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In this work, we study the Higgs boson decays into two photons and into one photon and one Z gauge
boson within the context of the nonlinear effective field theory called the electroweak chiral Lagrangian
(EChL). We present a detailed computation of the corresponding amplitudes to one-loop level in the
covariant R; gauges. We assume that the fermionic loop contributions are as in the Standard Model and
focus here just in the computation of the bosonic loop contributions. Our renormalization program and the
anatomy of the various contributions participating in the R; gauges are fully explored. With this present
computation, we demonstrate the gauge invariance of the EChL result, not only for the case of on-shell
Higgs boson, but also for the most general and interesting case of off-shell Higgs boson. We finally analyze
and conclude on the special relevance of the Goldstone boson loops, in good agreement with the expected
chiral loops behavior in chiral Lagrangians. We perform a systematic comparison with the corresponding
computation of the Standard Model in the R; gauges and with the previous EChL results in the unitary
gauge. This work represents the first computation within the EChL of these observables to one loop, for
both on- and off-shell Higgs boson, in the most general R gauges and with a full renormalization program
description, not yet fully explored in the previous literature and which is different to the most frequently

used in the linear effective field theory.
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I. INTRODUCTION

After the discovery of the Higgs boson particle [1,2], a
great effort has been done in exploring new aspects of the
Higgs physics beyond the Standard Model (SM) with the
tools of effective field theories (EFTs), both in the linear
and in the nonlinear approach (for a review, see, e.g., [3]).
Within the nonlinear approach, which we follow in this
work, the EFT that has become more popular is the one
based on the electroweak chiral Lagrangian (EChL), also
named Higgs EFT in the literature. This nonlinear EFT is
the most appropriate one in the case that the new ultraviolet
physics beyond the SM (BSM) be strongly interacting like,
e.g., in composite models, since in that cases the dynamics
of the Goldstone bosons (GBs) is well described by the
nonlinear effective chiral Lagrangians (for a review, see,
e.g., [4]). The inspiring example, predecessor of these type
of nonlinear EFTs, is the one provided by the chiral
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Lagrangian of pions in quantum chromodynamics
(QCD) and the chiral perturbation theory (ChPT) [5-7].
Nowadays, it is generally accepted that ChPT describes
successfully the dynamics of the pions, that are the GBs
associated to the spontaneous breaking of the chiral
symmetry in QCD. The proposal of using a nonlinear
EFT within the context of the electroweak (EW) inter-
actions based on the SU(2); x SU(2)4 chiral symmetry of
the SM scalar sector that is spontaneously broken down to
the subgroup SU(2); . r = SU(2)¢, called the custodial
symmetry group, was done long ago [8—18]. It is in the last
years, after the discovery of the Higgs boson particle, that
the EChL has been renewed with the incorporation of the
Higgs field as an extra explicit light scalar field in addition
to the three GBs. Consequently, the new version of the
EChL contains more effective operators that now include
also the Higgs field [19-30].

The key issue in this nonlinear EChL is that the GBs are
in a nonlinear representation of the SU(2) group whereas
the Higgs boson is a singlet. This is in contrast to the linear
EFT case [like the Standard Model effective field theory
(SMEFT)] where both the GBs and the Higgs boson are
placed together in a linear representation, given by the
usual SM Higgs doublet. The GBs in the nonlinear case
transform nonlinearly under the EW chiral symmetry and,
more interestingly, have derivative self-couplings, therefore
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growing with energy, which are not present in the linear
case. This basically leads to a very different counting when
extracting the relevant contributions in a practical compu-
tation of a given observable in both approaches, the linear
and the nonlinear ones. The linear approach uses the
canonical counting, whereas the nonlinear one uses the
so-called chiral counting [26-28]. In consequence, this
later leads to the corresponding chiral expansion being
ordered by powers of momentum and soft masses and,
therefore, giving rise to predictions for the observables that
behave with momentum and masses very differently than in
the linear case. Furthermore, precisely due to this different
counting, the renormalization programs in both approaches
are also very different.

Our focus here is in the nonlinear case given by the EChL
where, according to the usual rules with chiral Lagrangians,
the renormalization program is done perturbatively in the
chiral expansion. Namely, terms of a given chiral order in the
chiral Lagrangian act as counterterms to renormalize
the generated divergences beyond tree level from the terms
with lower chiral dimension. In particular, the generated
divergences at the one-loop level and the corresponding
renormalization program in the EChL have been explored in
the literature, both at the effective action or effective
Lagrangian level [31-33] and for specific observables, like
scattering processes involving EW gauge bosons. These later
include yy — VV with VV = WW,ZZ [25], and vector
boson scattering VV — VV with various options for the
EW bosons V’s being W* and Z [22-24]. In all these
scattering cases, the one-loop computations with the EChL
were simplified by considering just the loops containing only
GBs and the Higgs boson and by neglecting all the other
loops including the gauge bosons. However, there is not yet,
to our knowledge, a complete computation of these scattering
processes to one-loop level within the EChL. The other
interesting processes studied in the literature within the EChL
at the one-loop level are the Higgs boson decays. In
particular, H — yy and H — yZ have been computed in
[34] within the unitary gauge, where only gauge bosons are
involved in the loops by construction. But, to our knowledge,
there is not available computation of these decays in the
covariant gauges and, therefore, the specific contributions in
these R; gauges from GB loops and the rest of loops have not
being explored yet within this EChL nonlinear context.

In this paper, we present an explicit and detailed
computation of the one-loop amplitudes for the H — yy
and H — yZ decays within the EChL in the covariant R;
gauges for the first time. We consider both cases with the
Higgs boson on shell and off shell and compare our results
with the SM case. To our knowledge, the results presented
here for the EChL and the SM in the off-shell Higgs case
are novel. Our purpose is to present this new computation
in a didactic and illustrative way, showing in detail the
various steps to follow, starting with the chiral expansion
and ending with the renormalization program in order to get

the final UV-finite and gauge invariant result for the total
amplitude, within this nonlinear EFT. Of course, our
purpose is also to compare our results of the R: gauges
with the previous results in the unitary gauge of [34]. For
the one-loop computation in the H — yy case and for the
explicit demonstration of the gauge invariance of the EChL
result, we have followed very closely the method of [35]
which was applied for the SM case, that we find very
useful. We should also mention that other computations in
the literature of these two Higgs boson decays within the
context of EFT were done within the linear approach which,
as we have said, involve different techniques, renormaliza-
tion program, and counting rules than in the nonlinear case
which we deal with here. Concretely, in the SMEFT to one
loop with R: gauges, H — yy has been computed in [36,37]
and H — yZ in [38,39].

In our study of the anatomy of the various loop con-
tributions participating in these Higgs boson decays, we also
wish to explore the special role played by the GB loops.
Thus, we also include in our study an important part where
we discuss on the role played by the GB loops, differ-
entiating both cases: on-shell (OS) versus off-shell Higgs
boson. The results for the off-shell case involving high
energies for the virtual Higgs particle, say at the TeV range,
will tell us about the relevance on these GB loops (also called
chiral loops) in high energy colliders like the Large Hadron
Collider (LHC), the linear colliders as International Linear
Collider (ILC) or Compact Linear Collider (CLIC), etc., and
then access to the EW symmetry breaking sector (EWSBS).

The paper is organized as follows. In Sec. II, we review
the main features of the EChL and the relevant operators
participating in both H — yy,yZ decays. Section III is
devoted to the renormalization program and to present the
analytical results for the one-loop amplitudes of the EChL
in the R; gauges. We also show in that section how the
gauge invariance is established and include a comparison
with the corresponding SM and SMEFT results. The results
for the associated one-loop vertex functions to these
decays, differentiating the two cases with off-shell/on-shell
Higgs boson, are discussed in Sec. IV. The numerical
results for the partial decay widths and the study of the
behavior of these vertex functions with the Higgs boson
momentum are presented in Sec. V. Finally, we conclude in
Sec. VI. The supplementary material needed for the
computation, as the relevant Feynman rules (FRs), the
chosen conventions for the loop integrals, and the prepa-
ration of the one-loop diagrams for the automated compu-
tation are summarized in the Appendices.

II. THE ELECTROWEAK CHIRAL LAGRANGIAN:
RELEVANT INTERACTIONS

The EChL is a gauged nonlinear EFT based on the
SU(2); x SU(2)p chiral symmetry of the EWSBS. This
symmetry is spontaneously broken down to the subgroup
SUQ2); g =SU(2)¢, called the custodial symmetry
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group. Also, the EChL is Lorentz, CP, and SU(2), x
U(1)y, gauge invariant. In the present work, we focus on the
bosonic part of the EChL assuming that the fermionic
contributions to the observables of interest here, H — yy
and H — yZ, are the same as in the SM. For the present
work, we consider only effective operators within the EChL
that preserve custodial symmetry. With this assumption, the
only source of custodial symmetry breaking in the bosonic
sector of the EChL is, as in the SM case, the small nonzero
hypercharge gauge coupling ¢ corresponding to U(1),. As
dynamical fields, the EChL contains the EW gauge bosons
B, and Wy (with a =1, 2, 3), and the SM-like Higgs
boson H. In contrast to the SM case, and other EFTs
for BSM Higgs physics, where the Higgs field is imple-
mented together with the would-be GBs inside a linear

representation of SU(2), given by the doublet ® =
(iz*, (H+v) —iz®)/V/2) with 7+ = (z' F in®)/V2,
in the EChL the Higgs field and the GB fields are
introduced separately. The H field is a singlet of the EW
chiral symmetry and the EW gauge symmetry and, con-
sequently, there are not limitations from symmetry argu-
ments on the implementation of this field and its
interactions into the Lagrangian. Usually, in the EChL,
the interactions of H with the other fields are introduced via
multiplicative generic polynomials. Regarding the three
GBs, #“, they are introduced in the EChL in a nonlinear
representation of SU(2). We use here the exponential
parametrization given by

U(n“) = e™™/7, (2.1)

where 7%, a=1, 2, 3, are the Pauli matrices and
v =246 GeV. Under an EW chiral transformation of
SU(2);, xSU(2)g, given by L€ SU(2), and ReSU(2),,
the field U transforms linearly as LURT, whereas the GBs
¢ transform nonlinearly. In this sense, these EW GBs of
the EChL behave similarly to the pions in low energy QCD,
which are identified with the GBs of the chiral symmetry
breaking. Consequently, the building of this nonlinear
EFT for low energy EW interactions as given by the
EChL is clearly inspired in the well-known chiral pertur-
bation theory for low energy strong interactions given by
the chiral Lagrangian of QCD [5-7]. On the other hand, the
EW gauge bosons are introduced in the EChL via the
U(1)y and SU(2), field strength tensors and the covariant
derivative of the U matrix by

B, =0,B,-0,B,, W, =0,W,—0,W,+iW, W,
DU =d,U+iW,U—iUB, (2.2)

where B, = ¢B,7%/2 and W, = gW%r%/2. In order to
introduce the physical fields, we use the usual definitions,

1 .
Wi = E(W’l‘ Fiwi),

_ 3
A, =syW, +cyB,,

Z,= W3

u— SwB

I’g

(2.3)

where we use the short notation sy =sinfy and
Cy = cosBy.

The EChL structure is based on a momentum expansion
following the usual counting rules of the chiral Lagrangian
approach, and the effective operators in the EChL are
organized through their chiral dimension. This chiral
dimension is established by the scaling with the momentum
p of the various contributing building blocks. In this
context, derivatives and masses are soft scales and they
count with the same power of the momentum,

a/n My, mgz, my, gqv, glv ~ O(p) (24)

The corresponding counting rules for the gauge fields and
the field strength tensors can then be obtained from the
previous ones if we rewrite them in terms of the gv and ¢'v
combinations,

= (¢0)(B,/0)7*/2. W, = (gv)(Wii/v)z* /2 ~ O(p),
= (9'0)(0,(B,/v) = 0,(B,/v))T* /2~ O(p?).
= (9)(9u(Wi/v) = B,(Wyi/v)

= (gu)e (Wi /v)(Wi/v))z/2~ O(p?).  (2.5)

Consequently, an effective operator containing the block
(1/g*)(W,,W*) scales as O(p?), etc. With the above
counting rules, the chiral Lagrangian Lgcy,; is given by the
sum of the various contributions £, with increasing chiral
dimension d, i.e., of O(p?). The dimensionless parameter
controlling the convergence of this chiral expansion is
p/(4rv) with 4zv ~3 TeV, in close analogy with the
chiral Lagrangian of QCD where the corresponding dimen-
sionless parameter is p/(4zf,) with 4zf, ~ 1 GeV. Thus,
in the absence of any other resonance appearing in the
spectrum, the EChL is expected to be an EFT valid below
this O(3 TeV) typical energy.

We consider here just the two leading contributions, £,
and L4 in this chiral expansion of the EChL, and then we
select from them the effective operators which are relevant
for the present computation of the Higgs boson decays into
yy and yZ. Thus, we write

Leen, =Ly + Ly + -, (2.6)

where £, and L, are given, respectively, by
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’1]2

H  (H\?
L= [1 +2a—+ b(—) + - -}Tr[D"U*D,,U]
v v

1 |
5 O"HOH = V(H) ~ FTr[BWBW]

1 PN
- _Tr[W/wWW] + £GF + £FPa

27 (2.7)

Ly = a\Tr[UB,, U'W*| + ia, Tr[UB,, U [V*, V]|
- ia3Tr[Wﬂy[Vl‘, W + a Tr(V, V) Tr(VVY)
+asTr(VV)Tr(V, V) + ...

H_ . . H I
- CHBB;Tr[Buva] - CHWW;TT[WWWW}

H . .
+ cupw —Tr[UB, UW*] + ..., (2.8)
v

where the dots mean other terms in the bosonic sector of the
EChL that we do not consider because they do not preserve
custodial symmetry or because they are not relevant for the
present work. In £, above, the terms Lgr and Lrp denote
the gauge fixing and Faddeev-Popov Lagrangian, respec-
tively, and we have assumed the same Higgs boson
potential as in the SM,

1 y)
V(H) = zm%le + AvH? + ZH4

S S CRORIONE

with m2, = 210%, and A being the Higgs self-coupling.
Notice that the second equality shows explicitly the chiral
dimension of V(H) belonging to £, since, as we have said,
the Higgs mass my counts as another soft mass of O(p).
Notice also that there is not linear term in H as in the SM.
Regarding the relevant EChL parameters in £,, it is just the
a parameter what enters in the present computation and not
b since the latter involves two Higgs fields. For a = 1, the
SM couplings of H to two gauge bosons WW and ZZ are
recovered, whereas for a # 1 the HWW and HZZ cou-
plings differ from their SM values. Notice also that there are
not terms corresponding to HAA and HZA interactions in
L, (as in the SM).

In £, above, we have introduced the chiral vector V, =
(D,U)U" (with chiral dimension 1) to write some of
the effective operators in £4 in a compact form. For the
EChL parameters in front of the effective operators in the
first two lines of £4, we use the usual notation given by a;’s
(corresponding to the ;’s in the original formulation of the
EChL [9], prior to the Higgs discovery). The operators with
a;’s contribute to anomalous vertices with three and four
gauge bosons and are relevant for other observables like
EW vector boson scattering, photon-photon scattering,
and others, but are not relevant for the present work.

The parameter a; enters in the EW precision observables,
concretely the oblique S parameter, and also affects the
two-point function yZ that enters a priori in the present
computation of H — yZ. The most relevant effective
operators in £, for the present work are the three last
ones, with coefficients cypp, cyww, and cgypw. These
operators can be easily written in terms of the physical
basis, y, W= and Z, and if we just select those contributing
to H decays into yy and yZ, we get

H_ . . H_ . .
—CHBB ZTI‘[B;WBW] - CHWW;Tr[WyUWﬂD]

H . .
+ cupw—Tr[UB, U W*
v

1e?
=75, cuyH(0,A,—0,A,)(OFAY — O"AF)
egcy
_ cHyZH(ayAy—ayAﬂ)(aﬂzv_8uzﬂ)+m,
(2.10)
where
CHyy = CHBB T CHWW — CHBW> (2.11)

_ 2 2 2 _ 2
CHyz = 3 (—CHBBSW + cawwCw — ECHBW(CW - Sw))-
w

(2.12)

Finally, regarding the quantization of the EChL, we
choose here to use the same gauge-fixing Lagrangian, Lgg,
as in the SM for the R, gauges [40]. The issues of R gauge
fixing and renormalization within the context of the EChL
were already studied long ago in [17,18] when the Higgs
particle was not included explicitly in the Lagrangian.
Generically, the quantization of the EChL requires the
insertion of appropriate gauge-fixing functions F; involv-
ing the EW gauge bosons and the GBs. This gauge-fixing
Lagrangian can be written in terms of the physical basis as

Lpr-lp_ lp
S A

- 2.13
2. (2.13)

Lop = -

where the gauge-fixing functions are

Fi = 8"Wff - fwmwﬂi,

FA:aﬂAﬂ.

FZ = 3”ZM - gzmzﬂs,

(2.14)

and &y, &7, &4 are the typical gauge-fixing parameters of
the R: gauges.

From the above gauge-fixing functions, F ., Fz, and F,
we derive the corresponding Faddeev-Popov Lagrangian
[41] (see also [17]) by
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(2.15)

where ¢/ are the ghost fields and a ; are the corresponding
gauge transformation parameters (j = +, —, Z, A). For the
present computation of Higgs decays H — yV, with V =y,
Z, only charged particles (W, z* and ¢®) enter in the
loops; therefore, the only relevant gauge-fixing parameter
for this work is &y,. We will use a short notation for this &y,
parameter from now on and call it simply &

Once the relevant parts of the EChL have been set, we
are ready to present the relevant interactions and FRs for
the present work. Specifically, the relevant vertices enter-
ing in the present computation are those involving pure
gauge bosons, those with pure scalars (GBs and Higgs
boson), with mixed gauge-scalar bosons, and vertices
involving ghosts (ghosts with gauge bosons and ghosts
with scalars). Regarding the interactions involving GBs, it
is illustrative to remind that one has to perform first the
expansion of the exponential matrix of Eq. (2.1) in powers
of the GB fields, z¢, and the nonlinearity of the EFT is
clearly manifest,

¢ 2ntn + Pn
Urt) =1, +i—qe 22 T2% 4
(ﬂ> 2+lUT 21}2 2
2+— 3.3\ a
LA e (216)

603

where [, is the unity matrix and the dots stand for terms
with four or more GBs. Only interactions with two GBs at
most are relevant for this work.

Then, following the standard procedure with chiral
Lagrangians, we distinguish between tree-level interactions
from £, and tree-level interactions from L£,. Indeed, to
differentiate the corresponding FRs, we use a different
notation with a shaded box to mark the vertices from L.

The summary of all the relevant FRs for the present work
is presented in Appendix A. Tables I and II collect the
relevant FRs from £,, and Fig. 11 summarizes the relevant
FRs from £,. In Tables I and II (column on the right), we
have also added the corresponding FRs within the SM for a
clear comparison. Some comments on these relevant EChL
Feynman rules are in order. First, from £,, we see that the
FRs for pure gauge boson interactions and for gauge boson
interactions with ghosts are in the EChL as in the SM, as
expected. Second, the Feynman rules for the vertex HWW
and HZZ within the EChL differ from that of the SM by the
coefficient a in front. Only by setting @ = 1 one recovers
the SM Feynman rules. This modification of the SM vertex
is well known and, in fact, mainly responsible for the most
notably difference, respect to the SM result, from the loop
contributions to the Higgs decays in the unitary gauge [42],
as it has been already established [34]. Third, there are
some interactions among gauge bosons and GBs that
remain the same in the EChL as in the SM. Concretely,

the FRs for yzn, Zan, yWn, ZWx, yyan, and yZrr are
equal to the SM ones. Fourth, all the remaining relevant
FRs from £, involve one Higgs boson and are different
than in the SM. Specifically, these are Hzz, HW=, Hcc,
HyWr, HZWz, Hyyzzm, and HyZzz. None of them
recovers the SM value by fixing a = 1. In particular, the
vertex Hzz, in addition to the a parameter involved, has a
very different structure in momentum, typical from the
nonlinearity of the GBs and momentum expansion in chiral
Lagrangians. The vertex HWx has also a different momen-
tum dependence than in the SM. Finally, there are vertices
that are not present in the EChL, but they are present in the
SM and vice versa. Particularly interesting is the absence
of the interaction vertex of a Higgs boson with two ghosts;
thus, we have introduced a vanishing FR for Hcc in the
table. We also see that vertices with four and five legs,
concretely, Hyzn, HZzn, Hyynrn, and HyZzz are non-
vanishing in the EChL, but they are not present in the SM
(accordingly, we put in Table II a zero value for these FRs
in the SM).

Finally, regarding the interaction vertices from L4, we
see in Fig. 11 that there are two parameters involved which
modify the Lorentz structure of the HyV vertices.
Concretely, cp,, that enters in Hyy and cp,; that enters
in HyZ following Egs. (2.11) and (2.12).

We will see in the following sections how all these
interactions from the EChL enter in our computation of the
Higgs decays into yy and yZ within the R; gauges, and we
will illustrate as well the comparison with respect to the SM
computation.

III. COMPUTATION OF THE AMPLITUDES:
RENORMALIZATION AND LOOPS

In this section, we present the computation of the one-
loop amplitudes for the two processes of our interest in this
work, M(H — yy) and M(H — yZ), which from now on
when commented together will be referred jointly as
M(H — yV). This computation will be done within the
EFT given by the EChL in the R; gauges and at the one-
loop level approximation. Contributions from two and
more loops are assumed to be negligible when compared
with the one-loop contributions.

A. Description of the computational procedure

First of all, we remind the main rules in doing a com-
putation within the EChL to one-loop level. Generically,
any amplitude of a process receives two types of contri-
butions that are separated as leading order (LO) and next to
leading order (NLO),

M :MLO+MNLO- (31)
The LO term, Mg, is the result of the amplitude
when using just the tree-level Lagrangian with chiral
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dimension 2, or equivalently in diagrammatic terms, when
using just the Feynman rules from £, in Eq. (2.7) to build
tree-level diagrams. The NLO amplitude, My, g, comes
from adding two types of contributions, the ones from tree-
level diagrams using the Feynman rules from £, in
Eq. (2.8) and the ones from one-loop diagrams using the
Feynman rules from £, in Eq. (2.7). This procedure is
similar to the one in ChPT, where loop contributions from
L,, are known to contribute to the same order in the chiral
expansion, i.e., O( p4), as tree-level contributions from the
chiral dimension 4 Lagrangian, £,. In fact, the operators in
L4 have a twofold role in chiral Lagrangians. On one hand,
they provide contributions to the amplitudes of next order
in the momentum expansion respect to £,, and on the other
hand, they may act also as additional counterterms of new
divergences generated to one loop by L£,, which cannot be
absorbed by just the renormalization of £,.

For the two cases under study here, it is clear that the LO
contribution to the amplitude M(H — yV),  vanishes, as
it happens indeed within the SM where there are not tree-
level vertices Hyy and HyZ. Thus, M(H — yV) only
receives contributions from NLO within the EChL.

Regarding the regularization procedure of the loop con-
tributions, we use here dimensional regularization [43] as
usual. This method has the advantage that preserves all the
relevant symmetries, including chiral invariance.

Concerning the renormalization procedure, we use
here the standard method of generating counterterms
for all parameters and fields appearing in the tree-level
Lagrangian, £, + L4, according to the usual prescription
that relates the bare quantities and the renormalized ones. In
our present case, the relevant relations are summarized as
follows:

1/2 1/2 R 1/2 3
Ho=Z2]’H. By, =Z2]{’B, W3’ =2Z)W;’
dh=25"(d+58¢),  g0=2y"(g+69),
a? = a; + ba, & =c¢; + dc;, (3.2)

where we have denoted with a O script the bare quantities
and with no script the renormalized quantities to abbreviate
the notation. The multiplicative renormalization constants
Z are split as usual,

Zppw =1+06Zupw. (3.3)
and we have written generic counterterms for both types of
parameters in £, namely, the a; and the ¢; coefficients in
Eq. (2.8). The divergences in the EChL coefficients have
been studied in the literature [22-26,31-33], and they have
also been used to renormalize some scattering processes to
one loop within the EChL, as yy - WW,ZZ [25], and
vector boson scattering processes [22—24]. However, in the
present work, only the ¢; from Eq. (2.8) enters. Specifically,
the involved counterterms from Eq. (2.8) are those of the

derived coefficients cy,, in Eq. (2.11), for H — yy and
Chyz n Eq. (2.12), for H — yZ.

For a clear presentation of the forthcoming results, our
systematic computation of the decay amplitude M(H —
yV) at one-loop level is organized in terms of the relevant
one-particle irreducible (1PI) renormalized Green func-
tions, such that our renormalization program will be first
addressed to these 1PI functions, and later these will be
inserted into the corresponding M(H — yV) amplitude.
Generically, this can be written as
M<H_)7V) :Ml—pt +M2—pt+M3—pt+MW.f.r.7 (34)
where M,,_,, means the contribution from the n-point
IPI renormalized function to the amplitude, and we
have separated explicitly the potential contribution from
the wave-function renormalization of the external legs,
M, . All these 1PI renormalized functions, called
generically here TR, are derived using diagrammatic
methods, following the usual decomposition,

R=rT 41t 47C (3.5)
Within the EChL, I'T means contributions from tree-level
Lagrangian, £, + L4, '™ are the contributions from the one-
loop diagrams using the interaction vertices of £,, and I'®
summarizes the contributions from all the counterterms
generated by the prescription in Eq. (3.2). All these
quantities are expressed in terms of renormalized parameters.

Finally, once the regularization and renormalization
procedures have been fixed, the next step is setting the
renormalization conditions that we have adopted here.
These particular conditions will provide the specific values
of the counterterms involved in the present computation.
We adopt a hybrid prescription in which we impose the OS
scheme for the physical sector in £,, i.e., for W, Z, y, and
H, and the MS scheme for the EW chiral parameters in £,
i.e., for the a; and c; coefficients. Explicitly, our renorm-
alization conditions are as follows:

(1) Vanishing tadpole,

TR = 0. (3.6)

(i) The pole of the renormalized propagator of the
Higgs boson lies at my and the corresponding
residue is equal to 1,

a=R,
dq?

RelSh ()] =0, Re| 2 ()| —o.

(3.7)

(iii) Properties of the photon: residue equal one; no
A —Z mixing propagators for on-shell photons;
and the electric charge defined like in QED, since
there is a remnant U(1)g,, Symmetry,
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T

T

FIG. 1.
to H — yy and the lower line to H — yZ.

(3.8)

(iv) The poles of the renormalized propagator of the W
and Z bosons lie at my and my,
Re[Zfyy (my)] =0.  Re[XF,(mz)] =0. (3.9)
(v) MS scheme for ¢y, and cy,y.
In the previous expressions, we used the notation X, for
the renormalized self-energy of the Higgs boson and 2{5‘/,
for the renormalized transverse self-energy connecting the
gauge bosons V and V’. The renormalization of the
unphysical sector in £, is not relevant for the present
computation, then we do not need to fix the counterterms
participating in the gauge fixing in the longitudinal part of
the self-energy of the gauge bosons, in the self-energy of
the GBs, and in the mixing propagators of photon ghost or
Z ghost.
With the above renormalization conditions, we can
already conclude on which n-point renormalized 1PI
functions contribute in each decay,

M, = M(H = yy) = (y(k\)y(k2)|S|H(q)) = M3_,
(3.10)

and

M,z = M(H = yZ) = (r(k)Z(k2)|S|H(q))

:Mz—pt+M3—pt' (3.11)

The corresponding graphical representations of the above
contributions are shown in Fig. 1. We have included in

Ve

/T

Zy

Contributions of the two- and three-point renormalized Green functions (denoted by gray circles). The upper line corresponds

these graphs our momentum convention for the H(g) —
A,(ky)V,(ky) decays: g is the incoming Higgs boson
momentum, and k;, are the outgoing gauge bosons
momenta.

Some comments are in order. First, notice that there are
not contributions from the one-point 1PI function. This is
due to the above vanishing renormalized Tadpole condition
which implies M, _,, = 0. Second, M,, ;. also vanishes
since it is obtained as M,, ;, = M o(Ry +Ra +Ry)/2
from the finite residues R of the external legs that
generically could be different from 1, depending on the
renormalization conditions. However, here M,, ;. =0
because there is not LO contribution as we have said,
i.e., due to M o = 0. Third, it is important noticing that for
the H — yZ decay, the renormalized self-energy connect-
ing a photon with a Z boson is present as an external leg
correction (lower left diagram of Fig. 1). But our renorm-
alization condition for this Green function evaluated at an
on-shell photon implies that M,_,, = 0 (notice that no
such diagram is present in the one-loop computation of
H — yy). Therefore, the unique contributions to both decay
amplitudes are M;_,,, and these come exclusively from the
corresponding renormalized three-point functions: I'Y,,
(upper diagram of Fig. 1) and I'} , , (lower right diagram of
Fig. 1), respectively.

Finally, since the renormalization procedure imple-
mented here preserves the gauge symmetry of the EChL,
then the corresponding Ward identity for the U(1)gy
subgroup is also preserved. This U(1)g,, Ward identity
for the external on-shell photon implies a very precise
structure for the decay amplitude of H(g) — y(k;)V(k,)
which can be written as

M,y = Miye, (ki )e,(ky)  with

koki )

3.12

My = V(g ki k) (9”” -

075040-7



MARIA HERRERO and ROBERTO A. MORALES

PHYS. REV. D 102, 075040 (2020)

where €, (k;) and €, (k,) are the polarization vectors of the
outgoing gauge bosons and Vy,y is a complex function of
the three external momenta (¢, k; and k,), with g = k; + k,
by momentum conservation. Written the amplitude in this
way, it is easy to check that it vanishes if the photon
polarization vector is replaced by its corresponding

momentum. Notice that M)y, = IR, in the 1PI notation

described before. Thus, our next aim is to provide the
results for the two relevant functions FH a4 and FZ’XZ or,
equivalently, My, and M)

B. Analytical results

In this section, we present the analytical results for the
total one-loop amplitudes M,, and M, within the EChL
in the R, gauges. In the following, we assume that the final
gauge bosons (y and Z) are on shell and we present the
results for the two interesting cases corresponding to (i) the
Higgs boson is off shell and (ii) the Higgs boson is on shell.
We will also compare all these results with the correspond-
ing ones in the SM case, which we have recomputed here in
the R; gauges for illustrative purposes. From now on, and
to distinguish clearly the EChL from the SM results, we
continue using the simple notation M and V for the EChL’s
amplitudes and vertex functions, but we use instead the
“bar” notation for the corresponding SM results, M and V.

Next, we split all the results into three contributions, tree
level, counterterms, and loops, following Eq. (3.5), which
we compute with diagrammatic methods. The contributions
from tree-level diagrams lead to

o2
v g v v
MT} = CHyy( 1+ kgt — Kok, (3.13)
My
v e 2CW
My 2751 cuyz(ky - kag™ — K5KY).  (3.14)
w

They are written in terms of the renormalized parameters, e,
9> CHyys Cryz» and my,. The corresponding Feynman rules
for the relevant interaction vertices, which come from L,
are given in Appendix A. These tree-level results in the
EChL are clearly in contrast to the SM case where there are
not tree-level contributions.

On the other hand, the counterterm contributions in the
EChL lead to the following result:

MG =T by, (ky - kag™ — KikY),  (3.15)
My
2
v €g Cy v v
M% " 5CHyz(k1'k29” — K5k7)
W
59 &
+ﬂm§swcw<g g/)g’“’ (3.16)
My g g

The corresponding Feynman rules for the involved counter-
terms can also be found in Appendix A. The previous result
is also in contrast to the SM case, where there is not
counterterm for the H — yy decay and the corresponding
one for the H — yZ decay is equal to just the second
term with @ =1 in the previous equation. This second
term is derived from £, with the prescription in Eq. (3.2),
and its value is fixed from the renormalization con-
dition on the self-energy of the photon-Z mixing in
Eq. (3.8). Concretely, one starts with the renormalized
two-point transverse self-energy of the photon-Z mixing as
given by

(6224 — 99 (c3,
89 M)
+ m3 SwCw ,
5 (g J

where 5, is the one-loop contribution to this self-energy
and 62, is the corresponding counterterm from the wave-
function renormalization. Then, from the OS renormaliza-
tion condition, =¥, (0) = 0, and the explicit bosonic loop
computation of the self-energy in the R; gauges of the
diagrams in Fig. 2, we get

25.(q%) = 254(q%) - sw)(ay +bay))

(3.17)

stwcw 59 5gl> = _ZIZA (0)
g 25(2+¢)log ()
— 7W i Sl Y et -2 VA
(3.18)
(a) (b)
A7 Z,
A, Z,
© T @ e
| A;\/\/\,(/ \}'\/\/\/Zy

FIG. 2. Bosonic loop diagrams contributing to X5, (¢?) in the
R: gauges. We denote the internal W bosons, charged GBs, and
charged ghosts by wavy, dashed, and dotted lines, respectively.
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(€Y

FIG. 3. One-loop diagrams contributing to M
the momentum p.

v in both the EChL and the SM cases. Negative charge flows in the same direction of

where the divergence of dimensional regularization A, is
given in Eq. (B1). Notice that the above result of =5, (0)
in the R; gauges is valid for both the EChL and the SM,
since the contributing diagrams in Fig. 2 are the same, and
also the FRs involved coincide in both cases.

Therefore, all the involved counterterms in Egs. (3.15)
and (3.16) are fixed in terms of loop computations. The
involved combination of gauge couplings counterterms is
fixed from the loops of the mixing two-point function, and
there are just two left counterterms Scp,, and ¢y, that
need to be fixed from the loops of the three-point functions,
Ik, and Tk, respectively. Indeed, we can already
anticipate our result that, for the H — yy decay, the sum
of all the one-loop contributions in the R; gauges is UV
finite and, therefore, we find ¢y, = 0. This result is in
agreement with the result in the literature of the unitary
gauge [34], which is known to be finite without the need of
renormalization. For the H — yZ decay, the divergence of
the sum of all the one-loop contributions in the R; gauges
of the three-point function cancels out with the divergence
from the one-loop contributions in the photon-Z mixing
self-energy, via Eq. (3.18). Thus, we find in the R; gauges
that 6cy,, = 0. Again, this is in agreement with the result
in the literature of the unitary gauge [34], which is known to
be finite without the need of renormalization. This is also in
concordance with our finding that in the unitary gauge we
get X5, (0)|V = 0, as expected.

Regarding the contributions from loop diagrams to MJ];V,
we classify them generically into four categories accord-
ingly to the particles in the loops: (i) loops with only gauge
bosons (called “gauge” in short), (ii) loops with both gauge
and GBs (called “mix” in short reference to mixed loops),
(iii) loops with just GBs (called “GB” in short), and
(iv) loops with only ghosts (called ‘“ghost” in short).
Then we write the loop amplitude in the R; gauges as

ME, = MEPE 4 Muix 4 MOE+ M. (3.19)

Notice that, as we explained in Sec. II, the Higgs boson
does not couple to the ghosts, thus there are not diagrams

contributing to M‘f}‘}(’“ in the EChL, but they are present in
the SM computation. Through this forthcoming loop
computation, we keep in parallel the comparison respect
to the SM case which we find very illustrative. In fact, for
the present loops computation and for the demonstration of
gauge invariance of the result, we follow closely the
procedure and notation of diagrams in Ref. [35] that was
devoted to the SM case.

In Fig. 3, we show the diagrams contributing to M.
They are the same in both EChL and SM and coincide with
the ones in the unitary gauge computation. We explicitly
draw the crossing diagrams (denoted by a prime '), because
they give different results for the H — yZ decay. For the

FIG. 4. One-loop diagrams contributing to ;,“‘}X in both the
EChL and the SM cases. Negative charge flows in the same
direction of the momentum p.
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(h) ,'M/\’A"“ (h”)
2o
< | fe <
RN NN/
i k
® o T ()
P \
Vo Zy Jicad
1 I
() _4\*/\/\/\/\/7M ( ) 4\/\/\/\/\/7“
PAEERREN He=mm ==
p(:/ | \;>p
[ NN N
-‘K/\/\M%, 2z, J‘/\/\/\/V'Ym Z,

FIG. 5. One-loop diagrams contributing to Mf"]} in the EChL
case. Only diagrams (h), (h’), and (i) are present in the SM.
Negative charge flows in the same direction of the momentum p.

H — yy case, they can be omitted by means of a factor 2 in
the amplitude of the nonprimed diagram. Our convention
here is to show the diagrams in which the negative charge
flows in the same direction of the indicated momentum p.

In Fig. 4, we present the diagrams contributing to ‘y“‘}"
They are the same in both EChL and SM too.

Figure 5 shows the diagrams contributing to /\/l}(,}‘],3 Now
diagrams (k), (1), and (I’) are only present in the EChL due
to the multiple Goldstone boson interactions in this EFT
(manifestation of its nonlinearity).

Finally, Fig. 6 shows the diagrams contributing to Mfr&mt
that are only present in the SM.

Now, we are ready to present the calculation of the
previous diagrams and show how the gauge-fixing
£-parameter cancellation proceeds in the EChL. The read-
ing of each diagram in terms of the Feynman rules is
provided separately in Appendix B for both the EChL and
the SM. The analytical one-loop computation was per-
formed with Package-X [44], and we closely follow the
presentation in [35]. In particular, we split the W propagator
—iP,, into two pieces: (i) the corresponding one to the
unitary gauge U,, and (ii) the remaining one R,, which
contains the whole ¢ dependence of the W propagator.
The contributions to the amplitude from this latter part will

FIG. 6. One-loop diagrams contributing to Mfl‘}OSt in the SM
case. There are not such diagrams in the EChL. Negative charge
flows in the same direction of the momentum p.

be combined with the contributions from loops with GB
and ghost propagators, that also provide other £-dependent
terms. In this way, the final demonstration of the gauge
invariance and ¢ independence of the total one-loop
amplitude will be indeed manifest from the explicit
cancellation of the &-dependent terms in doing the sum
of all the above commented subset of contributions.
Explicitly,

1 DPuly
P,(p =—<gu— 1-¢ ”*)
wlP) p*=my \" ( )pz—fm%v
= U/w(p) + R/w(p)’ (320)
where
pupu pupp
Un(p) ="M and Ry, (p) =t (3.21)
v p =TS 5 v - N
7 pz_m%v 2 pz—fm%v

First, it is interesting to notice that the ghost contribu-
tions in the EChL for both decays vanish,
hos

ME =0, (3.22)

since, as we have said, the Higgs couplings to the ghost

fields are zero within the EChL. This is in contrast to the

SM case where there are nonvanishing contributions from

the diagrams in Fig. 6,

Cbost -

M]%VOS - MJ + Mj/. (323)

On the other hand, the Goldstone boson loop contribu-
tions in the EChL are coming from diagrams in Fig. 5,

MEGE = My + My + M; + My + M+ M. (3.24)

Again, in contrast to the SM case, where the contributing
loop diagrams from GB are

M?\]} = ﬂh + Hh' + Mi. (325)

Starting with the H — yy decay, from the explicit one-
loop computation in the EChL for an arbitrary off-shell
Higgs boson momentum (g* # m?), we get the following
result:

MGB 62_9 a (,_ 2Emy, 5 24§m%vf 4émd,
" g 1622 pe pe pe

q2
y (7 v kgkq)e,xkl)ey(kz),

(3.26)

where the function f is
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£ ==L 10g? ( - ”T)

4 1+ Vi-r
1
arcsinz(ﬁ> r>1
R 1(1 <1+ l_r) ')2 0<r<l1
—(In| ——=) —-in r<l.
4 1-v1l-r

(3.27)

Several interesting comments are in order. First, the above
GB’s amplitude is & dependent as it is expected in the R;
gauges. Second, it is surprising that only this subset of
diagrams respects the Ward structure of Eq. (3.12). This
structure is not maintained separately for the other contri-
butions of Eq. (3.19). However, it is recovered for the loop
amplitude M%,, as it is expected. Third, this GB contribution
is UV finite and it is linear on the a parameter (that controls
the EChL interactions involving one Higgs). Fourth, we find
also interesting that this GB’s amplitude in the EChL is
independent of my. This is due to the fact that the interaction
of the Higgs boson to two GBs is given by the product of the
two GB momenta, differently to the SM case where this
coupling is given in terms of my (see the FRs in Table II).
Then, this independence on my of the EChL GB’s amplitude
contrasts with the corresponding amplitude in the SM, where
we find the following mp-dependent result:

ezg m_;ﬁ 2_2451721% f 45n2¢%v
167°my g q q

q2
X (79#1/ - kgklf> eﬂ(kl)eu(kZ)'

MCB —

144

(3.28)

In fact, the two amplitudes above, M%B and MSB, are
clearly different even for a = 1, in contrast to the total loop
amplitude M- where the SM result coincides with the
EChL one for a = 1. Finally, it is also worth commenting on
the coincidences. First, both quantities are UV finite. We also

|

Min = My = My = My =0,
Moy + Mgy + Mgy + Mg = —MGP — (M, + Mgy + Maig + Moyo),
My + My + My + Moy 4 Mg + Mg + My + Mgy = =(Mipg + Mg + Mg + Magy).

see clearly that the two results for M%B and M%B above
coincide for ¢ = 1 when the Landau gauge is chosen and the
Higgs boson momentum is fixed to be on shell, i.e., for
&=0 and ¢*> = m?. Then, in the Landau gauge, the
potential differences from the nonlinearity of the GB
interactions in the EChL are not emergent in the on-shell
result for the GB loop contributions.

Regarding the remaining loop contributions, gauge and
mix, and following the splitting of Eq. (3.20), each one-
loop diagram is separated into several parts. We adopt the
same notation for various parts of the amplitudes as in [35]:
for a given diagram, a contribution with two subscripts
means two propagators and a contribution with three
subscripts means three propagators. Thus, a subscript
“0” is assigned for each GB propagator, a subscript “1”
for each unitary part U,,, and a subscript “2” for the
remaining part R, of the W propagator. The explicit
separation into the above commented contributions, for
each gauge and mix diagrams in the EChL, is as follows:

Mg = M+ My + Mig + My + My
+ Maa + Moy + Mo,
My = My + Mg+ My + My,
Mo = Mo+ Mz + Moo + M.
Maa = Mo+ My, Me e = Mgy + Moo,
M = Mg + Miga + Mooy + Mo,

Mg - M()]() + Mozo. (329)

A similar decomposition can be done for the corresponding
parts in the SM loop amplitudes ﬂb.

Following the &£-cancellation demonstration in [35] for
the SM case, we arrive to a set of relations among the
different parts of the diagrams in the EChL, but in this case

for an off-shell Higgs boson. We find the following result
for the EChL in the R; gauges for arbitrary ¢*:

(3.30)
(3.31)
(3.32)

These relations above can be compared with the corresponding relations in the SM case, which were provided in [35] for the

particular case of on-shell Higgs boson momentum, ¢> = m
My = My = Myy = Myyy =0,
My + Magg + Mgy + Moy + Mﬁmm = —H%B — (Mo + My + My + Moyp).
Moy + Moy + Mg + My + Myyg+ Mg = =(Miyy + Mygy),

Mg+ Moo = =(Mga + Magy).

H>

(3.33)
(3.34)
(3.35)

(3.36)
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Notice that adding Eqs. (3.35) and (3.36), we get a similar ~ And, similarly for the SM, but fixing g> = m?, in this case,
relation to Eq. (3.32), but for ¢g> = m?, in the SM case.

Therefore, in summary, putting all together from M |l 2e = 0. (3.38)
Egs. (3.30) to (3.32), we have for the &-dependent parts nET11 !
of all diagrams a vanishing contribution in the EChL for
an arbitrary g2, Now, for the one-loop contribution of the ‘111” part of
diagrams (a), (a’) and the “11” part of (b) for an arbitrary
Z M, =0. (3.37)  off-shell Higgs momentum, we get the following result for
n#l11,11 the EChL in the R; gauges:

e’g a 4m3, < 4m%v> 4m3, <4m%\,)) <q2 p )
My + M 24370 4 3(0 - T o — ks ey (ke (k). (3.39
My = L (202 ) () (Lo - ik etk tl). (339)

Notice that it is £ independent (by construction), UV finite, and has the Ward structure. And this is precisely the same result
than adding the three unique diagrams contributing in the unitary gauge, (a), (a’), and (b). Therefore, we get the interesting
result that the loop amplitude in the R; gauges and the unitary gauge coincide in the EChL for an arbitrary off-shell ¢* Higgs
boson momentum, and not only for the particular on-shell case,

ML = My 4+ My = M|V, (3.40)

For the SM case, we get the following expression for an arbitrary g> momentum:

4md\ 4y (4} ’
BT

This expression is £ independent (by construction), UV finite, and has the Ward structure. Notice that when fixing q* = mﬁ

in the previous Eq. (3.41), we get the same result as in [35]. Hence, the equality of the R gauges and unitary gauge results is

obtained exclusively for g> = m3, as expected,

4mW

_ — eg 1

M lp—e, = Minil gz, + Mitl e, = M}ﬂ;:mi[ . (3.42)

Therefore, we conclude that the SM loop amplitude and the EChL loop amplitude coincide for a = 1 if (and only if) the

Higgs boson is on shell, i.e., we find for ¢> = m%,

M| Mt (3.43)

qZ:m-
A different situation occurs in the SM when the Higgs boson is not on shell. For the Higgs boson off shell, we arrive to the
same Egs. (3.33) and (3.34) but Egs. (3.35) and (3.36) are no longer valid. Hence, the SM result in the R; gauges for an
arbitrary Higgs boson momentum ¢> does not respect the Ward structure and the equivalence with the unitary gauge is not
fulfilled. This is in remarkable contrast with our result from the EChL where even for off-shell g*> the Ward structure is
respected and the equivalence between the R, and unitary gauge predictions is on hold. In particular, we find the following
&-dependent result for the sum of all the other terms of the SM one-loop amplitude for off-shell g> momentum,

M. — e’y _qz_m%{ V(9,2 _ 2 _ _ 2 272
> M, €u(ki)e, (k) (g (2% + (1 = & +1In(1/8))my, — 2(1 = &)myyg(4émy, /q°)

WA 1622 my 247
+3EmyyqP f(4Em3y/ %) + (=% + (1 = £2my)my Co (0, g, / Emyy, myy, \/Emyy))
~ 2 (22 4 201 = £+ 01/, — 401 - ey /) + 3om 2 (4o )
+ (g% +2(1 = &)2m3 )m3,Co (0. g, \/Emyy . myy, \/Emyy))) (3.44)

where the function f was defined in Eq. (3.27) and the function g is defined as
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g(r)z—%\/mlog (_1_\/1—:;>

vy
V'r — 1 arcsin (\%) r>1

B %\/m<1n<%> —iﬂ.’) 0<r<l.

(3.45)

Here, C, is the scalar three-point one-loop integral function
in the Passarino-Veltman notation (see Appendix B for
details). Notice that the result in Eq. (3.44) is UV finite.
In summary, the SM loop amplitude in the R gauges for
an arbitrary Higgs boson momentum is UV finite and is
given by
My, = My + M + Z M,,  (3.46)
n#I111
|

where M, + M, is displayed in Eq. (3.41), and the
remaining contributions which are ¢ dependent are col-
lected in Eq. (3.44). In particular, this explicitly shows that
the £ independence and the Ward structure of the total SM
loop amplitude in the R; gauges are only obtained for the
case of on-shell Higgs boson. We believe that the above
results in Egs. (3.41) and (3.44) and, therefore, the total SM
result for the off-shell case in Eq. (3.46), are novel results
that we have not found in the previous literature.

Finally, putting all contributions together, tree level of
Eq. (3.13), loop of Eq. (3.39), and counterterm of
Eq. (3.15), we find the total one-loop amplitude corre-
sponding to the H — yy decay in the EChL. In fact, we
demonstrate that écy,, = 0 since M}y is UV finite and no
renormalization for the ¢y, parameter is needed. We then
conclude with our final EChL result in the R gauges for an

arbitrary ¢ off-shell Higgs boson momentum,

2
4myy,

2
e g
M = — <CH
144 My 144 qz

+ 1672 q*

4 2 4 2
a <2+3 mW+3<2— M

2 (M) (L - ik ekt @)

And we emphasize, that for the particular case of Higgs boson on shell, as can be deduced from the previous equation by

2

setting g> = m?%, our result of the R: gauges is in agreement with the unitary gauge result in [34] and the corresponding SM
total one-loop amplitude is recovered for a = 1 and ¢y, = 0, as expected.

Now, we move to the H — yZ decay. The systematic of this computation is the same as before, but now some interesting
cancellations of the divergences and of the £-dependent terms among the loops and counterterm contributions take place in
the R, gauges. First, for the Goldstone boson loops contribution in the EChL, we find the following result for arbitrary off-

shell g> momentum:

GB _
M7 =

my 167> > —m3

2m% 4§m%v 4§m%v
I a— v
q°—my q my

>>> <q2;zm%9 - k’z‘ki)wl)ey(kz),

eqe(1=R) a g —2emj (1_ 4¢m}y (f<4sm%v>_ f(4:m%,))
2 2 q2 2

q- —myg mz

(3.48)

where t,, = s,,/c,, With s, and ¢, being the sine and cosine of the weak angle, previously defined, and the functions f and g
were defined in Egs. (3.27) and (3.45), respectively. As for the H — yy case, this contribution is £ dependent, UV finite, has
the Ward structure and it does not depend on the Higgs boson mass. This my independence is in contrast to the

corresponding SM contribution that we find as follows:

egiey(l—17)  mp

A 4GB __
M7 =

4émi,

167T2mw

2m2 4Emi, 4Emd,
—5_ 5 \Y > |~ 9
q myz q myz

and this difference comes from the different interaction
Hrrin the EChL and in the SM, as it was discussed before.
Again, we find the same pattern of differences and
coincidences between the two previous GB contributions
as we found for the H — yy decay. In summary, MSZB and

M?ZB are both UV finite but do not coincide for a = 1, nor

4émi, 45my
e (=72 V) - (5)
2 .2
))) (qzirnz v k’ékﬁ)eﬂ(h)%(kﬁ’

(3.49)

[

for on shell ¢g*> = m?. They, however, do coincide if the
Landau gauge is chosen, together with the fixing of a = 1
and ¢*> = m¥,.

Concerning the gauge and mix contributions, we follow
the same notation for the separation of the various parts as

in Eq. (3.29), which also holds for the MJEZ case. However,
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now Egs. (3.30)—(3.32) are no longer valid and we found
for their sum the following result:

i o o
n#I1L11
ﬁf(z%;é*(@)e(kl) (k). (3.50)
|
2
M111+M11:€g — 1

my 167% m¥,(q

4mw
q* —mj
2mZ
7= (2q myy + 12mY; — ¢*m3 —
q —m2
(L5 -k )y s ).

5 <2q md, + 12my, — g*m% — 2m¥,m3
- m3)

Am? Am?
5 (= 6q*m3y, + 12my, + g*my + 6mm; — 2mz)<f< ZZW) _f< mzw))

which does not respect the Ward structure and it is UV
divergent and ¢ dependent. Interestingly, as it can be seen
from Egs. (3.16) and (3.18), it precisely cancels the full
counterterm contribution coming from the second term of
the Eq. (3.16), and both the divergence and the £ depend-
ence disappear in this sum.

Regarding the remaining terms, M;; and M/, our
explicit computation leads to the following result:

2

mz

o) (o(52) =o(5)

(3.51)

which, as in the previous case of H — yy, is £ independent, UV finite, and has the Ward structure. Again, this result
coincides with the result from the three contributing diagrams in the unitary gauge, (a), (a’), and (b) leading to M%Z|U.

Therefore, we conclude that in the R; gauges, the Ward structure is recovered for the combination of the loop and
counterterm amplitudes resulting in a UV-finite contribution and, as a consequence, there is no need for the renormalization

of ¢yyz. Thus, we find ¢y, = 0 and

M;‘Z‘FM}GZ - M111 +M11 - M

(3.52)

L|U
vzl -

Finally, by adding the tree-level contribution of Eq. (3.14) to the previously reported parts, we get the final result for the
total one-loop amplitude, in the R gauges, of the H — yZ decay in the EChL and for the general case the Higgs boson

momentum ¢ off shell,

2
eqicy a
M, = Cryz +
rZ My ( T m (q> —m32)

4mw

q _mz

2m2

Now, by setting the Higgs boson momentum on shell in the
previous formula, i.e., by fixing g> = m%, we see that our
result is in agreement with unitary gauge result in [34], and
again the corresponding SM total one-loop amplitude is
recovered for a = 1 and cy,; = 0, as expected.

On the other hand, we have also found that the
corresponding SM result for an arbitrary Higgs boson
momentum g2 in the R; gauges does not respect the Ward
structure and, again, the equivalence with the unitary gauge

result is lost, as it also happened for the H — yy case. We

<2q my, + 12m$, — g*m2 — 2mi,m>

2

4 4m?
5 (=6 m3, + 12myy + q*m3 + 6m3ym; — 2m) < (mw> <m2W>>

mz

4 4
oo () (55
- Z

> 9
X (%9’” - kgklf>€lt(kl)€v(k2>'

(3.53)

believe this is a novel result again. Besides, we derived an
analog expression to Eq. (3.44) for the present case of
H — yZ, but it is too long and not much illuminating for
the main purpose of this work. Thus, we omit to present this
long expression here. Nevertheless, it is worth mentioning
our explicit check that this long expression is UV finite, and
this fact follows from the cancellation among the divergent
parts of the different loop categories together with the
counterterm contribution that can be derived from
Eq. (3.18). Specifically,
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2
——oau eq- 3my .
M}%; ge = @Tc‘w(l + é)Aeé'(kl) . €(k2) + ﬁnlte,
A mix _ eg’ my

P T (34 £ - 3+ 20)) Aveh)

- €(ky) + finite,

o 2

M;%;%t == IZizn;—wcwaee(kl) - €(ky) + finite,
— e m o
My = - 1612 % (3+&)Ace(ky) - e(ky) + finite.

(3.54)

Remember that the GB contribution of the Eq. (3.49) is
UV finite.

Finally, before ending this section, itis worth adding some
comments on the two final results together for M,, in
Eq. (3.47) and for M, in Eq. (3.53). These two novel
results, obtained in the R; gauges for the Higgs off-shell
case, clearly show the main features of the amplitudes as
expected typically from this nonlinear EFT approach. The
EChL results have a similar pattern to those in the usual
chiral perturbation theory, ordered in powers of energy (and
also of soft masses in the most general case) as LO, NLO,
etc. In the present case, the LO is vanishing, and the two
NLO contributions to the amplitudes, the one proportional to
a/(16x%) (from loops computed with £,) and the one
(computed from L, to tree level) proportional to cy,, or
Cyz» for M, or M, , respectively, are expected conse-
quently to be of the same size. The numerical estimate of
these two NLO contributions will be shown explicitly in the
forthcoming numerical results section where we will check
that they are indeed of the same size (see, e.g., Fig. 8). The
consequences for the corresponding size of the EChL
coefficients themselves, a, cyy,, and ¢y, are then immedi-
ately derived.

On the other hand, regarding the features found on the
renormalization issue in these two NLO results, we wish to
emphasize again that the two results in Eqs. (3.47) and
(3.53) are given in terms of the £4 EChL coefficients ¢y,
and cy,z, respectively, which appear without reference to
the renormalization scale. As we showed previously,
ocyyy = 05 therefore, these two coefficients are renormal-
ization scale invariant in this EChL approach, namely,
Ciyy (M) = cpyy and ¢,z (1) = cpyz. At this point, it is also
worth mentioning the main differences of these (nonlinear)
EChL results with the most popular ones of the (linear)
SMEFT approach. Focusing on the on-shell Higgs case
where the SMEFT results in the literature are provided (see,
e.g., Refs. [37,38]), we see that when considering just the
bosonic contributions to the Higgs decay amplitudes that
are not removable by the equations of motion nor by a
redefinition of the Higgs field, the NLO SMEFT results are
given in terms of four Wilson coefficients (of effective
operators of canonical dimension 6), usually denoted by

Cops Cow,> Copw, and Cy, and these are in fact running
coefficients, i.e., C;(u) or equivalently C;(A); therefore, the
final NLO SMEFT result depends mainly on five EFT
parameters: four Wilson coefficients and the cutoff A. These
are the most relevant differences between the results of the
two EFT s and it is the consequence of the different
expansions and different dimensional countings (chiral
dimension in EChL vs canonical dimension in SMEFT)
in the two approaches. The fact that the Higgs field is a
singlet in the EChL whereas it is a component of a doublet in
the SMEFT is also relevant to understand these differences.
The EChL combines the three coefficients cypg, cyww, and
cypw into just one in the amplitudes: cg,, in M,,, see
Eq. (3.47), and ¢y, in M, z, see Eq. (3.53), and these are
precisely the relevant renormalization group invariant com-
binations within this EFT for these two particular observ-
ables. In consequence, there is no reference to any scale in
these NLO EChL results. In contrast, the NLO SMEFT
results do refer to a given scale A and are not given in terms
of renormalization group invariants.

IV. VERTEX FUNCTIONS Vy,, and Vy,:
OFF-SHELL VERSUS ON-SHELL HIGGS BOSON

In this section, we study analytically the vertex functions
Vy, and Vy, ;7 that describe the one-loop level interactions
of the Higgs boson with the gauge boson pairs yy and yZ,
respectively. We also find illustrative to show here some
approximate analytical results that help in understanding
the behavior with energy of the Higgs decays H — yV in
the case where the initial Higgs boson is off shell but the
final gauge bosons are on shell. Thus, we explore here the
behavior of the vertex function V (g, k;. k;) in Eq. (3.12)
as a function of ¢ # m%, with ¢ = k; + k, and (i) k7 = 0,
k3 =0 for H— yy, or (i) k1 =0, k3 = m% for H - yZ.
We are using an EFT based on a momentum expansion, so
it is clearly motivated to explore how the result from the
EChL behaves with g2, which provides the available energy
for the decay, and how it compares with the SM result.

Let us start with the H — yy case. The full result for
Vi, (q. k1. ky) can be extracted from Eq. (3.47) and it is
summarized by

e’qg a 4m3
Vi, =——=(2¢*+ 12m%,( 1 -
Hrr 2my <167T2 ( - mw< * < qz

2
(7)) v

Now, this is a complex function and involves two different
scales, g> and m3,. Thus, to find an approximate formula,
we have to take into account the different branches of the
function f, corresponding to 4m%, < ¢* and 4m¥, > ¢°,
respectively [see Eq. (3.27)]. Next, we use the approximate
expressions of f(r) for the two regimes of large r (r > 1)
and small r (r < 1) given by

(4.1)
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1 1

;4—?-’-0(}’_3)
f(r) _1 2 4 .

i(w(5) -

large r

(4)) 00 s

(4.2)

and by using them in Eq. (4.1), we get the following approximate results for Vy,, in the two regimes of small q°

(¢* < 4m3,) and large ¢* (¢° > 4m3):

e’g ([ Ta
ey <16712 + CHW) 7 small ¢°
g (a 21020, 2,2 2 2
Vi, ~ Yy \ 872 (¢ = 3myIn*(g*/my) + 3(x° + 2)my,) (4.3)
. a
+Cuy gt + lﬂ@6m%\, In(q*/m3,) large ¢°.

From these results, we see that for small ¢?, V 1y, 18 real and
vanishes at g = 0. At large ¢, it is in contrast complex.
The real part dominates, growing as g>, whereas the
imaginary part grows just logarithmically.

One interesting exercise is to compare the previous result
V 1y, with the contribution from just GB loops, i.e., from
chiral loops in the usual terminology of chiral Lagrangians.
The complete result of this contribution is extracted from

Eq. (3.26),
<1

2
o _ €9 a
e ™ 2y 1672

B 2.§m%,,>

[
It is a complex function that depends again on two energy
scales g> and m?, but now it is & dependent. In particular,
working in the Landau gauge, i.e., for £ = 0, we found that
the vertex function is real for any arbitrary g> momentum
and equal to

e’g a ,

yGB L)
. 2my 872 1

|Landau —
144

(4.5)

However, for £ # 0, the vertex function of Eq. (4.4) has a
zero at | = 2&m, /q? and at 1 = (4ém, /q?) f(4Em3,/ %),
and a branch point at 1 = 4¢m3,/q*. We can use again the
simple expressions of f in the two regimes of small g*
(% < 4Em3y) and large g° (g% > 4Em3,) and we get the
following approximate result:

e’g a q ,
2 £ 11
me871' 6 Smallg
Vit ~4 €9 a 46
i) S (g o+ G (¢ ) — (5 + 2)émd, (46)
me 8
—in2Em3; In(q?/Em,)) large ¢°.

We see that at small ¢ it is real, whereas at large ¢? it is
complex, as for the total contribution. The leading term in
this regime is also real, grows as ¢, and it is £ independent.
This &-independent term is precisely the result in the
Landau gauge of Eq. (4.5). We find this an interesting
result, since it demonstrates that the GB loops in the
Landau gauge provide the polynomic g> contribution of the
total loop result of Eq. (4.3) which is gauge invariant and
therefore has a physical meaning. This fact is clearly related
with the line of thinking in chiral Lagrangians where the
chiral loops provide the most relevant loops at large ¢°.

On the other hand, it is also interesting to compare the
GB contribution in the EChL with the SM case. From
Eq. (3.28), we deduce the corresponding expression in the
Landau gauge for an arbitrary Higgs boson momentum g2,

2
Vg$y|Landau — €y L

z 4.7

2my 872 (*.7)
which is constant in the whole ¢ range and it coincides with
the EChL case just for the Higgs boson on shell and a = 1.

Now, for & # 0, the approximate result in the two regimes is
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2 1 2
- Ze g WLHZqz small q2
- my 87~ 12Emyy
Vi, ~ g 1 (4.8)
e B m large ¢°.

Thus, the Landau contribution provides the leading loop
contribution for large ¢2, as in the EChL case. Regarding the
SM total one-loop amplitude for the Higgs boson off shell, as
we discussed along the Egs. (3.30) and (3.46), it does not
respect the Ward structure of the Eq. (3.12) and we cannot
define the corresponding vertex function in the R, gauges
VHW(q, ki, k,) for an arbitrary ¢°. In that case, two vertex
functions arise, corresponding to the coefficients of ¢"* and
K5kY in the amplitude of Eq. (3.44), but the behavior of these
two functions with the Higgs boson momentum is beyond
the scope of this work. However, for the case of on-shell
Higgs boson, we get the equivalence of the SM vertex in the
R; gauges and in the unitary gauge, and in addition we also

|

\% =
HrZ = amy \1622 2

2
dmyy

z
2m2 m>
— L (2¢* + 12m}, ——% ¢* —2m
q2—m%< T T

get the equivalence with the corresponding EChL vertex for
a =1 and cy,, = 0, as expected,

VHyy |q2:mﬁ = VH}/]/ |q2:m]2_|;a:1;cHW:0

g 1
= —— | 2m% + 12m},
2myy 1677 < M A

(G- e

We close this section presenting the H — yZ decay, in
which we proceed similarly as before. A useful check of the
following vertex functions is that we recover (leaving apart
coupling factors) the corresponding expressions of the
H — yy case in the limit mZ — 0, since this mass comes
just from the kinematics of the interaction. We start with the
full result of the vertex function coming from Eq. (3.53),

2 2
_ ey (L (qu T 1omd =2 g o
m

q

2 2m? 4m? 4m?
602 + 12m2 mz 5 6m2 — "z LANE W
qz _ mz < C] + mW + m%\/ C] + mZ m2 f 2 f 2

'

)5) o) v ). e

Taking into account the simple expression of f in Eq. (4.2) and the corresponding one for the function g,

1

3 157

g(r) ~ %(ln(—:) )

+0(7)

in') + O(r) smallr,

large r
(4.11)

we arrive to the approximate expression for the vertex function of H — yZ decay in the two Higgs boson momentum
regimes, including the effect of the Z boson mass, i.e., small ¢° (¢*> < 4m¥/) and large ¢* (¢° > 4mi,),

2 2 4 2
egocy, [ a 4m 12m 4m
VHyz|sma11q2Nm <—2 <18m%v—3m%—2(6m%¢—m%)g< mw> —2( m2W+6m%v—2m%>f( mzw _CH}'Zm%

8
o a (54m}, Tm% 36md, (4m3,
g 2472\ m3 +9_m2 C m2 g m3
Z W Z Z

3ms  [Am?> T2me,  [(4Am> 4m?
) -S G o () ) o))
My mz mz, mz mz

2 2 o 2
€9 Cw( 4 mz q 4m3,
ey~ (5 (1308 (72 (i) -(5)))

+(3myy—m2/2) (—ln2 <,Z—z> +7r2+2—4f< -

)

w

2
4 2 _ 2 4q 2 mz
+m8ﬂ2 <(6mw—mz)ln< 5 > +mz< =5,

w
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In view of the previous expression for small g2, Viyz is real and, for g*> = 0, there is a remaining contribution which
vanishes only at m5 — 0 [recovering the H — yy result in Eq. (4.3)]. On the other hand, this vertex function is complex at
large g°. The real part dominates, growing as ¢, whereas the imaginary part grows just logarithmically. Also, Eq. (4.3) is
recovered when m% — 0 in this regime.

The complete Goldstone boson contribution, coming from Eq. (3.48), is

2 2 2 2 2 2 2 2
eg’ey(1-15) a q>=26myy 4&myy 4Emyy 4&my, 4&myy

(4.13)

which is a complex function that depends on the £ parameter. The Landau gauge result (£ = 0) for arbitrary Higgs boson
momentum, ¢, then corresponds to

2 2 2 2
. egcy(1-13) a m m
VB, [Landau — 1622 7 <1 A —ng In <q22) ) . (4.14)

If £ # 0, then Eq. (4.13) has a zero at 1 = 2&m3,/¢* and a branch point at 1 = 4ém%,/q>.
Thus, we find the approximate GB vertex functions in the two regimes, of small ¢ (¢> < 4ém3,) and large ¢°

(q* > 4Emiy),

2 2 2 2
egcy(l —1t3) a 4¢m 4§m 4Em
Vg$z|smallq2 ~ M— (ng < -3+ 29 W) Wf 2W

2 2
sz 8 myz myz

5 l 1 émw 45’"%\/ 4¢fmW 4:§m%,
=0 (- 5 (5 (5) S (08)))
egtcy(1-12) a 2 4Em

Virthser >y 16 4 2( <cf %V) 29 ( m%w>>

+§m%v(1n2(%> (n* +2) +4f( Sy o )) —iﬂ(Zém%ﬂﬂ(%) —m%)). (4.15)

As for the Hyy vertex function of the GBs, at small g the vertex function V%‘;Z is real, whereas at large ¢ it is complex. The

leading loop contribution in this regime is also real, grows polynomicaly as ¢, and it is & independent. This &-independent
term is precisely the result of the polynomial term in the Landau gauge of Eq. (4.14). Therefore, we conclude again that the
chiral loops provide in the EChL the most relevant loop contribution at large g> to the loop amplitude, also in the
H — yZ case.

Finally, we compare with the GB contribution of the SM. From Eq. (3.49), the GB vertex function in the Landau gauge is

_ eqrey(1 -1 m3 m;
Vgl;Z|Landau - M”‘% <1 + Z Z ~In <_2Z>> (4.16)

3277 my —my q

whose dominant contribution at large ¢ is constant and depends on the Higgs boson mass. On the other hand, for & # 0, the
approximate result in the two regimes is

2 2 2 2 2
eg Cw(l - tw) 4ém 4&m 4m
ngz|<manq L <_3 +29 ( mzw + 2wf 2w

2
32m°my 7 my my

> (1 Emiy 4Em3y, 4ém,  [(4Em3,
o (o (2 (52 (58) - S5 (5))

2 1= t2
eg Cw(2 ey (4.17)
32 my

7GB
VH}/Z |largeq2 ~

Hence, the Landau contribution provides again the leading contribution for large g2, as in the EChL case, but now it is
constant with ¢. Concerning the SM total one-loop amplitude for the Higgs boson off-shell, as we discussed in the H — yy
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case, it does not respect the Ward structure and we cannot define the corresponding vertex function in the R: gauges
Vu,2(q. ki, ky) for an arbitrary g*. However, for the case of on-shell Higgs boson, we get again the equivalence of the SM
vertex in the R; gauges and in the unitary gauge, and in addition we also get the equivalence with the corresponding EChL

vertex for a = 1 and CHyz = 0, as expected,

_ eqg-cy, 1
VH]/Z|q2=m2 = VHyZ|q2=mZ'a=1'c 7=0 — g = 162
H H sCHyZz me 16
4m3
miy — my

Finally, before ending this section, we would like to
emphasize once again that the novel EChL R; results for
the Higgs off-shell case that we have presented in this work
for both the NLO full amplitudes, M,, in Eq. (3.47) and
M, in Eq. (3.53), and the corresponding full one-loop
effective vertices Vp,, in Eq. (4.1) and V,; in Eq. (4.10)
are all ¢ independent. Therefore, in order to study the
phenomenological consequences of these vertices, one
could use them into the internal Higgs interaction vertices
of interesting observables, like the amplitudes for certain
scattering processes that can be mediated by the Higgs
boson. For instance, u*u~ — yy, utu= = yZ, WW - yy,
WW — yZ, etc., where the Higgs boson could propagate as
a virtual particle and contribute to these processes at NLO.
But such a phenomenological study, although interesting, is
certainly beyond the scope of this work.

V. NUMERICAL RESULTS

In this section, we present the numerical predictions for
some previously derived quantities. We start with the EChL.
partial widths in terms of the relevant parameters a and
chyy- Next, we analyze the various bosonic R, contribu-
tions to these partial widths. Later, we discuss on the
differences found between the off-shell Higgs boson case
versus the on-shell case, and focus in particular in the
interesting features found for the vertex functions at large
off-shell Higgs boson momentum.

In order to give realistic predictions for the decay widths,
we must include the fermionic loop contributions. As we
said in the Introduction, we consider them as in the SM. In
particular, they provide a contribution to the amplitude that
is UV finite, ¢ independent, has the Ward structure, and
does not depend on the EChL parameters a and cg,y. In
particular, they do not modify our conclusions on the &
independence of the bosonic contributions and on the
renormalization of the £, operators.

The partial width of the H — yy decay in the EChL is
then constructed from the tree-level “T,” bosonic “B,” and
fermionic “F” loop contributions. Taking into account all
the polarization final states and an extra 1/2 identical

2my m
———Z | 2m? 12m3, — 2
( my + 12myy, m

(4.18)

EW ()-)
) (o)

particles factor in the phase space, the H — yy partial width
in the EChL can then be written as

FEChL T+B +F
v 16an 2 Z My

1

- 5.1
1671'mH ( )

| VH]/}’ | qzzm%{ + VZ;/;/ |q2:m§I |2’

where the vertex function Vg, showed in Eq. (4.1),
contains the tree-level and bosonic loop contributions.
The fermionic vertex function me [45] is well known
in the SM case and it is dominated by the top quark loop,

which is given by

g my 4 (—4'"“’9). (5.2)

Ve loem
Hyylg =my 16,2317 2
2mw 167~ 3 mi

We neglect the QCD corrections of O(a;) due to their small
impact in our numerical results, and we provide the explicit
function Afy in Eq. (B25). It is important to stress that the
polarization states {+-+,——} give equal nonvanishing
contributions and the {+—, —+} ones are vanishing (due
to the angular momentum conservation in the decay).
Similarly, in the partial width of the H — yZ decay, only
the pairs with equal transverse polarizations {4+, ——}
contribute, whereas the corresponding contributions from
{+-,—+} and {+0, -0} are vanishing. Notice that the
vanishing of the {40, —0, +—, —+} polarization contribu-
tions to both decays, H — yV with V =y, Z can be easily
understood from the explicit form of the decay amplitude
MY ,v in Eq. (3.12) and its product with the corresponding
polarization vectors €, (k;) and €, (k;). Then, M,y is given
in terms of the scalar products e(k;) - €(k,), €(k;) - k, and
€(ky) - k; which give a vanishing contribution for the
{40, -0, +—, —+} cases. Thus, we have
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FIG. 7. EChL partial width (fermionic loop included) corresponding to the H — yy (left) and H — yZ (right) decays as function of
Aa = a — 1 for different values of cp,y. The SM value is shown for reference (green star).

[EChL _ mH my Z | MT+B+F+CT|2
167ms3,; {oort
2 2
my —mgz
- W |VHyZ|q r=m + VZJ/ZL{Z:m]Z_l 2’ (53)

where now the vertex function Vy, 7, showed in Eq. (4.10),
contains the tree-level, bosonic loop, and counterterm “CT”
contributions. The fermionic vertex function szz is as in
the SM, and again it is dominated by the top quark loop,
which is given by [45]

VE L _edPeymy —mb4(1/2 —4s%,/3)
Hrzla=my = Dmy 1672 c,
Am2,, 4m
fo;Z< Mop m;p) (5.4)
my Mz

We neglect again the QCD corrections of O(«,), and we
provide the explicit function AI;Z in Eq. (B25).

From the previous analytical results, we already see that
both partial widths of Egs. (5.1) and (5.3) grow quadrati-
cally with each of the two relevant EChL parameters, a and
chyy, since they are the square of linear functions in these
parameters. To be more concrete, it is illustrative to explore
this growing numerically and to provide predictions on the
size of the corresponding widths with these two EChL
parameters, together with a comparison respect to the
SM predictions. For this comparison, it is convenient to
define the a value respect to the SM via the differ-
ence Aa =a—1.

Our numerical results for these partial widths, as func-
tions of Aa for different values of ¢y, are shown in Fig. 7.
We have explored the intervals on the EChL parameters
given by 0.2 < Aa < 0.2 and —1072 < ¢py,y < 1072, The
reason for the different size of these two intervals is obvious
given that a enters via loop corrections, therefore with extra
factors of O(1/(16x2)) at the amplitude level, whereas
chyy enters to tree level, hence with no extra suppression
factors. The point corresponding to Aa =0 and ¢y, =
cuyz = 0 is included in both plots for numerical compari-
son since it corresponds to the SM value, as we found
in Egs. (4.9) and (4.18). In this figure, we see clearly the
behavior of the EChL partial widths with these two
parameters Aa and cp,y and the departures respect to
the SM value. Setting cy,, = 0, the EChL partial width
grows (decreases) with positive (negative) Aa and separates
from the SM prediction, reaching values well above
(below) the SM value. The produced shift in |- —
I'PM] reaches values up to around 5 x 107> MeV for the
maximum explored values of |Aa| = 0.2. Setting Aa = 0,
the behavior with ¢y, is similar, and the produced shift
in this width difference also reaches values up to 5 x
1073 MeV for the maximum explored values of
lcy,,| = 1072, The behavior of the decay width in the
other studied channel, yZ, with Aa and ¢y, is similar, but
in this case the predicted shift is of smaller size, reaching
values of up to around 3 x 107> MeV for the maximum
explored values of [Aa| =0.2 or |cy,,| = 1072 Taking
into account both nonvanishing parameters, the shift in
both channels increases reaching values of up to around
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1072 MeV for the yy channel and around 6 x 103 for the
yZ channel, at the extreme values considered of both EChL
parameters.

Over the explored region of the parameter space, we also
construct in Fig. 8 the contour lines in the (Aa, cy,y) plane
for various fixed values of the ratio of the EChL partial
width over the SM one, I'*ChL /TSM  Specifically, we show
the contours for 'L /TSM equal to 1., 1. £ 0.1, 1. + 0.2,
1.£0.3, and 1. & 0.5 that correspond to deviations respect
to the SM value, (IEChL —TSM)/TSM of 0%, +10%,
+20%, +£30%, and £50%, respectively. The resulting
contour lines are parallel straight lines, corresponding to
the linear dependence of V,y | 4=m, as function of a (or
equivalently Aa = a — 1) and cy,y. In this figure, we see
clearly that the same numerical prediction for the ratio
[EChL /TSM - can  be reached for the infinite points
(Aa,cp,y) on top of the corresponding straight line. In
particular, the same EChL prediction as in the SM can be
reached for all the points on top of the contour line with
[ECL/TSM = 1 and not just for (Aa,cy,y) = (0,0).
Therefore, potential signatures from BSM physics via these
Higgs decay channels get strongly reduced sensitivity at all
these points and the corresponding ones on top of the
closest parallel lines to these reference lines. The more
distant lines to the blue line correspond to the larger
sensitivities to BSM physics. Thus, the two farthest
contours summarize the (Aa,cy,y) points with largest
deviations respect to the SM, and therefore the first ones to
be constrained by data. The present status of experimental
searches for the H — yy decay corresponds to the measured
signal strengths relative to the SM expectation papas =
0.99701> [46] and pcys = 1.187017 [47]. However, the

H — yZ decay is not measured yet and we only have an
upper limit on the production cross section times the
branching ratio [48-50]. Also, the corresponding prospects
to High Luminosity(HL)-LHC and High Energy(HE)-LHC
are given in [51]. A detailed analysis of the constraints on
the EChL parameters entering in the Higgs observables is
given in [34].

Next, we explore the anatomy of the various loop
contributions participating in the R; gauges. For simplicity,
we fix ¢y, = cyyz =0 from now on in our numerical
estimates. As we said in the previous sections, this splitting
leads to contributions that are separately £ dependent. Thus,
when comparing numerically the size of the various loop
contributions to the Higgs decays, we have to set £ to a
specific value. We choose in particular to make this
numerical comparison for the two most popular R: gauges,
the Landau gauge (¢ = 0) and the Feynman-’t Hooft gauge
(¢ = 1). Since, as discussed in Sec. III B, it is only the GB
contribution, among all the bosonic loop contributions,
which respects the Ward structure of the amplitude and it is
UV finite by itself, we have done this separation in the total
amplitude specifically as GB contribution plus the rest,
meaning that in our numerical predictions we put together
the other gauge+mix+CT contributions. On the other hand,
our interest in showing the GB loop contributions sepa-
rately is also because we know that they play a distinct role
in nonlinear EFTs based on chiral symmetries. The GB
loops of these chiral theories, usually called chiral loops,
play the most relevant role in the chiral (momentum)
expansion of physical quantities, like scattering amplitudes,
decay amplitudes, etc., since they provide the largest
contributions due to the GB derivative couplings. This is
clearly the case of pion loops in the context of ChPT. Thus,
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FIG. 9. Anatomy of the various contributions to the EChL partial widths as functions of Aa = a — 1 in the Landau and Feynman

gauges, for the H — yy (left) and H — yZ (right) decays. The

predictions for the complete partial width (solid), the GB loop

contribution (dashed), and the contributions from the rest (dotted) are shown separately.

we wish to explore here what is the role of the GB loops in our
EChL case, and analyze if they are also relevant or not in the
selected Higgs decays. We wish also to analyze if this
relevance depends or not on the gauge-fixing £ parameter
and on the particular setting of the Higgs momentum, i.e.,
being either on shell or off shell. Next we analyze these issues,
first for the partial widths and later for the vertex functions.

Figure 9 shows our separate predictions within the EChL
in the R; gauges of the partial widths for both decays as
function of Aa. The fermion loop contribution is added in
all predictions of the complete partial widths shown, as
explained above. In these plots, the contributions from each
separate loops types to the partial widths means that the
others have been set to zero. Specifically, we include in
Fig. 9 the predictions for the complete partial width, the GB
loops contributions, and the contributions from the rest, i.e.,
from gauge + mix in the yy case and from gauge+mix+CT
in the yZ case. As we can clearly see from these plots, the
GB loops contributions do not provide the leading con-
tribution to the partial widths for any of the two chosen
gauges in the case of the on-shell Higgs boson, i.e., with
g* = m;. At this low momentum, the most relevant loops
are indeed the remaining ones, i.e., the loops with only
gauge bosons, and the loops with both gauge and GB loops.

Finally, in order to explore the off-shell case, we study
the behavior of the EChL vertex functions in the R, gauges
in terms of the off-shell Higgs boson momentum squared,
g*>. We show in Fig. 10 our numerical predictions for the
two vertex functions, Vy,, and Vy,,, normalized by the a

parameter, as functions of \/¢?, focusing this time on just

the boson loops (i.e., we do not include here the fermion
loops) and setting again cg,, = cy,z = 0. Since these are
complex functions, we display separately their correspond-
ing real and imaginary parts. The explored interval in g?
goes up to (3 TeV)? which corresponds typically to the
maximum allowed energy for valid predictions within this
nonlinear EFT of the EChL given approximately by 4zv.
As in the previous plots, we include predictions for the two
cases, £ = 0 and & = 1. Specifically, we show predictions
from the total boson loops and from just the GB loops.
Notice that we have also included the contribution from the
counterterm in the case of Vy,, since, as we said, it is
crucial for the ¢ independence, UV finiteness, and Ward
structure of the total vertex function result. Furthermore, for
illustrative purposes and to help in extracting the con-
clusions from this plot, we also include in this figure the
predictions from the simple approximate vertex functions
found in the previous sections. Concretely those valid at
large ¢°.

First of all, in regard the validity of our approximate
formulas for Vy,, and Vy,; at large g%, we compare the
predictions in this figure with the predictions using the
corresponding full formulas. We can see in Fig. 10 a very
good agreement in all cases of the approximate results with
the corresponding full results at large ¢°. The agreement is
indeed excellent for a Higgs boson momentum say above
1 TeV. Second, we see that at large energies the real part
dominates over the imaginary part in the total amplitudes.
In particular, this hierarchy is achieved roughly above 1 and
1.7 TeV for H - yy and H — yZ, respectively. Third,
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comparing the real parts, the predictions of the GB loops
for both £ = 0 and £ = 1 are very close to each other above
500 GeV for both decays. Remember that in the Landau
gauge the GB loops are indeed real. Finally, and most
importantly, we also see that these real parts from the GB
loops approach clearly to the real part of the total prediction
at large ¢”. This occurs in Vi, already at intermediate
energies, say above 500 GeV, and in Vy,, at larger
energies, say above 1500 GeV. The growing dependence
with the energy of these predictions is very well approxi-
mated by the simple prediction from the Landau gauge,
which is polynomic in ¢> at large momentum. This
polynomic contribution is indeed UV finite and gauge
independent. Thus, we conclude from this plot that the GB
loops (i.e., the chiral loops) do provide the most relevant
loop contributions to the vertex functions in the case of the
off-shell Higgs boson, at large energies, and their main
effect can be described by the simple polynomic term that is
gauge invariant. This is in concordance with the expect-
ations in EFT described by chiral Lagrangians.

VI. CONCLUSIONS

The use of EFTs containing the Higgs boson particle and
its interactions with all the SM particles, in a SU(3) x
SU(2) x U(1) gauge invariant way, is nowadays with
no doubt, the best tool we have at hand to describe in a

model-independent way the potential new Higgs physics
from BSM dynamics. In this work, we have focused on the
bosonic sector of the nonlinear EFT given by the EChL
which is the most appropriate one if the dynamics behind
the EWSBS is strongly interacting. In that case, the GBs of
the electroweak symmetry breaking are also the GBs of the
electroweak chiral symmetry breaking, SU(2), xSU(2)z —
SU(2); g, and the nonlinearity of the GBs under SU(2)
transformations leads to notable differences with respect to
the SM case and also with respect to linear EFTs like the
SMEFT. These include derivative GB self-interactions,
different GB couplings to the EW gauge bosons and to
the Higgs boson, multiple particle interactions, and others.
These differences, in turn, may also affect in a relevant way
to the Higgs physics itself, particularly when going beyond
the tree level within this EChL approach.

In this paper, we have worked out in full detail the
computation, within the EChL to one-loop level, of two
Higgs decays which are of particular relevance due to their
phenomenological implications for collider physics.
Concretely, H — yy and H — yZ. We have presented here,
in a supposedly didactic and illustrative way, the sequential
steps to follow in this one-loop computation, according to
the standard rules of chiral Lagrangians and also including
the proper renormalization program for this case. Our
computation in the EChL with R; gauges is a novel one,
and we believe complements in an interesting way the
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computation available in the literature [34], which is
performed in the unitary gauge instead.

First, we have provided an explicit demonstration of the
gauge invariance of the resulting EChL R: amplitudes, for
both decays H — yy and H — yZ. Specifically, we dem-
onstrate that both decay amplitudes are UV finite, &
independent, preserve the structure of the Ward identity,
and find out a final result that coincides with the unitary
gauge result. One of the most interesting features is that
these findings are true for both assumptions on the external
Higgs momentum, on shell and off shell. The two external
gauge bosons are always assumed here to be on shell. This
situation is different than in the SM case, where it was
proven in [35] the gauge invariance of the decay amplitude
H — yy for the on-shell Higgs case, but the off-shell case
was not considered. Thus, we have also computed here, for
comparison with our EChL computation, the SM Higgs
amplitudes in both decay channels for the missing off-shell
case in the R; gauges. For this part of the gauge invariance
demonstration, we have followed very closely the pro-
cedure described in [35]. Our overall outcome from that
comparison is that whereas the one-loop EChL amplitudes
preserve gauge invariance and the Ward structure in both
Higgs cases, on shell and off shell, it is not the same for the
SM case. For the SM R; amplitudes, we found that, for
arbitrary Higgs boson momentum g2, they are both UV
finite but they are £ dependent and do not preserve the Ward
structure. And it is in the on-shell case, g> = m%, where the
gauge invariance of the total SM amplitudes is recovered.

In addition to the gauge invariance demonstration, we
have also discussed, both analytically and numerically, on
the relevance of the various parts contributing to the total
EChL one-loop decay amplitudes. These include the con-
tributions from (i) the tree-level EChL coefficients entering
in the chiral dimension 4 operators, ¢, and cy,z, (ii) the
various types of loop diagrams built from the chiral
dimension 2 operators (hence, providing the dependence
on the EChL coefficient @), namely, those with only gauge
bosons in the loops, those with only GBs, those with both
gauge and GBs, and those with ghosts, and, finally, (iii) the
various counterterms. In the analytical part, we found that
the contribution from GB loops is by itself UV finite and
preserves the Ward structure, although it is £ dependent.

The anatomy of the studied Higgs boson decays in terms
of the mentioned contributions within the R, gauges has
allowed us to unveil the role played by the GBs, usually
called chiral loops in the chiral Lagrangian approach. For
that purpose, we consider the corresponding one-loop
vertex functions, Vy,, and Vg7, and analyze them also
numerically in the two different cases for the external Higgs
boson momentum: on shell and off shell. When comparing
the size of the various contributions (this is true for both the
Higgs boson partial widths and the one-loop vertex
functions) with the corresponding total result, we found
that the size of the GB loop contributions is very small

(compared to the others) in the case that the Higgs boson is
on shell. We understand this smallness because the
momentum transferred to the loop is small, being set by
g* = m2,. In contrast, for the off-shell Higgs case, we found
that the GB contribution is indeed the most relevant one
when the Higgs boson momentum reaches the TeV domain.
The typical growing behavior with energy of the chiral
Lagrangian amplitudes is understood, in the present case,
by performing an expansion at large momentum of the one-
loop Higgs decay EChL amplitudes and the corresponding

vertex functions. Here by large \/? we mean large
compared with the soft masses involved, my, my, and
mpy, but below the maximum energy that is allowed for this
EFT to be valid, which in the present EChL case is set
approximately by 4zv ~ 3 TeV. We also checked numeri-
cally that, indeed, the GB loops provide the most relevant
contributions at these O(TeV) large energies, and they
approach clearly the total result. Finally, with the help of
our approximate formulas from the expansion at large g of
the one-loop vertex functions, we understood that the
dominant term in the total amplitude is polynomial in g?
and it is reproduced by the &-independent part of the GB
contributions, in concordance with the expectations in
EFTs described by chiral Lagrangians.

In conclusion and in summary, we believe that the
results of the R, gauges presented in this paper complement
nicely the previous ones in the literature of the unitary
gauge, and they may be useful in the colliders analysis
of BSM Higgs signatures via these two channels. The one-
loop vertex functions derived here, Vg, and Vg7, can
also have interesting applications for Higgs-mediated
processes where the intermediate propagating Higgs boson
is off shell.

ACKNOWLEDGMENTS

This work was supported by the European Union
through the ITN ELUSIVES H2020-MSCA-ITN-2015//
674896 and the RISE INVISIBLESPLUS H2020-MSCA-
RISE-2015//690575, by the “Spanish Agencia Estatal de
Investigacion” (AEI) and the EU “Fondo Europeo de
Desarrollo Regional” (FEDER) through the Project
No. FPA2016-78022-P and from the grant IFT Centro
de Excelencia Severo Ochoa SEV-2016-0597.

APPENDIX A: RELEVANT FEYNMAN RULES

In this Appendix, we summarize all the relevant Feynman
rules participating in the computation. Regarding the W
propagator —iP,,, we split it into two pieces as in Egs. (3.20)
and (3.21), in order to demonstrate the £ independence of the
total one-loop amplitude in the R; gauges computation. In
Tables I and II, we collect these relevant Feynman rules for
the EChL interaction vertices coming from £, of Eq. (2.7)
and the corresponding SM Feynman rules for a clear
comparison between them. In particular, Table I contains
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TABLE I Relevant EChL Feynman rules from £, participating in the unitary and R; gauge computations. All momenta are incoming.
In the rules with “{,},” the first and second arguments correspond to the photon and Z boson, respectively. We also include the
corresponding SM Feynman rules for comparison.

Interaction EChL SM
+
Wl/
7 P+ —i{(:‘, gcw}r;wp(p—7 p+*p0) _i{e7 gcw}r;ty/)(p—vp+’ pO)
Vor 2p Yo b,
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fy;l, ’yl/7 ZV
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2iam?, 2im?,
_____ H I}ngll/ —lfwg’w
W=
2iam? 2im?
E _____ " 7 g

TABLE II.  Additional relevant EChL Feynman rules from £, participating in the R; gauge computation. All momenta are incoming
(except for the ¢’s, given by the arrows). In the rules with {, }, the first and second arguments are for the photon and Z boson,
respectively. The corresponding SM rules are included for comparison.

Interaction EChL SM
.t
7
o _2ia, | _igMi
Heo o<~ WD+ P 59
A ~NP—
~N \ﬂ-*
_H
+ _“PH 2amy _p m_w( _ )y
Winnnwx T PE v \P5 = PH
> \NPx
.t
/p/ . gey(1-13, . gey(1-13,
ST ife, U (p_—p ) ife, Ny (p_—p )

(Table continued)
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TABLE 1I. (Continued)

Interaction EChL SM
Vyus Ly
_____ ¥ {Eemy, Fetymy g™ {Eemy, Fetymy}tg"”
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e ; sy
AT - - H e MG (po = py ) 0
Vs Ly N
PN
NS
o mt
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the FRs participating in both the unitary and the R; gauge  On the other hand, Table II contains the other relevant FRs
computations, and we use the following short notation for ~ involved in the R gauges. Notice that, to shorten the table,
the standard Lorentz tensors of the gauge boson self — we present together the photon and Z boson interaction

couplings: vertices in most of the Feynman rules. In that cases, the first
coupling corresponds to the photon and the second one to
D (p_. py.po) = 9" (p- = p+) + ¢ (p+ = Po)* the Z.
+ ¢*(po—p_). The Feynman rules corresponding to the relevant £y
operators of Eq. (2.10) are shown in Fig. 11. Notice that
ST =299 = 9" 9 — 99" (A1) these are not present in the SM.
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FIG. 12. Relevant EChL Feynman rules from all the counterterms involved in the computation. A crossed circle is drawn to denote
these counterterms. We use the short notation §Z,, = sy,¢y (82w — 6Z5) for the contribution from the counterterm of the wave

function renormalization of the mixing.

Finally, the Feynman rules for all the counterterms
involved in the present computation, according to the
explanation presented in the text, are collected in Fig. 12.

APPENDIX B: PREPARING THE ONE-LOOP
DIAGRAMS FOR THE AUTOMATED
COMPUTATION

In this Appendix, we present the contributions to the Higgs
decay amplitudes from the various one-loop diagrams. For
this computation, we have used the automated procedure
provided by the Package-X [44] which requires to write the
input diagrams in a given format. Thus, we prepare here the
input diagrams to be ready for this automated computation.

The one-loop computation is performed with dimen-
sional regularization in D = 4 — ¢ dimensions, and we use
the standard definitions for the associated divergence,

2 Ay
A, :——yEJrlog(—ﬂgO),
€ miy

where p is the usual scale and the presence of the W mass
comes from the fact that only charged particles run in the
loops (we separate the ¢ dependence coming from the R,

(B1)

part of the W propagator and from the GB and ghost ones).
We implement the compact notation for the momentum
integral given by

dPk

J = [ Gy

To display some results, we also use the scalar two- and
three-point one-loop integral functions in the Passarino-
Veltman notation [52], with the following conventions:

; 1
@BO(QI’ml’mZ) - A (k> —m¥][(k+ q1)* —m3]’
(83)

(B2)

i
WC’O(QDQ%mI’mZ’m})

1
- A (k2 = mi][(k + 1) = m3][(k + g, + q2)* = m3]
(B4)

The other functions f and g that we use in this work are
defined in Egs. (3.27) and (3.45), respectively, and are
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particular cases of the previous two- and three-point
integral functions. Explicitly,

2

2 [4M?
Co(0.g. M. M. M) = —— f and
q q

2
Bo(g, M. M) = A, + g(“qﬂ) (85)

With all these conventions above, we present next each
diagram of Figs. 3-6 in terms of the Feynman rules of
Tables I and II, in an explicit form such that, as we have said,
they are ready for the automated computation with the
Package-X [44]. In all categories, only charged particles are
present in the loops and we just show the diagrams with
negative-charged particles running clockwise in the loops
(along the momentum p). The possible additional diagrams
with positive-charged particles running clockwise (or neg-
ative-charged in counterclockwise) are taken into account by
means of an extra factor 2 in the amplitude. It is important to
stress that the kinematics of each decay is different and the
resulting m,-dependence in the H — yZ decay breaks the
symmetry under the exchange of the external gauge bosons
(present in H — yy). Then we explicitly draw the crossing
diagrams and denote them by adding a prime ’. However, the
reading of the diagrams in both decays is the same and they
just differ on the coupling factors of Tables I and II. In
particular, the results of the H — yy case are recovered in the
limit m; — 0 from the corresponding ones of the H — yZ
case, leaving apart these coupling factors.

The results for the diagrams are presented in the format
of contributions to the rank-two tensor M}y, from each
diagram, following the definition of Eq. (3.12), inspired on
the U(1)gy Ward identity. It is important to stress that this
Ward identity structure does not arise on each individual
diagram, and it is only present for the contributions from
the GB loops and for the total one-loop amplitude (as we
discussed along the text). We present the amplitudes for
each diagram in both the EChL and the SM cases
simultaneously for comparison. We omit to include here
the explicit output for each diagram from the Package-X
computation, due to their extremely large size. However,
when summing over the diagrams, the outcome is shorten
and it is indeed included explicitly in the text.

The EChL amplitudes of the diagrams type (a) and (b), in
terms of the FRs, are

IME = Ca/p Py ()P, (P — ki) Psp(p — ki — ky)
% gaﬁ]"}’ﬁﬂ(p’ —p + ki, —k)
xTP%(p —ky,—p + ki + ky, —k3)

MY = iMY | otyponcacy

M =, / Po(p)Pap(p — Ky — k)P, (B6)
p

with coupling factors equal to

C,=C, Co
H—yy e2gmya —eg’c,mya
H-yZ eq’cymya —eg? cymya.

The corresponding SM amplitudes to these diagrams
are the same except for the strength of the HWW vertex
(where we must set @ = 1), as it can be seen from Table I,

M”U:Mlz;y|a:1’ ng:MgHa:l and MFU:Mﬁyla:l‘
(B7)

The EChL amplitudes of the diagrams type (c), in terms of
the Feynman rules, are

1
AU -
IMe = Cc/pPaY(p)P/lﬂ(p kl) (p —k, — k2)2 - gm\ZN

X (p =k — ko) T (p, —p + ky. =k ) g

. nwo__ - UV
lMC’ - IMC |k1<—>k2;/4<—>u;CC—>CC/'

(B8)

The corresponding SM amplitudes differ on the HWz
vertex,

_ _ 1
i/\/l””:CC/Pa P, (p—k
Ay Py sy w3

X (p = 2ky = 2ky)" T (p, —p + ky, —ky) g

MY AHY o
lMc’ - ZMC |k|<—>k2;y<—>u;CC—>Cc/’ (B9)
with coupling factors equal to
CC CC’ C_C C_C’
H—yy 2é2 262 2e2gd 2e2¢gd
gmya e“gmwya e“gymy e-gsmy

2 > 2 2y
H—yZ —2e?Smya —2€gCuiwa —2e g Sy, —2eg 5 My
v v

The EChL amplitudes of the diagrams type (d), in terms
of the Feynman rules, are

1
(P —ky = ko)* = Emy 7

. /28 2%
lMd’ - lMd |k1<—>k2;;4<—>v;Cd—>Cd/'

IMY = Cd/ P,,(p—ky)
p

(B10)

The corresponding SM amplitudes differ on the HyWr and
HZWr vertices,

1
r—f ke

TRV TR Y o
lMd’ - lMd |k1<—>k2;;4<—>v;Cd—>Cd/’

iMy = éd/P/lp(p —ky)
P

(B11)

with coupling factors equal to
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Cd = Cdf éd = éd'
H—yy —2¢? gmwa —Zezg%mw
52,
H—yZ 2eg2 Sw = mya 2eg? e My

C
H—yy —2e gm%va
H—yZ 2eq? S—“mwa

The EChL amplitudes of the diagrams type (e), in terms
of the Feynman rules, are

1 1
iﬂﬁ%ﬂz/Pap
¢ p y( )(P—kl)z—fm%v(l’—kl—kz)z—fm%v
X (p—ky —ka) g (=2p + 2k, + k)
lMﬁ:w = iMéw |k1 <—>k2;u<—>y;Cc—>Ce/ . (B 12)

The corresponding SM amplitudes differ on the H W vertex,

_ _ 1 1
M =C / P..(p)

T T k) ey (p— =) = Emy,

X (p—2ky =2k, )" g (=2p + 2k) + k)"
iﬂg” = iﬂgylk,ekz;ﬂe“ée_)éd , (Bl?))
with coupling factors equal to
Ce CC/ C_C ée/

H-yy =2e’gmya —2e’gmya —2é° gzmw —2¢? g My
H—yZ —269 2egz§wmwa —2692°W “my 26975 Ses My

-
2c\V

My a

The EChL amplitude of the diagram type (f), in terms of
the Feynman rules, is

1
iMW—C~/Pa e
f » y(p)(p_kl)z_gm%v
X Psg(p — ki — ko) g g o (B14)

with coupling factors equal to

The corresponding SM amplitude to this diagram is the
same except for the strength of the HWW vertex (where we
must set a = 1), as it can be seen from Table I,

M = M| ey (BI5)

The EChL amplitude of the diagram type (g), in terms of
the Feynman rules, is

1
MM — —— p -
iML =, /,, Py (P = ki)

1
X p-(p—k
=k —ky =, Pk

— ko) g g
(B16)

The corresponding SM amplitude differs on the Hzx
vertex,

— = 1
M =C /—P) —k
l g ppz_fm%v i/(p 1)

1
x drgr, (B17)
(p—ki - kz) fmw
with coupling factors equal to
Ce C,
H—yy 2e2gmya —2¢? g mwm%{
H—yZ —Zegzi—imwa 2eg? = 2‘” My .

The EChL amplitudes of the diagrams type (h), in terms
of the Feynman rules, are

1 1 1
i./\/l’“':C/ p
b R —emy (p— ki)Y = Emy (p — ky — ky)? — Emdy

(p=ki = k) (=2p + k) (=2p + 2k; + kyp)¥

M = iMoo kpoviy—cy - (B18)
The corresponding SM amplitudes differ on the Haz vertex,

My = éh/ 5 ! 5 12 5 ! ——— (=2p + k) ) (=2p + 2k; + ky)*

p D7 —Emyy (p—ky)* —Emiy (p — ki — ky)* — Emyy

iMy = imﬁu|k1<—>k2;ﬂ<—>b;éh—>c_h/’ (B19)

with coupling factors equal to
Cy = Cy Ch = Cy

H—-yy —esza g2m}2:~
o e e S
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The EChL amplitude of the diagram type (i), in terms of
the Feynman rules, is

1 1
lMiw = Cl/
p PP —Emy (p —ky — ky)?
P (p—k—k)g”.

The corresponding SM amplitudes differ on the Hzz vertex,

— 5’"%\/
(B20)

v 1
MG e ot 2
with coupling factors equal to
C; g
H—yy &2 gﬁ a o2 g %

The EChL amplitudes of the diagrams type (j) are
vanishing due to the absence of the interaction vertex of

a Higgs boson with two ghosts,
i/\/lﬁ“’ = i/\/lg‘,” =0. (B22)

On the other hand, the SM amplitudes are

1
C/p— =k —&mly
(p— k) (p— ki — k)

(B23)

X
(P—kl —kz)
M

me
iﬂ@”:

|k1 <lyueviC—Cyr

with coupling factors equal to

(_2)629%5mw
(=2)eg® 5 Emy.

H—vyy
H—yZ

The EChL amplitudes of the diagrams type (k) and (1), in
terms of the FRs, are

1
; [ g— C N
iM k/p ijwg

o 1 1
e Cl/ppz —&m}y (p k) = Emiy
x (2p = ki)' (2p —ky)*

iMfy = iMIlw|k] Skyuevi—Cyo (B24)

with coupling factors equal to
Cx C=Cr

H—yy —ezgﬁa esza
H—-yZ —egz%ﬁa egchéL:wmlw )

On the other hand, the corresponding SM amplitudes are
vanishing since there are not the multiparticle vertices
Hynr, HZzn, Hyynr, nor HyZnn.

Finally, the fermionic loop contributions in the EChL are
taken as in the SM and are extracted from [45] for both
decays. We provide explicitly the special functions with our
conventions and the definitions of the f and g functions of
Egs. (3.27) and (3.45),

AL, (x) = =2x(1 + (1 = x)f(x)),
AT (x,y) = I1(x,y) = L(x,y),

where the auxiliary functions are

(B25)

X .X'22
Y
2(x—y)

(f(x) =)

Ii(x,y) =

(B26)
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