then fiber
this to produce local spin(7) solutions which asymptotically
approach either the PW system or the BHV system. In both
cases, we consider a fibration over a cylinder C� ≃R × S1,
where in the case of the PW system, we assume that the
profile of fields on this additional circle factor is trivial, and
in the case of the BHV system we assume that the profile of
fields is holomorphic in the cylinder coordinate (in a sense
we make precise later). The key idea in our construction is
that deep in the interpolating region, both the PW and the
BHV system approach a Hitchin system on a curve C. As
we explain, this is close in spirit to what happens in the
GCS construction of Ref. [14].
An important clarifying remark is that there are really

two ways in which a PW system will enter our analysis. On
the one hand, we have a compact three-manifold
Q ¼ C × S1, and a solution to the Hitchin system, which
trivially extends to a solution to the PW system. On the

other hand, we have a “nontrivial” PW system given by
working with the three-manifold Q̃ ¼ C ×Rt. The space-
time interpretation of course depends on whether we view
Rt as part of a 4D spacetime, or an “internal direction”
which we imagine is eventually compactified (perhaps as in
the GCS construction). As we have already discussed in
Sec. III, taking the PW system to be defined on Q, we
obtain an interpolating profile between 4D vacua. On the
other hand, if we take the PW system to be defined on Q̃,
then there is a sense in which we can view our construction
as building a particular class of 3D N ¼ 1 theories. Both
physical systems are of intrinsic interest, and so in what
follows we shall primarily focus on the geometry of the
gauge theory solutions. With this in mind, in this section we
shall treat t as an internal coordinate on the four-manifold
used to define the local spin(7) system. It will remain as a
local coordinate of the four-manifold used in the local BHV
system, but will correspond to a direction normal to the
three-manifold appearing in the PW system.
As an additional comment, in the context of local models

where we keep the cylinder noncompact, we can of course
extend this analysis to start building more general inter-
polating solutions, alternating between PW and BHV
configurations. This provides another way, for example,
to realize PW-PW interfaces, simply by constructing a PW-
BHV-PW profile. Similarly, we can realize a BHV-PW-
BHV profile using the same sort of analysis.
The rest of this section is organized as follows. We begin

by reviewing some general features of the generalized
connected sums construction and then turn to the local
model version of this construction. With this in place, we
then present an explicit Abelian configuration of the local
spin(7) system which asymptotically approaches the BHV
and PW systems.

A. Review of generalized connected sums

In this section we review the construction of [14] that
builds spin(7)-manifolds by gluing two noncompact eight-
manifolds. The two building blocks employed in the
construction are a noncompact Calabi-Yau fourfold and
a product of a noncompact G2-holonomy manifold with a
circle. Both building blocks will have a noncompact
cylindrical region and the idea behind the construction is
that by a suitable gluing of the two blocks happening in this
region one can obtain a compact spin(7)-manifold. We first
describe the two building blocks and their asymptotic
cylindrical regions.

(i) Calabi-Yau block: This building block is a non-
compact Calabi-Yau fourfold X which possesses a
region Xcyl diffeomorphic to the product of a
cylinder C� ≃R × S1 and a compact Calabi-Yau
threefold Z. The complement of Xcyl inside X is
compact. One common way to build such manifolds
is to excise the anticanonical class from a Fano
Kähler manifold [68–70], however in [71,72] it was
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shown that weak Fano Kähler manifolds can also be
used as building blocks.

(ii) G2 block: This building block is the product of a
noncompact G2 manifold Y with a circle. The
requirement is that outside a compact submanifold
Y is diffeomorphic to a Calabi-Yau threefold times
an interval.

The basic observation is that the two building blocks
have the same asymptotic structure, namely, they both
asymptote to the product of a cylinder with a Calabi-Yau
threefold. By cutting the cylinders at finite distance
and gluing the two sides one builds a compact eight-
dimensional manifold and the proposal of [14] is that upon
taking a sufficiently long tube one can find a suitable
deformation of the metric that gives a spin(7) structure
without torsion.
To give some more intuition behind the fact that the

resulting compact manifold is a spin(7)-manifold we can
take a look at the various calibrating forms of the two
building blocks and how they are glued together. Let us
start with the Calabi-Yau building block: since a Calabi-
Yau fourfold is an eight-manifold of SUð4Þ-holonomy it is
a particular case of a spin(7)-manifold. Indeed by using the
holomorphic four-form Ω4 and the Kähler form J one can
build a four-form

ΨL ¼ ReðΩ4Þ þ
1

2
J ∧ J; ð6:1Þ

which is closed and self-dual. In the G2 building block we
have a similar situation, that is an eight manifold with a
holonomy group that is a subgroup of spin(7) (in this case
G2). In this case we can use the associative three-form Φ of
the G2 manifold to build the four-form

ΨR ¼ dσ1 ∧ Φþ �Φ; ð6:2Þ
where dσ1 is the one-form on the circle and the Hodge star
is taken on the G2 manifold. This four-form is again closed
and self-dual.
We are interested in what happens in the gluing region;

again we start by spelling out the details for the Calabi-Yau
building block. In the cylindrical region the holomorphic
three-form and the Kähler form asymptotically approach
respective forms on Z × C�, that is

Ω4 ∼ ðdσ1 þ idσ2Þ ∧ ΩZ; ð6:3Þ

J ∼ dσ1 ∧ dσ2 þ JZ: ð6:4Þ

Here σ1 and σ2 are coordinates along the circle and interval
directions of the cylinder respectively. Moreover by writing
∼ we mean equivalence up to terms that are exponentially
suppressed in the σ2 direction. On the G2 side of the story
we need to characterize the asymptotic behavior of the
associative three-form in terms of the calibrating forms of
the asymptotic Calabi-Yau threefold Z

Φ ∼ ReðΩZÞ þ dσ2 ∧ JZ; ð6:5Þ

where we called σ2 the coordinate along the interval and the
meaning of ∼ is the same as above. Looking at the
asymptotic behaviors one can see that the two self-dual
four-forms match in the asymptotic region and are the only
forms that are preserved after the gluing is performed.
To interpret this geometry as specifying an interface

between 4D vacua as in Sec. III, we would now need to
decompactify the S1 direction associated with the σ1
coordinate. Additionally, we would have to change the
interpretation of σ2 as instead being purely in the internal
directions of the compactification geometry. In the asso-
ciated local model construction, we will again see the
appearance of a cylindrical geometry, but this will be purely
internal. To avoid confusion, we have therefore chosen to
label the cylindrical coordinates in this subsection differ-
ently from the ones which will appear in our local model
construction. It would of course be quite interesting to
study how explicit decompactification limits connect the
global and local pictures. For now, we shall remain agnostic
on the precise form of such a procedure.

B. Generalized connected sums and local models

Having reviewed how GCS spin(7)-manifolds are built,
we now turn to the local model version of this construction.
The expectation is that we have two classes of building
blocks in the local model setting as well, each correspond-
ing to 4D N ¼ 1 (and its reduction to 3D N ¼ 2) super-
symmetric configurations on the corresponding building
block. We first describe the two local model building
blocks.

(i) BHV building block: This building block corre-
sponds to supersymmetric configurations on a four-
cycle inside a Calabi-Yau fourfold. Such configu-
rations are solutions to the BPS equations written in
[4] and we shall call this a BHV block. In the local
spin(7) BPS equations these configurations are
obtained whenever one component of the triplet
of self-dual two forms ϕSD is turned off. In the
asymptotic cylindrical region of the Calabi-Yau
fourfold the solution has to approach a Hitchin
system on a Riemann surface C times a trivial
configuration on the cylinder. Note that we can
view this as a patch of a compact Kähler surface with
some locus deleted. An example is C × P1 where we
mark two points on the P1.

(ii) PW building block: This building block corresponds
to supersymmetric configurations on a three-cycle
Q ¼ C × S1 inside a G2 manifold (the additional
circle direction plays no role). Such configurations
are solutions to the BPS equations written in [9] and
we shall therefore call this a PW block. Specifically,
a PW block is obtained whenever all the fields
appearing in the local spin(7) BPS equations are
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independent of one direction and the gauge field
along that direction is turned off. In the asymptotic
region of the G2 manifold the solution has to
approach a Hitchin system on a Riemann surface
times a trivial configuration along the interval
direction.

We see that the two building blocks have the same
asymptotic behavior and therefore we expect that by cutting
the cylinder at a finite distance and gluing the two sides one
can build a solution interpolating between the two which
would correspond to the local model version of the GCS
construction.
One important aspect that we would like to clarify about

the GCS construction refers to how quickly one might
expect to approach a BHVor PW solution on either side of
the glued manifold. We shall focus our attention to the
tubular region where the gluing occurs. Here the geometry
of the four-manifold simplifies as it is diffeomorphic to
C� × C, that is, a cylinder times a Riemann surface. To fix
our conventions about the choice of coordinates we take
ðt; θÞ on the cylinder so that the metric is

ds2 ¼ dt2 þ dθ2 þ ds2C: ð6:6Þ

After gluing the two sides in the tubular region we expect to
have a full-blown solution to the local spin(7) system, that
is a solution that is not also a solution to any simpler system
of equations. Nevertheless we also expect that the effect of
the gluing will be localized in the tubular region and
therefore will fade away as we approach the asymptotic
regions of the cylinder where we should recover the
original building blocks. We start by describing the
approach to a BHV solution. Recall that a BHV solution
is recovered from a general local spin(7) solution whenever
one of the components of the triplet of self-dual two-form
ϕSD vanishes (following the notation used in Sec. II we will
call this component ϕγ). By inspection of the power series
around a point with BHV boundary conditions it is possible
to see that ϕγ and its derivatives fall off exponentially, that
is there is a coefficient λ > 0

8

jϕγj ∼ eλt; ð6:7Þ

and where we took the BHV building block to be located at
large negative values of t. A similar story occurs when
approaching a PW solution: recall that a PW solution is
recovered from a local spin(7) one when the component of
the gauge field along the circle direction of the cylinder
vanishes and all remaining fields do not depend on the

circle direction. Again by inspection of the power series
around a point with PW boundary conditions one gets the
following asymptotic behaviors:

jAθj ∼ e−λ1t; ð6:8Þ

j∂θψ j ∼ e−λ2t; ð6:9Þ

for some positive constants λ1;2. Here we placed the PW
boundary at large positive values of t and called ψ all field
components other than Aθ. Moreover the asymptotic
behavior of Aθ is defined up to gauge transformations that
are bounded in the limit t → ∞.
We now connect this discussion to a local version of the

gluing used by Kovalev [12,13] in the twisted connected
sums (TCS) construction. The idea is that once we consider
a four-manifoldM the total space of the bundle of self-dual
two forms is a localG2 space.

9 Our aim will be to show how
this ambient space splits into noncompact building blocks
of the sort appearing in the TCS construction. We will start
by setting our notation: our four-manifold coordinates will
be xi with i ¼ 1;…; 4, and the coordinates on the fibers of
the bundle of self-dual two forms will be ya with a ¼ 1, 2,
3. We use a condensed notation for wedge products, writing
for example dxab ¼ dxa ∧ dxb ¼ dxadxb. The total space
of the bundle of self-dual forms is a G2 space and its
associative three-form is

ΦG2
¼ dy123 − dy1ðdx14 þ dx23Þ − dy2ðdx24 þ dx31Þ
− dy3ðdx34 þ dx12Þ: ð6:10Þ

Note that our manifold M which is the zero section of the
bundle is a coassociative cycle (that is ΦG2

jM ¼ 0) before
turning on a profile for ϕSD.
We now look at the two building blocks (BHV and PW)

and how they embed as Calabi-Yau threefolds inside theG2

space. Note that given a Calabi-Yau threefold Z with
holomorphic three-form ΩZ and Kähler form JZ we can
build an associative three-form on Z ×Rζ as

ΦZ×Rζ
¼ ReðΩZÞ þ JZ ∧ dζ: ð6:11Þ

BHV building block.—In this case we assume M is a
Kähler surface and we have a noncompact Calabi-Yau
threefold given by the total space of the canonical bundle:
OðKMÞ → M. Denote by y1, y2 the two real coordinates in
the normal bundle direction. In this case the holomorphic
three-form and Kähler form are

8This can be obtained by using the conformal map between a
cylinder and C�. If we require that ϕγ vanishes at ∞ in C� and
require it to be analytic around this point we obtain the
exponential behavior when reverting back to the coordinates
on the cylinder.

9Again, we allow for a metric which is not complete and for
possible singularities in the associative three-form. In the physical
setting, possible divergences correspond to the appearance of
additional degrees of freedom as the model is “UV completed.”
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ΩBHV ¼ iðdx1 − idx2Þðdx3 − idx4Þðdy1 þ idy2Þ; ð6:12Þ

JBHV ¼ −dx12 − dx34 þ dy12: ð6:13Þ

One can check that taking ζBHV ¼ y3, we recover the
correct associative three-form.
PW building block.—In this case we need to take the

cotangent bundle T�Q to a three manifold Q ⊂ M. We
choose the three manifold Q to have local coordinates xi
with i ¼ 1, 2, 3. In this case we can take

ΩPW ¼ iðdx1 þ idy1Þðdx2 þ idy2Þðdx3 þ idy3Þ; ð6:14Þ

JPW ¼ dx1dy1 þ dx2dy2 þ dx3dy3; ð6:15Þ

and with ζPW ¼ x4 we recover the correct associative
three-form.
Donaldson gluing.—We would now like to consider the

Donaldson gluing that is employed in the TCS construction
and see if it applies to our case as well. The main difference
from the TCS construction is that we work in a decom-
pactified limit, so rather than exchanging S1 directions in
the base and fiber, we expect to instead exchangeR factors.
In the region where the gluing occurs the two Calabi-Yau

manifolds become diffeomorphic to the product of a K3
surface with an R2 factor. Using coordinates t and t̃ in the
R2 and calling JK3 and ΩK3 the Kähler form and hol-
omorphic two-form on the K3 surface, respectively, we find
that the associative three-form on the G2 manifold
K3 ×Rt ×Rt̃ × Rψ is

Φ ¼ dψ ∧ dt ∧ dt̃þ dψ ∧ JK3 þ dt̃ ∧ ReðΩK3Þ
þ dt ∧ ImðΩK3Þ: ð6:16Þ

We would like to discuss this in the case of the building
blocks we are considering. On the BHV side we have
ψBHV ¼ y3 and we take tBHV ¼ x4 as well as t̃BHV ¼ x3.10

From this we get

ImðΩK3;BHVÞ ¼ dx1dy1 þ dx2dy2; ð6:17Þ

ReðΩK3;BHVÞ ¼ dx2dy1 − dx1dy2; ð6:18Þ

JK3;BHV ¼ −dx1dx2 þ dy1dy2: ð6:19Þ

On the PW side the identifications are tPW ¼ −x4,
ψPW ¼ x3, and t̃PW ¼ y3, so we obtain

ImðΩK3;PWÞ ¼ −dx1dy1 − dx2dy2; ð6:20Þ

ReðΩK3;PWÞ ¼ −dx1dx2 þ dy1dy2; ð6:21Þ

JK3;PW ¼ dx2dy1 − dx1dy2: ð6:22Þ

The gluing is therefore achieved by the matching
conditions

ImðΩK3;PWÞ ¼ −ImðΩK3;BHVÞ; ð6:23Þ

ReðΩK3;PWÞ ¼ JK3;BHV; ð6:24Þ

JK3;PW ¼ ReðΩK3;BHVÞ; ð6:25Þ

tPW ¼ −tBHV; ð6:26Þ

ψPW ¼ t̃BHV; ð6:27Þ

t̃PW ¼ ψBHV; ð6:28Þ

which is a variant of the usual Donaldson twist that Kovalev
employed in the TCS construction, except here some of the
directions involved in the gluing are noncompact.

C. Abelian BHV-PW interpolation

In this section we turn to interpolating profiles between
BHV and PW solutions. We again confine our analysis to
Abelian configurations. We will aim to give an interpolat-
ing profile between an Abelian BHV solution on the left
(t < 0) of the tubular region and an Abelian PW solution on
the right (t > 0). In what follows, we shall need to reference
the asymptotic profile for the self-dual two-form ϕSD in the
“BHV region” and the “PW region.” As we have already
remarked, we can interchangeably work in terms of the
Higgs field of these local systems or can instead repackage
these data in terms of a self-dual two-form. With this in
mind, we let ϕSD;BHV denote the profile of the self-dual
two-form in the BHV region, and let ϕSD;PW denote the
profile of the self-dual two-form in the PW region.
Setting the unitary connection to zero and conjugating all

the Higgs fields to the Cartan, our equations for the local
spin(7) system become simply

dϕSD ¼ 0: ð6:29Þ

The main advantage is that now the system is linear which
allows us to simply decompose ϕSD ¼ ϕSD;BHV þ ϕSD;PW,
where each of the two pieces are individually closed self-
dual two-forms which satisfy the equations of their

10Strictly speaking, the correct condition to impose is on the
differentials of these coordinates. In the following we will gloss
over this distinction.

GEOMETRIC UNIFICATION OF HIGGS BUNDLE VACUA PHYS. REV. D 102, 106012 (2020)

106012-25



namesake throughout the interpolating region. In order to
recover the local geometric gluing of the BHV and PW
blocks, we demand that ϕSD;BHV vanishes as t → ∞ and
ϕSD;PW vanishes as t → −∞. Ignoring Cartan factors for
simplicity, we can write down a class of ϕSD;BHV solutions
satisfying these constraints onC × C� ≃ C × ðR × S1Þwith
local coordinates z ¼ xþ iy and w ¼ tþ iθ on the two
factors as

ϕSD;BHV ¼ gðz; wÞ½tanhðwÞ − 1�dz ∧ dwþ H:c:; ð6:30Þ

with gðz; wÞ any holomorphic function in w and z.11 To
further generalize this solution, we can consider again the
tubular region where the topology of the four-manifold is
the product of a Riemann surface C and a cylinderC�. Then
we can write

ϕSD;BHV ¼ ωð1Þ
C ∧ ρð1ÞðwÞ þ H:c:; ð6:31Þ

where ωð1Þ is a global holomorphic one-form on C and
ρð1ÞðwÞ is a meromorphic one-form on the cylinder with at
least three simple poles. To see why, notice that after a
change of coordinates from the cylinder to the complex
projective line with coordinate s ¼ ew ∈ P1, our interpo-
lation then requires that ρð1ÞðsÞ is a section of KP1 that is
zero at s ¼ ∞ and regular but nonzero at s ¼ 0. Because
degKP1 ¼ −2, we must have three poles (counted with
multiplicity) at some other points in P1 so in a local patch
around s ¼ 0 we have

ρð1ÞðwÞ ¼ −ds
ðs − saÞðs − sbÞðs − scÞ

: ð6:32Þ

Taking sasbsc ¼ 1, ρð1Þ is just ds at s ¼ 0 and 0 at s ¼ ∞.
Notice that in the w-coordinate system ρð1Þ is

ρð1ÞðwÞ ¼ −ewdw
ðew − ewaÞðew − ewbÞðew − ewcÞ ; ð6:33Þ

which goes as e−2wdw for t → ∞, which fits our gluing
requirements. But, as t → −∞ it seems to asymptote as
ewdw and not a nonzero constant. This is simply a feature
of one-forms that one needs a suitable coordinate trans-
formation to understand its asymptotic behavior and in this
case is in fact required for regularity at s ¼ ∞. This is
something we want for a healthy gluing procedure. It is
important to pay attention to the fact that ϕSD;BHV ceases to
be holomorphic at the locations of the simple poles. Rather
than signaling a failure of ϕSD;BHV to solve the BPS

equations, the presence of these poles is directly related
to the presence of localized defects discussed in Sec. IV.
On the other hand, because ϕSD;PW is constant along the

S1 factor, it can be presented as either a harmonic one- or
two-form on C ×R × S1. For a local patch of C diffeo-
morphic to R2, we can write it as a one-form ϕPW ¼ df
where f is a solution to the (possibly singular) 3D Laplace
equation on R2 ×Rt, while as a self-dual two-form we
have

ϕSD;PW ¼ ∂zfdz ∧ dwþ ∂ z̄fdz̄ ∧ dw̄

þ i
2
∂tfðdz ∧ dz̄þ dw ∧ dw̄Þ: ð6:34Þ

One ansatz for f is to introduce coordinates u≡ tþ ix,
v≡ tþ iy and take advantage of the fact that real and
imaginary parts of holomorphic functions are 2D harmonic.
Then we can have

∂uf ¼ Re

�
f1ðuÞ

tanhðuÞ þ 1

2

�
;

∂vf ¼ Re
�
f2ðvÞ

cothðvÞ þ 1

2

�
; ð6:35Þ

where f1ðuÞ, f2ðvÞ can be any holomorphic functions. Since
the solution is periodic along x and y, one can easily make
this solution compact by appropriately quotienting x and y to
include at least three singularities along both the x and y
directions at ft ¼ 0g. The reason is similar toϕSD;BHV above

where making, say, x periodic means that f1ðuÞ tanhðuÞþ1

2
du

should be thought of as a section of the canonical bundle of
P1, which after a conformal transformation to the xt cylinder
has a zero at etþix ¼ 0 and is regular but nonzero at
etþix ¼ ∞. Putting the pieces together, our local spin(7)
solution, ϕSD;BHV þ ϕSD;PW is an explicit solution on T2 ×
P1 with punctures at fs¼0;1;∞g, ft¼ 0g∩ fx¼ π

2
þπng,

and ft ¼ 0g ∩ fy ¼ nπg, where all of the punctures of the
spin(7) system occur on Riemann surfaces which are
topologically just copies of T2.

VII. CONCLUSIONS

Higgs bundles are an important tool in linking the
geometry of extra dimensions in string theory to low
energy effective field theory. In this paper we have
developed a detailed correspondence between a local
spin(7) space given by a four-manifold of ADE singular-
ities and the corresponding partially twisted field theory
localized on the four-manifold. These systems engineer 3D
N ¼ 1 theories (two real supercharges) and also generate
interfaces between 4D N ¼ 1 vacua. Focusing primarily
on Abelian configurations in which no gauge field fluxes
are switched on, we have shown that such 3D systems serve
as interpolating profiles between Higgs bundles used in 4D

11To avoid interfering with the boundary conditions we choose
gðz; wÞ to be finite as t approaches infinity.
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vacua. Additionally, we have developed the local model
analog of the generalized connected sums construction,
showing that it is closely related to the twisted sums
construction for G2 spaces. In the remainder of this section
we discuss some potential areas for future investigation.
Much of our analysis has centered on the special class of

Higgs bundles obtained from Abelian Higgs field configu-
rations. There are more general “fluxed” configurations
associated with T-brane vacua (see e.g. [26,35–58]).
Recently T-brane configurations for G2 backgrounds were
investigated in [26] and it is natural to expect that these
could be used as a starting point for generating T-brane
configurations in local spin(7) systems.
One of the important applications of the local spin(7)

system is that it engineers a broad class of 3D N ¼ 1
theories. There are now many proposals for supersymmet-
ric as well as nonsupersymmetric dualities in such systems
(see e.g. [73]). In string theory, such dualities often arise
from brane maneuvers in the extra-dimensional geometry.
It would be interesting to see whether the methods
developed here could be adapted to study such proposed
dualities.
Along these lines, one of the elements we have only

lightly touched on is the structure of interactions among
matter fields in the resulting 3D N ¼ 1 theories. One
reason is that from a 3D perspective, we expect strong
quantum corrections to such interaction terms. In the
geometry, however, some of these interactions can be
sequestered in the extra dimensions, since they arise either
from classical intersection geometry as in the case of
Yukawa couplings for F-theory models, or from non-
perturbative instanton effects, as in the case of M-theory
superpotentials. Determining robust estimates of the result-
ing interaction terms would be most informative.
More generally, from the standpoint of effective field

theory, we have explained how the local spin(7) equations
can be viewed as defining an interface between 4D vacua in
which the Wilson coefficients of higher-dimension oper-
ators develop position dependent profiles. This raises an
interesting possibility of tracking 4D dualities perturbed by
different, possibly “dangerous irrelevant” operators. A
canonical example of this sort is the duality of Ref. [74].
In this case again, we anticipate that geometric insights will
likely constrain possible behavior for the resulting IR
physics.
We have also observed that some of the interpolating

profiles obtained here are also part of another four-dimen-
sional system, as captured by the Kapustin-Witten equa-
tions. The natural setting for the appearance of this in type
II string theory is branes wrapped on a four-manifold M in
the cotangent space T�M, a noncompact Calabi-Yau four-
fold. It would be very interesting to develop the corre-
sponding spacetime interpretation, in line with our analysis
of interpolating vacua presented here.

Lastly, all of our examples have focused on noncompact
geometries. It would of course be interesting to see how to
build compact examples illustrating the same singularity
structure. In contrast to the case of G2 spaces, spin(7)
spaces are even-dimensional and there are many examples
which directly descend from quotients of Calabi-Yau
fourfold geometries [75]. Since there are relatively clear
techniques for generating the requisite geometric structures
in elliptically fibered Calabi-Yau fourfolds, it would seem
natural to track such structures under a suitable quotient.
Such compact examples would have applications to the
study of 3D and 4D supersymmetric vacua, as well as more
ambitiously, to 4D N ¼ 1=2 vacua [7,8].
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APPENDIX: PROOFS OF POWER SERIES
EXPANSION

In this Appendix we provide additional details on the
power series expansions discussed in Sec. II.

1. BHV power series

In the local coordinates given in (2.4), and assuming a
flat metric, the BHV equations become

Ftθ þ Fxy ¼ ½ϕα;ϕβ�;
Ftx þ Fyθ ¼ 0;

Fty − Fxθ ¼ 0;

Dxϕα þDyϕβ ¼ 0;

Dθϕβ þDtϕα ¼ 0;

Dtϕβ −Dθϕα ¼ 0;

Dxϕβ −Dyϕα ¼ 0: ðA1Þ

A power series expansion in t then yields the following set
of equations:
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X∞
j¼0

� ðjþ 1ÞAðjþ1Þ
θ − ∂θA

ðjÞ
t þ ∂xA

ðjÞ
y − ∂yA

ðjÞ
x

þPj
n¼0 ð½Aðj−nÞ

t ; AðnÞ
θ � þ ½Aðj−nÞ

x ; AðnÞ
y � − ½ϕðj−nÞ

α ;ϕðnÞ
β �Þ

�
tj ¼ 0;

X∞
j¼0

� ðjþ 1ÞAðjþ1Þ
x − ∂xA

ðjÞ
t þ ∂yA

ðjÞ
θ − ∂θA

ðjÞ
y

þPj
n¼0 ð½Aðj−nÞ

t ; AðnÞ
x � þ ½Aðj−nÞ

y ; AðnÞ
θ �Þ

�
tj ¼ 0;

X∞
j¼0

� ðjþ 1ÞAðjþ1Þ
y − ∂yA

ðjÞ
t − ∂xA

ðjÞ
θ − ∂θA

ðjÞ
x

þPj
n¼0 ð½Aðj−nÞ

t ; AðnÞ
y � − ½Aðj−nÞ

x ; AðnÞ
θ �Þ

�
tj ¼ 0;

X∞
j¼0

�
∂xϕ

ðjÞ
α þ ∂yϕ

ðjÞ
β þPj

n¼0 ð½Aðj−nÞ
x ;ϕðnÞ

α � þ ½Aðj−nÞ
y ;ϕðnÞ

β �Þ
�
tj ¼ 0;

X∞
j¼0

�
ðjþ 1Þϕðjþ1Þ

α þ ∂θϕ
ðjÞ
β þPj

n¼0 ð½Aðj−nÞ
θ ;ϕðnÞ

β � þ ½Aðj−nÞ
t ;ϕðnÞ

α �Þ
�
tj ¼ 0;

X∞
j¼0

�
ðjþ 1Þϕðjþ1Þ

β − ∂θϕ
ðjÞ
α þPj

n¼0 ð½Aðj−nÞ
t ;ϕðnÞ

β � − ½Aðj−nÞ
θ ;ϕðnÞ

α �Þ
�
tj ¼ 0;

X∞
j¼0

�
∂xϕ

ðjÞ
β − ∂yϕ

ðjÞ
α þPj

n¼0 ð½Aðj−nÞ
x ;ϕðnÞ

β � − ½Aðj−nÞ
y ;ϕðnÞ

α �Þ
�
tj ¼ 0: ðA2Þ

By taking the temporal gauge AðjÞ
t ¼ 0we indeed obtain the differential Eqs. (2.36) and recursion relations (2.37). To show

that solving the zeroth order equations

Gð0Þ
ab ¼ ∂xϕ

ð0Þ
β − ∂yϕ

ð0Þ
α þ ½Að0Þ

x ;ϕð0Þ
β � − ½Að0Þ

y ;ϕð0Þ
α � ¼ 0;

Hð0Þ
ab ¼ ∂xϕ

ð0Þ
α þ ∂yϕ

ð0Þ
β þ ½Að0Þ

x ;ϕð0Þ
α � þ ½Að0Þ

y ;ϕð0Þ
β � ¼ 0 ðA3Þ

leads to a solution at all orders in the power series expansion we substitute (2.37) into (2.36). Explicitly we need to do the
following computations.
The commutators.—Initially we have that

½AðkÞ
x ;ϕðj−kÞ

β � ¼ k
j
½AðkÞ

x ;ϕðj−kÞ
β � þ j − k

j
½AðkÞ

x ;ϕðj−kÞ
β �: ðA4Þ

Taking into account the summations we have that

Xj
k¼0

k
j
½AðkÞ

x ;ϕðj−kÞ
β � ¼

Xj
k¼1

k
j
½AðkÞ

x ;ϕðj−kÞ
β �

¼ 1

j

Xj
k¼1

�
−∂yA

ðk−1Þ
θ þ ∂θA

ðk−1Þ
y −

Xk−1
l¼0

ð½Aðk−1−lÞ
y ; AðlÞ

θ �Þ;ϕðj−kÞ
β

�

¼ 1

j

Xj−1
k¼0

½−∂yA
ðkÞ
θ þ ∂θA

ðkÞ
y ;ϕðj−k−1Þ

β � − 1

j

Xj−1
l¼0

X
mþn¼j−l−1

½½AðlÞ
y ; AðmÞ

θ �;ϕðnÞ
β �; ðA5Þ

after substituting the recursion relation for AðkÞ
x . Similarly, by using the recursion relation for ϕðkÞ

β we find
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Xj
k¼0

j − k
j

½AðkÞ
x ;ϕðj−kÞ

β � ¼
Xj−1
k¼0

j − k
j

½AðkÞ
x ;ϕðj−kÞ

β � ¼
Xj
k¼1

k
j
½Aðj−kÞ

x ;ϕðkÞ
β �

¼ 1

j

Xj
k¼1

�
Aðj−kÞ
x ; ∂θϕ

ðk−1Þ
α þ

Xk−1
l¼0

ð½Aðk−1−lÞ
θ ;ϕðlÞ

α �Þ
�

¼ 1

j

Xj−1
k¼0

½Aðj−k−1Þ
x ; ∂θϕ

ðkÞ
α � þ 1

j

Xj−1
l¼0

X
mþn¼j−l−1

½AðmÞ
x ; ½AðlÞ

θ ;ϕðnÞ
α ��: ðA6Þ

The computation for the other three commutators is identical. Together we have

Xj
k¼0

½AðkÞ
x ;ϕðj−kÞ

β � ¼ 1

j

Xj−1
k¼0

ð½∂θA
ðkÞ
y − ∂yA

ðkÞ
θ ;ϕðj−k−1Þ

β � þ ½Aðj−k−1Þ
x ; ∂θϕ

ðkÞ
α �Þ

−
1

j

Xj−1
l¼0

X
mþn¼j−l−1

ð½½AðlÞ
y ; AðmÞ

θ �;ϕðnÞ
β � − ½AðmÞ

x ; ½AðlÞ
θ ;ϕðnÞ

α ��Þ; ðA7Þ

Xj
k¼0

½AðkÞ
y ;ϕðj−kÞ

α � ¼ −
1

j

Xj−1
k¼0

ð½∂θA
ðkÞ
x − ∂xA

ðkÞ
θ ;ϕðj−k−1Þ

α � þ ½Aðj−k−1Þ
y ; ∂θϕ

ðkÞ
β �Þ

þ 1

j

Xj−1
l¼0

X
mþn¼j−l−1

ð½½AðlÞ
x ; AðmÞ

θ �;ϕðnÞ
α � − ½AðmÞ

y ; ½AðlÞ
θ ;ϕðnÞ

β ��Þ; ðA8Þ

Xj
k¼0

½AðkÞ
x ;ϕðj−kÞ

α � ¼ 1

j

Xj−1
k¼0

ð½∂θA
ðkÞ
y − ∂yA

ðkÞ
θ ;ϕðj−k−1Þ

α � − ½Aðj−k−1Þ
x ; ∂θϕ

ðkÞ
β �Þ

−
1

j

Xj−1
l¼0

X
mþn¼j−l−1

ð½½AðlÞ
y ; AðmÞ

θ �;ϕðnÞ
α � − ½AðmÞ

x ; ½AðlÞ
θ ;ϕðnÞ

β ��Þ; ðA9Þ

Xj
k¼0

½AðkÞ
y ;ϕðj−kÞ

β � ¼ −
1

j

Xj−1
k¼0

ð½∂θA
ðkÞ
x − ∂xA

ðkÞ
θ ;ϕðj−k−1Þ

β � − ½Aðj−k−1Þ
y ; ∂θϕ

ðkÞ
α �Þ

þ 1

j

Xj−1
l¼0

X
mþn¼j−l−1

ð½½AðlÞ
x ; AðmÞ

θ �;ϕðnÞ
β � þ ½AðmÞ

y ; ½AðlÞ
θ ;ϕðnÞ

α ��Þ: ðA10Þ

The derivatives.—Next, we have

∂xϕ
ðjÞ
β ¼ 1

j

�
∂x∂θϕ

ðj−1Þ
α þ

Xj−1
n¼0

∂x½Aðj−1−nÞ
θ ;ϕðnÞ

α �
�
; ðA11Þ

∂yϕ
ðjÞ
α ¼ −

1

j

�
∂y∂θϕ

ðj−1Þ
β þ

Xj−1
n¼0

∂y½Aðj−1−nÞ
θ ;ϕðnÞ

β �
�
; ðA12Þ

∂xϕ
ðjÞ
α ¼ −

1

j

�
∂x∂θϕ

ðj−1Þ
β þ

Xj−1
n¼0

∂x½Aðj−1−nÞ
θ ;ϕðnÞ

β �
�
; ðA13Þ

∂yϕ
ðjÞ
β ¼ 1

j

�
∂y∂θϕ

ðj−1Þ
α þ

Xj−1
n¼0

∂y½Aðj−1−nÞ
θ ;ϕðnÞ

α �
�
: ðA14Þ
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Putting everything together.—Finally, by summing all
the pieces together and making use of the Jacobi identities
we obtain

ðjþ 1ÞGjþ1
ab ¼ ∂θH

ðjÞ
ab þ

Xj
n¼0

½Aðj−nÞ
θ ;HðnÞ

ab �; ðA15Þ

ðjþ 1ÞHjþ1
ab ¼ −∂θG

ðjÞ
ab −

Xj
n¼0

½Aðj−nÞ
θ ;GðnÞ

ab �: ðA16Þ

These expressions make obvious the inductive proof that if

Gð0Þ
ab ¼ Hð0Þ

ab ¼ 0, which we assume, then it follows that

GðjÞ
ab ¼ HðjÞ

ab ¼ 0 to all orders j ≥ 1.

2. Full local spin(7) expansion

Similarly, we can write the local spin(7) equations as
follows:

Ftθ þ Fxy ¼ ½ϕα;ϕβ�;
Ftx þ Fyθ ¼ ½ϕγ;ϕα�;
Fty − Fxθ ¼ ½ϕγ;ϕβ�;

Dtϕγ þDxϕα þDyϕβ ¼ 0;

Dθϕβ þDtϕα −Dxϕγ ¼ 0;

Dtϕβ −Dθϕα −Dyϕγ ¼ 0;

Dxϕβ −Dyϕα þDθϕγ ¼ 0: ðA17Þ

Then a power series expansion in t yields the following set
of equations:

X∞
j¼0

 ðjþ 1ÞAðjþ1Þ
θ − ∂θA

ðjÞ
t þ ∂xA

ðjÞ
y − ∂yA

ðjÞ
x

þPj
n¼0 ð½Aðj−nÞ

t ; AðnÞ
θ � þ ½Aðj−nÞ

x ; AðnÞ
y � − ½ϕðj−nÞ

α ;ϕðnÞ
β �Þ

!
tj ¼ 0;

X∞
j¼0

 
ðjþ 1ÞAðjþ1Þ

x − ∂xA
ðjÞ
t þ ∂yA

ðjÞ
θ − ∂θA

ðjÞ
y

þPj
n¼0 ð½Aðj−nÞ

t ; AðnÞ
x � þ ½Aðj−nÞ

y ; AðnÞ
θ � − ½ϕðj−nÞ

γ ;ϕðnÞ
α �Þ

!
tj ¼ 0;

X∞
j¼0

 ðjþ 1ÞAðjþ1Þ
y − ∂yA

ðjÞ
t − ∂xA

ðjÞ
θ − ∂θA

ðjÞ
x

þPj
n¼0 ð½Aðj−nÞ

t ; AðnÞ
y � − ½Aðj−nÞ

x ; AðnÞ
θ � − ½ϕðj−nÞ

γ ;ϕðnÞ
β �Þ

!
tj ¼ 0;

X∞
j¼0

 ðjþ 1Þϕðjþ1Þ
γ þ ∂xϕ

ðjÞ
α þ ∂yϕ

ðjÞ
β

þPj
n¼0 ð½Aðj−nÞ

t ;ϕðnÞ
γ � þ ½Aðj−nÞ

x ;ϕðnÞ
α � þ ½Aðj−nÞ

y ;ϕðnÞ
β �Þ

!
tj ¼ 0;

X∞
j¼0

 ðjþ 1Þϕðjþ1Þ
α þ ∂θϕ

ðjÞ
β − ∂xϕ

ðjÞ
γ

þPj
n¼0 ð½Aðj−nÞ

θ ;ϕðnÞ
β � þ ½Aðj−nÞ

t ;ϕðnÞ
α � − ½Aðj−nÞ

x ;ϕðnÞ
γ �Þ

!
tj ¼ 0;

X∞
j¼0

 ðjþ 1Þϕðjþ1Þ
β − ∂θϕ

ðjÞ
α − ∂yϕ

ðjÞ
γ

þPj
n¼0 ð½Aðj−nÞ

t ;ϕðnÞ
β � − ½Aðj−nÞ

θ ;ϕðnÞ
α � − ½Aðj−nÞ

y ;ϕðnÞ
γ �Þ

!
tj ¼ 0;

X∞
j¼0

 ∂xϕ
ðjÞ
β − ∂yϕ

ðjÞ
α þ ∂θϕ

ðjÞ
γ

þPj
n¼0 ð½Aðj−nÞ

x ;ϕðnÞ
β � − ½Aðj−nÞ

y ;ϕðnÞ
α � þ ½Aðj−nÞ

θ ;ϕðnÞ
γ �Þ

!
tj ¼ 0: ðA18Þ

By taking the temporal gauge AðjÞ
t ¼ 0we indeed obtain the differential Eqs. (2.39) and recursion relations (2.40). To show

that solving the zeroth order equation

Dð0Þ
x ϕð0Þ

β −Dð0Þ
y ϕð0Þ

α þDð0Þ
θ ϕð0Þ

γ ¼ 0 ðA19Þ

leads to a solution at all orders in the power series expansion, we substitute (2.40) into (2.39). Explicitly we need to do the
following computations.
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The commutators.—Using the same technique as before, the three commutators of interest are given by

Xj
k¼0

½AðkÞ
x ;ϕðj−kÞ

β � ¼ 1

j

Xj−1
k¼0

� ½−∂yA
ðkÞ
θ þ ∂θA

ðkÞ
y ;ϕðj−k−1Þ

β �
þ½Aðj−k−1Þ

x ; ∂θϕ
ðkÞ
α þ ∂yϕ

ðkÞ
γ �

�

−
1

j

Xj−1
l¼0

X
mþn¼j−l−1

� ½½AðlÞ
y ; AðmÞ

θ � − ½ϕðlÞ
γ ;ϕðmÞ

α �;ϕðnÞ
β �

þ½AðmÞ
x ;−½AðlÞ

θ ;ϕðnÞ
α � − ½AðlÞ

y ;ϕðnÞ
γ ��

�
; ðA20Þ

Xj
k¼0

½AðkÞ
y ;ϕðj−kÞ

α � ¼ 1

j

Xj−1
k¼0

� ½∂xA
ðkÞ
θ − ∂θA

ðkÞ
x ;ϕðj−k−1Þ

α �
þ½Aðj−k−1Þ

y ; ∂xϕ
ðkÞ
γ − ∂θϕ

ðkÞ
β �

�

−
1

j

Xj−1
l¼0

X
mþn¼j−l−1

� ½−½AðlÞ
x ; AðmÞ

θ � − ½ϕðlÞ
γ ;ϕðmÞ

β �;ϕðnÞ
α �

þ½AðmÞ
y ; ½AðlÞ

θ ;ϕðnÞ
β � − ½AðlÞ

x ;ϕðnÞ
γ ��

�
; ðA21Þ

Xj
k¼0

½AðkÞ
θ ;ϕðj−kÞ

γ � ¼ 1

j

Xj−1
k¼0

� ½∂yA
ðkÞ
x − ∂xA

ðkÞ
y ;ϕðj−k−1Þ

γ �
þ½Aðj−k−1Þ

θ ;−∂xϕ
ðkÞ
α − ∂yϕ

ðkÞ
β �

�

−
1

j

Xj−1
l¼0

X
mþn¼j−l−1

� ½½AðlÞ
x ; AðmÞ

y � − ½ϕðlÞ
α ;ϕðmÞ

β �;ϕðnÞ
γ �

þ½AðmÞ
θ ; ½AðlÞ

x ;ϕðnÞ
α � þ ½AðlÞ

y ;ϕðnÞ
β ��

�
: ðA22Þ

Then, making use of Jacobi’s identities the sum of those commutators simplifies to

Xj
k¼0

0
BB@

½AðkÞ
x ;ϕðj−kÞ

β �
−½AðkÞ

y ;ϕðj−kÞ
α �

þ½AðkÞ
θ ;ϕðj−kÞ

γ �

1
CCA ¼ 1

j

Xj−1
k¼0

0
BB@

½−∂yA
ðkÞ
θ þ ∂θA

ðkÞ
y ;ϕðj−k−1Þ

β � þ ½Aðj−k−1Þ
x ; ∂θϕ

ðkÞ
α þ ∂yϕ

ðkÞ
γ �

−½∂xA
ðkÞ
θ − ∂θA

ðkÞ
x ;ϕðj−k−1Þ

α � − ½Aðj−k−1Þ
y ; ∂xϕ

ðkÞ
γ − ∂θϕ

ðkÞ
β �

þ½∂yA
ðkÞ
x − ∂xA

ðkÞ
y ;ϕðj−k−1Þ

γ � þ ½Aðj−k−1Þ
θ ;−∂xϕ

ðkÞ
α − ∂yϕ

ðkÞ
β �

1
CCA: ðA23Þ

The derivatives.—Furthermore, the relevant derivatives are simply given by

∂xϕ
ðjÞ
β ¼ 1

j

�
∂x∂yϕ

ðj−1Þ
γ þ ∂x∂θϕ

ðj−1Þ
α þ

Xj−1
n¼0

ð∂x½Aðj−1−nÞ
θ ;ϕðnÞ

α � þ ∂x½Aðj−1−nÞ
y ;ϕðnÞ

γ �Þ
�
; ðA24Þ

∂yϕ
ðjÞ
α ¼ 1

j

�
∂y∂xϕ

ðj−1Þ
γ − ∂y∂θϕ

ðj−1Þ
β −

Xj−1
n¼0

ð∂y½Aðj−1−nÞ
θ ;ϕðnÞ

β � − ∂y½Aðj−1−nÞ
x ;ϕðnÞ

γ �Þ
�
; ðA25Þ

∂θϕ
ðjÞ
γ ¼ −

1

j

�
∂θ∂xϕ

ðj−1Þ
α þ ∂θ∂yϕ

ðj−1Þ
β þ

Xj−1
n¼0

ð∂θ½Aðj−1−nÞ
x ;ϕðnÞ

α � þ ∂θ½Aðj−1−nÞ
y ;ϕðnÞ

β �Þ
�
: ðA26Þ

Putting everything together.—Summing up everything, we see that it all vanishes,

∂xϕ
ðjÞ
β − ∂yϕ

ðjÞ
α þ ∂θϕ

ðjÞ
γ þ

Xj
n¼0

ð½Aðj−nÞ
x ;ϕðnÞ

β � − ½Aðj−nÞ
y ;ϕðnÞ

α � þ ½Aðj−nÞ
θ ;ϕðnÞ

γ �Þ ¼ 0 ðA27Þ

at all orders j ≥ 1.
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Therefore it is sufficient to solve the zeroth order
differential equation

Dð0Þ
x ϕð0Þ

β −Dð0Þ
y ϕð0Þ

α þDð0Þ
θ ϕð0Þ

γ ¼ 0; ðA28Þ

and then one can simply propagate through the recursion
Eqs. (2.40) to build up the higher order components.

3. Abelian case

Finally, taking Ai ¼ 0 gives some major simplifications.
The local spin(7) recursion relations (2.40) now become

ϕðjÞ
γ ¼ −

1

j
ð∂xϕ

ðj−1Þ
α þ ∂yϕ

ðj−1Þ
β Þ;

ϕðjÞ
α ¼ 1

j
ð∂xϕ

ðj−1Þ
γ − ∂θϕ

ðj−1Þ
β Þ;

ϕðjÞ
β ¼ 1

j
ð∂θϕ

ðj−1Þ
α þ ∂yϕ

ðj−1Þ
γ Þ: ðA29Þ

These can then be further expanded as

ϕðjÞ
γ ¼ 1

ðjþ1Þjðj−1Þð∂
2
θþ∂2

yþ∂2
xÞð∂xϕ

ðj−2Þ
α þ∂yϕ

ðj−2Þ
β Þ;

ϕðjÞ
α ¼−

1

ðjþ1Þjðj−1Þð∂
2
θþ∂2

yþ∂2
xÞð∂xϕ

ðj−2Þ
γ −∂θϕ

ðj−2Þ
β Þ;

ϕðjÞ
β ¼−

1

ðjþ1Þjðj−1Þð∂
2
θþ∂2

yþ∂2
xÞð∂θϕ

ðj−2Þ
α þ∂yϕ

ðj−2Þ
γ Þ:

ðA30Þ

From there we note an obvious pattern,

ϕðjÞ
γ ¼ −

1

ðjþ 1Þj ð∂
2
θ þ ∂2

y þ ∂2
xÞϕðj−1Þ

γ ;

ϕðjÞ
α ¼ −

1

ðjþ 1Þj ð∂
2
θ þ ∂2

y þ ∂2
xÞϕðj−1Þ

α ;

ϕðjÞ
β ¼ −

1

ðjþ 1Þj ð∂
2
θ þ ∂2

y þ ∂2
xÞϕðj−1Þ

β ; ðA31Þ

yielding (2.42).
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