
 

Chiral anomaly and the pion properties in the light-front quark model
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We explore the link between the chiral symmetry of QCD and the numerical results of the light-front
quark model, analyzing both the two-point and three-point functions of the pion. Including the axial-vector
coupling as well as the pseudoscalar coupling in the light-front quark model, we discuss the implication of
the chiral anomaly in describing the pion decay constant, the pion-photon transition form factor and the
electromagnetic form factor of the pion. In constraining the model parameters, we find that the chiral
anomaly plays a critical role and the analysis of FπγðQ2Þ in timelike region is important. Our results

indicate that the constituent quark picture is effective for the low and high Q2 ranges implementing the
quark mass evolution effect as Q2 grows.
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I. INTRODUCTION

Due to just a single hadron involvement, the meson-
photon transition is well known to be the simplest exclusive
process in testing the quantum chromodynamics (QCD)
and understanding the structure of the meson [1]. As the
pion is regarded as the lightest pseudo-Goldstone boson
arising from the spontaneous symmetry breaking of the
chiral symmetry in QCD, it is particularly important to
analyze the pion production process via the two-photon
collision, γ�γ → π, which involves only one transition form
factor (TFF) FπγðQ2Þ, where q2 ¼ −Q2 is the squared
momentum transfer of the virtual photon. Its complete
understanding requires a formulation capable of explaining
both the nonperturbative Adler-Bell-Jackiw (ABJ) anomaly
(or the chiral anomaly) [2], which determines Fπγð0Þ when
both photons are real (i.e., Q2 ¼ 0), and simultaneously
the perturbative QCD (pQCD) prediction that governs the
behavior of FπγðQ2Þ at large momentum transferQ2 region.
Since the publication of the BABAR data [3] for FπγðQ2Þ in
0 ≤ Q2 ≤ 40 GeV2 showing the violation of the scaling
law predicted by pQCD [1], many theoretical efforts [4–11]
have been made to clarify this issue.
In an effort to examine the issue of the scaling

behavior of Q2FπγðQ2Þ, we have attempted to analyze

the corresponding form factor not only in the spacelike
region but also in the timelike region [12]. In particular, we
presented the new direct method to explore the timelike
region without resorting to mere analytic continuation from
spacelike to timelike region [12]. Our direct calculation in
timelike region showed the complete agreement with not
only the analytic continuation result from spacelike region
but also the result from the dispersion relation (DR)
between the real and imaginary parts of the form factor.
This development added more predictability to the light-
front quark models (LFQMs) [12–22] which have been
successful in describing hadron phenomenology based on
the constant constituent quark and antiquark masses. More
specifically, our LFQM [14,15] built on the variational
principle to the QCD-motivated Hamiltonian provided a
good description of the pion electromagnetic and transition
form factors [12,14,17,22].
We have further discussed the link between the chiral

symmetry of QCD and the numerical results of the LFQM,
analyzing both the two-point and three-point functions of a
pseudoscalar meson from the perspective of the vacuum
fluctuation consistent with the chiral symmetry of QCD
[23]. This link is due to a pair creation of particles with zero
light-front (LF) longitudinal momenta from the vacuum,
which captures the vacuum effect for the consistency with
the chiral symmetry properties of the strong interactions.
With this link, the zero-mode contribution [16,24–29] in
the meson decay process could effectively accommodate
the effect of vacuum fluctuation consistent with the chiral
symmetry of the strong interactions. In this respect, the
LFQMwith effective degrees of freedom represented by the
constituent quark and antiquark was linked to the QCD

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 036005 (2020)

2470-0010=2020=102(3)=036005(15) 036005-1 Published by the American Physical Society

https://orcid.org/0000-0003-1604-7279
https://orcid.org/0000-0002-3024-5186
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.036005&domain=pdf&date_stamp=2020-08-06
https://doi.org/10.1103/PhysRevD.102.036005
https://doi.org/10.1103/PhysRevD.102.036005
https://doi.org/10.1103/PhysRevD.102.036005
https://doi.org/10.1103/PhysRevD.102.036005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


since the zero-mode link to the QCD vacuum could provide
the view of an effective zero-mode cloud around the
quark and antiquark inside the meson. While the constitu-
ents are dressed by the zero-mode cloud, they are ex-
pected to satisfy the chiral symmetry consistent with the
QCD. Our numerical results [30] were indeed consistent
with this expectation and effectively indicated that the
constituent quark and antiquark in the standard LFQM
[12,14,15,17,18,22] could be considered indeed as the
dressed constituents including the zero-mode quantum
fluctuations from the QCD vacuum.
Moreover, the lattice QCD results [31] indicated that the

mass difference between η0 and pseudoscalar octet mesons
due to the complicated nontrivial vacuum effect increases
or decreases as the extrapolating quark mass decreases or
increases; i.e., the effect of the topological charge con-
tribution should be small as the quark mass increases. This
correlation between the quark mass and the nontrivial QCD
vacuum effect further supported the development of our
LFQM [14] because the complicated non-trivial vacuum
effect in QCD could be traded off by rather large constitu-
ent quark masses. As a precursor of this development of
LFQM, the constituent quark model in the light-front
quantization approach appeared based on the spin-averaged
mass scheme [32,33] of taking the π and ρ meson masses
equal to the spin-averaged valueMav ¼ ð1

4
Mπ þ 3

4
MρÞExp≈

612 MeV. In retrospect, such early development was an
attempt to trade off the non-perturbative QCD effect with
the constituent quark mass averaged between the π and ρ
mesons although the spin-averaged mass scheme itself was
too naive to accommodate the complicate non-trivial
vacuum effect. More sophisticated analysis was developed
later to take into account the effect of the mass evolution
(from constituent to current quark mass) on FπðQ2Þ at low
and intermediate Q2 [34]. We have then also discussed a
constraint of conformal symmetry in the analysis of the pion
elastic form factor both in spacelike and timelike regions
[35,36], confirming the anti–de Sitter space geometry/
conformal field theory (AdS=CFT) correspondence [37].
While the early LFQM approach of the spin-averaged

mass scheme [32,33] included both the pseudoscalar and
axial-vector couplings for the pseudoscalar meson vertex,
only the specific vertex given by Γπ ¼ ðMπ þ =PÞγ5 with
the four momentum Pμ was taken for the coupling with the
constituent quark and antiquark in the triangle loop
amplitude. Since then, the later development of most
standard LFQM [12–22] including ours [12,14,17] built
on the variational principle used typically only the pseu-
doscalar vertex given by Γπ ¼ Aπγ5, where Aπ is a constant
of proportionality with the mass dimension which gets
absorbed into the normalization of the spin-orbit wave
function. However, the generalization of the vertex includ-
ing the axial vector coupling deserves further consideration
to include the exact chiral limit ðMπ; m → 0Þ phenomena,
where m represents the uðdÞ quark mass respecting isospin

symmetry. In particular, the ABJ anomaly [2] is the key to
understand the π0 → γγ decay rate resolving the issue with
the Sutherland-Veltman theorem [38]. As the Thompson
low-energy limit works for the Compton scattering on any
target, the Sutherland-Veltamn theorem reveals that the
nonanomalous term must vanish in the case when both
photons are on-mass-shell [39]. Only the chiral anomaly is
capable of explaining the π0 decay to the two real photons.
Thus, it appears important to analyze the contribution from
the axial-vector coupling together with the contribution
from the pseudoscalar coupling to explore the correlation
between the nontrivial QCD vacuum effect and the con-
stituent quark mass as well as the parameter of the trial wave
function in the LFQM built on the variational principle.
In this work, we include the axial-vector coupling in

addition to the pseudoscalar coupling in our LFQM for the
pion to explore a well-defined chiral limit providing still
a good description of the pion electromagnetic and tran-
sition form factors [12,14,17]. To examine the relative
contribution between the pseudoscalar coupling and the
axial-vector coupling, we take the more general vertex
Γπ ¼ ðAπ þ Bπ=PÞγ5 which goes beyond the specific vertex
Γπ ¼ ðMπ þ =PÞγ5 previously taken in the spin-averaged
mass scheme [32,33] for the pion spin-orbit structure with
the four momentum Pμ. We then describe the pion proper-
ties such as fπ; FπγðQ2Þ; FπðQ2Þ depending on the varia-
tion of the quark mass in a self-consistent manner within
this model.
The paper is organized as follows. In Sec. II, we

introduce the spin-orbit wave function of the pion obtained
from the operator Γπ ¼ ðAπ þ Bπ=PÞγ5 and show the chiral
limit expression of the spin-orbit wave function. We also
compare it with our previous spin-orbit wave function
obtained from the operator Γπ ¼ Aπγ5. In Sec. III, we apply
our LFQM for the calculation of fπ; FπγðQ2Þ and FπðQ2Þ
using both constituent quark mass and the chiral limit
result. Especially, we explicitly obtain the analytic form of
fπ and FπγðQ2Þ in the exact chiral limit (Mπ; m → 0). We
also show that our chiral limit result for twist-2 pion
distribution amplitude (DA), which encodes the nonper-
turbative information on the pion, is exactly the same as the
anti-de Sitter/conformal field theory (AdS=CFT) prediction
of the asymptotic DA [37,40,41]. In Sec. IV, we discuss
how to determine the model parameters and show the
numerical results of the pion DA, the pion TFF FπγðQ2Þ
both in spacelike and timelike regions covering the full
momentum transfer region, and the pion electromagnetic
form factor FπðQ2Þ in the spacelike region. In this section,
we show the results by varying the quark mass in a self-
consistent way so that one can effectively see the evidence
of quark mass evolution effect as Q2 changes for FπγðQ2Þ
and FπðQ2Þ. Summary and conclusions follow in Sec. V.
In the Appendix, we provide the derivation of our new spin-
orbit wave function.
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II. MODEL DESCRIPTION

The key approximation in the LFQM is the mock-hadron
approximation [42] to saturate the Fock state expansion by
the constituent quark and antiquark and treat that Fock state
as a free state as far as the spin-orbit part is concerned.
The assignment of the quantum numbers such as angular
momentum, parity and charge conjugation to the LF wave
function is given by the Melosh transformation [43].
For example, the pion state jπi is represented by
jπi ¼ Ψπ

QQ̄jQQ̄i, where QðQ̄Þ is the effective dressed
quark (antiquark). That is, the pion state as a valence
QQ̄ bound state with momentum Pμ ¼ ðPþ; P−;P⊥Þ is
determined by the light-front wave function (LFWF)

Ψπ
QQ̄ ≡Ψπðxi;ki⊥; λiÞ ¼ ϕRðxi;ki⊥Þχðxi;ki⊥; λiÞ; ð1Þ

where xi ¼ kþi =P
þ, ki⊥, and λi are the Lorentz-invariant

longitudinal-, transverse-momenta and the helicity of each
constituent quark (antiquark), respectively, with the proper-
ties satisfying

P
2
i¼1 xi ¼ 1 and

P
2
i¼1 ki⊥ ¼ 0. Here, ϕR is

the radial wave function which is taken as the trial wave
function following the variational principle and χ is the LF
spin-orbit wave function which is obtained by the inter-
action-independent Melosh transformation from the ordi-
nary equal-time static spin-orbit wave function assigned by
the quantum numbers JPC.
The LFWF is normalized according to

hΨπ
QQ̄jΨπ

QQ̄i ¼ PQQ̄; ð2Þ

where PQQ̄ is the probability of finding the QQ̄ component
in the LFWF. For the radial wave function ϕRðx;k⊥Þ of the

pion with the same constituent quark and antiquark masses
mQ ¼ mQ̄ ≡m, we take the harmonic oscillator (HO) wave
function as our trial wave function

ϕRðx;k⊥Þ ¼
ffiffiffiffiffiffiffiffiffi
PQQ̄

p 4π3=4

β3=2

ffiffiffiffiffiffiffi∂kz
∂x

r
e
− k⃗2

2β2 ; ð3Þ

where ∂kz=∂x ¼ M0=4xð1 − xÞ is the Jacobian of the
variable transformation fx;k⊥g → k⃗ ¼ ðk⊥; kzÞ with
M2

0 ¼ ðk2⊥ þm2Þ=xð1 − xÞ being the invariant mass

square. In particular, k⃗2 is given by k⃗2 ¼ k2⊥ þ k2z where
kz ¼ ðx − 1=2ÞM0 and the normalization of ϕR is given by

Z
1

0

dx
Z

d2k⊥
16π3

jϕRðx;k⊥Þj2 ¼ PQQ̄: ð4Þ

The covariant form of the spin-orbit wave function for
the pion (JPC ¼ 0−þ) is given by

χλ1λ2ðx;k⊥Þ ¼ N ūλ1ðk1ÞΓπυλ2ðk2Þ; ð5Þ

where

Γπ ¼ ðAπ þ Bπ=PÞγ5; ð6Þ

and N is the normalization constant satisfying the unitary
condition hχλ1λ2 jχλ1λ2i ¼ 1.
Here, we set Aπ ¼ Mπ and Bπ being a free parameter.

Explicitly, we obtain the normalized form of χλ1λ2 as

χλ1λ2ðx;k⊥Þ ¼
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2k2⊥ þ ½mMþ xð1 − xÞBπεB�2
p

�
−kLM mMþ xð1 − xÞBπεB

−mM − xð1 − xÞBπεB −kRM

�
; ð7Þ

where M ¼ Mπ þ 2Bπm, kRðLÞ ¼ kx � iky, and εB ¼
M2

π −M2
0 corresponds to the binding energy. The detailed

derivation of Eq. (7) is given in the Appendix. Furthermore,
in the chiral limit (i.e., Mπ; m → 0), Eq. (7) reduces to

χchiralλ1λ2
¼ lim

Mπ ;m→0
χλ1λ2 ¼

1ffiffiffi
2

p
�

0 1

−1 0

�
sgnð−BπÞ; ð8Þ

where sgnð−BπÞ ¼ −sgnðBπÞ is the sign function of Bπ ,
i.e., sgnðBπÞ ¼ 1 for Bπ > 0, sgnðBπÞ ¼ −1 for Bπ < 0
and sgnð0Þ ¼ 0, respectively. This reveals already the
nontriviality of the axial-vector coupling, i.e., Bπ ≠ 0, in
the chiral limit. We shall illustrate the way of determining
the value of Bπ phenomenologically in Sec. IV.

The operator Γπ given by Eq. (6) can be compared
with those used in the previous LFQMs using two
popular schemes, i.e., the spin-averaged meson mass
scheme and the invariant meson mass scheme. For the
spin-averaged meson mass scheme used in [32,33],
Γπ ¼ ðMav þ =PÞγ5 was taken, i.e., the spin-averaged
meson mass Mav ¼ ð1

4
Mπ þ 3

4
MρÞExp was used instead

of the physical pion mass as mentioned earlier in Sec. I.
For the invariant mass scheme used in [12–18], the
meson mass was mocked by the invariant mass M0 and
Γπ ¼ Aπγ5 was taken to yield the normalized spin-orbit

wave function χðM0Þ
λ1λ2

ðx;k⊥Þ ¼ N ūλ1ðk1Þγ5υλ2ðk2Þ as also
mentioned in Sec. I. Its explicit normalized form for the
pion is then given by
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χðM0Þ
λ1λ2

¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p
�
−kL m

−m −kR

�
: ð9Þ

However, we note that the more general spin-orbit wave
function given by Eq. (7) yields indeed Eq. (9) regard-
less of the value of Bπ in the limit Mπ → M0 (or εB → 0)
taken in the invariant meson mass scheme. This indicates
that the order of the two limits, i.e., the zero-binding
limit (Mπ → M0 or εB → 0) vs the chiral limit
(Mπ; m → 0), do not commute in general regardless of
the value of Bπ . While the LFQM adopting Eq. (9) has
proven to be very effective in predicting various physical
observables, its non-commutability with the chiral
limit hinders the description of the chiral anomaly
which determines Fπγð0Þ. Unlike Eq. (8), Eq. (9) yields

the ordinary helicity components behaving as χðM0Þ
↑↓ ¼

χðM0Þ
↓↑ → 0 in the chiral limit (i.e., Mπ; m → 0).
In contrast to the previous works, we now take the more

general spin-orbit structure of the pion given by Eq. (6)
which leads to the spin-orbit wave function given by Eq. (7)
that is versatile enough to explore the chiral limit as well as
the previous LFQM adopting the spin-averaged meson
mass scheme or the invariant mass scheme.

III. APPLICATION: PION DECAY CONSTANT,
TRANSITION, AND ELASTIC FORM FACTORS

The charged pion decay constant is given in terms of the
matrix element of the weak current between a physical pion
and the vacuum state

h0jq̄γμð1 − γ5ÞqjπðPÞi ¼ ifπPμ: ð10Þ

The experimental value of the pion decay constant is
fExpπ ¼ 130.2ð1.7Þ MeV [44]. Using the plus component
(μ ¼ þ) of the current, we obtain the decay constant in
terms of the valence pion LFWF [1]

fπ ¼ 2
ffiffiffiffiffiffiffiffi
2Nc

p Z
1

0

dx
Z

d2k⊥
16π3

ψπðx;k⊥Þ; ð11Þ

where Nc is the number of color and

ψπðx;k⊥Þ ¼
1ffiffiffi
2

p ðχ↑↓ − χ↓↑ÞϕRðx;k⊥Þ; ð12Þ

corresponds to the valence jQQ̄i state having Jz ¼ Sz ¼
Lz ¼ 0 together with the helicity components of the spin-
orbit wave function given in Eq. (7). The twist-2 pion DA
ϕπðxÞ results from the k⊥ integral of ψπðx;k⊥Þ in the LF
gauge Aþ ¼ 0 [1]

ϕπðxÞ ¼
Z

Q2 d2k⊥
16π3

ψπðx;k⊥Þ; ð13Þ

and satisfies the normalization condition
Z

1

0

dxϕπðxÞ ¼
fπ

2
ffiffiffiffiffiffiffiffi
2Nc

p : ð14Þ

In the chiral limit (i.e., Mπ; m → 0), the spin-orbit part
in Eq. (12) becomes ðχ↑↓ − χ↓↑Þ=

ffiffiffi
2

p ¼ sgnð−BπÞ [see
Eq. (8)]. By taking sgnð−BπÞ ¼ 1 (or Bπ < 0), we then
obtain the decay constant and the pion DA analytically as

fchiralπ ¼ ffiffiffiffiffiffiffiffiffi
PQQ̄

p ffiffiffi
3

p
β

23=4π1=4
Γ
�
5

4

�
; ð15Þ

and

ϕchiral
π ðxÞ ¼ 2

ffiffiffi
2

p
fchiralπffiffiffi
3

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
; ð16Þ

respectively. We should note that this derivation of the
chiral limit result could not be made in the case of Γπ ¼
Aπγ5 [see Eq. (9)] due to the lack of the axial-vector
coupling. Our chiral limit result for twist-2 pion DA
given by Eq. (16) is exactly the same as the AdS=CFT
prediction of the asymptotic DA [37,40,41]. We also find
the exactly the same ratio ϕchiral

π ðxÞ=fchiralπ even if we use
the power-law type radial wave function, ϕPL

R ðx;k⊥Þ ∝ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂kz=∂x
p ð1þ k⃗2=β2Þ−2 instead of using the HO wave
function. This appears to indicate that the ratio
ϕchiral
π ðxÞ=fchiralπ is model independent.
The neutral pion transition form factor (TFF) Fπγ for the

π0 → γ�γ transition is defined from the matrix element
of electromagnetic current Γμ ¼ hγðP − qÞjJμemjπ0ðPÞi as
follows:

FIG. 1. One-loop Feynman diagrams that contribute to π0ðPÞ → γ�ðqÞγðP0Þ. The single covariant Feynman diagram (a) is in principle
the same as the sum of the two LF time-ordered diagrams (b) and (c), respectively.
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hγðP − qÞjJμemjπ0ðPÞi ¼ ie2FπγðQ2ÞεμνρσPνερqσ; ð17Þ

where Pμ and qμ are the four-momenta of the incident pion
and virtual photon, respectively, and ερ is the transverse
polarization four-vector of the final (on-shell) photon.
As we discussed in [12], this process is illustrated by the

Feynman diagram in Fig. 1(a), where the intermediate
quark and antiquark propagators of mass m ¼ mQ ¼ mQ̄

carry the internal four-momenta p1¼P−k, p2¼P−q−k,
and k, respectively. It is well known that the single
covariant Feynman diagram Fig. 1(a) is in general equal
to the sum of the two LF time-ordered diagrams Figs. 1(b)
and 1(c) if the qþ ≠ 0 frame is taken. However, if the
qþ ¼ 0 frame (but q⊥ ≠ 0 so that q2 ¼ qþq− − q2⊥ ¼
−q2⊥ ¼ −Q2) is chosen, the LF diagram 1(c) does not
contribute but only the diagram 1(b) gives exactly the same
result as the covariant diagram 1(a). However, as we found
in [12], if one takes the qþ ¼ Pþ (or α ¼ qþ=Pþ ¼ 1)
frame but with q⊥ ¼ 0, Fig. 1(b) does not contribute
but only Fig. 1(c) contributes to the total transition
amplitude and shows exactly the same as the one obtained
from the qþ ¼ 0 frame. While the TFF obtained from
the qþ ¼ 0 frame is defined in the spacelike region
(q2 ¼ −q2⊥ ¼ −Q2 < 0), the TFF obtained from the
qþ ¼ Pþ frame with q⊥ ¼ 0 is directly defined in the
timelike region (q2 ¼ qþq− > 0). Thus, one can analyze
the TFF in the timelike region using the qþ ¼ Pþ but
q⊥ ¼ 0 frame without resorting to the analytic continuation
from spacelike region to timelike region as was did in the
qþ ¼ 0 frame.
The explicit form of the pion TFF obtained from the

qþ ¼ Pþ frame is given by [12]

Fπγðq2Þ ¼
e2u − e2dffiffiffi

2
p

ffiffiffiffiffiffiffiffi
2Nc

p
4π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥

ψπðx;k⊥Þ
M2

0 − q2
;

ð18Þ

where ψπ is the same as Eq. (12). The salient feature of
Eq. (18) is that the external virtual momentum is com-
pletely decoupled from the internal momenta (x;k⊥)
and facilitates the analysis of the timelike region ðq2 ¼
−Q2 > 0Þ due to the simple and clean pole structure,
ðM2

0 − q2Þ−1 as shown in Eq. (18). The TFF in the spacelike
region can also be easily obtained by replacing q2 with−Q2

in ðM2
0 − q2Þ−1 and was shown to be exactly the same as the

result obtained from the qþ ¼ 0 frame [12]. We note that
the leading order QCD result [1] for FπγðQ2Þ with
ϕπðxÞ ¼ 6xð1 − xÞ, so called Brodsky-Lepage (BL) limit
at the asymptotic region (i.e., Q2 → ∞), is given by
Q2FπγðQ2Þ ¼ ffiffiffi

2
p

fπ ≃ 0.185 GeV. As one can see clearly
from Eq. (18), our model satisfies the scaling behavior
Q2FπγðQ2Þ → constant as Q2 → ∞. But how large Q2

should be to reach the scaling behavior is related with the

model parameters as we shall discuss in Sec. IV. On the
other hand, the decay width for π0 → γγ is obtained from
the TFF at Q2 ¼ 0 via

Γπ0→γγ ¼
π

4
α2em M3

πjFπγð0Þj2; ð19Þ

where αem is the fine structure constant. The form factor
Fπγð0Þ is also well described by the following ABJ
anomaly (or the chiral anomaly) [2]

FABJ
πγ ð0Þ ¼ 1

2
ffiffiffi
2

p
π2fπ

; ð20Þ

which results in FABJ
πγ ð0Þ ≃ 0.276 GeV−1 for fExpπ ≃

130MeV agreeing with the experimental data FExp
πγ ð0Þ ¼

0.272ð3Þ GeV−1 within a few percent.
From Eq. (18), we obtain the TFF in the exact chiral limit

(Mπ; m → 0) and its analytic form is given by

Fchiral
πγ ðQ2Þ ¼ ffiffiffiffiffiffiffiffiffi

PQQ̄

p Γ
�
5
4

�
e

Q2

8β2

ffiffiffiffi
Q
β3

q
Γ
�
− 1

4
; Q

2

8β2

�

4
ffiffiffi
3

p ffiffiffi
4

p
π

: ð21Þ

In particular, the TFF at Q2 ¼ 0 is obtained as

Fchiral
πγ ð0Þ¼ ffiffiffiffiffiffiffiffiffi

PQQ̄

p Γð5
4
Þ

2
ffiffiffi
3

p ð2πÞ1=4β¼
ffiffiffiffi
π3

32

q
½Γð1

4
Þ�2PQQ̄

2
ffiffiffi
2

p
π2fchiralπ

; ð22Þ

where we used Eq. (15) to obtain the second expression of
Eq. (22). Equating Eq. (22) with Eq. (20), we find that
PQQ̄ < 0.1 in the chiral limit of our model is required to fit

both fExpπ and ΓExp
π0→γγ

correctly. This indicates a significant

higher Fock-state contribution in the chiral limit. This point
has been also discussed in the LF holographic QCD based
on the AdS=CFT correspondence in which PQQ̄ ¼ 0.5 was
estimated to describe simultaneously Γπ0→γγ and the pion
TFF at the asymptotic limit. As we shall show in Sec. IV,
the probability PQQ̄ increases as the quark mass increases
indicating the saturation of the LF Fock-state expansion
with the lower Fock-state contribution as the so-called
“current” quarks get amalgamated with themselves to form
the constituent quark degrees of freedom. In our numerical
calculation of Sec. IV, we shall analyze the mass variation
effect as Q2 gets evolved and also compare with the result
[45] obtained from the LF holographic QCD based on the
AdS=CFT correspondence.
The electromagnetic form factor FπðQ2Þ of a pion is

defined by the matrix elements of the current operator Jμem:

hP0jJμemjPi ¼ ðPþ P0ÞμFπðQ2Þ; ð23Þ

where q ¼ P − P0 is the four momentum transfer.
Our calculation for FπðQ2Þ is carried out using the

standard LF frame (qþ ¼ 0). The charge form factor of the
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pion can then be expressed as the convolution of the initial and final state LF wave functions for the “þ” component of the
current operator Jμem as follows

FπðQ2Þ ¼
Z

1

0

dx
Z

d2k⊥
16π3

Ψ�
πðx;k0⊥ÞΨπðx;k⊥Þ

¼
Z

1

0

dx
Z

d2k⊥
16π3

ϕ�
Rðx;k0⊥ÞϕRðx;k⊥Þ

M2k⊥ · k0⊥ þ ½mMþ xð1− xÞBπεB�½mMþ xð1− xÞBπε
0
B�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2k2⊥ þ ½mMþ xð1− xÞBπεB�2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2k02⊥ þ ½mMþ xð1− xÞBπε
0
B�2

p ;

ð24Þ

where k0⊥ ¼ k⊥ þ ð1 − xÞq⊥ and ε0B is the same as εB but
with the replacement of k⊥ with k0⊥. One can also easily
find that the spin-orbit term in Eq. (24) becomes 1 in the
chiral limit (i.e.,Mπ; m → 0). The charge radius of the pion
can be calculated by hr2πi ¼ −6dFπðQ2Þ=dQ2jQ2¼0.

IV. NUMERICAL RESULTS

Laying out all the formulas for our model description
and its application to fπ , FπγðQ2Þ and FπðQ2Þ in Secs. II
and III, respectively, we have already discussed the critical
role of chiral anomaly in constraining the model param-
eters. In particular, we noticed not only the nontriviality
of the axial-vector coupling, i.e., Bπ ≠ 0, in the chiral limit
but also the negativity of the axial-vector coupling, i.e.,
Bπ < 0, to dictate the model independence of the ratio
ϕchiral
π ðxÞ=fchiralπ and the consistency with the AdS=CFT

prediction of asymptotic DA. Moreover, the probability of
the lowest LF Fock state PQQ̄ should diminish in the chiral

limit to obtain both the chiral anomaly (i.e., ΓExp
π0→γγ

) and

fExpπ correctly, indicating a significant higher Fock-state
contribution in the chiral limit. In this section, we present
our numerical results and discuss the consistency of the
constraints on the model parameters with the chiral
anomaly that we discussed in previous sections.
To find the optimum model parameters ðm; β; BπÞ, we

first take PQQ̄ ¼ 1 and fit the two experimental data,

(1) pion decay constant fExpπ ¼ 130.2ð1.7Þ MeV, and
(2) FExp

πγ ð0Þ ¼ 0.272ð3Þ GeV−1, simultaneously. For an
illustration, we show in Fig. 2 the possible solution sets
for ðm; βÞ satisfying fThπ ¼ fExpπ when Bπ ¼ þ1 (upper
panel) and −1 (lower panel) for given pion physical mass
Mπ ¼ 135 MeV. As one can see from Fig. 2, while the
negative sign of Bπ has the solution set (i.e., overlap line
between the blue and peach colors) covering all the
possible range of 0 ≤ ðm; βÞ ≤ 1 GeV, the positive sign
of Bπ has the solution set covering severely restricted
range with rather unusually large uðdÞ-quark mass (i.e.,
m ≥ 0.7 GeV). The restriction on the model parameters for
the case of Bπ ¼ þ1 appears in line with the unusually
large Mock meson massMav¼ð1

4
Mπþ 3

4
MρÞExp≈612MeV

in the spin-averaged mass scheme [32,33] for the consis-
tency with the experimental data. As already indicated in

the results of fchiralπ and ϕchiral
π ðxÞ in the chiral limit given by

Eqs. (15) and (16), the negativity of Bπ , i.e., Bπ < 0, is
essential for the consistency in the chiral limit. Varying the
value of PQQ̄, i.e., 1 > PQQ̄ > 0, we have confirmed that
the value of Bπ should be taken to be negative in order to
make a link to the chiral limit.

FIG. 2. Possible solution sets for ðm; βÞ satisfying fThπ ¼ fExpπ

obtained from the pion vertex Γπ ¼ ðMπ þ Bπ=PÞγ5 with the
Bπ ¼ 1 (upper panel) and Bπ ¼ −1 (lower panel).
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In Fig. 3, we show the possible solution sets for the
model parameters depending on ðm; β; Bπ; PQQ̄Þ for
given quark mass m ¼ ð255; 200; 150; 100; 50; 5Þ MeV
and Mπ ¼ 135 MeV, i.e., (−Bπ vs PQQ̄) in Fig. 3(a) and
(β vs PQQ̄) in Fig. 3(b), which were obtained by fitting both

fExpπ ¼ 130.2ð1.7Þ MeV and FExp
πγ ð0Þ ¼ 0.272ð3Þ GeV−1

simultaneously. In our previous work [12] with Bπ ¼ 0,
i.e., Γπ ¼ Aπγ5, the quark mass m ¼ 220 MeV and the
Gaussian parameter β ¼ 0.3659 GeV were taken from our
earlier LFQM [14] spectroscopic analysis of the ground
state pseudoscalar and vector meson nonets based on the
variational principle. In the scope of present work involving
only the pion, however, we do not attempt a spectroscopic
analysis but focus on the effect of nonzero axial vector
coupling (Bπ < 0) for the consistency with the chiral
anomaly. For this purpose, we first set our reference
parameter set with PQQ̄ ¼ 1 and Bπ ¼ −0.25 which is a
rather small axial vector coupling compared to the pseu-
doscalar coupling and find the corresponding optimum
values of m and β to fit both fExpπ and FExp

πγ ð0Þ. Then, by
reducing the quark mass m from this reference point and
again fitting both fExpπ and FExp

πγ ð0Þ simultaneously, we
obtain the rest of parameter sets shown in Fig. 3. We mark
the reference parameter set by asterisk (�) in Fig. 3, i.e.,
ðMπ;m;βÞ¼ð0.135;0.255;0.1980ÞGeV and ðBπ; PQQ̄Þ ¼
ð−0.25; 1Þ, with which we get Fπγð0Þ¼PQQ̄=ð2

ffiffiffi
2

p
π2fπÞ¼

0.271GeV−1 and fπ ¼ 130.4 MeV close enough to
FExp
πγ ð0Þ ¼ 0.272ð3Þ GeV−1 and fExpπ ¼ 130.2ð1.7Þ MeV

for our purpose in this work. In comparison with the
value β ¼ 0.3659 GeV in the absence of the axial vector
coupling Bπ ¼ 0 [12], the value β ¼ 0.1980 GeV in the
reference parameter set is somewhat reduced with the
contribution of axial vector coupling Bπ ¼ −0.25, while
the quark mass m ¼ 255 MeV still represents the ordinary
constituent quark picture in our reference point “�”.
In reducing the quark mass m from this reference point
to fit both fExpπ and FExp

πγ ð0Þ simultaneously, we ultimately
reached the parameter set ðMπ; mÞ ¼ ð135; 5Þ MeV
reproducing the Gell-Mann-Oakes-Renner (GMOR)
relation [46], i.e., M2

πf2π ¼ −2ðmq þmq̄Þhqq̄i, where
hqq̄i ¼ −ð250 MeVÞ3 with the “current” quark mass
m ¼ mq ¼ mq̄. For the fixed value of the pion mass,
i.e., Mπ ¼ 0.135 GeV, we distinguish the two different
cases of the quark-antiquark bound state, i.e., Mπ < 2m vs
Mπ > 2m, and call them as the “constituent quark picture”
vs the “current quark picture,” respectively. In Fig. 3, the
parameter sets corresponding to Mπ < 2m and Mπ > 2m
cases are denoted by black and blue data, respectively.
From the results shown in Fig. 3, we summarize

our main findings for the model parameters as follows:

0 0.2 0.4 0.6 0.8 1
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π

m = 255 MeV (reference point)
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m = 150 MeV
m = 100 MeV
m = 50 MeV
m = 5 MeV

(a)
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(b)

FIG. 3. Possible solution sets for (−Bπ vs PQQ̄) (a) and (β vs
PQQ̄) (b) for given quark mass m ¼ ð255; 200; 150; 100;
50; 5Þ MeV and Mπ ¼ 135 MeV satisfying fExpπ and FExp

πγ ð0Þ,
simultaneously. We set the solution of m ¼ 255 MeV with
PQQ̄ ¼ 1 as a reference point.

CHIRAL ANOMALY AND THE PION PROPERTIES IN THE … PHYS. REV. D 102, 036005 (2020)

036005-7



(1) The minimum probability Pmin
QQ̄ exists for a given quark

mass satisfying both fExpπ and FExp
πγ ð0Þ simultaneously, e.g.,

Pmin
QQ̄ ¼ ð0.45; 0.25Þ for m ¼ ð200; 5Þ MeV etc. This result

is in line with the trend that the probabilityPQQ̄ increases as
the quark mass increases indicating the saturation of the LF
Fock-state expansion with the lower Fock-state contribu-
tion as the current quarks get amalgamated with themselves
to form the constituent quark degrees of freedom. (2) For
the quark masses satisfying Mπ < 2m (i.e., constituent
quark picture), the Guassian parameter β gets larger as PQQ̄

decreases. This indicates that the spatial size of the lowest
Fock state gets smaller as the higher Fock states contribute
more. For a given quark mass m, the axial vector coupling
−Bπ gets also reduced as the higher Fock states contribute
more, i.e., PQQ̄ decreases. For a fixed PQQ̄, however, we
notice that −Bπ increases quite significantly asm decreases
while β values do not change much indicating only
marginal size reduction in the lowest Fock state with the
reduction of mass m. (3) For the quark masses satisfying
Mπ > 2m (i.e., current quark picture), β values are in
general greater for the current quark mass than the
constituent one for given PQQ̄ indicating that the spatial
size of the lowest Fock state consisted of the current quark
is smaller than the one consisted of the constituent quark.
As PQQ̄ decreases, however, β values get reduced down to
those in the constituent quark picture indicating that the
spatial size of the lowest Fock state consisted of the
current quark gets larger as the higher Fock states
contribute more. The similar merge of the axial vector
coupling Bπ between the current quark picture and the
constituent picture appears as PQQ̄ decreases in the upper
panel Fig. 3(a). It is indeed fascinating to observe the
merge of the parameter sets between the current quark
picture and the constituent picture as PQQ̄ decreases both
in Fig. 3(a) and Fig. 3(b). It seems to indicate a nontrivial
dynamic saturation process of the LF Fock-state expan-
sion occurring as the current quarks get amalgamated with
themselves to form the constituent quark degrees of
freedom according to these results.
For the case of exact chiral limit (Mπ ¼ m ¼ 0), our

results for any physical observables are independent of Bπ

as far as it is negative nonzero value (Bπ < 0) and depend
only on ðβ; PQQ̄Þ, which were obtained as β ¼ 0.6685 GeV

and PQQ̄ ¼ 0.078 by fitting both fExpπ [see Eq. (15)] and

FExp
πγ ð0Þ [see Eq. (22)] simultaneously.
Table I shows our typical model parameters ðBπ; βÞ

depending on the variation of ðMπ; mÞ and PQQ̄ used in the
analysis of the twist-2 DA ϕπðxÞ, the transition form factor
FπγðQ2Þ, and the electromagnetic form factor FπðQ2Þ.
Among many possible solutions satisfying both fExpπ and
FExp
πγ ð0Þ as shown in Fig. 3, we select a few parameter sets

ðMπ;mÞ ¼ fð135;255Þ; ð135;150Þ; ð135;50Þ; ð0;0Þg MeV
corresponding to the variation of the probability PQQ̄ ¼
f1; 0.3; 0.15; 0.078g in order to estimate the mass variation
effect on both FπγðQ2Þ and FπðQ2Þ form factors.
Using these typical parameter sets in Table I, we first

show the normalized twist-2 pion DA ΦπðxÞ satisfyingR
1
0 dxΦπðxÞ ¼ 1 and compare them with the asymptotic
DA, Φasy

π ¼ 6xð1 − xÞ in Fig. 4. The twist-2 pion DAwith
larger quark mass such as m ¼ 255 MeV is strongly
suppressed in the vicinity of endpoints (x ¼ 0, 1) but the
DA shows broader shape than the asymptotic DA (double-
dot-dashed line) as the quark mass is getting smaller.
Our chiral limit result (dot-dashed line) is exactly the same
as the AdS=CFT prediction of the asymptotic DA
[37,40,41]. We obtain Φπð1=2Þ ¼ ð1.70; 1.34; 1.28Þ for
m ¼ ð255; 150; 50Þ MeV and Φchiral

π ð1=2Þ ¼ 1.27 for
ðMπ; mÞ ¼ ð0; 0Þ, which should be compared with

TABLE I. Model parameters ðBπ; βÞ depending on the variation
of ðMπ; mÞ and PQQ̄. We denote ðMπ ; m; β; fπÞ in unit of MeV.

ðMπ ; mÞ PQQ̄ Bπ β fThπ FTh
πγ ð0Þ [GeV−1]

(135, 255) 1 −0.25 198.0 130.4 0.271
(135, 150) 0.3 −0.60 346.9 130.6 0.272
(135, 50) 0.15 −0.7 493.0 130.7 0.271
(0, 0) 0.078 < 0 668.5 130.9 0.276
Exp. [44] � � � � � � � � � 130.2(1.7) 0.272(3)

0 0.2 0.4 0.6 0.8 1
x
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0.5
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1.5
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Φ
π(x

)

m = 255 MeV
m = 150 MeV
m = 50 MeV
Chiral limit (M, m → 0)
6x(1-x)

FIG. 4. The normalized pion DA ΦπðxÞ obtained from the sets
of ðMπ ; mÞ ¼ fð135; 255Þ; ð135; 150Þ; ð135; 50Þ; ð0; 0Þg MeV
with PQQ̄ ¼ f1; 0.3; 0.15; 0.078g compared with the asymptotic
DA.
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Φasy
π ð1=2Þ ¼ 1.5 as well as other theoretical predictions

such as ΦSR
π ð1=2Þ ¼ 1.2� 0.3 obtained from QCD sum

rules [47], ΦRLðDBÞ
π ð1=2Þ ¼ 1.16ð1.29Þ from Dyson-

Schwinger equation approach using the rainbow-ladder
truncation (RL) and the dynamical chiral-symmetry break-
ing improved (DB) kernels [48,49], and ΦLFQM

π ð1=2Þ ¼
1.25 from our LFQM using the spin structure given by
Eq. (9) and the linear confining potential model parameters
[17]. One can also define the expectation value of the
longitudinal momentum, so called ξ ¼ 2x − 1 moments as

hξni ¼
Z

1

0

dxξnΦπðxÞ: ð25Þ

The odd power of ξ-moments for the pion DA are zero due
to the isospin symmetry, and the first nonzero moment
(n ¼ 2) is obtained as hξ2i ¼ ð0.155; 0.230; 0.247Þ for
m ¼ ð255; 150; 50Þ MeV with PQQ̄ ¼ ð1; 0.3; 0.15Þ, and
0.250 in the exact chiral limit (Mπ; m → 0), whereas
it is 0.20 for the asymptotic DA. Our result for hξ2i gets
larger as the quark mass and the probability are getting
smaller and reaches maximum value hξ2imax ¼ 0.25 in the
chiral limit. Especially, our result for hξ2i obtained from
the current quark picture (i.e., 2m < Mπ) are quite
comparable with hξ2iLFQM ¼ 0.24 obtained from our
previous LFQM [17] and other theoretical predictions such
as hξ2iLat ¼ 0.27� 0.04 from Lattice QCD [50],
hξ2iRLðDBÞ ¼ 0.28ð0.25Þ from [48,49].
The profiles of normalized twist-2 pion DAΦπðxÞ shown

in Fig. 4 exhibit a dramatic difference in the end-point
behaviors near x ¼ 0 and 1 between the two typical
parameter sets ðMπ; mÞ ¼ fð135; 255Þ; ð135; 50Þg MeV
which represent the constituent quark picture and the
current quark picture, respectively. This difference in the
endpoint behaviors would be consequential in describing
FπγðQ2Þ and FπðQ2Þ. Moreover, the current quark picture
gets closer to the chiral limit than the constituent quark
picture does as indicated in almost indistinguishable
profiles between the two parameter sets ðMπ; mÞ ¼
fð135; 50Þ; ð0; 0Þg MeV shown in Fig. 4. These results
motivate us to explore the analysis of FπγðQ2Þ and FπðQ2Þ
for both low- and high- Q2 regions, estimating the mass
variation effect on the Q2 evolution of these form factors.
Since the exact form of the quark mass evolution is still not
known in the light-front dynamics, we prescribe the mixing
of different mass eigenstates as our first attempt to estimate
the quark mass variation effect by taking hΨπ

m0 jΨπ
mi ¼

δm0m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm0Pm

p ¼ δm0mPm with Pm given by the correspond-
ing PQQ̄ for the mass m in Table I.
With this idea in mind, we try to implement the quark

mass variation in our LFQM to describe FπγðQ2Þ and
FπðQ2Þ for both low- and high- Q2 regions. Namely, we
obtain FπγðQ2Þ and FπðQ2Þ by combining the contribution

from the LF quark degrees of freedom at the reference point
with mref ¼ m ¼ 255 MeV and PQQ̄ ¼ Pmref

¼ 1 with
another contribution from the LF quark degrees of freedom
with the reduced m and Pm. For instance, the form factors

Fðmref ;mÞ
πγ ðQ2Þ and Fðmref ;mÞ

π ðQ2Þ obtained from the mixing of
the LF quark degrees of freedom with mref ¼ 255 MeV
and Pmref

¼ 1 and the LF quark degrees of freedom with
m ¼ 150 MeV with Pm ¼ 0.3 in Table I are respectively
given by

Fðmref ;m¼150Þ
πγ ðQ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − P̃m

p
FðmrefÞ
πγ þ

ffiffiffiffiffiffi
P̃m

p
Fðm¼150Þ
πγffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − P̃m

p
þ

ffiffiffiffiffiffi
P̃m

p ;

ð26Þ

and

Fðmref ;m¼150Þ
π ðQ2Þ ¼ ð1 − P̃mÞFðmrefÞ

π þ P̃mF
ðm¼150Þ
π ; ð27Þ

where the renormalized probability is denoted as P̃m ¼
Pm=ðPmref

þ PmÞ ¼ 0.3=1.3 ≈ 0.23. Since our prediction

of the TFF satisfies FTh
πγ ð0Þ ≃ FExp

πγ ð0Þ for any quark mass as

shown in Table I, our value of Fðmref ;mÞ
πγ ðQ2Þ also satisfies

Fðmref ;mÞ
πγ ð0Þ ≃ FExp

πγ ð0Þ. Also, FðmÞ
π ð0Þ ¼ 1 for any quark

mass m as given by Eq. (24) so that the normalization

Fðmref ;mÞ
π ð0Þ ¼ 1 for the electromagnetic form factor in

Eq. (27) is always satisfied.
We show in Fig. 5(a) our predictions of FπγðQ2Þ for low-

and intermediate-spacelike regions of 0 ≤ Q2 ≤ 10 GeV2

and compare with the experimental data [3,51–53]. We
also show in Fig. 5(b) our predictions of Q2FπγðQ2Þ for
0 ≤ Q2 ≤ 50 GeV2 including large spacelike regions and
compare with the data as well as the leading twist pQCD
prediction Q2FπγðQ2Þ ¼ ffiffiffi

2
p

fπ (double-dash-dotted line).
The solid and double-dot-dashed lines represent the

results Fðmref¼255Þ
πγ ðQ2Þ and Fðm¼0Þ

πγ ðQ2Þ obtained from
mref ¼ 255 MeV with Pmref

¼ 1 and the chiral limit
(Mπ; m → 0) with Pm ¼ 0.078, respectively. The dashed,
dotted, and dot-dashed lines represent the results

Fðmref ;m¼150Þ
πγ ðQ2Þ, Fðmref ;m¼50Þ

πγ ðQ2Þ, and Fðmref ;m¼0Þ
πγ ðQ2Þ

obtained from the combination of the two different quark
mass degrees of freedom (mref andm ¼ 150) MeV with the
renormalized probability P̃m ≈ 0.23, (mref and m ¼ 50)
MeV with P̃m ≈ 0.13, as well as (mref and m ¼ 0) MeV
with P̃m ≈ 0.072, respectively. We should note that all the
results obtained from the parameter sets in Table I as well as
their mixing satisfy the nonperturbative ABJ anomaly.

While FðmrefÞ
πγ ðQ2Þ agrees with the data for low Q2 region

(Q2 < 2 GeV2) and shows the scaling behavior in the

region above Q2 ≥ 10 GeV2, the value of Q2FðmrefÞ
πγ ðQ2Þ as

Q2 → ∞ explains only about 80% of the pQCD result.
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Our result Fðm¼0Þ
πγ ðQ2Þ obtained from the exact chiral

limit (double-dot-dashed line) shows a disagreement with
the experimental data for low Q2ð< 3 GeV2Þ region. The
Q2Fðm¼0Þ

πγ ðQ2Þ exceeds the pQCD result forQ2 > 10 GeV2

and shows a consistency with the data from BABAR [3] for
the intermediate region of 4 ≤ Q2 ≤ 14 GeV2 although its
mild rising behavior is however not enough to fit the data
from BABAR for the higher Q2 region.
The results of combining the two different quark mass

degrees of freedom, i.e., Fðmref ;m¼150Þ
πγ ðQ2Þ, Fðmref ;m¼50Þ

πγ ðQ2Þ,
and Fðmref ;m¼0Þ

πγ ðQ2Þ, are not much different from

FðmrefÞ
πγ ðQ2Þ for low- and intermediate-Q2 regions but shows

better agreement with the pQCD result in high Q2 region
accounting 93% of the pQCD result. While we have noticed
that Q2FπγðQ2Þ obtained from the quark mass in the
region 0 ≤ m ≤ 150 MeV exceeds the pQCD result for
10 ≤ Q2 ≤ 20 GeV2 region by itself, it is interesting
to see that the results of combining the quark mass degrees

of freedom with mref , i.e., Q2Fðmref ;mÞ
πγ ðQ2Þ, approach the

asymptotic result only from below as shown in Fig. 5(b).
Effectively, our results obtained from the combination of
the quark mass degrees of freedom show a consistency with
the data from Belle [53] rather than the BABAR data [3].
Our results for Fπγð0Þ are comparable with the simple LF
holographic QCD model [45] with a twist-2 valence pion
state in which it requires PQQ̄ ¼ 0.5 to reproduce FExp

πγ ð0Þ.
It may be also noteworthy that our previous LFQM

prediction [12] using the spin-orbit structure given by
Eq. (9) is very close to the pQCD result.
From the results of FπγðQ2Þ and Q2FπγðQ2Þ shown in

Fig. 5, we may summarize our findings as follows: (1) For
low- and intermediate-Q2 region ð0 ≤ Q2 ≤ 10Þ GeV2 as
shown in Fig 5(a), we find that the nonzero quark mass
results are in better agreement with the data than the result
in the chiral limit. As the constituent quark mass decreases
from the reference point mref ¼ 255 MeV, the reduction of
the probability PQQ̄ is necessary to agree with the exper-
imental data. These results indicate that the constituent
quark picture (2m > Mπ) is very effective and important in
describing FπγðQ2Þ in the low energy regime but the quark
mass evolution seems inevitable as Q2 grows. (2) As the
quark mass evolves from the constituent to current quark
masses, the probability PQQ̄ finding the valence QQ̄
component inside the pion also needs to be reduced
accordingly. This indicates that the higher Fock states
contribute more as the quark mass decreases.
We show in Fig. 6(a) the timelike (q2 > 0) behavior of the

normalized Fnorm
πγ ðq2Þ ¼ Fπγðq2Þ=Fπγð0Þ, i.e., jFnorm

πγ ðq2Þj2
as a function of q for small q (0 ≤ q ≤ 0.2 GeV) region
compared with the experimental data for the Dalitz decay
π0 → eþe−γ measured from A2 Collaboration [54]. The
same line codes are used as in Fig. 5. As discussed in
Sec. III, our result for Fπγðq2Þ in timelike region is obtained
from the direct timelike region ðqþ ¼ PþÞ calculation
without resorting to the analytic continuation from spacelike
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FIG. 5. Predictions of (a) FπγðQ2Þ and (b) Q2FπγðQ2Þ. The experimental data are taken from [3,51–53].
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Q2 to the timelike q2 in contrast to the case of the qþ ¼ 0
frame calculation. Figure 6(b) exhibits the sample results
of Fnorm

πγ ðq2Þ for both spacelike and timelike region
(−2 ≤ q2 ≤ 5 GeV2) obtained from mref (black thick lines)
and the exact chiral limit (blue thin lines), in which we
separate the real Re½Fπγðq2Þ� (dashed lines) and imaginary
Im½Fπγðq2Þ� (dotted lines) parts from the modulus jFπγðq2Þj
(solid lines). We should note that our direct results of the
form factor Fπγðq2Þ ¼ ReFπγðq2Þ þ iImFπγðq2Þ are in
complete agreement with those obtained from the dispersion
relations as we have explicitly shown in [12]. This assures
the validity of our numerical calculation both in the spacelike
and timelike regions.
In our model calculation for the timelike region,

the imaginary part starts from the threshold, q2th ¼
ðmQ þmQ̄Þ2 ¼ 4m2 and the modulus of the TFF reaches
maximum near threshold and decreases after the threshold.

Because of this, jFnormðmrefÞ
πγ ðq2Þj2 (solid line) and

jFnormðmref ;m¼150Þ
πγ ðq2Þj2 (dashed line) in Fig. 6(a) represent

the result including only the real part since the thresholds
qth for those quark masses (i.e., m ¼ 255 and 150 MeV)
are greater than the maximum q value shown in Fig. 6(a).
Both show an excellent agreement with the experimental

data. On the other hand, jFnormðm¼0Þ
πγ ðq2Þj2 obtained from

the chiral limit (double-dot-dashed line) represents the

modulus including both real and imaginary parts but
reaches its maximum [see Eq. (21)] at q2 ¼ 0 and decreases
just after that. As a result, the chiral limit prediction in the
timelike region shows an apparent disagreement with the

experimental data. Likewise, jFnormðmref ;m¼50Þ
πγ ðq2Þj2 (dotted

line) and jFnormðmref ;m¼0Þ
πγ ðq2Þj2 (dot-dashed line) represent

the modulus including both real and imaginary parts, but
disagree with the data. From the analysis of pion TFF in
both spacelike and timelike regions, we find that the
constituent quark picture is definitely necessary to describe
the low energy behavior correctly. While the form factors
obtained from the mixing of the different quark mass
eigenstates are not much different from each other in the
spacelike region, their predictions for the timelike region
are very different due to the resonance feature in the
timelike region. Therefore, the analysis of Fπγðq2Þ in
timelike region plays a critical role in constraining theo-
retical models.
In association with the experimental data for the Dalitz

decay π0 → eþe−γ, due to the smallness of the lightest
eþe− invariant mass mee ¼ q, the normalized TFF is
typically parametrized as [44,54]

Fnorm
πγ ðq2Þ ¼ 1þ aπ
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FIG. 6. Predictions of normalized Fnorm
πγ ðq2Þ ¼ Fπγðq2Þ=Fπγð0Þ in timelike region: (a) jFnorm

πγ ðq2Þj2 for small timelike region
ð0 ≤ q ≤ 0.2Þ GeV and (b) Fnorm

πγ ðq2Þ for both spacelike and timelike regions (−2 ≤ q2 ≤ 5) GeV2. The experimental data are taken
from [54].
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where the parameter aπ corresponds to the slope of the TFF
at q2 ¼ 0. As shown in Fig. 6(a), our results for Fnorm

πγ ðq2Þ
obtained from the two parameter sets, i.e., mref and the
mixture of mref and m ¼ 150 MeV, show a good agree-
ment with the A2 data. Our results for aπ obtained from

FnormðmrefÞ
πγ ðq2Þ and Fnormðmref ;m¼150Þ

πγ ðq2Þ are obtained as
aπ ¼ 0.038 and 0.043, respectively. On the other hand,
in our previous LFQM [12] analysis using the spin-orbit
structure given by Eq. (9), we obtained aLFQMπ ¼ 0.036.
Our result obtained from mref and the previous LFQM
result [17] are in closer good agreement with the current
world average aπ ¼ 0.032� 0.004 [44] and the two recent
experimental data extracted from the π0 → eþe−γ decay,
aπ ¼ 0.030� 0.010 from A2 [54] and aπ ¼ 0.0368�
0.0057 from NA62 [55]. This again indicates that the
constituent quark degrees of freedom (i.e., m ≥ 200 MeV)
rather than the current quark degrees of freedom is much
better in describing Fπγðq2Þ for small timelike region. The
timelike data going beyond the Dalitz decay can provide
further constraints on theoretical understanding of the
effective quark degrees of freedom.
Figure 7 shows the pion electromagnetic form factor, i.e.,

FπðQ2Þ in Fig. 7(a) for small Q2 ð0 ≤ Q2 ≤ 1 GeV2)
region and Q2FπðQ2Þ in Fig. 7(b) for the larger Q2

(0 ≤ Q2 ≤ 10 GeV2) region. We compare our results
with the experimental data [56–60]. The results

FðmrefÞ
π ðQ2Þ (solid line), Fðmref ;m¼150Þ

π ðQ2Þ (dashed line),

Fðmref ;m¼50Þ
π ðQ2Þ (dotted line), and Fðmref ;m¼0Þ

π ðQ2Þ (dot-
dashed line) are in good agreement with the experimental
data [56–60] for small Q2 ð0 ≤ Q2 ≤ 1 GeV2) region as
one can see from the plot of FπðQ2Þ in Fig. 7(a), while the

chiral limit result Fðm¼0Þ
π ðQ2Þ (double-dot-dashed line)

severely deviates from the data as one may have expected
from the previous analysis of FπγðQ2Þ. Our predictions of
the pion charge radius rπ ≡ hr2πi1=2 obtained from FðmrefÞ

π ,

Fðmref ;m¼150Þ
π , Fðmref ;m¼50Þ

π , and Fðmref ;m¼0Þ
π are given by

rπ ¼ ð0.683; 0.657; 0.677; 0.679Þ fm, respectively. Those
four results show a good agreement with the most recent
value quoted by Particle Data Group [44], rPDGπ ¼
ð0.672� 0.008Þ fm. These results may also be compared
with the result rLFQMπ ¼ 0.651 fm obtained from the
spin-orbit structure given by Eq. (9) in our previous
LFQM analysis [17]. For the plots of Q2FπðQ2Þ
up to Q2 ¼ 10 GeV2, the results of Q2Fðmref ;m¼150Þ

π ðQ2Þ
(dashed line), Q2Fðmref ;m¼50Þ

π ðQ2Þ (dotted line), and

Q2Fðmref ;m¼0Þ
π ðQ2Þ (dot-dashed line) appear reasonably

consistent with the current available experimental data,

while the resultQ2FðmrefÞ
π ðQ2Þ reaches its maximum around

Q2 ≃ 1.2 GeV and drops rather steeply after passing the
maximum value. Indeed, all the results for Q2FπðQ2Þ drop
after reaching their maximum values but with different

rates. The result of combining the constituent quark mass

degrees of freedom Q2Fðmref ;m¼150Þ
π provides an improved

description over the result of Q2FðmrefÞ
π without any mixing

for the broader Q2 range, which again indicates the vitality

0 0.2 0.4 0.6 0.8 1

Q
2
[GeV

2
]

0

0.2

0.4

0.6

0.8

1

F
π(Q

2 )

NA7 Coll. (CERN SPS)
Fπ Coll. (JLab)

F
(m

ref
=255)

π

F
(m

ref
, m=150)

π

F
(m

ref
, m=50)

π

F
(m

ref
, m=0)

π

F
(m=0)

π

(a)

0 2 4 6 8 10

Q
2
[GeV

2
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Q

2 F
π(Q

2 )

NA7 Coll. (CERN SPS)
Fπ Coll. (JLab)

Q
2
F

(m
ref

=255)

π

Q
2
 F

(m
ref

, m=150)

π

Q
2
 F

(m
ref

, m=50)

π

Q
2
 F

(m
ref

, m=0)

π

(b)

FIG. 7. Predictions of (a) FπðQ2Þ for small Q2 ð0 ≤ Q2 ≤
1 GeV2) region and (b) Q2FπðQ2Þ for the larger Q2

(0 ≤ Q2 ≤ 10 GeV2) region. The same line codes are used as
in Fig. 5 and the data are taken from [56–60].
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of quark mass evolution asQ2 gets larger. We note however
that the mixture of the constituent quark mass degrees of
freedom with the current quark mass degrees of freedom as

shown in Q2Fðmref ;m¼50Þ
π ðQ2Þ and Q2Fðmref ;m¼0Þ

π ðQ2Þ
provides characteristically different scaling behaviors com-
pare to the typical high Q2 behavior exhibited in the

constituent quark quark picture results Q2FðmrefÞ
π ðQ2Þ and

Q2Fðmref ;m¼150Þ
π ðQ2Þ. We anticipate that the 12 GeV

upgraded Jefferson Lab would provide much more detailed
and accurate data of the pion form factor for the larger Q2

range. This would help us in coming up with the more
realistic quark mass evolution analysis beyond this first
order approximation.

V. SUMMARY AND CONCLUSIONS

As the chiral anomaly [2] is the key to understand the
π0 → γγ decay rate resolving the issue with the Sutherland-
Veltman theorem [38], we attempt to include the axial-
vector coupling in addition to the pseudoscalar coupling in
our LFQM for the pion to explore a well-defined chiral
limit still providing a good description of the pion electro-
magnetic and transition form factors [12,14,17]. We
thus took the spin-orbit vertex structure given by Γπ ¼
ðAπ þ Bπ=PÞγ5 versatile enough to explore the chiral limit
and described the pion properties such as fπ; FπγðQ2Þ and
FπðQ2Þ depending on the variation of the quark mass in a
self-consistent manner.
We find that the chiral anomaly plays a critical role in

constraining the model parameters. The negativity of the
axial-vector coupling, i.e., Bπ < 0, appears essential to
dictate the model independence of the ratio ϕchiral

π ðxÞ=fchiralπ

and the consistency with the AdS=CFT prediction of
asymptotic DA. Our chiral limit result for twist-2 pion
DA given by Eq. (16) is exactly the same as the AdS=CFT
prediction of the asymptotic DA [37,40,41], indicating also
a significant higher Fock-state contribution in the chiral
limit. We also note that the analysis of Fπγðq2Þ in timelike
region plays a critical role in constraining theoretical model
parameters. While the form factors obtained from the
mixing of the different quark mass eigenstates are not
much different from each other in the spacelike region, their
predictions for the timelike region are very different due to
the resonance feature in the timelike region.
While the small probability of the lowest Fock-state such

as PQQ̄ < 0.1 in the chiral limit implies a significant higher
Fock-state contribution, our numerical results in Sec. IV
indicate that PQQ̄ increases as the quark mass increases. It
is interesting to note that the merge of the parameter sets
between the current quark picture and the constituent
picture occurs both in Fig. 3(a) and Fig. 3(b) as PQQ̄

decreases. These results seem to reflect a nontrivial
dynamic saturation process of the LF Fock-state expansion

as the current quark degrees of freedom get amalgamated
together to form the constituent quark degrees of freedom.
We may discuss the amalgamation of the current quarks

forming the constituent quark degrees of freedom from the
perspective of the vacuum fluctuation consistent with the
chiral symmetry of QCD. While the constituent degrees of
freedom in our LFQM get dressed by the light-front zero-
mode cloud, they satisfy the chiral symmetry consistent
with the QCD. The correlation between the quark mass and
the nontrivial QCD vacuum effect is on par with the trade-
off between the complicated nontrivial vacuum and the
effective constituent quark degrees of freedom. Our results
indicate that the constituent quark picture (2m > Mπ) is
very effective and important in describing both FπγðQ2Þ
and FπðQ2Þ in the low energy regime but the quark mass
evolution seems inevitable as Q2 grows. More elaborate
analysis including the quark mass evolution effect deserves
further consideration. One may also explore the spectro-
scopic analysis including the pseudoscalar and vector
meson nonets beyond the pion.
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APPENDIX: SPIN-ORBIT WAVE
FUNCTIONS χ ðx;k⊥Þ

The constituent quarks can be described by Dirac spinors
uλðkÞ and vλðkÞ satisfying the Dirac equation

ð=k −mÞuλðkÞ ¼ 0; ð=kþmÞυλðkÞ ¼ 0; ðA1Þ

where =k ¼ kμγμ. It is instructive to use the appropriate basis
of Dirac spinors [13]:

uλðkÞ ¼
1ffiffiffiffiffiffi
kþ

p ð=kþmÞuðλÞ; υλðkÞ ¼
1ffiffiffiffiffiffi
kþ

p ð=k −mÞυðλÞ;

ðA2Þ

u

�
1

2

�
¼

0
BBB@

1

0

0

0

1
CCCA; u

�
−
1

2

�
¼

0
BBB@

0

0

0

1

1
CCCA; ðA3Þ

and υðλÞ ¼ uð−λÞ. In this basis the γ matrices are repre-
sented by

γ0 ¼
�
0 I

I 0

�
; γi ¼

�
0 σi

−σi 0

�
; ðA4Þ
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where I is the 2 × 2 unit matrix and σi are Pauli matrices
defined as

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ðA5Þ

Using the γ matrices γ� ≡ γ0 � γ3 and γ5 ≡ iγ0γ1γ2γ3,
and =k ¼ 1

2
ðkþγ− þ k−γþÞ − γ⊥ · k⊥, the spinors uλðkÞ and

υλðkÞ are obtained as

u↑ðkÞ¼
1ffiffiffiffiffiffi
kþ

p

0
BBB@

m

0

kþ

kR

1
CCCA; u↓ðkÞ¼

1ffiffiffiffiffiffi
kþ

p

0
BBB@

−kL

kþ

0

m

1
CCCA; ðA6Þ

υ↑ðkÞ¼
1ffiffiffiffiffiffi
kþ

p

0
BBB@

−kL

kþ

0

−m

1
CCCA; υ↓ðkÞ¼

1ffiffiffiffiffiffi
kþ

p

0
BBB@

−m
0

kþ

kR

1
CCCA: ðA7Þ

The normalization is ūλðkÞuλðkÞ ¼ −ῡλðkÞυλðkÞ ¼ 2m and
kR and kL are defined as kR ≡ k1 þ ik2 and kL ≡ k1 − ik2,
respectively.
For a pion with four momentum P and mass Mπ ,

the general spin structure may be given as χλλ̄ ¼
N ūλ1ðk1ÞðMπ þ Bπ=PÞγ5υλ2ðk2Þ, which satisfies the nor-
malization

P
λi
χ†λ1λ2χλ1λ2 ¼ 1.

Then, the operator Γπ ¼ ðMπ þ Bπ=PÞγ5 is given by

Γπ ¼

0
BBB@

−Mπ 0 BπP− 0

0 −Mπ 0 BπPþ

−BπPþ 0 Mπ 0

0 −BπP− 0 Mπ

1
CCCA; ðA8Þ

and

ð1Þ χπ↑↑ ¼ N
−kL1ffiffiffiffiffiffiffiffiffi
x1x2

p ðMπ þ 2BπmÞ;

ð2Þ χπ↓↑ ¼ N
−1ffiffiffiffiffiffiffiffiffi
x1x2

p fmMπ − Bπðk2⊥ −m2 − x1x2M2
πÞg;

ð3Þ χπ↑↓ ¼ N
1ffiffiffiffiffiffiffiffiffi
x1x2

p fmMπ − Bπðk2⊥ −m2 − x1x2M2
πÞg;

ð4Þ χπ↓↓ ¼ N
−kR1ffiffiffiffiffiffiffiffiffi
x1x2

p ðMπ þ 2BπmÞ; ðA9Þ

where

P ¼
�
Pþ;

M2

Pþ ; 0⊥
�
; ki ¼

�
xiPþ;

k2
i⊥ þm2

i

xiPþ ;ki⊥
�
:

ðA10Þ

Thus, the normalized spin-orbit wave function for pion
satisfying the unitary condition hχλ1λ2 jχλ1λ2i ¼ 1 is given by

χλ1λ2ðx;k⊥Þ

¼ N
�

−kLM mMþ x1x2BπεB

−mM − x1x2BπεB −kRM

�
;

ðA11Þ

where N ¼ 1ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2k2⊥þ½mMþx1x2BπεB�2

p , M ¼ Mπ þ 2Bπm

and εB ¼ M2
π −M2
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