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In this work we study the production of K*(4307) in B decays by determining the J/yz*(®K° and
J/wn~ KT invariant mass distributions of the processes BT — J/wat7°K? and Bt — J/yata K™,
respectively. Such K*(4307) has been recently predicted as a three-body state originating from the
dynamics involved in the KDD* system, with the KD subsystem forming the D*,(2317) in isospin 0, and
the DD* subsystem generating the X(3872) in isospin 0 and the Z,(3900) in isospin 1. The hidden charm
content of K*(4307) favors its decay to a state like J/wnzK and the study of B decays with these particles in
their final states can constitute a way of finding experimental evidence for such an exotic vector meson,
whose width—in spite of its large mass—is still quite narrow (around 18 MeV).
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I. INTRODUCTION

In recent years the B factories have become an unex-
pected and crucial source of experimental data useful for
understanding the properties—as well as the discovery—of
mesons whose nature seems to challenge the traditional
quark model, especially those mesons/baryons with hidden
or explicit charm quantum numbers. For instance, the
states D7,(2317) and D},(2460), observed for the first
time in e*e™ collisions [1,2], were also found in the study
of B— DD,n and B — DDz [3], with the particles
Dyn (Dim) coming from the decay D%,(2317) — Dyn
[D?,(2460) — D;x]. Such studies were crucial for con-
firming the quantum numbers of D?,(2317) and ruling out
the possible spin-0 assignment for D%, (2460). The quan-
tum numbers JPC = 1%+ of X(3872) were indeed con-
firmed by the LHCb Collaboration in the study of the
decay BT — J/wrntx KT, followed by J/y — utu-,
where X (3872) was found in the z"z~J/y invariant mass
distribution [4]. The same decay process, as well as the
decays BT — J/ynta°K? and B~ — J/yn~ 2K, were
previously investigated by the Belle [5-7] and BABAR
collaborations [8,9] in the context of searching for X (3872)
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and a possible charged partner. Along the same line, the
study of the decay B — Kz~ led to the claim by the Belle
Collaboration of the existence of a state with a minimal
tetraquark configuration, Z*(4430), in the 7%y’ invariant
mass distribution [10,11]. Such a state has also been
claimed by the LHCb Collaboration, which arrived at the
conclusion that a highly significant Z~(4430) — y/'n~ is
needed to describe the decay B® — y/z~K* [12]. The
experimental observation of baryons with a minimal con-
tent of five quarks has also come from the decay of a baryon
with bottom quantum number. In particular, charmonium
pentaquark states were claimed by the LHCb Collaboration
in the J/wp invariant mass of the decay process Ag -
J/wK™p [13,14].

Interestingly, all of the above mentioned states share a
property: the meson states can be interpreted as tetraquarks
or as states obtained from the dynamics involved in two-
meson systems, while the baryon states can be understood
as pentaquarks or as states originating from meson-baryon
systems (for some recent reviews on these topics see, for
example, Refs. [15-20]). With the amount of data collected
from B decays in recent years, it is natural to ask whether
there could be signals for other kinds of exotic states, like
those formed by the interaction of three hadrons, that is, a
minimal configuration of six quarks in the case of mesons
and seven in the case of baryons. In recent years, the
formation of three-body bound states/resonances with hid-
den or explicit charm is being discussed [21-29], though an
experimental investigation of these states is still not on the
agendas of experimental facilities. Particularly interesting is
the exotic K* vector meson found in Refs. [22,25], a state
with hidden charm, a mass around 4300 MeV, but still

Published by the American Physical Society
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FIG. 1. Diagrammatical representation of the decay process B* — J/wntz°K? through the formation of K**()(4307).

narrow, with a width of around 18 MeV [25]. As shown in
Ref. [25], such a state arises from the dynamics involved in
the KDD* system when the interaction of the DD* sub-
system generates the X (3872) in isospin 0 and the Z.(3900)
in isospin 1. The K*(4307), with a dominant KZ_.(3900)
component in its wave function, can naturally decay to a
final state formed by KJ/yx, with the J/y and z coming
from the decay of Z.(3900). In this way, an experimental
reconstruction of the J/yzK invariant mass could confirm
the existence of such an excited K* state, and its narrow
width would help to identify it. The fact that information
on this invariant mass could be obtained from the
existing experimental data on B* — J/yat7°K? or Bt —
J/wrta~ K" is especially motivating.

Conducting such experimental research could herald
a whole new era of hunting for exotic mesons with
strangeness, since the last excited state of a K/ K™ observed
experimentally according to the Particle Data Group
is a kaon whose mass is around 3100 MeV [30]. There
is then a vast energy region in which the formation of exotic
K/K* states has remained totally unexplored. Having
this in mind, in this work we determine the branching
ratio for the processes BT — J /ya’z*K°, through B* —
220 K+0) (4307) - 72 K075 (3900) — 2%+ K0/
wat©®, and Bt—=J/yatz K*, through Bt —
atK*0(4307) - #tK*Z7(3900) - ztK*J/wa~, and
reconstruct the J/yz " ®K® and J/wa~ K™ invariant mass
distributions with the purpose of studying the K*(4307)
signal in them.

II. FORMALISM

The decay process BT — J/wnta°K? proceeding
through K*(4307) formation can be visualized diagram-
matically as shown in Fig. 1, where the interaction between

aK" and a Z(C)(_)(3900) generates the K*+(0)(4307) [25],
which decays to J/ya (" K°. The nature of Z,(3900) is
still under debate. Here, as done in Ref. [25], we follow the
model of Ref. [31] where the state is generated from the
interaction between DD* and J/wx within coupled chan-
nels as a weakly bound state of the DD* system, with a
finite width coming from its decay to the J/wx channel.
Due to the nature of K*(4307) and Z.(3900), the weak

vertex BT — J/wK™ is the most favored for forming
Z.(3900) and K*(4307). At the quark level, it involves
internal emission of a W+ via b — ¢ (W+ — ¢5) transi-
tions, which are both Cabibbo favored (see Fig. 2). Based
on the quantum chromodynamics factorization approach
for nonleptonic B-meson decays [32], the amplitude related
to the weak vertex shown in Fig. 2 can be written as

G _ -
T8t 1y K =7chbV§saz<J/wl(CC)vl0> (K|(bs)y|B),

(1)
where G is the Fermi coupling constant, V., and V7 are
elements of the Cabibbo-Kobayashi-Maskawa matrix, a, is
an effective coupling constant, (J/y|(¢c),|0) is the fac-
torized amplitude for the production of a J/y via the vector
current ¢y,c, and (K|(bs)y|B) represents the transition
matrix element B — K. The amplitude (J/y|(cc)y|0)
can be parametrized in terms of the decay constant f,,, the
mass m,,, and the polarization vector €/, of the J/y
vector meson as [33]

<J/W|<EC)V|0> = e.]/l[/ﬂmf/l//ff/lll7 (2)

while the transition matrix element B™(p) - K*(p’) is
given by [33]

(K*(p")|(Bs)y|B*(p))

= <p+p/)ﬂ_%Qﬂ FI(QZ)
2 _ 2
+%Q,,FO<QZ>. (3)
Jhy
1
c c

B+ |:u W+ u ] K+

FIG. 2. Weak vertices involved in the decay of a BT into a J /y
and a K*.
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In Eq. 3), Q, = (p—p'),» F1(Q?), and Fy(Q?) corre-
spond to form factors, which satisfy the condition F;(0) =
Fy(0) [33], and mp+ (mg-+) is the mass of the BT (K™)
meson. The Q? dependence of these form factors can be
written as [34]

F:(0)
1—Q*/mp;’

where i = 0, 1, with mp; being the mass of the lowest-
lying meson with the appropriate quantum numbers,

Fi(Q2) = (4)

ie, JP =0 for Fy (mp=>5890 MeV) and 1~ for F,
(mp = 5430 MeV), and
F1(0) = Fy(0) = 0.49 + 0.12. (5)

Using Eq. (1), we can determine the branching ratio for the
process BT — J/wK™ as

|PCM|

Br(Bt — J/wK™)
( - /l// 87[F3+m

(6)

Z|t3+

where the symbol ), indicates a sum over the polar-
izations of J/y, |pcum| is the center-of-mass momentum of
the J/wK™" system, I'g+ is the width of the B™ meson, and,
from Egs. (1) and (3),

G2
%:\tgmuwl =5 Ve PIVesPlaaPmi, £, F1(Q%)

(m2. — m2, )2
~(p+p')+ BTF - (7)

J/w
Considering a, =0.21 £0.02 [33], Gp=1.166 x
1071 MeV~2, |V,| =0977 £0.017, |V, |=(422+

0.8) x 10‘3,m1/q,:3096.9j:0.006MeV,1“B+ = (4.01839+
0.0098) x 10719 MeV [30], and Sfiy =405 £ 14 MeV
[33], we get

Br(BT — J/wK")~(0.83+0.32) x 1073,  (8)
which is compatible with the measured branching ratio
of [30]

Br(B* — J/yK") 1.01 £0.028) x 1073, (9)

measured (

Based on the above discussion, the dominant contribu-
tion from the weak vertex in the processes depicted in Fig. 1
can be written, for convenience, as

tgroy ikt = Cpypyr-(P+q) €5, (P—q), (10)

where P* (g") is the four-momentum of the BT (K™),
and the coefficient Cg+_ ), g+, which corresponds to
%|Vcb||Vcs||a2|mj/,l,fj/,l,F1 of Eq. (7), is fixed to repro-

duce the observed branching ratio, i.e., Eq. (9), to better
agree with the experimental finding,

Cy gy = (716 £ 0.11) x 1078, (11)

Since Z.(3900) and K*(4307) couple to J/wz and
KZ.(3900), respectively, in the s partial wave [25,31],
we can introduce the coupling constants gz _;,, and
gk —kz, to describe the contribution from these vertices in
Fig. 1. Such a contribution can be expressed (without
specifying any particular charge for simplicity) in terms of
the contraction between the polarization vectors of the
particles involved as

t]/l//—ﬂTZE = 9Zc—J)yz€i)y " €7,

Ikz,~k* = 9k —KZ,€Z7, " €K*- (12)

In Eq. (12), the coupling constants gz _;/,, and gz,
for a given charge can be obtained, respectively, from the
residue of the J/wx and KZ,. T matrices, recalling that in
the vicinity of a pole the 7" matrix for the transition i — j
can be written as

=29 (13)

S —Sp

where sy corresponds to the pole position related to the
resonance in the complex energy plane s and g; (g;)
represents the coupling of the resonance to the channel i
(j). In this way, the couplings can be calculated from the
residue R;; of ¢;; as

R;;

The residue R;; itself can be obtained via an integration of

t;; along a closed contour around the pole sg. Alternatively,
if My () is the mass (width) of the resonance, by
considering a Breit-Wigner form for |7;;[* in Eq. (13),
i.e., sg = M% + iMgI'g, the couplings can also be deter-
mined from the 7 matrix on the real axis evaluated at the
center-of-mass energy /s = My as

With these ingredients, and considering the Feynman
rules, the amplitudes associated with the diagrams in
Fig. 1(a) can be written as

016005-3



REN, KHEMCHANDANI, and MARTINEZ TORRES

PHYS. REV. D 102, 016005 (2020)

i

—it(a)

[

(=itg+_ypyk+) (

i

S (_”K+Z‘3—>K*+) (

(P—p3—q)* —my +ie

P—q)’ —mj,, +ieq’ —my. +ie

(_itl/u/—m“Z?)

i

X (_itK*+—>KOZC+)(

) d*q , . i
_lt(h) = / (271-)4 (_ltB+—>J/y/K+)(

i

(P—p2—q)* —mj- +ie

i
—it,+_, , 16
I3 _’_pz)z_’/n%+ +l€( z5 J/I//It+) ( )
A —
—1 y— -
P—q)z—mg/w—i—ieqz—m%ﬁ-l—ie Ip=a'Z:
I
(=itgsz-— k=) -
‘ (P—=p2)* - m%*0(43o7) Tie
i .
(_ltZ?—J/y/;rO)‘ (17)

X (_itk*°—>[(°z£?>(

pi+p3)? - még + ie

Substituting Egs. (10) and (12) into Egs. (16) and (17) and summing over the polarizations of the internal particles present in
the triangular loops, the amplitudes #(,) and #(;) can be written in a more compact form as

1

1

—itA:CA

S3(4) = Mgy + Tk (MK (4) S2(4) = M7, + Tz 0mz(4)

(P—pa)s F_ 14
x [F_{PG—T(PZ—pA~P) 100 4 3F 45— (PP =pa-P) e
Z(A) Z(A)
P — P? P, P -
+ ( ZP.A)D‘ % {F+plj4 ) ; P”}I,(,IA) + { 20‘ + ( ZpA)a
M7 Mgy M5 1y M3 4
-P 1 P?
x (1 + P4 >}I<2A> - {F+p’:4 -2 Pﬂ}lf,i*”
My M7 4 mj,
P- —p" + 2PH 1 1 .P
L 2PA>5( PA;F )ILBA)_{ - <]+p,42 >}]((’3A)
M7 mj My Mz 5y
1 44) (54
= o AP = pa) I + (=Pl + 2Py — 10}
21y
,  (P=pa)°(P=pa)f (p1+ P2),P2p] 4
X [—9”’ + 5 —9pp 27p €/J/.,,(P1)v (18)
Mi+(4) M7 4

where the subscript A refers to the diagrams in
Figs. 1(a) and 1(b), where s34y = 5124 = (p1 + P2 +
Pa)® [s138 = (p1 + p3 + ps)®), s24) = 512 = (p1 + p2)?
[s13 = (P1 + P3)°), pa=Pps (P2), mzay =mz: (mp),
Mz =mzp (mz-) is the mass of the Z. particle
involved in the triangular loops, and mg-(4) = mg++4307)
[m g0 (4307)]- To account for the propagation of the unstable
particles Z, and K*(4307) in the diagrams of Fig. 1 the
corresponding ie’s present in the propagators of Eqgs. (16)
and (17) have been replaced by the product of the mass and
width of the corresponding particle. In this way, in Eq. (18),

Uz =Tz T, Tka) =Tkr@aor) [Fgousen] for
Fig. 1(a) [Fig. 1(b)]. The F . factor in Eq. (18) is given by

P2
Fi=14—o,

(19)
My

and the constant C, corresponds to a product of the
coupling constants involved in the different vertices shown
in Fig. 1. To be precise,

V2

Ca==Ch =3 Cormspyk* Gmtapym) I~ (k2) - (20)
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where gz _.(j/yx), is the coupling constant of Z.(3900)

to the J/wz system in isospin 1, and whose value is
obtained from the model of Ref. [31], and gk-_(xz,)

c)i)2
represents the coupling of K*(4307) to a KZ.(3900)
system in isospin 1/2, which can be found from the
model of Ref. [25]. The values used here are
97.~(Jjyr), = 3715 MeV  and 9K~ (KZ.), ), = 22143 MeV
[27]. The phase convention |z')=—|I=1,13=1),
|K~) =—=|I =1/2,13 = —1/2) has been used in our
calculations. In this way, for example, by using
Clebsch-Gordan coefficients
|

1 2
KZ..1=1/213=-1/2) = ———|K°Z" +\/:K+Z;,
| /2,15 /2) \/gl ) 3| )

1)
and then
! 2
Ik0-K0Z0 = _EQK*QKZC, IkOkiz = ggK*eKZL.-
(22)
In Eq. (18), 1004, 157, I((jzA), 154, IS})’A), and I8 are

integrals defined as

9a d4q an/}

104) — / dlq 1 14 / d'q /24 _ /
(27)* D(q. p.a) (27)* D(q. p.a) “ (27)* D(q. p.a)

104 _ / dq ¢4, 1604 _ / d*q  4’4adp
2n)*D(g.pa)” ¥ (27)*D(q. pa)’

where

D(q.pa) = (P~ q)* —mj,,, +iellg’ — my. + ie]

x [(P_PA_Q)z_M%(A)‘f'iG]' (24)
The integrals 74 and I*4) in Eq. (18) correspond to the
contraction of the metric tensor g% with the integrals / fﬂA)

and / {(j/jA) of Eq. (23), respectively. A way to continue with

the calculation of these integrals consists of using the
Passarino-Veltman decomposition of tensor integrals [35],
which exploits the Lorentz covariance to write each of the
integrals as a combination of the different Lorentz struc-

tures with some unknown coefficients. For example, the

integral 18 in Eq. (23) is a covariant tensor which can

depend on the four-momenta P and py4. In this way,
we can write

1Y = P+ Y p (25)
where aglA) and a<21A> are coefficients to be determined.
Similarly,

24 24 2A 24
I((lﬁ ) = a(1 )gaﬁ + a(z >PaP/; + ag )(PapAﬁ + PﬁpAa)
2A
+ af; )PAaPA/s,
Ig’3A) _ a(13A)Pa + agA)PAa’
4A 4A 4A 4A
Iaﬁ ) = a(l )ga/)’ + (1(2 >P0Pﬂ + ag )(PapA[)’ =+ P/}pAa)
4A
+ afl >pAapAﬁ’
1Y = Py + @ p e (26)

dq  q*q,

(54) _
¢ _/(277)477(%19,4)’

(23)

(24)
af

and Ig}jA) are symmetric under the interchange a <> f, as

where we have used the fact that the tensor integrals /

can be seen from the definition in Eq. (23). Contracting the
integrals in Eqgs. (25) and (26) with the different Lorentz
structures appearing in their decomposition, we can get a
system of equations which permits the determination of
the unknown a coefficients in terms of scalar integrals.
For instance, using Eq. (25), we can write

(LA) (LA)

P10 =4 P? +a; 7P py,
pa- 19 =a™p.p,+ aé]A)P?w (27)
By solving the system of equations (27), we find
a4 — _pyp 1M~ (12’ : PAz)P;\ 1A ’
(P-pa)* = Pp}
A = _Ppa A —(Popy)P 10N ’ (28)

(P-pa)* = Ppl

and the whole problem reduces to determining the scalar
integrals P - I"Y and p 4 - I, which, from Eq. (23), are
given by

P'I(I'A> :/ d4q &
(27)* D(q. p.4)

d'q pa-q
pa-10A = / s 1
(27)* D(q. p4)

The next step consists in calculating the scalar inte-
grals in Eq. (29), which we do in the rest frame of the
decaying particle, i.e., P* = m%. and P = 0. To do this, it

(29)
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is convenient to realize that these integrals can be consid-
ered as particular cases of other more general integrals. For
instance, if we define Z(!")(a, b) as

dq® [ d*q aq’ + b|g|cosO
T (1A) = / /
“D= [ en) e Digpa Y

we can write

P04 = ZOA (PO 0),  p - 104 = T0A (PO~ [P 4]).

(31)

After this, it is convenient to separate the temporal part in
the denominator D(q, p4) and write it as

D(q.pa) = [(P*=q°)* = @3, (q) + i€][¢” — ok (q) + ie]
X [(P* = p% —4°)* —wz ) (Pa+ G) + i€l

-

where

w.]/l//(é)) =/ ZI)Z + m%/y/’ wK(Z])) Y. ZI)Z + m%(*’

w0z (Ba+ @) = [P+ +20palld] cos0+ M3, 4,
(33)

with 6 being the angle between p, and g. The same
procedure can be applied for the other coefficients appear-
ing in Eq. (26), as shown in the Appendix. In all cases,
the integration over the ¢ variable in Eq. (30) can be
performed analytically using Cauchy’s theorem such that
we are left with integrals of the form

D(q. p%. Pa) = 2wy, ()0 (§)wz ) (P s+ q)[P° + ©5),(3) + 0k ()]

X Po—p(’A—wk(Zi)—w

X | P = @5, (§) — 0z (Pa+G) +i——

& *kA)(a, b, ...
T90b...) = | g NOab ) gy
(32)  with k =0.1.2....4 and
|
X [P + @1,(G) + @704 (Pa+ DIP° — 0k () — @, (q) + i€]
I
2 (Pa+q) + ITH
Tz
2
I
2 (Pa+q) +i 2< . (35)

In Eq. (35), a width Lz of 28 MeV [30] has been
considered for the Z.(3900) present in the triangular loops.
The N'*4) numerators in Eq. (34) and the expressions for
the other a coefficients of Eq. (26) can be found in the
Appendix.

The integration over d°q of Eq. (34) is performed by
using a cutoff A ~ 700 MeV for the modulus of the center-
of-mass momentum of the KZ.(3900) system, g*, in the
triangular loops, i.e.,

/‘P" ! /“d|*||*|2/'dcose®(|**| A)
- — —A).
Qrp @Sy M 1

(36)

Such a value for A is related to the nature of Z.(3900),
which (as mentioned earlier) is generated from the DD*
and coupled channels in isospin 1 and in the s partial wave
[31], and, consequently, of K*(4307) [25] arising from the
KDD* interaction in the s partial wave when DD* clusters
as Z.(3900). The vectors ¢ and g* in Eq. (36) are related
through a boost [36]

x | py =P’ —wg(q) — o

G = [(EKZ(A) - 1> 4P, ox ]fu+§ (37)
Mgz(A) 1734 MKz(A)

where m g 4) is the invariant mass of the KZ.(3900) system

in the triangular loop and Egz 4 = /m%(Z(A) + p? is its

energy in the rest frame of the decaying particle.

The DD* and coupled-channel interactions have been
found to be attractive for both isospins: zero and one. A
value of the cutoff in the range ~700-750 MeV was used in
Ref. [37] to regularize the loops involved in the DD*
system and coupled channels in the isospin-0 configuration
when solving the Bethe-Salpeter equation in its on-shell
factorization form [38,39]. Such an interval of the cutoff
was found to well reproduce the properties of X(3872).
In the isospin-1 sector, by considering a similar range for
the cutoff, a pole that can be associated with the Z,.(3900)
was found in Ref. [31], and the experimental D°D*~ and
D*D*0 invariant mass distributions of the process e*e™ —
7% (DD)T were well reproduced. To further understand the
use of the same cutoff here as in Refs. [25,31,37], we recall
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that a quantum-mechanical description of the DD* system
in the s partial wave implies the use of a potential V when
solving the Lippmann-Schwinger equation of the form [40]

Vii(B. 7' V/s) = vy (Vs)O(A = [B))O(A = | p']).

where p (p’) stands for the center-of-mass momentum
of the particles in the initial (final) channel and A is a
cutoff. Such a potential leads to a solution for the 7" matrix
given by

T;(p, D Vs) = fij(\/§)®(A —[p)OA = [p']).

The elements v;; and ¢;; of Egs. (38) and (39) can be
rearranged into matrices v and ¢, respectively, in the
coupled-channel space such that 7 and » are also related
through the Lippmann-Schwinger equation in its on-shell
factorization form [38,39], i.e.,

(38)

(39)

t=v+0vGt= [l —vG] ', (40)

where G is a diagonal matrix whose elements are the two-
body loop functions in the nonrelativistic limit, i.e.,

A 3 1
Gii—/ d’q =3
0 E_ml_Ml_z(IT

(41)

2
9z~ /yn),

T _)’ _>/’ -
j/u/;r(P p \/E) 5 _ m%(. i imZCFZC

O(A = [PON = |P'Des (P) - €1y (P)-

where E is the relative energy (including the masses of the
particles), and m; and M, are the masses of the particles
involved in the loop and y; is the reduced mass of the
system. In this way, the generation of resonances/bound
states is contained in 7;;(y/s) of Eq. (39) via Eq. (40) as far
as the loop function G;; of Eq. (41) is regularized with the
same cutoff as the one appearing in Eq. (38). Close to the
pole position, considering a Breit-Wigner form for t,l,-(\/E),
Eq. (40) becomes

9i9;

= , 42
s — My + iMglg (42)

tij(\/g)

which is analogous to Eq. (13). In this way, Eq. (39) can be
written as

_ 9i9;j
S — M% + iMRFR

Ty(P. P Vs) O(A = [P)O(A = [F]).

(43)
For the particular case of the DD* and J/wn coupled
channels in isospin 1, in the vicinity of the Z.(3900), we

can write the T matrix related to the J/yz - Z, — J/yx
transition as

(44)

Similarly, for the KZ,. system in isospin 1/2, in the vicinity of the K*(4307), the T matrix for the KZ. — K*(4307) - KZ,

transition can be written as

2
gK*—’(KZc)l/z

T _" _)/7 -
KZC(p P \/E) s — m%* + imK*FK*

(A= 1PDOA — |P')éz (P) - €2.(P). (45)

As a consequence, each of the amplitudes of Eq. (12), which represent the covariant versions of the vertices Z.J/wr and
K*KZ.involved in Egs. (44) and (45), respectively, when plugged into Egs. (16) and Egs. (17), is naturally accompanied by

the cutoff used in the resolution of Eq. (40).

Finally, using the amplitude of Eq. (18), the decay width I for the process B* (P) — J/y(p,)z" (p,)7°(p3)K°(p4) can

be obtained as

. 1 d3P1 d3P2 d3p3 d3p4
I= 2mp: / (2;:)32E1(,31)/(2n)32E2(,32)/(2ﬂ)32E3(,33)/(2;:)32E4(134)

x (22)*6 "W (P = py = py = p3 = P4)Z|fa + 1.

Using the ¢ function of Eq. (46), and the relations

(46)

124 = (p1 + pa + pa)? = (P — p3)? = mb, + m3j — 2mp: E5,

sia=(P1+p3+pa)?=(P-py)* = m%ﬁ +m3 = 2mg: By,

(47)
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with E, = \/p3 + m3 (E3 =

P3 + m3) being the energy related to the particle with three-momentum 3, (73) and mass

m, (m3) in the rest frame of the decaying particle, we can write Eq. (46) as

1
A NA63 dS 124 dS 134
(2]1')726 :;+ Sllmn mm

S134

EP 2r 1 2r
dE, / di / dcos 0 / diy
min 0 -1 0

2
X _,7_,6(1 - COS201)®(I/I’£ + — El Ez ) |t + tb . (48)
P2+ Ps g ;
with
sTh = (my 4 my +my)?, ST = (mpr —ms3)?, (49)
ST = (my + my + my)?, ST = (mp+ — my)?, (50)
) m%, + m? — smin
EPt=my,  Ep =B B s = (my o+ my + my)?, (51)
sz-
and 6, is the angle between the vectors p; and p, + p3, which is fixed by the § function of Eq. (46),
—E —E,—E3)?—p? —
cos, = (mp+ 1 2 3)° =P —mi— (P + P3)° ' (52)

The related Heaviside ® function in Eq. (48) guarantees
that | cos 0| < 1, as it should be.

As mentioned in the Introduction, the decay Bt —
J/wrta~ Kt has been used for the experimental inves-
tigation of the properties of X(3872). In this reaction,
the reconstruction of the J/wz~K™' invariant mass dis-
tribution can also serve to investigate the properties of
K*(4307). For the process BT — J/wn "z~ K™, as can be
seen in Fig. 3, the formation of K*(4307) is completely
analogous to the one shown in Fig. 1(b), with the exception
that the vertices K*°(4307) — Z%(3900)K° — J/yn°K°
should be replaced by K*°(4307) — ZZ(3900)K* —
J/wrn~K*. Thus, the product of the coupling constants
GK0(4307)-20(3900) 9K 20— /" @ppearing in the amplitude
related to the diagram in Fig. 1(b) should be substituted by
GK0(4307)~K* Z=(3900) 92z —J yn—» Which, by using the corre-
sponding Clebsch-Gordan coefficients, is v/2 times bigger
than the former product. In this way, the calculation of the
decay width for B — J/wa"z~ K" and the determination

Jhy +
(P _ q) !—Pﬂ—(p2) J/II/(P])
B*(P) Z-(3900)
Y o
i P-q-py (py)
K*(4307)
(P-py) K*(py)

FIG. 3. Diagrammatical representation of the decay BT —
J/wrnTa~ KT through K*(4307) formation.

2(p1|p2 + Psl

[

of the J/wn~ K™ invariant mass distribution is completely
analogous to that for the reaction BT — J/watz°K°, but
now we have a contribution from only one Feynman
diagram instead of two (see Fig. 3), and the couplings
(as explained above) are different.

III. RESULTS

To obtain the J/wz*(©K* invariant mass distributions
of the process BT — J/yn"2°K?, we have made use of
Eq. (48) considering isospin average masses for those
particles belonging to the same isospin multiplet. In such a
case, there is no difference between the two invariant mass
distributions In Fig. 4 we show dI'/ds,4 for the process

— J/wata°K? as a function of the invariant mass of
the J/wrTK® system, i.e., \/s15. The solid line in Fig. 4
represents the result obtained by using a cutoff A of
700 MeV to regularize the integrals in Eq. (23) for the
center-of-mass momentum of the K — Z, system (see the
Appendix for more details). As can be seen, a peak around
4307 MeV, with a width of 18 MeV, is observed in the
distribution due to the formation of K*(4307), followed by
an enhancement around the K —Z.(3900) threshold, a
typical effect when triangular loops are involved in the
determination of the amplitudes [36,41,42], as in our case.
We also plot in Fig. 4 the contribution to dI'/ds|o4
originating from just the diagram in Fig. 1(b), which
produces a background' (represented as a dashed line in
Fig. 4). By integrating this distribution, we can get the

'Note that in the diagram in Fig. 1(b) the K*(4307) is formed
in the s34 invariant mass.
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x 10714
1.5 T
B
=
g
= 1.0}
mq
.
P
205
=
~
—
=
0.0 - — ; -
4200 4400 4600 4800 5000
\/S124 (NIGV)
FIG. 4. Invariant mass distribution, divided by the full width of

the BT meson, as a function of the invariant mass of the J /yz* K°
system, i.e., \/Sj4 in Fig. 1. The solid line corresponds to the
result found with a cutoff A of 700 MeV. The dashed line
represents the contribution to dI'/ds|,, obtained from the
diagram in Fig. 1(b). The band represents the uncertainty
associated with dI"/ds,4 when changing the cutoff in the range
700-750 MeV, changing the coupling in Eq. (11) inside the
interval compatible with its error, and considering a 10% error for
the couplings of Z.(3900) to the J/wz system and that of
K*(4307) to the KZ.(3900) system.

branching ratio for the process BT — z°(t) K*+(0)(4307) -
200 KO 29 (3900) — 2°0) KOJ /yat©, which s
BR = 1.04 x 1078, We can also estimate the uncertainty
related to this result. To do this, we vary the cutoff A in the
range 700-750 MeV, as mentioned earlier, and vary the
coupling in Eq. (11) in the range allowed by the related
error. Further, we associate a 10% error to the coupling
constants of Z.(3900) to the J/wx system and of K*(4307)
to the KZ.(3900) system. We then generate random
numbers inside these intervals and calculate the mean
value and the standard deviation for the branching ratio.

5 ><10’l1'1
T
=
g
= 2t
Q
r
™~
g 1
=
~
—
=
0 \ \ :
4200 4400 4600 4800 5000
v/ S134 (Me\/)
FIG. 5. Invariant mass distribution, divided by the full width of

the BT meson, as a function of the invariant mass of the
J/wr~ K™ system, i.e., \/5;34 in Fig. 3. The solid line and band
have the same meaning as in Fig. 4.

—14
19 x10 .
T
=
2
= 0.8}
Q
o
~
/i
& 04F
<3
~
—
S
0.0 . . L
4200 4400 4600 4800 5000
\/S124 (NICV)
FIG. 6. Invariant mass distribution, divided by the full width of

the B* meson, as a function of the invariant mass of the J/yz+ K°
system, i.e., /5124 in Fig. 1. The solid, dashed, and dash-dotted
lines represent, respectively, the results found when regularizing
the loop function in Eq. (34) with a ® function, the exponential,
or monopole form factors for the vertices involving molecular-
type hadrons. The values A = 700 MeV, a ~ 800 MeV, and f ~
900 MeV have been used.

By doing this, we obtain the band shown in Fig. 4 and the
estimated branching ratio becomes

BR = (1.05£0.2) x 1078, (53)

In the case of the decay Bt — J/wyxtn K", the
dU/ds ).+ distribution is shown in Fig. 5 as a function
of the J/wx~ K™ invariant mass, i.e., /5134 in Fig. 3. As
can be seen, a peak structure related to the formation of
K*(4307) is observed, together with an enhancement
around 4400 MeV (as in Fig. 4) which is related to the
threshold of the K — Z,. system. The error band shown in
the figure has been obtained in the same way as that of
Fig. 4 and the solid line represents the result found with a
cutoff of 700 MeV.

Alternatively to cutting the momentum integral when
calculating Eq. (34), a form factor at each vertex of the
triangular loop (shown in Figs. 1 and 3) could be intro-
duced. In the case of the vertices involving molecular-type
hadrons, typical form factor types considered in the
literature [40,43] are exponential,

2

F() = e, (54)
and monopole,
. p?
F(g*) = e (55)

where @, # ~ 1000 MeV. In this way, when regularizing the
integral in Eq. (36), the ® function would be substituted by
a product of form factors.
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In Fig. 6, we show the results obtained for the dI"/ds 24
distribution by considering the exponential form factor of
Eq. (54) with a ~ 800 MeV (dashed line) and by using the
monopole form factor of Eq. (55) with  ~ 900 MeV (dash-
dotted line). The ratio a/f is chosen such that the area
under the curve of F?(g?) versus |g| is the same, inde-
pendently of the form factor used (exponential or monop-
ole). As can be seen, some differences are found around the
peak region of the distribution which gives an estimation of
the uncertainties in the results due to different treatments of
the ultraviolet divergences. Changes in the values of @ and
p lead to results which are compatible with the uncertainties
shown in Fig. 4.

IV. CONCLUSION

By using isospin average masses between the members of
the same multiplet, we have determined the J/yz*CK*+?
invariant mass distributions of B* — J/yxta°K? and
Bt — J/wxtn~ KT with the purpose of analyzing the signal
related to the formation of K*(4307). We found that the
reconstruction of the J/ywz K invariant mass distributions for
the reactions would exhibit the formation of the K*(4307),
and the branching ratio determined for B — nK*(4307) —
7nKZ,.(3900) —» zKJ/ywr is ~1078. We hope that this
calculation motivates the search for the K*(4307), formed
as a consequence of the dynamics involved in the KDD*
|

system [22,25], by reconstructing the J/wzK invariant mass
distribution in B — J/wnnK reactions, for which exper-
imental data are available.
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APPENDIX: DETERMINATION OF THE
INTEGRALS IN EQ. (23)

(34

The expression for the coefficients q, SA) with

A)

and a;
i = 1, 2, is analogous to that found in Eq. (28) for the af
coefficients by replacing P - I — p. [GA) p . [0
p.4 - 184 in the former case, and P - I — P . I(SA), and
pa- 104 = p - IGA in the latter, with

A -

p. A / d'q ¢*(P-q) P 104 :/ d*q @(pa-q)
(27)* D(g, p.a) (27)* D(q. p.a)
d*q ¢*(P-q) d‘q q*(pa-q)
P.[(5A):/ o .1<5A):/ A4 Al
e Dlapa) P 27)" Dlg.p) Ay
Proceeding in the same way as in the case of the al(»lA) coefficients [see Eq. (28)], we have
a = i P(pa pa IO — g 109) 4 (P p g 104
2[(P- pa)? = P?p3]
— 2P pu)P - pa- 10N 4 pRP - P 1CA),
(24) 1 2 1 p2 (2A4) 2 (2A4) 2 (2A4)
a = PP (pa-pa- 1Y —pig-1 +3p5P-P-1
2 2[(P-p )Z_Pzpi\]Q[ 2P ( v ) % }
+ (P p){p2g - 1Y +2p 4 pa-1°Y} —6p% (P pa)P - py- 144,
(24) _ 1 2 2 (2.A4) (2A)
a7 = PH(P-pa)(poag- 1Y =3pa-pa- 1Y)
3 2[(P‘P,4)2—P2p2]2[ {( A)( A
+2p4P - pa- 1PV} = (P-p){(P-pa)?g- 1Y —4(P-p )P - py- 1Y
+3p4P-P- 12N},
24) _ 1 4 QA) _ 2 1(2A)
a = Pr3B3pa-pa- I —pug-1
T R A f
+ P2{(P-pa)?g-1CY —6(P-py)P-py- 13N + p4P-P- 12N}
+2(P- py)?P-P- 1%, (A2)
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where

a4 . . 44 . X
pacpaett = | (2 (pADf;,% = Pt = | ) (PD?;(,% :

_ [ dq (P-q)(P-q) Y
R R K== ) A

Analogously, for the coefficients al(-4A>, i=1,2,...,4, in Eq. (A2) we can simply replace the scalar integrals
pa-pa- 1%, Pop 1A PP JCA and ¢g-I1CY by py-py- 1Y, P-p - 1WA PP [3A and g- 1A,
respectively, with

d'q ¢*(pa-q)(pa-q) d'q ¢(P-q)(pa-q)
oA _ )
papact= | @f Dla.pa At / 227 Dlg.pa)
d‘q ¢*(P-q)(P-q) dqg ¢
p. A _ 4 A
poped / ' Dig.pa) 7 ! / (27)*D(q.pa) (A4)

Similarly, by defining

104 (a,b, c.d) :/ dq’ /(d3q aq” + b|gPcos’0 + cq°|q| cos 6 + d|g|’

(27) ) (2n)} D(q,p.a) ’
5 (a.b.c.d) / dq® / d*q aq® + b|q|q°* cos 0 + cq°|g|* + d|q|? cos O
a,b,c,d) = ,
(2z) ) (2z)? D(q.pa)

(44) dg” [ d’q ! 04 | AR 4020002 03|
W a,b,c,d,e, f,g) = 20 ) 2ar DD [aq"* + b|qG|*q"*cos*0 + cq™ |G| cos O

+ dq™|g|* + e|g|*cos*0 + fq°|g|* cos O + g|g|*].

dg’ a3 1 N N
T6A(a,b.c.d.e. f) = / 1 / ( 1 [aq® + bq™|G| cos 0 + cq" |G|

(27)) (27)*D(q.p4)
+ dq"|G|* cos 0 + eq®|g|* + f|q|> cos 0], (A5)
we have
g~I( 24)(1,0,0,-1), P-P- 124 =7CA (P2 0,0,0),
P-py- 134 (PpA,O -P%p
PA'pA'I( 2 (p% )
PG4 (P 0), pA-I( A = T69(pY, =[P al, =p%s [P al),
g-1< +4(1,0,0,-2,0,0,1), P-P- 1% = 74A (P02 0,0,-P%,0,0,0),
Ppy- 144 (PO PA’O PO|PA| —P°p%,.0, ,0),
PA‘pA'I( A (p% : —=P%. ,0),
P I6GA (P 0, ZPOOPOO)
PA'I( A (pYs s =2P% 2B als P =B Al)- (A6)
We also define
d¢® [ & 1
= [ G | i mary (&7

which coincides with the I(°4) integral in Eq. (23).
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All of these integrals can be written in the same form as Eq. (34), with

NO = —P2wiw; ), 74 + 2P phwxwza) + @11k 0144 200

X O 7(A)DJ fy+K+Z(A) — P%CUZ(A)]’

NUA (a,b) = awg f + cos Ob|GIN A,
NCA(a,b,c,d) = awgf, + |G|[(cos?0b + d)|GIN O + cos Ocawg f1],
NCa,b,c.d) = awgf5 + |g|[cos O{bwk 5 + d|gPN OV} + c|glog f].
)

N (a,b.c.d.e. f.g) = awgfs + |G| [cos 6{|G|(cos O[baw f> + e|g|* N )]
+ cog f3} + d|glogfr + glg PN O],
NOA(a,b,c.d e, f) = awgfs + |4|lwg|g|{f1]G]*e + cf3}

+{fN VG + o (df2]GP + bfa)} cosd)], (A8)

)

where we have omitted the explicit dependence of the functions f;, i = 1,2, ...,5 and wy, Dz(4)s and w,,, [see Eq. (35)] on
4, P4 and p° for simplicity. In particular, by introducing
Ojpyrk = Oy + Ok, O jyrz(A) = Dypy + Oz(4)

WK 17(4) = Ok + Bz(4) O jy+K+Z(A) = Oyjy T Ok + Oz(4), (A9)

the f; functions in Eq. (AS8) correspond to

F1(G, PO Ba) = PPpYwza) + @1y s 204 PO(=PP + PO 5y + @, [0 1 204) + 200k]
+ 0%y 7)) = PO PR 0z(4) = DAy @11y k(017 1k + 20704
F2(G. P9 Pa) = @y za)[=P% + 2P pY = P + @f ), g + 20k 074 + @05 [P
— 2P p%@ ;1 [0y kD1 k70 4) + O7(4)0K]
+ 0,01y kl 0y 20 (P — @20k 1200} + PROK],
[3(G. P° Ba) = =PPw; 704y + PP %2005 ) 704y + @17 ] + PP (05420
[a)-//‘//-‘rK + 2wgwz(4) + w%(A)] = PRl@spyiz04) + 205, ]) + P2 P00y,
X (P = 2wz @,y 4k + 20k] — 30’3/W+K z( )) + Play,
x (p%lwz Wloy ik + ok} + 3(01/1,,“(] WOZ(A) D) jy+Z(A)

X [20)1/W+K0)K+z< A T wxl) +p Awl/y/wJ/q/JrK

X

(wZ [ A)DJjy+K + 260]/,,,60[(] poAza)J/y/JrK)’

Ja(G. P° Ba) = =P 704y + 2P PO (05 ) 70a) + @17) + PP (@052
X [@za{®) )1k + @k} + a’%/wk + a%( ,4)] - P?42 (@, 1y+2(4) + S@y,])
+ 4P03P?4®J/W<POA2 — 0z w)|@; 1k + Okiz)] — a’i/w[()
-P 02601/1,/( —-2p° A [CUZ ){wl/n//JrK + CUK+Z(A)} + 30)3/l,,+1<]
+ 0700y 2 ) [0y A0 ik 30k} + 20k {20k 7(4) + Ok} + a)% )])
+ 2P pYwy (@) 20z @7 ), 4k + ©1p @11k + @k ] = 2% 07, )
+ 011,011k (P O py 1k = PROZ )07,k + 202001y k + @57, @]

+ 074D py2( )Pk 7( A OZ( )@ ik + @11y Ok]),
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F5(G, % Pa) = =11 12y P + P20,y 204y + 3057 )PP + (@1 2003, + {20k + 3wz}

X Wy + w%ﬁz(/l)] - poAz[wJ/w+Z(A) + 9wl/u/])POS + 6"!/11/(101’?43 - a’Z(A)p%

- 5[0’1/1//+K{0)J/y/+l( + 2502(/1)} + 2‘0%(/1)]17?4 + CUZ(A)“’%/‘HZ(A))PM

=@, (5pY = 2074 PG + 2l=wy k{505 1k + A0z} = 407 4 ]PY

202097 1,4 7 PA T Q2@ pysz( )@, 305 + O za) + T}

+ 100 + 0z {30k 7z(4) + 50k })P® — @5, (=P + 0704 P%

+ 2w k{50 py 1k + Oza)} + 0 ) 1PR = 20700 {@))y + Ok 240}

+ 0% 70 — OOz PY — 0z |07

A){wZ(A) + 2wy, 41}

+ 2{5(1}3/1// + Ragw;, + 50k oz + ij/y,{4w3/w + Hwgw, ), + 100% }p%

2 2 2 02 2 04
+ Oz D51 2(4) [wj/w+K + wK+z<A)]>P + a)J/lI/(wJ/y/+K [5P%

=204 P%] — 07410}, + 200k0] ), + 180w, + 4oy + 80],, @74 P%

207, k0207, 7 PA T D2 D11y 24 02(4) {30k 4 20) + 0k} ok

+ a)J/V,{wK+Z(A) + wZ(A>}{3a)K+Z<A) + (1)[(}&)[( + 3w3/Ww%(+Z(A)DPO

+ @51, @5y k(@4 [—P?f + P%wzu) + 2wZ(A)a)J/y/+K+Z(A)p?43

= 0z 0101y (051 704) + Oz(4)) + ok + 2wZ(A)a)K+Z(A)}p?42]

+ 0z ) [~0z {0k 204) + Ok HOkO704) + ©pp (0K 4 704) + 0K) }

2

2 0 2 2
- 2wj/y/a)K+Z(A)]pA + 05k wZ(A)wJ/u/+Z(A)a)K+Z(A))'

(A10)
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