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We propose a grading protocol that assigns global symmetry associated phases to states in the Hilbert
space. Without modifying the Hilbert space, this changes the state sum, a process that we call quantum
distillation. We describe the image of quantum distillation in terms of (nondynamical) flavor holonomy
dependence of (dynamical) gauge-holonomy potentials, in QCD with Nf ¼ Nc fundamental and one
massive adjoint fermion on R3 × S1. The compactified theory possesses an exact zero-form color-flavor
center symmetry for a special choice of flavor holonomy (under which Polyakov loop is charged), despite
the absence of one-form center symmetry. We prove that the color-flavor center symmetry is stable at small
β. This is the opposite of the high-temperature limit of thermal theory and a dramatic manifestation of
quantum distillation. We show chiral symmetry breaking at small S1 and that the vacuum structure of the
theory on R4 and R3 × S1 are controlled by the same mixed ’t Hooft anomaly condition.
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I. INTRODUCTION

Consider a generic quantum field theory (QFT) on a d-
dimensional space-manifold M. The dimension of the
Hilbert space of such a theory scales exponentially with the
volume, eVolðMÞ. It is a monstrous structure, and for
different purposes, one cares very little with the detailed
knowledge of the full space. For low energy physics, one
cares solely about ground states and low lying states. In the
theory of phase transitions, the interest is in the growth of
the density of states ρðEÞ and high energy states become
crucial.
Consider a thermal partition function associated with

an asymptotically free or superrenormalizable QFT,
ZðβÞ ¼ tr½e−βH�, where β is inverse temperature. In the
β → ∞ limit, this receives dominant contributions from
ground states and low lying states. However, in this limit,
these QFTs are often strongly coupled and not amenable to
analytic treatment. As β → 0, they may become weakly
coupled, but the state sum receives contributions from
every state on the same footing. It is an utterly contami-
nated quantity. In this regime, it is impossible to isolate and
understand the role of ground states and low lying states.

Relatedly, the theory often moves to a different phase at
some β < βc due to phase transitions associated with
singularities of partition function ZðβÞ.
On the other hand, despite the fact that the full Hilbert

spaces of supersymmetric theories are also equally compli-
cated, one can often succeed in constructing graded state
sums, e.g., supersymmetric Witten index [1], which
receives contributions only from ground states, ZðβÞ ¼
tr½e−βHð−1ÞF�. This is a Bose-Fermi paired graded state
sum, in which positive energy states E > 0 cancel pairwise
thanks to supersymmetry (assuming that the spectrum is
discrete).
In this work, we are after something ambitious. We

would like to construct a graded state sum in certain four-
dimensional QCD-like theories, such that the cancellation
among states can prevent all phase transitions as one moves
from large β to small β. We would like to achieve this
without changing the theory, its Hilbert space, and without
adding center-stabilizing double-trace deformations [2,3].
The goal is to construct a graded state sum which can

avoid all singularities in ZðβÞ. One may think that this is
impossible in a nontrivial nonsupersymmetric theory due to
lack of supersymmetry. However, we will argue otherwise
in interesting theories, including Nf ¼ Nc QCD with an
extra heavy degree of freedom. We refer to the protocol of
changing the state sum, which reduces the sum over the
Hilbert space H down to a much smaller subset of states,
Distill½H�, as quantum distillation. The origin of this idea in
two-dimensional QFTs can be traced to [4–7]. The spectral
miracles in adjoint QCD in four dimensions [8–10] can also
be interpreted in this language.
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II. QUANTUM DISTILLATION IN QCD(F/ADJ)

Consider QCD with Nf ¼ Nc flavors of fundamental
massless Dirac fermions ψa and one adjoint massless Weyl
fermion λ with Euclidean Lagrangian,

L ¼ 1

2g2
trF2

μν þ
XNf

a¼1

ψ̄aγμDμψ
a þ 2trλ̄σ̄μDμλ: ð1Þ

The global symmetry of the theory Gnon-ab that acts
faithfully on the Hilbert space is

SUðNfÞL × SUðNfÞR ×Uð1ÞV ×Uð1ÞAD
× Z2 gcdðNc;NfÞ

ZNc
× ðZNf

ÞL × ðZNf
ÞR × ðZ2Þψ

;

ð2Þ

where Uð1ÞAD
is the diagonal subgroup of the two classical

chiral Uð1ÞA acting on ψa and λ, respectively. Z2 gcdðNc;NfÞ
is the discrete remnant of classical chiral symmetry. By
turning on a mass mλ > 0 for adjoint fermion, the theory
can be reduced to QCD at low energy. There are two
reasonable scenarios for the chiral symmetry breaking.
(i) The whole axial part is broken as in QCD. (ii) All but
Uð1ÞAD

axial symmetry is broken as in Nf ¼ Nc SQCD
[11,12]. Of course, once a mass term mλ is turned on
(which is our interest in this work), Uð1ÞAD

is lost and there
is no difference between these two scenarios.
We would like to study the dynamics of the theory by

using a generalized partition function

Zðβ; ϵaÞ ¼ tr

�
e−βHð−1ÞF

YNf

a¼1

eiϵaQa

�
; ð3Þ

where Qa are the charges corresponding to Cartan gen-
erators ofUðNfÞV and ð−1ÞF is grading by fermion number
of λ. These operators commute with the HamiltonianH and
do not alter the Hilbert space H. In path integral formu-
lation, this corresponds to the boundary conditions

λðβÞ ¼ þλð0Þ; ψðβÞ ¼ −ψð0ÞΩ̄F;

ΩF ¼ diagðeiϵ1 ;…; eiϵNf Þ; ð4Þ

where ΩF is a flavor twist. ΩF may also be viewed as an
imaginary chemical potential, and Hilbert space grading
and sum provide a physical interpretation for it.
In the presence of fundamental fermions, it is well

known that the one-form (and zero form in compactified
theory) center symmetry is explicitly broken, and Wilson
loops (Polyakov loops for zero form) are no longer good
order parameters; see [13–15]. However, consider a
UðNfÞV flavor-twisted boundary condition on fermions,
setting Nf ¼ Nc,

Ω0
F ¼ diagð1;ω;…;ωNf−1Þ; ω ¼ e2πi=Nf ; ð5Þ

where ψðx4 þ βÞ ¼ −ψðx4ÞΩ̄0
F. Under a gauge transforma-

tion periodic up to an element of the center, the boundary
condition maps into ψðx4 þ βÞ ¼ −ψðx4ÞΩ̄0

Fω. Since this
boundary condition is different from the original one, this is
a noninvariance of the partition function and explicitly
breaks zero-form center symmetry. On the other hand, ωΩ̄0

F
is a cyclic permutation of Ω̄0

F and can be brought to the
original boundary conditions by using cyclic permutation
matrix ðSÞa;b ¼ δaþ1;b ∈ ΓS ⊂ SUðNfÞV , and turn the com-
bined operation into a genuine global symmetry.
For general Nf, Nc, the compactified theory possesses an

exact ZgcdðNf;NcÞ zero-form color-flavor center (CFC) sym-
metry under which Polyakov loops are charged, despite the
fact that it does not possess a one-form center symmetry
under which Wilson loops are charged [16–18]. We will see
manifestation of this fact explicitly in holonomy potential.
Therefore, we can examine the phase structure of these
theories according to the CFC symmetry and pose questions
about analyticity of graded partition function as a function of
β. The CFC is one of the major players in our construction.
The price one pays for keeping an exact zero-form center

symmetry is the reduction of the non-Abelian chiral
symmetry to a subgroup which commutes with Ω0

F, the
maximal Abelian subgroup Gmax -ab,

Uð1ÞNf−1
L ×Uð1ÞNf−1

R × Uð1ÞV ×Uð1ÞAD
× Z2 gcdðNc;NfÞ

ZNc
× ðZNf

ÞL × ðZNf
ÞR × ðZ2Þψ

:

ð6Þ
This is the exact symmetry at any finite β. When β is much
larger than the strong length scale, (2) should be viewed
as approximate symmetry and ultimately recovered at
β → ∞ limit.

III. GAUGE-HOLONOMY POTENTIALS
WITHOUT AND WITH FLAVOR

HOLONOMY TWISTS

In the thermal case, as β → 0, the theory moves to a
chirally restored phase. This regime is sometimes called
deconfined, but strictly speaking, center symmetry is not
present due to the fundamental matter fields with thermal
boundary conditions. In the small-β regime, the potential

for gauge holonomy Ω ¼ ei
H

a4dx4 is well known [13,19],

V1-loop;thðΩÞ ¼
2

π2β4

�X∞
n¼1

1

n4
½−1þ ð−1Þn�jtrðΩnÞj2

þ Nf

X∞
n¼1

ð−1Þn
n4

½trðΩnÞ þ c:c:�
�
; ð7Þ

where the contributions are, respectively, from aμ, λ, ψa.
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The leading order free energy, which is found by
minimizing this potential, is given by (see, e.g., [14,15,20])

F thðβÞ ¼ −
π2

90

V3

β4

�
2ðN2

c − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
gluons

þ 7

8
ð2ðN2

c − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
adj Weyl

þ 4NfNc|fflfflffl{zfflfflffl}Þ
�

fundD

;

ð8Þ

which can be interpreted in two different ways following
quark-hadron duality [21,22]. The standard (microscopic)
interpretation is the usual Stefan-Boltzmann free energy of
asymptotically free quarks and gluons. The macroscopic
interpretation is in terms of the hadronic density of states in
the Hilbert space H. The inverse Laplace transform of the
partition function (for Nf ∼ Nc) ZðβÞ ∼ e−βF th ∼ eaN

2
cV3=β3

(a is a pure number) is just the density of states of hadrons

in the spectrum, ρSBðEÞ ∼ eE
3=4N1=2

c ðaV3Þ1=4 , where SB stands
for the Stefan-Boltzmann growth. The idea of quantum
distillation is to create sufficient destructive interference in
the state sum such that an effective density of states (the one
associated with Distill½H�) is not strong enough to change
the phase of the theory as β is reduced.
The gap between the minimum and maximum of the

holonomy potential (7) is ΔV ∼OðN2
cÞ. The configuration

Ω ¼ 1Nc
is the minimum and governs the properties of

the thermal equilibrium state. In particular, the center-
symmetric configurations are close to maxima. All three
terms in the potential (7) need to be defeated in order for the
quantum distillation idea to work.
The effect of grading in state sum (3) maps into non-

dynamical flavor holonomy dependence in the gauge-
holonomy potential. At one-loop order, we find

V1−loop;ΩF
¼ Vgauge

1−loop þ Vλ
1−loop þ Vψ

1−loop;ΩF
;

Vgauge
1−loop þ Vλ

1−loop ¼ ð−1þ 1Þ 2

π2β4
X∞
n¼1

1

n4
jtrðΩnÞj2 ¼ 0;

Vψ
1−loop;ΩF

¼ 2

π2β4
X∞
n¼1

ð−1Þn
n4

½trðΩ̄n
FÞtrðΩnÞ þ c:c:�:

ð9Þ

The effect of gauge fluctuations is undone by one massless
adjoint fermion (but recall that we will make adjoint
fermion heavy and reduce the low energy theory to
QCD.) This is true to all orders in perturbation theory,
because the subclass of Feynman diagrams (in loop
expansion) composed solely of aμ and λ is identical to
N ¼ 1 SYM; hence, a potential cannot be generated from
this class. Furthermore, at one- and two-loop order, λ and
ψa are decoupled in loop expansion. Starting at three-loop
order, there are diagrams involving both fundamental and
adjoint fermions. However, the CFC realization can be
determined reliably with two-loop knowledge.

For ΩF ¼ Ω0
F given in (5), since trðΩ0

FÞn ¼ 0 unless
n ¼ Nfk, k ∈ Zþ, a number of remarkable effects take
place. (i) We observe the manifestation of the exact CFC
symmetry at one-loop order. The potential becomes invari-
ant under ZgcdðNf;NcÞ symmetry since all terms of the form
trðΩnÞ, n ≠ Nfk vanish. (ii) The gap between the minimum
and maximum of the potential, for Nf ∼ Nc, becomes
ΔV1−loop;Ω0

F
∼Oð1=N2

cÞ, i.e., the one-loop potential is
extremely frustrated and it collapses. At one-loop order,
one obtains an exponentially increasing number of degen-

erate minima, NminðNcÞ ≈ 22Nc−1N−3=2
cffiffi

π
p . In the Nc → ∞ limit,

the gauge-holonomy potential vanishes at one-loop order
and the set of minima becomes continuous similar to
supersymmetric theories. (iii) The graded free energy at
the level of one-loop analysis (for Nf ∼ Nc) takes the form

FΩ0
F
ðβÞ ¼ −

π2

90

V3

β4

�
2ðN2

c − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
gluons

− 2ðN2
c − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

adjWeyl

þ 7

2

1

N2
c|ffl{zffl}
�

fundD

¼ −
π2

90

V3

β4

�
7

2

1

N2
c

�
→ 0; Nc → ∞: ð10Þ

This is the effect of quantum distillation. It is as if there is
merely 1

N2
c
quark degree of freedom in the system instead of

∼N2
c bosonic and ∼N2

c fermionic degrees of freedom.
The corresponding scaling of the graded partition function

is ZðβÞ ∼ e
a
N2
c
V3=β3

, and the effective density of states
of the hadronic states in Distill½H� is given by

ρΩ0
F
ðEÞ ∼ e

1

N1=2
c

E3=4ðaV3Þ1=4
.

In order to determine CFC realization, we need a two-
loop result in the presence of the grading. To this end, we
generalize earlier thermal studies of Refs. [23,24,25] to
incorporate flavor holonomy. We use Eq. (17) in [24] and
Eq. (5.11) in [25]. These two results at first sight look
different, but due to nontrivial Bernoulli polynomial
identities, they are actually the same.
The two-loop potential in the presence of the flavor-

twisted boundary conditions is (4)

Vψ
2-l;ΩF

¼ g2

β4
3

π4

�
−
N2

c − 1

8Nc

X∞
n¼1

ð−1Þn
n4

½TrðΩ̄n
FÞTrðΩnÞ þ c:c:�

þNf

24

X∞
n¼1

jTrðΩnÞj2
n4

�
: ð11Þ

Again, in the ΩF ¼ Ω0
F background, in the first sum, all but

n ¼ Nfk terms vanish, and the sum is Oððg2NcÞ=N2
cÞ

without altering any of the results of one-loop analysis.
In the large-Nc Veneziano limit [26] of QCDðF=adjÞ, the
combined one- and two-loop potential takes a simple and
beautiful form
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V1-l;Ω0
F
þ V2-l;Ω0

F
¼ þ g2Nf

8π4β4
X∞
n¼1

jTrðΩnÞj2
n4

: ð12Þ

This is one of the main results of this work. Fundamental
fermions with Ω0

F-twisted boundary conditions at two-loop
order is capable of stabilizing the CFC symmetry, by
inducing center stabilizing double-trace terms at two-loop
order. In this sense, they behave similar to adjoint fermions
with periodic boundary conditions [27]. The minimum of
the gauge-holonomy potential is now at

Ωjmin ¼ ω−ðNc−1Þ=2diagð1;ω;…;ωNc−1Þ: ð13Þ

The stability of center symmetry is robust to all loop orders
in perturbation theory and nonperturbatively in the weak
coupling small-β regime. The stability is the image of the
quantum distillation over the Hilbert space in the gauge-
holonomy potential.
Turning on mλ, the balance between the gauge fluc-

tuation and adjoint fermion breaks in favor of CFC
breaking. However, since the two-loop effects of the
fundamental fermions is also CFC stabilizing, the full
ZNc

center symmetry can be kept intact provided

mλ ≤ m�
λ ¼ ðg2NcÞ1=2

Ncβπ
. Therefore, provided Λ ≪ mλ ≤ m�

λ

(which is easily achieved at finite Nc), the IR theory is
essentially QCD(F) both on R4 and on R3 × S1. In other
words, in this window, the adjoint fermion does not
decouple from the holonomy potential, but it does decouple
from other aspects of the long distance physics, such as
chiral Lagrangian.
Therefore, the net effect of quantum distillation is the

1=N4
c suppression in free energy (at least at two-loop order)

and the suppression of the hadronic density of states

ρSBðEÞ ∼ eE
3=4N1=2

c ðaðg2NcÞV3Þ1=4

↦ ρΩ0
F
ðEÞ ∼ e

1

N1=2
c

E3=4ðaðg2NcÞV3Þ1=4
; ð14Þ

where aðg2NcÞ is a series expansion in ’t Hooft coupling. It
is highly plausible, similar to [10], that the growth
expðV1=4

3 E3=4Þ expected in a standard local 4D theory in
spatial volume V3 cancels and ρΩ0

F
ðEÞ turns out to have a

scaling associated with a two-dimensional QFT in the
Nc → ∞ limit.
In the small circle regime where CFC remains unbroken,

the chiral symmetry breaks spontaneously by the conden-
sation of monopole flux operators as described in [28]. In
the Appendix, we present this mechanism in operator
formalism in contrast with [28]. Therefore, we conjecture
that the small-S1 chirally broken phase of QCD(F/adj) with
Λ ≪ mλ < m�

λ is adiabatically connected to the strong
coupling regime, and quantum distillation achieves its
goal, the continuity of the partition function. We cannot
prove this conjecture, but instead we can prove weaker

statement that the vacuum structure of the theory on any
size R3 × S1 and R4 is controlled by the same mixed
’t Hooft anomaly condition.

IV. MIXED ANOMALY AND
PERSISTENT ORDER

On R4, the faithful symmetry of the Λ ≪ mλ < m�
λ

theory includes G1 ¼ SUðNfÞV=ZgcdðNf;NcÞ because
ZgcdðNf;NcÞ ⊂ ZNc

is part of gauge structure, and therefore,
is not a symmetry. The theory also has a G2 ¼ Z2Nf

chiral
symmetry, which resides in continuous chiral symmetry.
By using the techniques of [29–34], it is possible to
show that there is a mixed anomaly between these two
symmetries.
Introducing the SUðNfÞ gauge field A, the theory

becomes SUðNfÞ × SUðNcÞ quiver theory (bifundamental
QCD), which has a genuine ZgcdðNf;NcÞ one-form sym-
metry. To gauge the correct symmetry, G1, the one-form
symmetry must also be gauged, and for this purpose, we
introduce a two-form gauge field B. In quiver theory,
only Z2 gcdðNf;NcÞ ⊂ Z2Nf

chiral symmetry is present.
Generalizing Ref. [32] to arbitrary Nf and Nc, we observe
that under the discrete χS transformation h, the partition
function fails to be invariant,

ZðhðA;BÞÞ ¼ e−i
2lcmðNf;NcÞ

4π

R
B∧BZðA;BÞ; ð15Þ

provided

2lcmðNf; NcÞ
ðgcdðNf; NcÞÞ2

∈ QnZ: ð16Þ

For all Nf ¼ Nc ≥ 3, there is a mixed anomaly since
2
Nc

∈ QnZ in agreement with [32].
This mixed ’t Hooft anomaly implies that a unique,

gapped ground state is impossible. Therefore, either
(i) SUðNfÞV=ZgcdðNf;NcÞ or (ii) Z2Nf

or (iii) both are
spontaneously broken, or (iv) IR theory has to be a
CFT. In the present case, we can rule out (i) and (iii) because
of the Vafa-Witten theorem, which asserts that in vectorlike
theories, vectorlike global symmetries cannot be sponta-
neously broken as long as one assures positivity of the
measure [35]. Fortunately, the grading (3) respects this
positivity. For QCD-like theories, both χSB and CFT
options are equally reasonable. From now on, we work
with the assumption thatZ2Nf

discrete symmetry is broken.
As observed in [36], there exists no order parameter which
is charged under the discrete χS but not under continuous
χS (the opposite statement is not true), implying sponta-
neous breaking of SUðNfÞA. Therefore, massless pions
must exist in the spectrum.
Reference [30] recently showed that a mixed anomaly

between a one-form symmetry and zero-form symmetry
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persists upon compactification on R3 × S1; see also
[33,34]. This is in sharp contrast with mixed anomalies
involving only zero-form symmetries originally discussed
by ’t Hooft [29] which do not survive compactification.
However, there is an important exception for the latter [32].
Assume we have zero-form symmetries G1 ×G2, where
G1 ¼ G̃1=Γ and gauging G̃1 turns Γ into a genuine one-
form symmetry. This is precisely the case in QCD(F/adj).
Then, a triple-mixed anomaly persists upon compactifica-
tion provided some conditions are satisfied.
The anomaly (15) persists compactification on R3 × S1

if and only if one uses a flavor-twisted boundary condition
by Ω0

F [37]. Indeed, these boundary conditions are used in
[4–7] to preserve adiabatic continuity. In QCD(F/adj), the
combination of center transformation and ΓS cyclic
permutation subgroup of SUðNfÞV remains as a true
zero-form symmetry of the compactified theory. This is
identified as CFC symmetry in [16]. Introducing the
background gauge field for Uð1ÞNf−1, ZgcdðNf;NcÞ emerges
as a one-form symmetry. We also introduce a two-form
field Bð2Þ and one-form field Bð1Þ associated with one-form
and zero-form part of center symmetry ZgcdðNf;NcÞ. Then,
the partition function fails to be invariant under h ∈ Z2Nf

transformation as

ZΩ0
F
ðhðAK; Bð2Þ; Bð1ÞÞÞ

¼ e−i
2lcmðNf;NcÞ

2π

R
Bð2Þ∧Bð1Þ

ZΩ0
F
ðAK; Bð2Þ; Bð1ÞÞ: ð17Þ

Therefore, there is a triple mixed anomaly between ΓS shift
symmetry, Abelianized flavor symmetry Uð1ÞNf−1=

ZgcdðNf;NcÞ, and the discrete χS Z2Nf
⊂ Uð1ÞNf−1

A provided

(16) holds, the same condition as inR4. Indeed, this anomaly
polynomial naturally descends from the one on R4 (15) with
the substitution B ¼ Bð2Þ þ Bð1Þ ∧ β−1dx4. Again, the
mixed anomaly implies that the ground state cannot be

unique and gapped. The options are Uð1ÞNf−1
A chiral sym-

metry breaking, CFC breaking, spontaneous breaking of
both, or a CFT behavior at low energy. Semiclassics
(described in the Appendix) proves that the first option takes
place with the use of Ω0

F twisting at small β.

V. CONCLUSION

Despite the fact that we did not prove adiabatic con-
tinuity between the weak and strong coupling regimes, we
reduced the possibilities to just a few thanks to persistent
order due to the mixed anomaly.
On smallR3 × S1, we showed that one can keep the CFC

symmetry intact with a unique choice of boundary con-
ditions in QCD(F/adj). One can sufficiently decouple
adjoint fermions to reduce the theory to real QCD(F).
The preservation of the CFC symmetry is a manifestation of

the distillation of Hilbert space, similar to what
tr½e−βHð−1ÞF� achieves in supersymmetric theories.
We showed that the twisted boundary conditions which

satisfy maximal quantum distillation is the one for which
the anomaly polynomial on R4 naturally descends to
R3 × S1. On small S1, we proved chiral symmetry breaking
rigorously with semiclassical methods. On large S1, and
R4, the ground states are controlled by the same mixed
anomaly structure as small S1.
Our work has interesting connections with spectral

conspiracies in non-SUSY theories [10,38,39], and volume
independence [8,40–43] whose working examples must
have an interpretation in terms of quantum distillation.
Our construction creates a sign problem in the

Hamiltonian formalism, in the state sum, but not in the
Euclidean path integral formulation. In this sense, it is a
good sign “problem,” opposite to the notorious QCD sign
problem at finite chemical potential. Therefore, it is
possible to test our analytic construction via numerical
lattice simulations involving light fermions.
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APPENDIX: CHIRAL SYMMETRY BREAKING

In this short appendix, we present an operator description
of chiral symmetry breaking on smallR3 × S1 in the regime
where color-flavor center symmetry is unbroken and
Λ ≪ mλ < m�

λ . We set Nf ¼ Nc for simplicity. Our result
is same as [28], translated to operator language, and has the
virtue of providing interesting insights.
At the gauge-holonomy configuration (13), the theory

dynamically Abelianizes down to Uð1ÞNc−1 at distances
larger than inverse W-boson mass. The Uð1ÞNc−1 photons
can be dualized to gapless scalars, F ∼ �dσ, which remain
gapless to all orders in perturbation theory. The gaplessness
is protected by the topological shift symmetry,

½Uð1ÞJ�Nc−1∶σ → σ þ ε; J μ ¼ ∂μσ: ðA1Þ

Nonperturbatively, there are monopole-instanton effects,
which come in Nc types, associated with the affine root
system of suðNcÞ Lie algebra [44,45]. The form of the
monopole operators depend on the interplay between the
flavor holonomy and gauge holonomy. Without loss of
generality, and with a particular choice of flavor holonomy,
the monopole operators can be written as

Mi ∼ e−Sie
−4π
g2
αi·ϕþiαi·σðψ i

LψRiÞ: ðA2Þ
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Consider a collection of ni monopoles of type-i
i ¼ 1;…; Nc sprinkled in between two asymptotic time
slice. Then, the magnetic charge nonconservation is

ΔQm ≡Qmðt ¼ ∞Þ −Qmðt ¼ −∞Þ

¼
Z

d2xF12jt¼þ∞
t¼−∞ ¼

Z
S2∞

F12

¼ 4π

g

XNc

i¼1

niαi: ðA3Þ

These charges violate emergent ½Uð1ÞJ�Nc−1 explicitly.
Based on this violation, which is same as in the old
Polyakov model [46], one may be tempted to think that
the σ fluctuations will be nonperturbatively gapped due to
proliferation of monopoles. But the story is actually
opposite. In this background, the axial charge associated
with Gmax−ab (6) is also not conserved,

ΔQ5 ¼
XNf

i¼1

niαi: ðA4Þ

Naively, this would mean that Gmax−ab is anomalous. But
this is impossible since it lives in Gnon−ab, which is
manifestly anomaly free. The resolution of this puzzle is
generalization of a mechanism discovered by Affleck et al.

[47] in a gauge theory onR3. A linear combination of these
two charges is nonperturbatively conserved,

ΔQ̃≡ Δ
�

g
4π

Qm −Q5

	
¼ 0: ðA5Þ

Since the Gab is the true microscopic symmetry, and
½Uð1ÞJ�Nc−1 is emergent symmetry to all orders in pertur-
bation theory, this mechanism is present so that the chiral
charge of the fermion bilinear is transferred into gauge
fluctuations. In the IR theory, gauge fluctuations (dual
photon field) become chirally charged.
The pure flux part of the monopole operators can be

combined into a diagonal component of the matrix field,
which can be interpreted as the chiral field of the chiral
Lagrangian ΣðxÞ ¼ Diagðeiα1·σ;…; eiαNc ·σÞ. Σ manifold is
the maximal torus of chiral symmetry, and (A5) forbids
formation of a potential on it. Choosing a point on
the Σ field manifold corresponds to spontaneous chiral
symmetry breaking, and IR theory is described by

S ¼ R
R3×S1

f2π
4
trj∂μΣj2. Turning on a small mass for quarks

breaks chiral symmetry softly and induces a potential
∼mψe−S0 trðΣþ Σ†Þ. The theory acquires a nonperturba-
tively induced mass gap on small R3 × S1. For details of
this chiral symmetry breaking mechanism in path integral
description, see [28].
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