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Nonequilibrium Green’s functions provide an efficient way to describe the evolution of the energy-
momentum tensor during the early-time preequilibrium stage of high-energy heavy-ion collisions. Besides
their practical relevance they also provide a meaningful way to address the question when and to what
extent a hydrodynamic description of the system becomes applicable. Within the kinetic theory framework
we derive a new method to calculate time-dependent nonequilibrium Green’s functions describing the
evolution of energy and momentum perturbations on top of an evolving far-from-equilibrium background.
We discuss the approach toward viscous hydrodynamics along with the emergence of various scaling
phenomena for conformal systems. By comparing our results obtained in the relaxation time approximation
to previous calculations in Yang-Mills kinetic theory, we further address the question which macroscopic
features of the energy-momentum tensor are sensitive to the underlying microscopic dynamics.
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I. INTRODUCTION

Ultrarelativistic heavy-ion experiments carried out at
the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) have produced a new state of
matter where quarks and gluons are liberated from the
incoming nuclei [1-4]. Since the lifetime of this quark-
gluon plasma (QGP) is very short, its properties are
reconstructed by analyzing a large set of hadronic observ-
ables. The phenomenological studies of the collected
wealth of experimental data have shown that hydrodynam-
ical models provide robust tools to explain the dynamics of
the QGP [5-9]. As a result, a new paradigm in high-energy
nuclear physics has emerged where hydrodynamics plays a
central role.

One of the most consistent findings in the hydrodynam-
ical modeling of heavy-ion collisions is a small value of the
shear viscosity over entropy ratio n/s ~ 1/(4r) extracted
from large number of observables measured in ultrarela-
tivistic heavy-ion collisions over a different range of
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energies at both the RHIC and LHC. Currently, the standard
approach to describe high-energy heavy-ion collisions is
based on multistage models where the space-time dynamics
of the QGP is described using relativistic viscous hydro-
dynamics. Subsequently, the energy density of the QGP is
converted into a hadron gas which eventually freezes out,
yielding the final state hadronic observables that can be
compared to experimental measurements. One key ingre-
dient in this phenomenological approach is the initial
conditions characterizing the initial distributions of the
energy density and flow velocities, which are then propa-
gated via hydrodynamics. Clearly, the calculation of these
quantities from first principles QCD represents an enor-
mous challenge, which despite important developments
during the last years [10-22] has not been answered
completely.

One important feature shared by all initial state models is
related to the far-from-equilibrium nature of the QCD
matter produced immediately after the collision of heavy
nuclei on a timescale 7, < 1 fm/c [23]. Since at these
early times the QCD matter is also subject to a rapid
longitudinal expansion, viscous hydrodynamics which is
an effective theory for the long-time and long wavelength
behavior close to equilibrium is not necessarily applicable
at such early times. Although in recent years the existence
of a far-from-equilibrium fluid dynamical theory has been
advocated [24—46], its formulation remains to be completed
and thus, in practice hydrodynamic simulations of heavy-
ion collisions are usually initialized after a certain period
time 7 = Tyyqr, ~ 1 fm/c, where the longitudinal expansion
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is less rapid and the QGP has evolved toward local thermal
equilibrium.

The question how to match the nonequilibrium initial
state at 7 to the initial state for hydrodynamics at zy,4,, Was
the subject of a series of recent papers [47-50]. Based on an
underlying microscopic description in QCD kinetic theory,
the initial conditions for the energy-momentum tensor
TH (Thyaro) at the beginning of the hydrodynamic phase
are hereby obtained from the initial energy-momentum
tensor T#%(zy), by determining the evolution of macro-
scopic quantities, based on nonequilibrium Green’s func-
tions of the energy-momentum tensor [48,49]. This new
framework, dubbed as KgMPgST [48,49], has proven to be a
powerful tool to describe the preequilibrium evolution of
heavy-ion collisions on an event-by-event basis [51,52].
While the detailed phenomenological consequences of the
preequilibrium stage remain to be explored, it has been
demonstrated that the subsequent hydrodynamic evolution
becomes independent of the hydrodynamic initialization
time 74y, as long as the latter is chosen to be in the regime
where both kinetic theory and hydrodynamic descriptions
overlap.

While [48,49] presented a calculation of nonequilibrium
Green’s functions in QCD kinetic theory, it is also
interesting to explore to what extent the microscopic details
affect the evolution of the macroscopic quantities far from
equilibrium. In this work we therefore present a new
method to calculate nonequilibrium Green’s functions of
the energy-momentum tensor. We generalize the method of
moments approach [53,54] by incorporating the response
of a far-from-equilibrium expanding plasma against linear
perturbations, and analyze their nonequilibrium in the
relaxation time approximation. Instead of solving linear
kinetic theory for perturbations of the phase-space distri-
bution function we analyze the equations of motion of the
corresponding linearized moments. Eventually, the Green’s
functions of the energy-momentum tensor are recon-
structed from the linearized moments.

This paper is organized as follows: In Sec. II we
introduce the relevant aspects of the Boltzmann equation.
We explain the main aspects of the emergent attracting
behavior of the nonequilibrated Bjorken flow background
in Sec. III. In Sec. IV we present the formalism to des-
cribe the space-time evolution of the perturbations. Using
this formalism we proceed in Sec. V to calculate the
Green’s functions of the energy-momentum tensor. Con-
clusions and outlook are discussed in Sec. VI. Some
technical aspects of our work are briefly discussed in the
Appendix.

II. BOLTZMANN EQUATION WITHIN THE
RELAXATION TIME APPROXIMATION

The starting point of our analysis is the Boltzmann
equation within the relaxation time approximation (RTA)

pﬂauf = C[f] =

P (@) ()

where the coordinate system defined in Minkowski space is
x# = (x°, x, x*) with the metric g,, = diag(1,-1,-1,-1).
In Eq. (1) we denote f#(x) = u*(x)/T(x) with the local
rest-frame velocity u#(x) determined via the Landau
matching condition

T (x)u, (x) = e(x)u(x). (2a)

e(x) = eeq(T(x)). (2b)

The fluid velocity is defined as a timelike eigenvector
(u> = +1) of the energy-momentum tensor for on-shell
particles

™ (x) = (p"p"),

where we denote the on-shell momentum average of any
observable as

Vet

O aay /¢—

x O(x#, p*) fx (x, p*). (3)

(2m)8(p*)20(p°)

The effective temperature T'(x) entering Eq. (2a) is deter-
mined from the (equilibrium) equation of state e.q(7'), by
matching the corresponding eigenvalue e to the equilibrium
energy density. If not stated otherwise, we will consider an
ultrarelativistic system of massless bosons where the
equilibrium distribution function is given by the Bose-
Einstein distribution f,, (x) = 1/(e* — 1), such that

2

= Vegp = T*. (4)

T

We are interested in longitudinal boost-invariant expanding
system and thus, we use the hyperbolic Bjorken coordi-
nates defined in terms of the Cartesian coordinates as

T =/ (x%)? = ()2,

so the metric g, = diag(1,—1,-1,—7%) and \/—g(x) = 7.
Similarly, the four-momentum of a relativistic massless
particle is

¢ = arctanh(x*/x%),  (5)

p* = (prcosh(y),p, prsinh(y)) (6)

with y = arctanh(p?/p®) and p; = |p|.
In the Bjorken coordinates the Boltzmann equation (1)
takes the following form
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[p*0, + p'0; + p<0.]f(x., p)

P C) e o) = Fapa DL ()

TR

where

p"=preosh(y—¢).  p*= %pr sinh(y —¢).  (8)
Hereafter we shall use the roman letter i = x, y to denote
the summation only over the transverse coordinates. By
virtue of the coordinate transformation (5), the derivatives
with respect to 7, ¢ in Eq. (7) are taken at constant py and
momentum space rapidity y. However, when analyzing the
dynamics of a boost-invariant medium it is more conven-
ient to work with the (dimensionless) longitudinal momen-
tum variable

pe = —T*p° = —zprsinh(y —¢). )

By transforming the space-time derivatives according to
a‘r = 8‘r|pg - Pr Slnh(y - g)apg’ (10)
0. = 8g|pg + zprcosh(y —¢)9, (11)

one finds that the two additional terms cancel each other,
such that

P
p*o, + p'o; —T—fag f(x,p)

_ _M[f(x,p) —fea(puP' ()], (12)

TR

which is the form of the equation that we will consider in
this work. We note in passing, that it is also common in the
literature to express the dynamics in terms of the longi-
tudinal momentum in the local rest frame

pl = zp = prsinh(y —¢). (13)

In this case only the derivative with respect to the
longitudinal rapidity is affected by the transformation

ag = ag|pH — preosh(y —¢)d (14)

pls

and the Boltzmann equation takes the form (see e.g., [55])

) I I
PO+ pio;+ 0. - p 0 | f(x. p)
T T

— P e )~ fup @) (15)

TR

III. EVOLUTION OF BOOST-INVARIANT
HOMOGENOUS BACKGROUND

During the early preequilibrium stage of a heavy-ion
collision, which lasts about 1 fm/c, the nonequilibrium
plasma is subject to a rapid longitudinal expansion. Con-
versely, in the transverse plane the plasma is initially
created at rest, and the transverse expansion only builds
up in response to local energy-density gradients on a
timescale 7 ~ R, where R denotes the system size. Due
to this separation of scales, it is a reasonable assumption to
neglect the transverse expansion during the preequilibrium
stage, and first consider an idealized situation of Bjorken
flow, where the system is longitudinally boost invariant,
parity invariant under spatial reflections along the longi-
tudinal beam line and azimuthally symmetric and transla-
tionally invariant in the transverse plane. Space-time-
dependent variations can subsequently be addressed by
studying small deviations from this average background
behavior, and will be discussed in Sec. IV.

In this section we discuss the space-time evolution of an
expanding background undergoing Bjorken expansion,
such that the aforementioned symmetries constrain the
functional form of the distribution function for the back-
ground to be of the form

f(x.p) = fre(z. pr.Ipc). (16)

The energy-momentum tensor has only nonvanishing
diagonal components, i.e.,

T};;G = diag(e’ Pr> PT’pL/TZ)y (17)

with the energy density (e), transverse and longitudinal
pressures (py,;) determined by

e =T55 = ((P"))s6 (18a)
_xx Yy 1 2
Pr=Tps =Tpe = 5<(PT) s, (18Db)
2
n=ti=((%)) . s
T BG

Due to scale invariance, the previous expressions auto-
matically satisfy the tracelessness condition ¢ = 2p7 + py.
Based on the explicit form of 7% the Landau matching
condition in Eq. (2) becomes trivial with

w = (u",u',us) = (1,0,0,0), (19a)

(19b)

e = e,

and the kinetic equation for the evolution of the background
distribution takes the familiar form
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Pg|)

Foc(. propel) - feg (A=) |, (20)
| (7))

TarfBG(T’ Pr,

T
TR

where p* = /p% + (p./7)* according to the on-shell

mass condition.

A. Evolution equations for moments

Several strategies have been explored in the literature to
solve Eq. (20) [56]. Here we follow Grad’s original
approach [54] where instead of finding solutions for the
phase-space distribution function f(x,p) we study the
dynamics of its moments. The latter are directly connected
to macroscopic observables as we indicate below.

We consider the following moments

cr o) = v [ éiﬂ) / (‘2’27’;21'/3 2+ (o))
) 1)

X Y?n((ﬁp’ 9p)fBG(T’ Pr,
where the angles are defined as cosé, = p./(zp®),
tang, = p'/p* in the comoving coordinates and Y}’
denote the spherical harmonics

Ps

Y7'(,0) = y[' P (cos(6))e™?, (22)

with normalization

20+ 1)(1 - m)!

dn(l+m)! (23)

V=
Nonvanishing components of the background energy-

momentum tensor in (17) are related to the moments C}’
in (21) as follows:

G = | et (24)

Ci(r) = \/%14/ Bpi(z) —e(7)]. (25)

Specifically, if the background distribution function is in
thermal equilibrium, one has

3e(7)

Jan

where the Landau matching conditions (2) were enforced.
Now the evolution equations of those moments are simply
obtained by taking the explicit time derivative in its
definition. After some careful algebra and using a series
of identities of the spherical harmonics (see the Appendix),

C;n |eq (T) = 5105m0’ (26)

the evolution equation for the moments C}' takes the
following form

10, Cl" = bl" ,C", + b\ C"' + b1 Clin
T
__(Clln _C’ln|eq)’ (27)

TR

where the coefficients b;’f_z, b}'fo and b}" , are given by

p [+2 Fl-m+1)I'(l+m+1)

=2 -2\ i+ nei-3)r(i-m-1)r{i+m-1)y
w SUI+1)=3m?

O3 41(1+1)=-3"

b -1 F(l-=m+3)C(l+m+3)
2143\ 21+ D)1+ 5T =m+ 1)1+ m+1)

(28)

We note that in Eq. (27) only the moments / and [ 4= 2 are
coupled reflecting the parity symmetry of the background.
Now due to the azimuthal symmetry of the background, the
evolution of moments with different m are not coupled and
only moments with m = 0 are nonvanishing. Furthermore,
Eq. (27) present interesting mathematical resurgent proper-
ties which were discussed extensively in Refs. [57-59].

B. Initial conditions

Since at early times 7 < 7y the system is unable to
sustain sizeable longitudinal momenta, the physically
relevant initial conditions for the phase-space distribution
are naturally of a form where p| < p7. Indeed, previous
works [39-41,57,59—-61] have shown that the extreme limit
where the (longitudinal) support of the phase-space dis-
tribution shrinks to a Dirac delta function corresponds to a
nonequilibrium attractor of the kinetic equation. We will
therefore consider precisely this case and choose the initial
phase-space distribution as

(271') 3 dNO
o(p.) ——H—,
Vst (pe) ded*pd®x
(29)

fBG(TO’ Pr, Pg) = fﬁ;oc);(PTv Pg) =

where the normalization is chosen such that the initial
energy density per unit rapidity remains constant, i.e.,

dE,

By~ () = (sl =const. (30

By construction, the initial condition in Eq. (29) fixes the
initial values of the moments C}" at 7, i.e.,

Cy(19) = 7 (ze) gy Py (0)8™ (31)
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where

P L (32)

such that for m = 0 one has

_osin(z/2(1+ 1)) T(1/2 +1/2)
B Nz (1+41/2)
Interestingly, one finds that at the level of the relaxation

time approximation, the shape of the azimuthally symmet-
ric momentum distribution [,(}Z—Nz is completely irrelevant
cd*pd x

P} (0) (33)

for the dynamics. Notably, this is in sharp contrast to
the more realistic description in Yang-Mills kinetic theory
[27,48,49,62], where different processes (e.g., inelastic and
elastic interactions) exhibit different parametric depend-
ences on the momenta (see e.g., [23,63]).

C. Evolution of energy-momentum tensor
for constant relaxation time (7 = const)

We first analyze the evolution of the energy-momentum
tensor for a constant relaxation time 7z = const. By trun-
cating the evolution equations up to a certain value of
[ < lpaxs setting C' = C}"|eq = 0, we can obtain a numeri-
cal solution of the coupled set of evolution equations as a
function of the dimensionless evolution time variable 7/7.
Notably the truncation scheme converges rapidly except for
very small values of 7/7z < | where higher moments play
an important role. However, for the typical regime of
interest no visible deviations of the results for the lowest
[ <2 moments occur for [, = 32, and if not stated
otherwise we use [, = 512 to produce the figures.

1. Comparison with hydrodynamics

Our results are compactly summarized in Fig. 1, which
shows the nonequilibrium attractor solution for the evolu-
tion of the energy and pressure densities. For the Bjorken
flow we can also compare the numerical solution of the
Boltzmann equation in the relaxation time approximation
to the truncation in relativistic viscous hydrodynamics.
Starting from the conservation equation

70, = —e — py, (34)

the longitudinal and transverse pressure within the hydro-
dynamic approach are given by

pL=p+r.  pr=p-—° (35)
where 7¢_ is the only independent component of the shear
viscous tensor. Now 7¢. is expanded up to second order in
the gradient hydrodynamical expansion as [64]

1.2 T
Boltzmann RTA (tg=const)
Free Streaming -- C;J x'"

Navier-Stokes Hydro -- 1-16/45x - - - - -2

0.8

0.6

0.4

0.2 -

Energy/pressure density: t* T#/(ec*®)

0 L L
0.01 0.1 1 10
Evolution time: x=1/tg
1.2 ‘
% Boltzmann RTA (tg=const) b
oLl et A
T a8 = =
5; Navier-Stokes Hydro - - - - - Ry
£ 08 By E
§ R
[t} .
[ /)
& o6t E
B XY/
(3 R
g Y
S o04f 7
c LY
S
T .Y
] 02 | P i
s P
& o
0 ‘ ‘ ‘
0.01 0.1 1 10
Evolution time: x=1/t1g
FIG. 1. Top: evolution of energy-momentum tensor for const.

relaxation time. Different curves show the evolution of the
longitudinal and transverse pressures 37%/3 pryr. and the energy
density 7*/3¢ normalized to their asymptotic values (ez*/3) in
Eq. (39). Bottom: effective relaxation time determined from the
appropriate ratio of inverse Reynolds and the Knudsen number
(see text).

o _an

81
p P 51—2(/11 —1T,), (36)

where for the system under consideration the equation of
state and transport coefficients in the RTA approximation
are determined by [41,58,65,66]

TRT
s =—),
n/ 5

_3
1735

p=c¢e/3, Ts=e+ p,

Ty = TR, A t3Ts (37)

such that /7 = %%Re. Hence the asymptotic solution for
the energy density up to second order within the gradient
hydrodynamic expansion (or alternatively when /75 > 1)
takes the form
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167 64 [7x\2
Ple(r)~ (v ")‘X’(l 45 ¢ 14175<1> ) (38)

with the asymptotic integration constant (7%/3¢)_
mined as

deter-

limz*3e(7)

T—00

= (¢*Be), ~ 127} (ze), (39)

from the numerical solution of the Boltzmann equation in
the relaxation time approximation. By comparing the dif-
ferent curves in Fig. 1 one observes that independent of the
microscopic framework viscous hydrodynamics starts to
provide an accurate description of the evolution of the
energy-momentum tensor around evolution times /7y ~
2-3. Interestingly, in this regime the Knudsen number
Kn = 75/t ~0.3-0.5 is rather small, and the values of the
longitudinal and transverse pressures still differ signifi-
cantly from each other, indicating that the naive assumption
of hydrodynamics being valid close to the thermal equi-
librium is a misleading and restrictive criterion which does
not determine accurately when hydrodynamics becomes a
valid effective description. Same conclusions hold for the
case when 7;T(7) = const. as we shall show in the follow-
ing section. Since including the second order correction does
not significantly improve the agreement in Fig. 1, we only
present the Navier-Stokes limit, i.e., the leading term in the
asymptotic expansion in 7z/7 in Eq. (38).

Notably, one can also define an effective ratio between
the inverse Reynolds and the Knudsen number as follows:

R -1 S

S w
Kn Tp \e+p
with Kn = 7 /7 being the Knudsen number and the inverse
Reynolds number Re~! is

|zl _2|p — prl

Re 1 ~
p 3 p

(41)

Near equilibrium where the gradient expansion (36) holds,
one can express the inverse Reynolds number as

136’7 Kn+ O(Kn?). (42)

Re™! =
While the gradient expansion (36) breaks down at early
times, where the Knudsen number Kn > 1, the ratio in
Eq. (40) can still be used to quantify the evolution.
Specifically, for the case of a constant relaxation time,
one can use Eq. (37) to define an effective relaxation rate

75 away from equilibrium

Re™!
Kn |

51
TR 16

(43)

which is constructed such that at late times the rat10 i in
Eq. (43) converges to umty as expected.

Numerical results for i shown in the bottom panel of
Fig. 1 indicate that at early times where the Knudsen
number Kn > 1, the effective relaxation rate is signifi-
cantly reduced by the inclusion of higher order dynamical
moments C}*. By explicitly comparing different truncations
(Ipax =4.8,...) of the infinite hierarchy of moment
equations, one also observes a rapid convergence in the
sense that the evolution of the low order moments becomes
increasingly insensitive to the higher order moments.

D. Evolution of energy-momentum tensor for
conformal system (T'(7)zz = const)

We now investigate the more commonly studied case
where the relaxation time is chosen inversely proportional
to the effective temperature, i.e., 7z 7(7) = 5(n/s) = const,
as is appropriate for a conformal system [30,39,40,43,60].
We conveniently introduce the dimensionless timelike
variable

. Tt 4z

= =—MW 44
. S5n/s 5 " (44)

which one can also identify as the inverse Knudsen number
x = Kn~!. Since for the conformal system, the relaxation
time depends on the temperature of the system as
tg = 5n/sT(z), it is convenient to perform a change of
variables to express

—x0, = a(x)x0,, (45)

where by use of the definition of the variable x in Eq. (44),
the scale factor a(x) is determined as

a(x) = E 411 (bgo + by +2 gg;)} ’ (46)

where we made explicit use of the fact that for an ultra-
relativistic system dTT 4 , and exploited the equation of
motion for the energy density which was rewritten in terms
of the moments C}" in Eq. (27). The evolution equation for

the moments can be then recast into the form

a(xX)x0,Cp = b5 Cly + b CP 4 by, O
= x(C}' = C}"\eq% (47)

indicating that for a given initial condition the nonequili-
brium evolution of the system is uniquely determined by
the conformal scaling variable x.

Numerical results for the evolution of the background
energy-momentum tensor are presented in Fig. 2, where we
also compare to the results for Yang-Mills kinetic theory
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1.2

Boltzmann RTA (Ttg=const)
KoMPoST QCD Kinetic
Free Streaming -- C_ 1w4/9

Navier-Stokes Hydro -- 1-2/3nW, -

-
T

0.8

0.6

0.4

0.2

Energy/pressure density: t* TH/(ec*?)

0 R : . .

0.01 0.1 1 10

Evolution time: w=T(t)t/(4n n/s)

1.2 T

Boltzmann RTA (Ttg=const)
KoMPoST QCD Kinetic

Navier-Stokes Hydro - - - -

0.8

1/2 t/tg (pr-pL)/(e+p)

0.6

0.4

0.2

Eff. shear viscosity: (n/s)®™/(n/s)

0.01 0.1 1 10
Evolution time: W=T(x)t/(4x n/s)

FIG. 2. Top: evolution of energy-momentum tensor in the
relaxation time approximation with constant #/s, compared to
Yang-Mills kinetic theory (KgmpgsT) [48,49]. Different curves
show the evolution of the longitudinal and transverse pressures
3t*3p;), and the energy density t*/3e normalized to their
asymptotic values (ez*?)_ in Eq. (51). Bottom: evolution of
the effective viscosity.

o0

obtained in [48,49]. Clearly the overall behavior of the
curves is quite similar, showing a smooth transition from an
approximate free-streaming behavior at early times toward
the universal hydrodynamic behavior

8 n/s
3T(7)r

at late times. Similar to our previous discussion, this
behavior can also be analyzed in terms of an effective

*Be(r) = (1*3%e) <1 + - > (48)

PO, + p'oi—— ]5f(x p) = —£5f(x,p) -

péT()

TR

Ppuou(x)

shear viscosity over entropy ratio in the far-from-equilib-
rium regime, which for the conformal system is given by

(n/s)eff:i Re™!
n/s 16| Kn |

which is again constructed such that ('7/ S>

(49)

7t approaches unity

in the limit /73 > 1. Even though th1s ratio depicted in
the lower panel of Fig. 2 magnifies the differences between
the results for Yang-Mills kinetic theory [48,49] and the
relaxation time approximation, the overall differences are at
most at the 10% level for intermediate times W ~ 1.

Nevertheless, the fact that the approach toward viscous
hydrodynamics is different for Yang-Mills kinetic theory
and RTA results in a mismatch in the ratios of the initial
energy density to final energy density. Specifically, the
RTA kinetic theory requires a larger initial energy density
compared to Yang-Mills kinetic theory to reproduce the
same energy density in the final state. Since the early-time
behavior is governed by free streaming, one finds that
e(r) o 1/7 for x < 1 such that the attractor curve can be
parametrized as

7 e vt 1 (T(z)79\*?

(*3e),  Cq \ 4mn/s '
By inverting this relation, one then obtains the energy
density at late times as [50]

(50)

s \4/9
<r4/3e>m=cm(#>il/4) (en).
0

Specifically, for the conformal relaxation time approxima-
tion, we find C, = 0.9 whereas for the Yang-Mills kinetic
theory results of [48,49] the prefactor C, = 1 is about 10%
larger [50].

(51)

IV. ENERGY-MOMENTUM PERTURBATIONS
AROUND BJORKEN FLOW

So far we have addressed the nonequilibrium evolution
of the average boost-invariant and homogenous back-
ground. We will now consider the propagation of linearized
perturbations sourced by (small) space-time-dependent
deviations of the initial energy-momentum tensor from
its (local) average. By linearizing the kinetic equation
around the boost-invariant and homogenous background
one finds an evolution equation for the perturbation of the
distribution function §f, i.e.,

(ot~ 1(355) ) =77

g T(7)

[ GH e‘*(r@)

(52)
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where fi(x) = dfeq(x)/dx denotes the derivative of
the equilibrium distribution. In the above expression,
the change in the rest-frame velocity Su*(x) and local
equilibrium temperature 67 (x) are to be determined self-
consistently from the (linearized) Landau matching con-
dition. Starting from the linearized perturbations of the
energy-momentum tensor

6T (x) = (p"p")sy (53)
the change in the rest-frame velocity ou* and energy
density in the local rest frame e are determined from
the linearized eigenvalue equation

u, 6T + 6u, T = Seu* + edu”, (54)
with
u,6u = 0. (55)

By using the leading order solution u,T"" = eu” of the
eigenvalue problem, one reads off

oe = uﬂ(‘)‘T/“’u,J =6T", (56&)
. 8T o1
out =0, Sut = , Sus = . (56b)
e+ pr e+ pp

Our strategy to determine the evolution of energy and
momentum perturbations then consists of determining all
the coefficients on the rhs of Eq. (52) based on certain
moments of the perturbation of the phase-space distribution
function. In the following section we shall explain this
procedure in detail.

A. Evolution equations for energy-momentum
perturbations in the transverse plane

We will from now on restrict our attention to energy-
momentum perturbations in the transverse plane; i.e., we
will only consider variations in the transverse coordinates

|

: k-
70, + i(|k|7) K[

_|_

(o)
Bt
(e

Pl sfi(eplpcl) = ()mmn

x. Since we are considering the evolution of linearized
perturbations on top of a (transversely) homogenous back-
ground, it is natural to express them in a Fourier basis such
that for each k-mode

d’k .
(e lpd) = [ Ssofleplpets. (57)
where we denote 8f (7, p.|p.|) = 6f(z. k. p.|p.|). In our

approach the Z, subgroup symmetry of reflections along
the beam axis is not broken at the level of the perturbations
so the longitudinal rest-frame velocity éu¢ vanishes iden-
tically. The transverse flow velocity can be decomposed in

the components parallel [5ul‘((r)] and perpendicular

[6ui (7)] to the wave vector k. Hence the perturbations
to the thermodynamic fields take the following form

2
6T (z,x) = / (;1”1; 6T (1)e™X, (58a)
1t (2,x) = / (‘“; '; T D)3 Bt (e, (58b)
du*(x) =0, dus(x) =0, (58c¢)

where for physical perturbations, the reality conditions
of the perturbations imply 6T (t) = 6T*, (7) and Sul (7) =
8u”; (7). Denoting'

k-p _. kip/ .
K" 5 Ky cos(¢pk ) sin(6y), (59)
kxp . kip/ . :
=V =
Kp* € K sin(¢pi ) sin(6). (60)
with ¢y = ¢y — ¢y being the angle between p and k in

the transverse plane and sin 6, = |p|/p® and inserting the
above expressions into the linearized kinetic equation (52)
one then finds

pel)

uurk-p y kxp| p* , (P

o (o) e T o <Nmp}<>”(nw>
p qukXp 5Tk()()%

|Mf+5k(wa+'Nﬂ o ml

I =1a(75) )

(61)

'Note that since we are dealing with transverse vectors p and k, both k - p and k x p denote scalar quantities.
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where the terms on the left-hand side describe free stream-
ing, the terms in the first line correspond to the relaxation of
the perturbation, the terms in the second line describe the
change of the equilibrium distribution due to the perturba-
tions and the terms in the last line describe the change in the
relaxation of the nonequilibrium background due to per-
turbations.

B. Evolution equation of the spherical
harmonic moments

We follow the same strategy as for the evolution of the
background and transform the evolution equation for the
distribution function into a coupled set of evolution
equations for the spherical harmonic moments

" dp. [ d’p .
6 z,k(T) :Veff/(z—”g)/@”)z 3
X Y (dpk» 0p)0/fk (7. P, | Pcl),

(62)

where the azimuthal and polar angles ¢y, 6, are measured
with respect to the transverse wave vector (k) and the
longitudinal rapidity (¢) axis.” Similar to the case for the
background, the various components of the energy-momen-
tum tensor are explicitly given in terms of the lowest order
(Z =0, 1, 2) moments as

T4/35TTT 4 5CO K> (63&)
ik ; 2
5l Tk_|14/35T;(f — —iy/ ?”(50{1‘{ —5CTh) (63b)
- ik! ; 2
il Tk_|74/35Tg S /?ﬂ(éCT}( +5C7L), (63c)
|
m m m m m m l|k|T
70,.6C\ = b]' ,6C7" 5 + b 5Czk+bl+25C1+2k (u]!

66k
6Cm C/ m
() o+ ] 2
bu 1 \m+1
() 2 (€= O Lt (G
TR 2 ’
+d}' (Coq — C+ Cly)'7)

5uk m
- (ﬁ) 5 (U] (Ceqg = C + Cog)/ 3" + u" (Ceq
- d’lt1+(ceq C+ Céq>l+_1 )

*Since physical perturbations of the phase-space distributions §f(z, X, p,

)-

should also satisfy the condition §f_y (z, p,
6Cy k(7) =

) = ofi(z.p,
(=1)"(6C;% (z))* for physical perturbations.

(63d)

4
wrionorg = [ Zsct,
e 16 16
SUTABSTI = | 26CY, — 1| —=8C0,.  (63e)
9 70, 45072
BR AnsTI — 0 4x
ST 5C0k 2008,

+ \/_5 (8C3% + 6C5%). (63f)

el %{lﬁ/%rf = —i\/%(éczfi —8C5%), (63g)
5 %}4/3( 7)6TY = \/2 (6C3 % — 6C3 k). (63h)
el %74/3(—1)&53 = —\/i (8C3x +6C5 k). (63i)

16 4 .
HRRTE = | | 4—5”502,,( + ,/5”508‘,(, (63;)

where we have conveniently decomposed all transverse
vectors 677, 6T<" into components parallel, perpendicular
and independent with respect to the wave vector k /|k| (and
similarly for the tensor 67%/). Due to the residual Z,
symmetry of longitudinal reflection in rapidity, the com-
ponents 7% and T<' vanish identically, whereas all other
components can in principle be nonzero in our setup.

Evaluating the various couplings between spherical
harmonics using the identities listed in the Appendix,
the evolution equations for the spherical harmonic
moments 6C}* then take the form

m+1 cn— 1
Cl 1k+ )

5Cﬁﬂ;1k +dp 8CT N 4 dp SCTH

(£) % o

= C+ C)iti' +d)(Ceq = C + Cig)i5!

= C ClL = df(Cog = €+ Cl)P!

(64)

) are real valued, the linearized perturbations in Fourier

such that in terms of the spherical harmonic moments one finds
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where the coefficients b}" are the same as in Eq. (28) and

m (I-m)(l-m-1)
M- +\/ -1

(l+m)(l+m-1)
417 -1 '

m  _— __
=

Physically the terms in the first line of Eq. (64) corre-
spond to a free-streaming evolution, while the terms in the
last few lines capture the relaxation toward equilibrium,
including the changes of the equilibrium distribution and
background equilibration. By C¢, in Eq. (64) we denote the
moments

d d?
e = [ 55 [ Shin

<200 (5 ) () 67

which can be determined via integration by parts as

(Ceq)!'(7) = =4(Ceq)T", (68)

with the equilibrium moments (Cg);" determined by
Eq. (26). By inserting the relations in Egs. (63) into the
linearized Landau matching conditions in Eq. (56), one also
finds that the linearized perturbations of the energy density

oey and longitudinal and transverse flow velocities 5ul|( and
Sui- are given by

/35y (5) = VARSCY (o).
(et pr)ouh(r) = -/ 2Z(3C](5) =T (0),

(e + pr)oui (1) = i\/éz(fSCi,k (r) + 6Cii (7). (69)

[s(x)a(x)x0, + K@K](SCTK

m (I+m+1)(I+m+2)
i = _\/ 344l(l+2) (65)
" ({l-m+1)(l-m+2)
b +\/ 3+4l(1+2) (66)

|

such that the evolution equations for the moments in
Eq. (64) form a closed set of equations. We further note
that by virtue of the decomposition into spherical harmonic
moments, Y/ (gbpk, Gp), the information on the direction of
the transverse wave vector k has disappeared from the
evolution equation, which as a consequence of the azimu-
thal rotation symmetry of the background only depends on
the magnitude of the wave vector |Kk|.

Before we address the physically relevant initial con-
ditions for the moments §C7}, we also note that it is often
useful to consider the evolution equation at a fixed value of
propagation phase

k= [k|(z = 79) (70)

rather than a fixed value for the wave number |k |. By changing
the variables from |k | tox = |k|(z — 7¢) for the moments, the
time derivative needs to be evaluated according to

Ta‘rlk

T

70:|k (1-2y) JFﬂ“ﬂ(f— 70) k()| (71)
such that the evolution equation for the moments receives one
additional term associated with this change of variables.
Similarly, for a conformal system, it is also convenient to
express the evolution in terms of the scaled evolution time
x = t/7p introduced in Eq. (44). Starting from Eq. (64) and
denoting s(7) = =™, with

a(x)xdys(x) = (1 = s(x)), (72)

to perform these changes, the equation of motion for the
moments then takes the form

= 5(x)(b],0CTL, . + bOCT + b ,6CT, ) — %(”Z’—‘SCTL]K +up! SCPH A+ dp e + dp 5C)
. 0e " Se, T(7) Otg "
_xS( )|:5C +_(Cl ) :| xS(x)E . ﬁ(Ceq _C)l

Sul

- xs(x)TK (" (Coqg = C + Cog) 4" + " (Coq —
5”,{' m / \m+1
—xs(x)y(ul__(c = C+ Gty +ul' (Ceq

C+ Clo)ii! + dp_(Coq

C—|— C/ )m+l _ dm (Ceq

i —C+ Ci)'7' 4+ d' (Coq — C+ Cly)t7)

~CH )y —dy

" (Ceq— C+ Cog)'7)

I+1 I+1

(73)
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which we will employ below to obtain the numerical
solution for the evolution of perturbations.

Based on Eq. (73), one also explicitly observes that in the
limit zy/7z — 0 where s(x) = 1 is a fixed point of Eq. (72),
the solution to the evolution equation for the moments 5C7y
only depends on the propagation phase k = |k|(z — 74) and

the scaled evolution time x =7/t = 551 /)s While this
conformal scaling behavior was empirically observed in
[48,49] from numerical solutions of the Boltzmann equa-
tion in QCD kinetic theory at different values of the
coupling strength 1 = ¢?N_, it is interesting to point out
that in the present context the conformal scaling behavior
directly manifests itself at the level of the equations of
motion.

C. Initial conditions for energy and
momentum perturbations

So far we have discussed the evolution equations for
linearized perturbations on top of a Bjorken background.
Now in order to apply this framework to describe the early-
time dynamics of high-energy heavy-ion collisions, the
equations of motion need to be supplemented by suitable
initial conditions, which describe the associated change of
the phase-space density at initial time. While in principle
one could imagine a large variety of different initial
conditions, we will follow [48,49] and only consider the
response of the system to changes of the conserved
quantities of the system, associated with initial energy
and momentum perturbations as detailed below.

1. Energy perturbations

We follow the arguments of [48] and associate initial
energy perturbations with an infinitesimal change of the
energy scale of the background distribution, such that the
associated phase-space distribution for energy perturba-
tions is given by

6F(z0. . |pcl) = ('p 9 2lol. p>)— (74)

where we introduced the phase factor e~ K™ to account for
the free-streaming evolution at early times 7 < 7y < 7.

Based on the explicit form of the initial background
distribution in Eq. (29), the integrals for the moments 6C}
in Eq. (62) can be evaluated using

1

2z
2_ d¢pke—i\k\ro cos(pk) pimepx — (_i)m
Jo

Tu([Kl7), (75)

along with Eq. (31) yielding
5CHi(x0) = 7/ (ex)o(~1)"Jn([K[70)y} P (0).  (76)

where (et), denotes the asymptotic energy density of the
background (cf. Sec. III). Specifically, for the energy and

momentum density one has the following perturbations at
initial time

5eke(To> _ J0(|k|70)’ (77)
2P 5 (2y) = ity (Klr). (78)
(e + pr) TP sk (g4) = 0, (79)

reproducing the result of [48] for the free-streaming
response function, such that in the limit |k|zq < 1, only

ek (79)
e

=1 is nonzero.

2. Momentum perturbations

Similarly, we associate initial momentum perturbations
with an infinitesimal change of the transverse velocity of
the background, such that following the arguments of [48]
the associated phase-space distribution for momentum
perturbations is given by

i pi —ik27
5fk<ro,p,pg>=—2(;a|p|f§?é<|p|,pg>)e KL (80)

where the index i contains the information about the
direction of the initial momentum perturbation. Decom-
posing 5} into the directions parallel and perpendicular to
the wave vector, we can distinguish between longitudinal
and transverse momentum perturbations

3k (20.P. pe)= ~2cos(dyc) <|p| Ol 5 (1P, pg)> e,

(81)
1 _ . |P‘ —ik®
5fi (0. P, Pg) =-2 Sln((r/’pk) a|p|fBG< ) ) e
(82)
Evaluating the moments, one then finds
SC(z0) = =iz (e2)o(=i)" (41 (K] 20)
= Jn-1([K[7))y"PT(0). (83)

for longitudinal momentum perturbations and similarly for
transverse momentum perturbations

St (z0) = 70 (€2)o (=) (T2 (K]0
+ o ([K|z0))yy P (0). (84)

Specifically, for the energy and momentum density one has
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‘Sekf@ = —2iJ,(|k|z). (85)

Méuﬂ(%) :2M—212(|k|70)’ (86)
e k|zo

(et%pﬁéuﬁ(fo) =0, (87)

for longitudinal momentum perturbations, whereas for
transverse momentum perturbations

6€ke(’l' ) _ 0’ (88)
L) 5 ) =0, (89)
(e +ePT) Sui(zo) = 211|(l|(l|<lz0) ’ (90)

in agreement with [48].

V. NONEQUILIBRIUM GREEN’S FUNCTIONS OF
THE ENERGY-MOMENTUM TENSOR

We now proceed to the calculation of the response of
the energy-momentum tensor to initial energy and momen-
tum perturbations based on numerical solutions of the
evolution equations for the moments 6C7} starting from
the initial condition described in the previous section. Since
the set of moments 5C7} contain an overwhelming amount
of information, we will therefore restrict our attention to the
evolution of the low order moments 5C}’fk with 7 <2,
which can be related to the various components of the
energy-momentum tensor &7} according to Eq. (63).
Instead of investigating the dynamics of individual
moments 6C}\ directly, we find it more insightful to
consider the linear response functions G’;Z(k, 7,7p) intro-

duced in [48,49], such that

6T£D() l uv T éTﬁﬂ(TO)
et 2owlem gy O

Notably, the Green’s functions G’;;(k,r, 79) provide the
building block of the preequilibrium computer code
KgMPgST [67] and can be obtained in terms of linear
combinations of the moments as described below. Since
we are primarily interested in the limit z,/7 — 0, where
the kinetic theory framework describes the equilibration
process of the system all the way from very early times up
to the onset of hydrodynamic behavior, we will drop the
explicit dependence on 7 in the following to lighten
the notation. By expressing the response to an initial
energy perturbation in the following basis of scalars (s),
vectors (v) and tensors (t)

Gi(k,7) = Gi(k,x), (92a)
. ki

Gi(k,7) = —sz; (k, x) (92b)
3 B Kik/

Gk, 7) = 659G (k, x) + 2 G (k. x),  (92¢)

and adapting the normalization Je(zy)/e(zy) =1, the
relevant response functions can then be determined from
(cf. Appendix B of [48])

Gi(k,x) = )’ (93a)
i 0j

Yk, x) = 511%‘”( ()), (93b)

ote) = [ -] 250

G (k, x) {21‘1;12‘]_511] 522)5;) (93c)

Similarly, the response to an initial momentum perturbation
can be characterized by a set of six independent response
functions,

kl
G¥(k,7) = ’k| G5 (k, x), (94a)
vi ij 0 kK'k/
GY(k,7) = 8G5(k, x) + 12 Gy (K, x), (94b)
i k! k'k/k*
G (k, 1) = —i— 869G (k, x) — i G5 (k, x)
: K| I
5Ilkj 5jlki
—i#G’gm(K,x) (94c)

which upon adapting the normalization condition 6T§§,K /
e(zy) = 8, where as in Eq. (91) upper indices (i) refer to
the respective components of the energy-momentum tensor
and lower indices (zj) indicate the direction of the initial
momentum perturbation, are given by (cf. Appendix B
of [48])

. lkl T:][K( )

Gi(k,x) = 5’/m Ge(x) (95a)
GY0(k,x) = [& —kl;lf} Z;(K()), (95b)
iNeJ ST
G (k. x) = {2kkl§ — 5l } 7(;;’("()), (95¢)
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kK] ik!6TY, (x)
G (k,x) = |81 — — L« 5d
() { k2]|k| e(x) ©39)
ik [ k/k']6TY (x)
ng,m i = 1 _ tlx . 3
(e ) M kZ] be(x) (95¢)

k'k/ k! iki[ . Kk/K!
Gl;/:k(K',X) = <|:2F_6U:| m—zm |:5jl —?:|>

ST (x)

7l x
5e(x) (95f)
While Egs. (92) and (94) provide a basis for expressing the
response of the energy-momentum tensor Gﬁyﬂ(k, 7,70) in
wave-number (k) space, we will also be interested in the
response of the energy-momentum tensor in coordinate
space G’;;(x — Xy, 7, 7)), where an analogous decomposi-
tion can be performed with respect to the vector x — x,. We
will refrain from presenting all the details and instead refer
the interested reader to Appendix B of [48].

1.5 T T T T
free streaming —o— -
«n
=
B
— < 2
™ Z
< [
= =
1E3 rl_l’
o H
& 5L 4,
2 5
B 9
b i
=
[im|
15 . . . . . .
0 5 10 15 20 25 30
Wave number: kAt
P o — T
06 | ree streaming —e— | @
3 =
— B
3 N K
X e
& G
>0
o a0
5 ‘e
(9]
5 £
% =
) IS ]
£ 3
2 <]
s i
£
S
=
-0.6 R
0 5 10 15 20 25 30
Wave number: kAt
FIG. 3.

A. Numerical results

We will now present numerical results for the various
response functions, focusing on the case of a conformal
relaxation time. We follow the same strategy as for the
background and solve a truncated set of evolution equa-
tions, checking that including higher order moments does
not significantly alter the results. Notably, we find that a
rather large set of moments is required to achieve apparent
convergence and we will present results for /,,,, = 64 in the
following.

Our results for the evolution of the response functions are
compactly summarized in Figs. 3 and 4, where we present
the spectrum of perturbations G%;(k,7 —79,7/7z) and
G (k,7 —10,7/7) as a function of |k|(z — 7) for differ-
ent values of the evolution time w = T(7)z/(4xn/s).
Different panels in Figs. 3 and 4 show the results for the
different (uv) components, decomposed in the tensor basis
described above. In order to facilitate the interpretation, we
have also labeled the various response functions according
to the components of the energy-momentum tensor that
they affect.

'free streaming —e— .
o
=
= s
g g 2
X e
& G
f’m 'ﬂ
® 12
2 Sk |4
£ 5
® S
2 w
(%2}
1
o qt |
_15 L L L L L L
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Wave number: kAt
"free streaming —e—
06| 9 ;
2

Evolution time: W=T(t)t / (4nn/s)

Shear-stress response: ng(\'fv,km)

-06 | 4

0 5 10 15 20 25 30
Wave number: kAt

Evolution of spectrum of energy-momentum perturbations in response to an initial energy perturbation. Different curves in

each panel correspond to different evolution times 7'(z)z/(4zn/s); different panels show the response of the different components of the
energy-momentum tensor as a function of the wave number |k|(z — 7).
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FIG. 4. Evolution of spectrum of energy-momentum perturbations in response to a momentum energy perturbation. Different curves in
each panel correspond to different evolution times 7'(z)z/(4zn/s); different panels show the response of the different components of the
energy-momentum tensor as a function of the wave number |k|(z — 7).

Starting from the initial free-streaming behavior at
early times T(7)z/(4nn/s) < 1 discussed in Sec. IV C,
one observes how toward later times the viscous damping
of large |k|(7 — 77) modes sets in, such that by the time the
system enters the hydrodynamic regime [w = T(7)z/
(4zn/s) ~ 1] only the long wavelength modes survive.
Since at early times the system is highly anisotropic, the
longitudinal pressure is effectively zero and transverse

perturbations initially propagate with a phase velocity
of nearly the speed of light. Subsequently, as the system
becomes more and more isotropic the phase velocity
decreases and eventually approaching the speed of sound,
which in Figs. 3 and 4 results in a shift of the peaks
toward larger values of the propagation phase |k|(z — 7g).
Strikingly, the qualitative behavior observed from Figs. 3
and 4 is very similar to the results obtained in Yang-Mills
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kinetic theory in [48], albeit we find that in the relaxation
time approximation the viscous damping of short wave-
length modes becomes efficient on a somewhat shorter
timescale. This result should not come as a surprise since
the hydro- and nonhydro modes decay at the same time-
scale while the Yang-Mills kinetic theory cascades the
momentum between the soft and hard modes.

Even though some of the features of the evolution can be
understood quite naturally in wave-number (k) space, in
practice one is mostly interested in the Green’s functions
G (X — X(, T — 70, T/Tg) in position space, which directly
describe the physical response of the energy-momentum
tensor 67#(z,X) to a localized initial energy perturbation
6T™ (¢, Xg) according to

oz, x (7, X
5Te((’r)’ ):%L GMD(X_XOJ_TO)&T eETZ’) 0)’ 6)

where fxO = f d’x,. In practice, the coordinate space
response can be obtained in a straightforward way via a
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set of Bessel-Fourier transforms of the response functions,
and we use the KgMPgST software [67] to perform this task.
We note that when implementing our results in KgMPgST,
one needs to take into account that the results in [48] are
presented in terms of the time variable xi = Ty(7)z/
(4zn/s), where Ty(r) is defined via the asymptotic
temperature according to Tiy(7) = 7~ '/3lim,_ , (T7'/3).
However, from the point of view of the RTA Boltzmann
equation it is more natural to study the evolution as a
function of the scaling variable w = T(7)z/(4xn/s), where
T(z) denotes the equilibrium temperature obtained from

e(r) via Landau matching. Of course, the two quantities

are related by xd = v"v((j;/_::()r";)l/“ and we have taken this

difference into account in all explicit comparisons pre-
sented in this paper. In order to provide an apples-to-apples
comparison between results obtained within the relaxation
time approximation and Yang-Mills kinetic theory, the
different response functions are smeared out with the same
smearing kernel K, = exp(—o?k?(z —74)?/2) with ¢ =
0.1 as in [48], by multiplying the momentum space Green’s
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Evolution of the energy-momentum response to an initial energy perturbation in coordinate space based on RTA (solid) and

Yang-Mills kinetic theory (KgMP@ST) (dotted) [48]. Different curves in each panel correspond to different evolution times
T(z)r/(4nn/s); different panels show the response of the different components of the energy-momentum tensor as a function of

the propagation distance |x — x|/ (7 — 7g).
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functions with K, prior to the Bessel-Fourier transform,
which for Yang-Mills kinetic theory results is necessary in
order to stabilize the numerical Bessel-Fourier transform.

Our results for the coordinate space response functions
are shown in Figs. 5 and 6, where we display the various
response functions as a function of the propagation distance
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|x —Xg|/(r — 70). Solid curves in Figs. 5 and 6 show our
results obtained from the Boltzmann equation in relaxation
time approximation, which are compared to the results
obtained in Yang-Mills kinetic theory from [48] shown as
dashed curves. Some of the most important features that
can be immediately observed from Figs. 5 and 6 include the
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FIG. 6. Evolution of the energy-momentum response to an initial momentum perturbation in coordinate space based on RTA (solid)
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viscous broadening of the peaks due to the damping of high
wave-number modes, as well as the shift of the peaks
toward smaller values of |x — x|/ (7 — 7¢) associated with
the aforementioned change of the effective (transverse)
speed of sound, due to the increase of the longitudinal
pressure. One also observes a decrease of the shear-stress
response compared to the pressure response (for both
energy and momentum perturbations), such that by w =
T(z)z/(4zn/s) ~ 1 when the background evolution starts
to be captured by viscous hydrodynamics, also the dissipa-
tive corrections to the perturbations become subleading.
While the qualitative behavior of the various response
functions is quite similar for RTA and Yang-Mills kinetic
theory, one clearly observes that the RTA shows a faster
departure from the early free-streaming behavior, leading
to differences ~10% on the relevant timescales W =
T(7)z/(4zn/s) ~ 1 where viscous hydrodynamics becomes
applicable. Even though these differences appear to be
rather small, it would nevertheless be interesting to explore
to what extent such differences in the early-time non-
equilibrium dynamics can manifest themselves in final state
observables in high-energy heavy-ion collisions.

VI. CONCLUSIONS AND OUTLOOK

We derived a new method to calculate the nonequili-
brium Green’s function of the energy-momentum tensor
based on moment equations of kinetic equations for
linearized perturbations. Due to the particularly simple
structure of the relaxation time approximation considered
in this work, we obtained a closed set of moment equations
for the evolution of the dimension-four moments C}* and
oC7', which are relevant to study the evolution of the
energy-momentum tensor, that is determined by the lowest
order (£ < 2) moments. Even though for more complex
interactions, a truncation at the level of dimension-four
operators is no longer sufficient to obtain a closed set of
evolution equations, we naturally believe that by including
higher order operators our method can be extended to
systems with more complex interactions, thereby general-
izing the usual moment method at level of perturbations.

Based on the evolution equations for the moments C}’
and 6C" in Eqgs. (27) and (64), we studied the evolution of
the average energy-momentum tensor in Bjorken flow, as
well as the out-of-equilibrium linear response of the system
to initial energy and momentum perturbations in the
transverse plane. By truncating the infinite hierarchy of
moment equations at large finite order, we obtained
numerical solutions for the evolution of the nonequilibrium
background and the Green’s functions. When comparing
our results to previous calculations of KgMPgST in Yang-
Mills theory [48], we found a striking similarity between
the different theories. Even though the macroscopic
differences between the two microscopic calculations are
only at the 10% level, it would be interesting to explore to
what extent these can affect concrete observables, such as

e.g., the flow harmonics v,,, the charged particle multiplic-
ity dN,/dn or the transverse energy dE | /dn. Since there
are first hints that in particular the charged particle
multiplicity dN.,/dn may be a rather sensitive measure
of the entropy production during the preequilibrium phase
[50], this remains an interesting question which we expect
to be addressed in more detail in future studies.

Besides our numerical studies, we also found that
various conformal scaling features, which have been
empirically observed in [48], can be directly seen at the
level of the equations of motion for the moments 6C}", and
we expect further analytic insights into the structure of the
nonequilibrium Green’s functions. Specifically, it would be
interesting to further explore for example the early- and
late-time asymptotics of the Green’s functions based on this
formulation. By comparing them to explicit calculations in
fluid dynamics, one could also investigate to what extent
the highly nontrivial evolution of the Green’s functions can
be captured by “renormalized transport coefficients” as
suggested in various works [40,57,68] studying the highly
symmetric Bjorken flow, which would provide additional
information on the applicability of fluid dynamics as an
effective description of nonequilibrium QCD matter in
heavy-ion collisions.

Beyond such analytic insights, it would also be interest-
ing to further systematically extend the preequilibrium
description in terms of nonequilibrium Green’s functions.
Since the numerical solution of the moment equations is
comparatively straightforward, the Boltzmann equation in
the relaxation time approximation provides an ideal testing
ground for such ideas. Specifically, with the methodology
developed in this paper it should be comparatively straight-
forward to extend the description to include also longi-
tudinal fluctuations, investigate Green’s functions for
higher order moments or study the effect of additional
conserved charges, all of which are rather challenging
tasks within a QCD kinetic description. By explicitly
comparing the linearized description in terms of non-
equilibrium Green’s functions to full numerical solutions
of the RTA Boltzmann equation, one could also obtain
additional insights into the reliability and breakdown of the
linearized description and potentially improve the range of
applicability to describe small collision systems.
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APPENDIX: IDENTITIES FOR SPHERICAL
HARMONICS AND ASSOCIATED
LEGENDRE POLYNOMIALS

Below we summarize some of the identities used to
derive the evolution equations for the background moments
C7" and the linearized perturbations 6C}". Specifically, for
the evolution equations of the background moments we
make use of the identities

d
(1- xz)al’}"(X) = AJLPL (x) + AP P (AL
and
xPP(x) = &P (x) + &1 Py (%), (A2)
as well as

m 2).m pm 2).m pm 2).m pm
PP (x) = EPT P, (x) 4+ E Py (x) + &7 P (x)

(A3)
to derive the relation
1 d
[(3 - x2) —x(1-2x%) dx} P7'(x)
= a)' ,PIL,(x) + aj PI'(x) + a' , P75 (x),  (Ad)

such that
70,.C' = by, Clty + b1\ C' + b7, CT

dzp dpg T\ym
+/(2ﬂ.)2/®(71/3p )Yl (¢,9)T((91f(p),

(A5)

which is the identity used in the main text. Similarly,
making use of the relations

—m m pm m m (l - m)!
P"(x) = o' P" (x), o = (-1) (I+m)! (A6)
along with
1
=P = e (P () = PES' (). (A7)

we can evaluate the additional terms

sin(0)e Y (. 0) = up Y1 (. 0) + ul Y1 (9. 6),
(A8)

sin(0)e™ Y} ($.0) = d' Y] (4. 0) + d Y115 (¢.6),
(A9)
which arise in the evolution equations for the linearized

energy-momentum perturbations. Below we list the coef-
ficients entering the above identities

I+ 1)(I+m)

AP =
b= 2041
(l-m+1)
Am =TT A10
I+ 20+ 1 ( )
- l+m
e T
[—m+1
m T All
I+ 2141 (A1)
2),m m em
55,—)2 = &S -
2),m m gm m o gm
550) - (51.— -1+t Z->:l.+§l+1,—)v
2),m m em
5§.+)2 = 51.+§z+1,+’ (A12)
afy = =& - AR
m 1 2),m m gm m gm
ajo = 37 fg,o) —ATE AL
ai',, = _ggzgn — A s (A13)
m m I
by, = al,—2ﬁ’
biy = ajl,
m m ym
bi', = aj’, ﬁ (A14)
+
R |
b U+ 1)yt mi
A
', = ——t Al5
b U+ 1)yii1mit (A1)
A
I i
' Q2L+ D)y o] o}
Vi
dn = — —, (A16)
b (21 + l)yl+1,m—16;’161+1+1

which upon further simplifications yield the results quoted
in the main text.
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