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At a nonzero temperature T, a constant field Ā0 ∼ T=g generates nontrivial eigenvalues of the thermal
Wilson line. We discuss contributions to the free energy of such a holonomous plasma when the coupling
constant, g, is weak. We review the computation to ∼g2 by several alternate methods, and show that gauge
invariant sources, which are nonlinear in the gauge potential A0, generate novel contributions to the gluon
self-energy at ∼g2. These ensure the gluon self-energy remains transverse to ∼g2, and are essential in
computing contributions to the free energy at ∼g3 for small holonomy, Ā0 ∼ T. We show that the
contribution ∼g3 from off-diagonal gluons is discontinuous as the holonomy vanishes. The contribution
from diagonal gluons is continuous as the holonomy vanishes, but sharply constrains the possible sources
which generate nonzero holonomy, and must involve an infinite number of Polyakov loops.
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I. INTRODUCTION

The collisions of heavy nuclei at very high energies
demonstrate the existence of a qualitatively new state of
matter. It is most natural to assume that this is the pro-
duction of a quark-gluon plasma (QGP) which is, at least
approximately, in thermal equilibrium at a temperature T.
The properties of the QGP can be computed perturbatively
in the coupling constant g [1–4], but this is only useful at
very high temperature. At lower temperature, resummation
is imperative [5,6], but this again fails at temperatures
several times the transition temperature, which can be
termed a “semi”-QGP. Numerical simulations on the lattice
[7] provide detailed information at all temperatures in
equilibrium, but at present this is much harder near
equilibrium, such as to compute transport coefficients.

In the pure gauge theory the order parameter for
deconfinement are Polyakov loops. In an SUðNÞ gauge
theory, up to global ZðNÞ rotations these are near unity at
high temperature, and, if charged under ZðNÞ, vanish in the
confined phase. Thus the semi-QGP is characterized by
nonzero holonomy for Polyakov loops, where they are
nonzero but less than unity.
To treat such a holonomous plasma, it is most natural to

take a constant, background field for the vector potential,
Ā0 ∼ ΘT=g, where Θ is a diagonal, traceless color matrix
[8–22]. In this paper we consider the analysis of a
holonomous plasma in perturbation theory.
The computation of the holonomous potential at

leading order is reviewed in Sec. II, mainly to establish
notation [8,9]. It is atypical, as a potential for holonomy
first arises then. The computation at ∼g2 is given in
Sec. III [10–25]. We use several different methods, and
show that the potential is only gauge invariant in the
presence of gauge invariant sources involving the
Polyakov loops. Because these are nonlinear functions
of the gauge field, these generate new contributions to the
gluon self-energy ∼g2. These are nonlocal, but essential

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 094025 (2020)

2470-0010=2020=101(9)=094025(18) 094025-1 Published by the American Physical Society

https://orcid.org/0000-0001-9541-8300
https://orcid.org/0000-0002-7862-4759
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.094025&domain=pdf&date_stamp=2020-05-27
https://doi.org/10.1103/PhysRevD.101.094025
https://doi.org/10.1103/PhysRevD.101.094025
https://doi.org/10.1103/PhysRevD.101.094025
https://doi.org/10.1103/PhysRevD.101.094025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


in showing that the gluon self-energy remains transverse
to this order.
If the holonomy is large, Θ ∼ 1, then the contribution of

the off-diagonal gluons to the free energy is a power series
in g2. If the holonomy is weak, however, Θ ∼ g, then there
are contributions to the free energy ∼g3, as in the pertur-
bative vacuum [2]. Previously we demonstrated that a novel
result occurs at this order [24]: the contribution from off-
diagonal gluons jumps discontinuously as the holonomy
goes to zero. In Sec. IV we demonstrate this surprising
result by another more direct means from that in Ref. [24],
using hard thermal loops [26].
In Sec. IV B we show that while the contribution from

diagonal gluons vanishes smoothly with the holonomy, that
this requires rather nontrivial constraints on the associated
sources. We are able to establish rigorous constraints for
two [27,28] and an infinite number of colors [29–31]. For
the latter we use methods from matrix models [32,33]. The
conclusion is that for the holonomy to turn on smoothly for
a weak source, that the source must involve a sum over an
infinite number of Polyakov loops.
Understanding the behavior of a holonomous plasma is

of intrinsic interest in understanding the behavior of gauge
theories at nonzero temperature. It is also of use in
developing effective theories, which can then be analyti-
cally continued to compute properties near equilibrium
[24,34–39]. These effective theories involve a perturbative
potential for the holonomous potential, in addition to a
nonperturbative term, added by hand, which drives the
transition to confinement. Thus the present analysis will
help in refining such effective theories. Notably, the source
used as a nonperturbative holonomous potential in these
models satisfies that required by the analysis of Sec. IV B.
While in this paper we do not consider dynamical

quarks, their contribution to the holonomous potential
can be computed directly, including at nonzero density
[22,23]. Doing so, one finds that the effective theory
developed for the pure gauge theory gives a reasonable
analysis of QCD, with three flavor of light quarks [39].
An analysis with the insertion method is treated sepa-

rately [25]. This allows one to show that the free energy
from off-diagonal contributions is continuous to ∼g4 as the
holonomy vanishes.

II. ONE LOOP ORDER

To compute the effective potential one can either use an
external source or a constrained path integral. Of course
these must be equivalent, but this is not evident at two loop
order and beyond.

A. External source

In the presence of an external source Jμ, the Lagrangian
for a gauge field is

L ¼ 1

2
trG2

μν þ trJμAμ; Gμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�:
ð1Þ

We consider a SUðNÞ gauge theory, with the generalization
to other gauge groups direct.
At a nonzero temperature T gauge invariant quantities

are given by traces of powers of the thermal Wilson line,
which are Polyakov loops:

lrðxÞ ¼
1

N
trLrðxÞ;

LðxÞ ¼ trP exp

�
ig
Z

1=T

0

A0ðx; τÞdτ
�
: ð2Þ

In a holonomous plasma we expand the gauge potential
about a classical field, Ā0, and a quantum field, Aμ,

Aμ ¼ Āμ þAμ; Āμ ¼ δμ0Θ
T
g
: ð3Þ

The classical field Ā0 is constant, with Θ a diagonal,
traceless matrix: Θab ¼ θaδab,

P
N
a¼1 θ

a ¼ 0. In this
background,

L̄r ¼ eirΘ: ð4Þ

We use background field gauge, with the gauge depen-
dent terms

Lgauge ¼
1

ξ
trðD̄μAμÞ2 þ η̄ð−D̄μDμÞη; ð5Þ

where Dμ ¼ ∂μ − ig½Aμ; � and D̄μ ¼ ∂μ − ig½Āμ; �.
The generating functional WðJÞ is defined by

expðWðJÞÞ ¼
Z

DAμ DηDη̄ exp

×

�
−
Z

1=T

0

dτ
Z

d3xðLþ LgaugeÞ
�
: ð6Þ

To one loop order the computation proceeds by integrating
over the Aqu

μ to quadratic order. This is standard, and we
only wish to make the following comments.
Assume that the background field is nontrivial, such as

for an instanton. Then the associated field strength
Gμν ∼ 1=g, and the equation of motion is

D̄μḠμν ¼ Jν: ð7Þ

For this to be consistent, Jν ∼ 1=g.
For a constant, diagonal Ā field, though, the classical

field strength vanishes identically. We then assume that the
source is not ∼1=g, but ∼1. As we show later, the source
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does not contribute at leading order, but it does at next to
leading order.
Integrating overQμ, we obtain the effective action to one

loop order

Seff ¼ −tr log ð−ðD̄μÞ2Þ: ð8Þ

This is the determinant from gluon and ghost fields. It can
be shown rather directly that this expression is independent
of the gauge fixing parameter, ξ.
Define

WðJÞ ¼
Z

d3xð−VðAÞ þ trJμAμÞ: ð9Þ

At one loop order, the holonomous potential is

V1ðΘÞ ¼ −
T3

π2
X∞
n¼1

1

n4
jtrL̄nj2 ¼ 2π2T3

3

XN
a;b¼1

B4

�
θa − θb
2π

�
;

ð10Þ

where B4 is the fourth Bernoulli polynomial,

B4ðxÞ ¼ −
1

30
þ x2ð1 − jxjÞ2: ð11Þ

In Eq. (10) θa − θb is defined modulo 2π, since in the
thermal Wilson line the θa are angular variables.
The one particle irreducible (1PI) generating functional

is the Legendre transformation of WðJÞ,

ΓðÃ0Þ ¼ sup

�Z
d3x trðJμÃ0Þ −WðJÞ

�
: ð12Þ

Here sup denotes that one finds the point extremal with
respect to variations in J. Usually the field is a function of
J. Here because of the degeneracy at leading order, though,
Ã0 is independent of J. Hence the variation is trivial, and
simply imposes Ã0 ¼ Ā0, giving

ΓðÃ0Þ ¼ V1ðΘÞ: ð13Þ

Note the distinction with the usual effective potential: we
do not use the equations of motion to require that the
variation of V1ðĀ0ðJÞÞ is extremal with respect to J.
Beyond leading order, the potential V1ðΘÞ lifts the

degeneracy.

B. Constrained functional integral

Another way of computing is to constrain the value of the
spatial average of the Polyakov loop. To avoid clutter we
constrain only l1, with the complete generalization given
below, Eq. (20). The constrained functional integral is

expð−VVðl̄ÞÞ ¼
Z

DAμDηDη̄δ

�
l̄ −

Z
d3x
V

l1ðxÞ
�

× exp

�
−
Z

1=T

0

dτ
Z

d3xðLþ LgaugeÞ
�
:

ð14Þ

We exponentiate the constraint,

δ

�
l̄ −

Z
d3x
V

l1ðxÞ
�

¼
Z

dϵ exp
�
iϵ
�
l̄ −

Z
d3x
V

l1ðxÞ
��

: ð15Þ

Since we constrain only the spatial average of the loop(s),
there is only a single constraint field, ϵ. V is the spatial
volume.
We expand the constraint field,

ϵ ¼ ϵcl þ ϵqu: ð16Þ

A nonzero value of ϵcl acts like an external source. Since
there is no potential for Ā at leading order, this source
vanishes at leading order,

ϵcl ¼ 0: ð17Þ

As before, it is direct to compute the constrained
partition function. Integrating over ϵqu imposes the con-
straint on the loop, requiring Ā to give the requisite value of
the loop, l1. Integration over Aqu

μ is trivial, because the
equation of motion vanishes anyway. The integration over
Aqu
μ is also unaffected, as the constraint field does not

contribute, ϵcl ¼ 0. The result is that of Eq. (13).

III. TWO LOOP ORDER

The computation of the free energy to ∼g2 is an old story
[10–22,40]. Nevertheless, as we show there are subtleties in
the computation of the gluon self-energy to the same order.
Thus we summarize the computation briefly in order to
introduce behavior of the gluon self-energy to this order.
This is essential in order to compute corrections to higher
loop order, starting at ∼g3.

A. Linear gauge

To two loop order, the result for the potential is

Vpert
2 ðΘÞ ¼ g2T3

4

XN
a;b;c¼1

B2

�
θa − θc
2π

�
B2

�
θb − θc
2π

�

þ ð1 − ξÞB1

�
θa − θc
2π

�
B3

�
θb − θc
2π

�
; ð18Þ
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This involves the first, second, and third Bernoulli
polynomials,

B1ðxÞ ¼ −
1

2
signðxÞ þ x;

B2ðxÞ ¼
1

6
− jxj þ x2;

B3ðxÞ ¼
1

2
x −

3

2
signðxÞx2 þ x3: ð19Þ

Each difference of the θ’s, such as θa − θb, is defined
modulo 2π. Even Bernoulli polynomials are even in x, and
so depend only upon jθa − θbj. Odd Bernoulli polynomials
are odd in x.
The potential in Eq. (18) is rather unexpected since it

explicitly depends on ξ. It can also be shown that there is a
minimum at a nonzero value of q ∼ ð3 − ξÞg2. Note
however that the pressure is ξ independent to order g2.
The ξ dependence can be understood from the Nielsen

identities [15,16,41]. For a value of θ ∼ g2, it contributes to
the potential at ∼g4. Nevertheless, it is useful to see how
this a gauge invariant result arises explicitly. Doing so we
show that the usual perturbative vacuum is stable.

B. Constrained functional integral

Since the above source and potential are gauge variant,
we introduce gauge invariant constraints into the action.
For SUðNÞ we constrain the Polyakov loops by adding
constraint fields ϵr to the action,

Scons ¼ i
XN
r¼1

ϵr

�
lr −

Z
d3x
V

trLrðxÞ
�
: ð20Þ

Only N − 1 constraints are needed, but we find it conven-
ient to use one too many constraints, from r ¼ 1 to N
instead of N − 1. This is done for the following reason. For
SUðNÞ the sum of the θa’s vanishes, and there are only
N − 1 independent θa’s. It is awkward to eliminate one of
the N θa’s in favor of the independent variables, though.
Instead, it is easier to pretend as if all of the N θa are
independent, and derive the equations of motion for the
N θa.

1. Insertion method

The insertion method is a straightforward expansion of
the gauge action and the constraint in terms of the
fluctuation fields Aμ and ϵqu [17–22,25]. This gives
constant terms, linear terms, quadratic terms, and inter-
action terms. The linear terms are set to zero, and fixes
ϵcl ¼ 0, as in Eq. (17), and Ā in terms of l. The quadratic
terms in the action now include Lquadr − iϵquA0ð0Þ, where
A0ð0Þ is the zero momentum component of the fluctuation
field. Vertices are generated by expanding the gauge action
plus the constraint,

Lint þ iϵquðL2 þL3 þ � � �Þ; ð21Þ

where the subscripts indicate the powers of the quantum
fluctuation Aμ. Then the integration over ϵqu is done. This
reinstates the delta function of the original constraint but
now in the simple form δðA0ð0ÞÞ times the pure gauge field
vertices. It also introduces also new vertices, where ϵqu

multiplies LintðL2 þ � � �Þ; this generates derivatives of the
delta-function. The derivatives in A0ð0Þ act through inte-
gration by parts on the gauge interaction vertices and on the
Polyakov loops. These are called the insertion vertices:
integration over the remaining fluctuations gives then,
apart from the usual QCD diagrams, “insertion diagrams”
[17–22,25]. These are key to understanding how gauge
invariance is implemented. The insertion terms do generate
contribution to the two, three, and higher point functions of
the gluons. Up to and including three loop order the
thermodynamic limit poses no problems, except in the
case of diagonal gluons with two self-energy insertions.
There, the finite size corrections to the self-energy have to
be taken into account and guarantee a well-defined Oðg3Þ
contribution [25].

2. Alternate approach

In the insertion approach, ϵcl ¼ 0, Eq. (17), order by
order in perturbation theory. An alternate approach is the
following. Since the degeneracy in Θ is broken at one loop
order, we generalize Eq. (10) from a function of the
background field, Ā0, to a function of the full vector
potential, Aμ ¼ Āμ þAμ:

V1ðA0Þ ¼ −
T3

π2

Z
d3x

X∞
n¼1

1

n4
jtrLnðxÞj2: ð22Þ

We then add and subtract V1ðA0Þ to the Lagrangian. The
subtracted term cancels V1ðĀ0Þ the same term when it is
generated at one loop order. This is exactly analogous to
how, for example, a Debye mass is included in perturbation
theory.
The advantage of adding V1ðA0Þ is that the degeneracy

with respect to Ā0, valid at the classical level, is lifted. The
equations of motion are now

−
i
V

XN
r¼1

iϵclr reirθa ¼
8πT3

3

XN
b¼1

B3

�
θa − θb
2π

�
; ð23Þ

B3 is the third Bernoulli polynomial, which arises as the
derivative of B4ðxÞ. There are N equations of motion in
Eq. (23). As an odd Bernoulli polynomial, B3ðxÞ is defined
to be odd in x, and so by summing over a, we obtain

XN
r¼1

XN
a¼1

rϵclr eirθa ¼ 0: ð24Þ
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In principle it is possible to eliminate one of the θa’s for the
N − 1 independent variables. As we shall see, however,
unexpectedly there is no need to explicitly do so, nor to
solve for the values of the constraint fields ϵr. This greatly
simplifies matters.
The equation of motion in Eq. (23) is identical to that

with an external source J r which couples to the Polyakov
loop lr, with ϵclr ¼ iJ rV. This was the approach used in
our previous work [24]. With a constraint action, it is
natural that the expectation value of the classical field is
imaginary and proportional to the spatial volume. Also
notice that the source J r are naturally of order one, and not
∼1=g, in agreement with the analysis in Sec. II A. With
either a constraint or a source, however, it is necessary to
explicitly add the one loop term to lift the degeneracy in Θ.
Thus adding Eq. (22) above is equivalent to Eq. (18)
of Ref. [24].

C. Expansion of Polyakov loops to quadratic order

The major difference between a source that couples to
Polyakov loops, and the usual term which is linear in Aμ, is
that Polyakov loops are gauge invariant and hence a
nonlocal, infinite power series inA0. To ∼g2, it is necessary
to include terms of quadratic order in A0, and so on to
higher order. In this subsection we compute the terms to
quadratic order.
We need the thermal Wilson for a time of limited extent,

τ0∶0 → τ,

Lðx; τÞ ¼ P exp

�
ig
Z

τ

0

A0ðx; τ0Þdτ0
�
: ð25Þ

where P denotes path ordering. For the rth power of the
Wilson line,

trLrðx; 1=TÞ ¼ trLðx; r=TÞ: ð26Þ

We define the expansion about the classical field as

Lrðx; 1=TÞ ¼ L̄r þ δLr
1ðxÞ þ δLr

2ðxÞ þ � � � ; L̄r ¼ eirΘ;

ð27Þ

where the subscript denotes the power of A0.
To linear order,

δLr
1ðxÞ ¼ ig

Z
r=T

0

dτL̄ðr=T − τÞA0ðx; τÞL̄ðτÞ: ð28Þ

Taking the trace,

trδLr
1ðxÞ ¼ igrtr

�
eirΘ

Z
1=T

0

dτA0ðx; τÞ
�
: ð29Þ

As L̄ is diagonal, only diagonal elements of A0 contribute.
The integral over τ projects out the constant mode in τ for

A0ðx; τÞ. To derive the equations of motion, it is useful to
shift θa → θa þ δθaðxÞ, so that

trδLr
1ðxÞ ¼

XN
a¼1

ireirθaδθaðxÞ; ð30Þ

which gives the left-hand side of Eq. (23).
To proceed further we need to choose an explicit basis.

We adopt the double line notation familiar at large N to
finite N. In the fundamental representation,

ðtabÞcd ¼
1ffiffiffi
2

p
�
δacδbd −

1

N
δabδcd

�
; ð31Þ

a; b; c; d… ¼ 1…N. An adjoint matrix is denoted by the
pair of upper indices, ab. Hence there is one too many
generators, N2 in all instead of N2 − 1. The normalization
of off-diagonal generators is standard,

trðtabtbaÞ ¼ 1

2
; a ≠ b: ð32Þ

Because the double lines of SUðNÞ are ordered in opposite
directions, the indices flip when two generators are
contracted.
This basis is overcomplete by one diagonal generator.

Consequently the normalization of the diagonal generators
is unusual, Eqs. (16) and (17) of Ref. [26]. However, it is
easy just multiplying diagonal matrices together, and so at
least to the order at which we work, this can be ignored.
For example, to quadratic order the diagonal

elements are

ðδLr
2Þdiag ¼ −g2

Z
r=T

0

dτ1

×
Z

τ1

0

dτ2eirθaA0
aaðx; τ1ÞA0

aaðx; τ2Þ: ð33Þ

For the modes constant in time path ordering does not
matter, and this is elementary. Path ordering does enter for
time dependent modes.
More interesting are the off-diagonal elements:

ðδLr
2Þoff ¼ −g2

Z
r=T

0

dτ1

Z
τ1

0

dτ2L̄ðr=T − τ1Þ

×A0ðx; τ1ÞL̄ðτ1 − τ2ÞA0ðx; τ2ÞL̄ðτ2Þ: ð34Þ

For each of the A0’s we go from the imaginary time τ to
momentum space,

A0ðx; τ1Þ ¼ T
Xþ∞

n¼−∞
e−ip0τ1A0ðx;p0Þ; p0 ¼ 2πnT

A0ðx; τ2Þ ¼ T
Xþ∞

n0¼−∞
e−ip

0
0
τ2A0ðx;p0

0Þ; p0
0 ¼ 2πn0T: ð35Þ
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Because the Wilson line is nonlocal in time, it is possible
that terms where p0 ≠ p0

0 contribute. In contrast, since the
terms are local in space, the spatial momenta of the two
A0’s are equal and opposite.
The color structure enters in two ways:

Aba
0 ðp0ÞtabAab

0 ðp0
0Þtba; Aab

0 ðp0ÞtbaAba
0 ðp0

0Þtab: ð36Þ

There is no summation over repeated indices, as the color
indices a and b, with a ≠ b, are fixed.
Begin with the first permutation. Since L̄ is a diagonal

matrix,

L̄ðτÞtab ¼ eiθaτTtab; tabL̄ðτÞ ¼ tabeiθbτT: ð37Þ

Thus the first permutation in Eq. (36) gives

− g2T2eirθa
Xþ∞

n;n0¼−∞

Z
r=T

0

dτ1e−ip
ab
0
τ1

×
Z

τ1

0

dτ2e−ip
0
0
baτ2ðAba

0 ðp0ÞtabAab
0 ðp0

0ÞtbaÞ; ð38Þ

where

pab
0 ¼ Tð2πnþ θa − θbÞ; p0

0
ba ¼ Tð2πn0 þ θb − θaÞ:

ð39Þ
The integral over τ2 is

Z
τ1

0

dτ2e−ip
0
0
baτ2 ¼ 1

−ip0
0
ba ðe−ip

0
0
baτ1 − 1Þ: ð40Þ

Integrating over τ1,

− g2T2
Xþ∞

n;n0¼−∞

�
re2πirqa

1

−ip0
0
ba δðp0 þ p0

0Þ þ
1

pab
0 p0

0
ba ðeirθ

b − eirθ
aÞ
�
ðAba

0 ðp0ÞtabAab
0 ðp0

0ÞtbaÞ: ð41Þ

The other ordering in Eq. (36) gives

−g2T2
Xþ∞

n;n0¼−∞

�
reirθb

1

ipab
0

δðp0 þ p0
0Þ þ

1

pab
0 p0

0
ba ðeirθ

a − eirθ
bÞ
�
ðAab

0 ðp0
0ÞtbaAba

0 ðp0ÞtabÞ; ð42Þ

where we relabel p0 ↔ p0
0 and a ↔ b. This agrees with previous results, such as Eq. (3.12) of [17].

We now add the two orderings. With the normalization of Eq. (32), we find for the sum of off-diagonal elements

trðδLr
2ðxÞÞoff ¼ −

g2

4i

XN
a≠b¼1

rðeirθa − eirθbÞT
Xþ∞

n¼−∞

1

pab
0

ðAba
0 ðx; p0ÞAab

0 ðx;−p0ÞÞ: ð43Þ

The second terms in Eqs. (41) and (42) are truly nonlocal in
time, as p0 þ p0

0 ≠ 0 contribute. After taking the trace,
however, these terms cancel: because of the energy denom-
inator, the result is diagonal in p0 and nonlocal in the
Euclidean time.
This term is special to the off-diagonal modes. For

example, for the diagonal modes which are constant in
time, p0 ¼ p0

0 ¼ 0, Eq. (33) reduces to

−g2eirθar2ðAaa
0 Þ2: ð44Þ

D. Corrections to Polyakov loops and the
free energy at ∼g2

The result in Eq. (43) is useful in several ways. We first
show how the results above can be used to compute the free
energy at ∼g2 in two different, but equivalent ways. This is
necessary to compute corrections at higher order, to ∼g3.
Consider the constraint action of Eq. (20). As in Eq. (16),

we expand the N constraint fields in classical and quantum
components,

ϵr ¼ ϵclr þ ϵqur : ð45Þ

For each of the r constraint fields, the classical value of ϵclr
is determined by varying with respect to A0, and is given
by Eq. (23).
The terms linear in ϵqur are

i
XN
r¼1

ϵqur

�
lr −

Z
d3x
V

trðL̄r þ δLr
2ðxÞ þ � � �Þ

�

− i
XN
r¼1

ϵqur

Z
d3x
V

trδLr
1ðxÞ: ð46Þ

Consider the last term, which is quadratic in the quantum
fields, ∼ϵqur A0. From the form of δLr

1 in Eq. (29), only the
static, p0 ¼ 0 component of A0 enters. Further, the con-
straint is over the spatial average of δLr

1, which further
projects out the zero momentum component of the spatial
momentum, p ¼ 0. Unlike the static component in p0,
which is of finite measure, the zero momentum component
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in p is of zero measure. Thus we can ignore this part of the
integral over ϵqur .
To evaluate Eq. (46) we use Eq. (43) to find

htrðδLr
2ðxÞÞioff ¼ ð3 − ξÞ g

2

8π

XN
a≠b¼1

ireirθaB1

�
θa − θb
2π

�
:

ð47Þ
This first term in Eq. (46) has a simple physical inter-
pretation: as discussed by Belyaev [12], it represents a
correction to the constraint at ∼g2. This can be imple-
mented by going from a “bare” θa to a renormalized θa.
This shift is finite, but field and ξ dependent. Using this
shifted θa in the free energy obtained perturbatively, one
obtains the result below, Eq. (50).
The shift in the θa’s is natural. While the thermal Wilson

line is gauge dependent, the eigenvalues of the Wilson line
are gauge invariant. Shifting the eigenvalues is one way of
implementing this.
The same result is obtained by using the insertion

method of Sec. III B 1. There instead of a shift in the
eigenvalues, there are new diagrams from expanding the
constraint [17–22,25].
Lastly, there is a third method of computing the free

energy to ∼g2. With the method of Sec. III B 2, to ∼1 the
constraint field develops an expectation value, ϵclr ≠ 0.
Using Eq. (23), the quadratic term in Eq. (43) contributes
to the action as

−
4π

3
g2T3

XN
a;b;c¼1

�
B3

�
θa − θc
2π

�
− B3

�
θb − θc
2π

��
T

×
Xþ∞

n¼−∞

1

pab
0

Z
d3xðAba

0 ðx; p0ÞAab
0 ðx;−p0ÞÞ: ð48Þ

Notice that the factor of 1=V in the constraint is compen-
sated by ϵclr ∼ V in Eq. (23). Rather surprisingly, this
contribution is completely independent of the detailed
form of the ϵclr : once the equations of motion are imposed,
they completely drop out. We generalize this later to
sources involving two traces in Sec. III F.
By contracting two A0 fields together, Eq. (48) contrib-

utes to the holonomous potential. The result is gauge
variant, and proportional to ξ,

Vcons
2 ðΘÞ ¼−ð3− ξÞg

2T3

3

XN
a;b;c¼1

B1

�
θa − θc
2π

�
B3

�
θb − θc
2π

�
:

ð49Þ

After some juggling [20,21] of Bernoulli polynomials,

V2ðΘÞ ¼ Vpert
2 ðΘÞ þ Vcons

2 ðΘÞ

¼ −
5

24
g2T3

XN
a;b¼1

B4

�
θa − θb
2π

�
: ð50Þ

This is both independent of the gauge fixing parameter, ξ,
and proportional to the potential at one loop order. As such,
the perturbative vacuum Θ ¼ 0 is stable.
Each Bn can be written as a sum of double traces of the

Wilson line. Thus the terms ∼B2B2 and ∼B1B3 involve four
traces. The final form ∼B4, though, only involves two
traces. This has interesting implications for the solutions of
the theory at infinite N, where potentials with only double
traces are often soluble, at least in certain limits.

E. Holonomous gluon self-energy at one loop order

1. ξ = 1

The result of Eq. (48) is a contribution to the gluon self-
energy for a ≠ b,

Πab;cd
cons;00ðpabÞ ¼ −δadδbc

1

pab
0

4π

3
g2T3

XN
e¼1

�
B3

�
θa − θe
2π

�

þ B3

�
θe − θb
2π

��
; ð51Þ

pab
μ ¼ ðpab

0 ; pÞ, Eq. (39). This term is constant in the spatial
momentum p, and so a δ-function in space. With a
constrained functional integral, this term only arises in
recognizing that ϵcl ≠ 0; with a source, that the value of the
source must be included. They arise in the insertion method
just by doing only the Wick contractions that produce a
volume term [17,20–22,25]. Then only gluons radiated
from the Polyakov loop stay uncontracted, as in Eq. (41)
that leads to Eq. (51).
The part of the gluon self-energy from the constraint

satisfies

pab
0 Πab;cd

cons;00ðpabÞ ¼ −δadδbc
4π

3
g2T3

XN
a;b;c¼1

�
B3

�
θa − θc
2π

�
þ B3

�
θc − θb
2π

��
: ð52Þ

There is also the usual perturbative contribution. When ξ ¼ 1, this equals

pab
μ Πab;cd

pert;ξ¼1;μνðpabÞ ¼ þδν0δadδbc
4π

3
g2T3

XN
a;b;c¼1

�
B3

�
θa − θc
2π

�
þ B3

�
θc − θb
2π

��
: ð53Þ
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Clearly the contributions of Eqs. (52) and (53) cancel
identically, so that the sum is transverse,

pab
μ Πab;cd

total;ξ¼1;μνðpabÞ ¼ pab
μ ðΠab;cd

pert;ξ¼1;μνðpabÞ
þ Πab;cd

cons;μνðpabÞÞ ¼ 0; ð54Þ

where Πcons;μν ¼ δμ0δν0Πcons;00.

2. ξ ≠ 1

When ξ ≠ 1, the analysis is more involved, but Eq. (54)
remains valid in the limit of zero momentum. We begin
with the perturbative vacuum, θa ¼ 0. From the analysis of
Elze, Heinz, Kajantie, and Toimela [10], in covariant
gauges with ξ ≠ 1, at nonzero temperature there is an
additional contribution to the gluon self-energy. The con-
traction of pμ with the gluon self-energy is proportional to

pμΠpert;ξ;μνðpÞ ∼ ð1 − ξÞg2N
XZ

k

k · r
ðk2Þ2r2 kμTμνðpÞ;

kμ þ pμ þ rμ ¼ 0: ð55Þ

Here we introduce the transverse tensor,

TμνðpÞ ¼ δμνp2 − pμpν; ð56Þ

and a shorthand for the loop integral at T ≠ 0,

XZ
k
¼ T

Xþ∞

n¼−∞

Z
d3k
ð2πÞ3 ; ð57Þ

where kμ ¼ ðk0; kÞ, k0 ¼ 2πnT.
It can be shown that pμΠpert;ξ;μνðpÞ ¼ 0 in the static

limit, p0 ¼ 0 [10]. To do so, it is convenient to use

2k · r ¼ p2 − k2 − r2 ð58Þ

to replace k · r in the numerator of Eq. (55). There are three
terms which result. The second term, ∼k2, gives a con-
tribution of the type similar to that for ξ ¼ 1,

∼
XZ

k

1

k2r2
kμTμνðpÞ: ð59Þ

The integral over k gives a result ∼pμ, which vanishes
when contracted with the transverse tensor TμνðpÞ.
The third term in Eq. (58) is ∼r2,

∼
XZ

k

1

ðk2Þ2 kμTμνðpÞ; ð60Þ

which vanishes because it is odd in kμ.

This leaves the first term in Eq. (58), ∼p2.

∼p2
XZ

k

1

ðk2Þ2r2 kμTμνðpÞ: ð61Þ

We consider the static limit, p0 ¼ 0. Then when μ ¼ 0 the
sum is odd in k0 and so vanishes. When μ ¼ i is a spatial
index the integral ∼pi, so for ν ¼ 0, piTi0 ∼ p2

i p0 ¼ 0; for
ν ¼ j, piTijðpÞ ¼ p2

0pj. In either case, the result vanishes
at p0 ¼ 0.
This result generalizes to a nontrival background,

θa ≠ 0. The momenta then depend upon the color, with
the external momentum pab ¼ ðpab

0 ; pÞ, with pab
0 ¼

ðTð2πnþ θa − θbÞ; pÞ, Eq. (39). We choose the loop
momenta as kbc ¼ ðkbc0 ; kÞ, and define rcaμ through

pab
μ þ kbcμ þ rcaμ ¼ 0: ð62Þ

The conservation of the color dependent momenta follows
trivially from the conservation of the usual momenta and
the definition of pab, etc., Eq. (55) becomes

pab
μ Πpert;ξ;μνðpabÞ ∼ ð1 − ξÞg2

X
c

fðab;bc;caÞfðac;cb;baÞ

×
XZ

k

kbc · rca

ððkbcÞ2Þ2ðrcaÞ2 k
bc
μ TμνðpabÞ:

ð63Þ

The color sum involves the structure constants in the double
line basis, the fðab;bc;caÞ [26], but their explicit form is
inconsequential. The tensor TμνðpabÞ remains transverse
in pab

μ .
The proof proceeds as before, using

2kbc · rca ¼ ðpabÞ2 − ðkbcÞ2 − ðrcaÞ2 ð64Þ

to simplify the numerator in the integral. The second term,
∼ðkbcÞ2, becomes

∼
XZ

k

1

ðkbcÞ2ðrcaÞ2 k
bc
μ TμνðpabÞ: ð65Þ

We drop the sum over the structure constants to avoid
clutter. The denominator is symmetric in the interchange
of kbc and rca [42], so we can add the two terms, giving
kbcμ þ rcaμ ∼ pab

μ , which vanishes when contracted with
TμνðpabÞ.
The third term ∼ðrcaÞ2 is

∼
XZ

k

1

ððkbcÞ2Þ2 k
bc
μ TμνðpabÞ: ð66Þ

When μ ¼ i is spatial the integral is odd in ki and vanishes.
The integral is nonzero when μ ¼ 0, proportional to
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θb − θc. At zero momentum, though, T00 ¼ ðθa − θbÞ2 ×
ð1 − 1Þ ¼ 0, while T0i ∼ ðθa − θbÞpi.
In the limit of zero momentum, p0 ¼ pi ¼ 0, the first

term ∼ðpabÞ2 is

∼ðθa − θbÞ2
XZ

k

1

ððkbcÞ2Þ2ðkcaÞ2 k
bc
μ TμνðpabÞ: ð67Þ

The analysis is as for the third term. When pi ¼ 0,
the integral is nonzero only if μ ¼ 0. For ν ¼ 0,
T00ð0Þ ¼ 0, while for ν ¼ i, T0i ∼ ðθa − θbÞpi ¼ 0 when
pi ¼ 0.
In conclusion, while there are extra contributions to the

gluon self-energy when ξ ≠ 1, the transverse condition on
the gluon self-energy of Eq. (54) remains valid at zero
momentum,

ðθa − θbÞΠab;cd
total;0νðTðθa − θbÞ; 0Þ ¼ 0; a ≠ b: ð68Þ

This is valid for all θa. When ν ¼ 0, this shows that the
Debye mass vanishes for off-diagonal elements, a ≠ b,
when θa ≠ θb. This is a remarkable result. For spatial ν ¼ i,
Πab;cd

total 0;iðTðθa − θbÞ; 0Þ vanishes, as Πab;cdð0; 0Þ0i does for
when all θa ¼ 0.
In the static limit, diagonal elements of the gluon

self-energy satisfy a Ward identity like that for zero
holonomy,

piΠaa;bb
total;iνð0; pÞ ¼ 0: ð69Þ

(Remember there is no summation over a or b.) Thus
diagonal elements of Πaa;bb

total;00ð0; 0Þ are nonzero, ∼g2T2, as
the Debye mass for diagonal gluons.
A stronger constraint follows at arbitrary momentum.

Since Eq. (63) is ∼kbcμ TμνðpabÞ, it vanishes if we contract
with pab

ν , and so

pab
μ pab

ν Πab;cd
total;μνðpabÞ ¼ 0: ð70Þ

This is valid at arbitrary momentum and gauge fixing
parameter, ξ [8]. Notice that in order to obtain this relation,
the contribution of the constraint to the gluon self-energy is
essential, Eq. (51).

F. Constraints with double traces

In this section we show that the same results hold when
the constraint is an arbitrary function of double traces,

Scons ¼ iϵ

�
BðΘÞ −

Z
d3x
V

X∞
r¼1

crjtrLrðxÞj2
�
; ð71Þ

where BðΘÞ is manifestly ZðNÞ invariant. Consequently, if
we choose one Ā to satisfy the constraint, there will be N
equivalent vacua which also satisfy the constraint. This
does not preclude us from introducing such a constraint; we
do so because in constructing effective theories, it is natural
to use terms which are ZðNÞ invariant.
Adding this to the action, instead of Eq. (23) the equation

of motion is

�
−iϵcl

V

�X∞
r¼1

XN
b¼1

icrrðeirðθa−θbÞ − e−irðθa−θbÞÞ ¼ 8πT3

3

XN
b¼1

B3

�
θa − θb
2π

�
: ð72Þ

In addition to Eq. (43), we also need

trðLr
2ðxÞÞ†off ¼ þ g2

2i

XN
a≠b¼1

rðe−irθa − e−irθbÞT
Xþ∞

n¼−∞

1

pab
0

ðAba
0 ðx; p0ÞAab

0 ðx;−p0ÞÞ; ð73Þ

thus at quadratic order the contribution of off-diagonal elements to the Lagrangian is

−
�
−iϵcl

V

�
g2

2i

X∞
r¼1

crr
XN

a≠b¼1;c¼1

ðeirðθa−θcÞ − e−irðθa−θcÞ − eirðθb−θcÞ þ e−irðθc−θcÞÞ

× T
Xþ∞

n¼−∞

1

pab
0

ðAba
0 ðx; p0ÞAab

0 ðx;−p0ÞÞ: ð74Þ

By using the equation of motion in Eq. (72), though, this
reduces identically to the result of Eq. (48). Thus all of the
results obtained previously by constraining terms linear in
Polykov loops go through unchanged. This includes the
identity of the free energy to ∼g2 and the transversity of the
gluon self-energy.

As seen previously for a constraint involves linear powers
of the Polyakov loop, which was independent of the J r, for
constraints with double traces, the gluon self-energy is
independent of the specific coefficients that enter, the cr.
Polyakov loops from constraints (or sources) also

contribute to correlation functions of A0 to higher order.
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For example, cubic terms will involve two and three factors
of 1=pab

0 ; assuming that the later cancel, as for the quadratic
terms, the same reduction by the equations of motion
appears plausible. It is natural to suppose that these will
cancel other terms which arise from purely perturbative
computations to ∼g3, etc., but we have not explicitly
verified this.
We also suggest that similar properties hold for arbitrary

functions of Polyakov loops, but the above suffices for our
purposes herein. Indeed, the generality of these results hints
that a more general property of path ordered loops is at
work, which is at present obscure to us.

IV. FREE ENERGY TO ∼g3

In describing the transition to a confined phase, with
A0 ∼ ΘT=g, when jθa − θbj ∼ 1 for all a and b, we can
term the θa as “hard.” Naively, the background field acts as
an infrared cutoff for the off-diagonal modes. Of course this
still leaves infrared divergences from the diagonal modes.
(For quantities like the surface tension, some off-diagonal
θab vanish per se and contribute infrared divergen-
ces [18,19].)
In perturbation theory, it is well known that the static

modes are infrared divergent, and contribute to the free
energy at ∼g3. We next consider how a “soft” background
field, where jθa − θbj ∼ g, contributes to the free energy.
This describes how a holonomous plasma first emerges
from the strict perturbative limit.
If the total self-energy at ∼g2 is Πab;cd

total;μνðpabÞ, then by
resumming the ring diagrams, they contribute to the free
energy

F 3 ¼ −
XN
a;b¼1

XZ
p
tr logððpabÞ2δμν

þ ðξ−1 − 1Þpab
μ pab

ν − Πab;ba
total;μνðpabÞÞ; ð75Þ

with the notation of Eq. (57). To obtain F 3 we need to
drop two contributions: that when Πab;cd

total;μνðpabÞ ¼ 0, as
that is already included in the free energy to ∼1, and that
to linear order in Πab;cd

total;μνðpabÞ, as that is part of the free
energy to ∼g2. The derivative of F 3 with respect to ξ is
proportional to

∼ξ−1pab
μ pab

ν Πab;ba
total;μνðpabÞ; ð76Þ

and vanishes by Eq. (70).
In the perturbative vacuum, the computation of F 3 is

familiar [2]. The most infrared divergent term is from the
static mode, with p0 ¼ 0. In this limit, the only component
of Πab;cd

total;μνðpabÞ which is nonzero is

Π00ðp0 ¼ 0; p → 0Þ ¼ m2
Debye ¼

g2N
3

T2; ð77Þ

wherem2
Debye is the Debye mass squared. Integrating over p

with ξ ¼ 1,

F 3 ¼ −
XN
a;b¼1

XZ
p
tr log ðp2 þm2

DebyeÞ ∼ Tm3
Debye ∼ g3T4:

ð78Þ

At weak but nonzero holonomy it is less straightforward
computing F 3. In perturbation theory we distinguish
between diagonal gluons, with a ¼ b, and off-diagonal
gluons, with a ≠ b. This separation is gauge dependent, but
as for the free energy to ∼1 and ∼g2, we explicitly
demonstrate the gauge invariance of the free energy to
∼g3. Computation to higher order, ∼g4, is deferred to future
analysis [23].

A. Off-diagonal gluons

The computation of the self-energy to one loop order is
given in Ref. [24]. Here we give an alternate derivation,
using results from the hard thermal loop (HTL) limit.
Typically, the HTL is computed after analytically contin-
uing the Euclidean energy p0 → −iω; it is valid for soft
momenta, taking both ω and jpj soft, ∼gT.
In the Euclidean theory, for the colored momenta pab

0 ¼
p0 þ Tðθa − θbÞ to be soft requires that p0 ¼ 0 and that all
θa ∼ g. In the HTL limit, the gluon self-energy is [26]

Πab;cd
pert;μνðpabÞ ≈ −Kab;cd

pert ðΘÞδΓμνðpabÞ
− ðm2

pertÞab;cdðΘÞδΠμνðpabÞ: ð79Þ

This result is independent both of the gauge fixing
parameter, and of the particular gauge chosen. The only
requirement is that the external momenta are all soft.
The first term involves the function K, which depends

only upon the θa’s:

Kab;cd
pert ðΘÞ ¼ 4πi

3
g2T3

�
δadδbc

XN
e¼1

�
B3

�
θa − θe
2π

�

þ B3

�
θe − θb
2π

��
− 2δabδcdB3

�
θa − θc
2π

��
;

ð80Þ
in Ref. [26], A0ðTθÞ ¼ 2B3ðθ=ð2πÞÞ was used. (This
corrects Eq. (158) of Ref. [26], where the coefficient on
the right-hand side should be 2πig2T3=3 instead of 2g2T3.)
The soft momenta enter through the function

δΓμνðpabÞ ¼ −
1

ipab
0

δΠμνðpabÞ − uμuν
1

ipab
0

: ð81Þ

δΠμνðpÞ is the standard function which appears in hard
thermal loops,
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δΠμνðpÞ ¼ −uμuν − ip0

Z
dΩ
4π

K̂μK̂ν

p · K̂
: ð82Þ

The integral is over all directions of the unit spatial vector k̂;
K̂ ¼ ð−i; k̂Þ is a null vector, K̂2 ¼ 0. This function remains
valid if p0 → pab

0 ¼ Tðθa − θbÞ.
The Debye mass squared for θa ≠ 0 also enters,

ðm2
pertÞab;cdðΘÞ

¼ g2T2

�
δadδbc

XN
e¼1

�
B2

�
θa − θe
2π

�
þ B2

�
θe − θb
2π

��

− 2δabδcdB2

�
θa − θc
2π

��
; ð83Þ

in [26], AðTθÞ ¼ 6B2ðθ=ð2πÞÞ was used.
After analytic continuation, the above expressions apply

for soft ω and p, and arbitrary θa ∼ 1. To compute F 3, we
need the limit in which p0 ¼ 0 and all θa ∼ g. In this limit,
we can approximate B2ð0Þ ¼ 1=6, and B3ðxÞ ≈ x=2. In
δΓμν, the term 2πiB3ððθa − θbÞ=ð2πÞÞ=ipab

0 ∼ 1=2 at small
θa. Doing so, we find that all terms ∼δΠμνðpabÞ cancel
identically. This only leaves the term ∼ − uμuν=ðipab

0 Þ on
the right-hand side of Eq. (81). However, this enters
proportional to B3ððθa−θeÞ=ð2πÞÞþB3ððθe−θbÞ=ð2πÞÞ.
By the previous analysis in Eq. (51), this also cancels
against the contribution of the constraint term, Πcons;μν.
This implies that for smallΘ, all contributions to the self-

energy for off-diagonal gluons vanish for p0 ¼ 0 and
Θ ∼ g. This cancellation only occurs for small Θ, and does
not hold when Θ ∼ 1.
This does not imply that there are long ranged

fields. In the presence of the background Ā field, at
leading order the inverse propagator for the transverse
gluons is

Δ−1 ¼ ðp0 þ Tðθa − θbÞÞ2 þ p2: ð84Þ

Thus even for static modes with p0 ¼ 0, a nonzero
holonomy, θa ≠ 0, acts like a mass term.
The analysis implies that static electric fields are not

screened for small Θ. This can also be seen from the
transversity of the total gluon self-energy, Πab;cd

total;μνðpabÞ in
Eq. (54). In the static limit, as p → 0 this reduces to

ðθa − θbÞΠab;cd
total;00ð2πTðθa − θbÞ; 0Þ ¼ 0: ð85Þ

Consequently, when θa − θb ≠ 0, the self-energy vanishes,
Πab;cd

total;00ðTðθa − θbÞ; 0Þ ¼ 0. Clearly, for this to hold, it is
essential that the gluon self-energy is transverse.
This is very different from when θa ¼ 0; then going to

the static limit does not constrain Π00 ∼m2
Debye. From

Eq. (77), m2
Debye ≠ 0, so static electric fields are screened

when θa ¼ 0.
This behavior can be derived directly without explicit

evaluation of the one loop diagrams. We use the expres-
sions for the hard thermal loops in a holonomous plasma
[26]. This only applies for soft momenta, so both the spatial
momentum p and the θa are soft, ∼g. Consider the diagram
with two three gluon vertices. After summing over the loop
momentum k0, from Eqs. (115) and (116) of Ref. [26] the
contribution to Πij is proportional to

J ijðp; Tθ1; Tθ2Þ ∼
Z

∞

0

d3k
kikj

EkEp−k

Z
dΩ
4π

ðI2 þ I3Þ:

ð86Þ

We assume that the loop momentum k is hard, so in
each three gluon vertex we can take ∼ki, dropping
terms ∼pi. Similarly, we approximate Ep−k ∼ k. Then the
momentum dependence arises entirely from the statistical
distribution functions and from the energy denominators.
This is given by

I2 ¼
nðEk − iTθ1Þ − nðEp−k þ iTθ2Þ

ip12
0 − Ek þ Ep−k

;

I3 ¼
nðEp−k − iTθ2Þ − nðEk þ iTθ1Þ

ip12
0 þ Ek − Ep−k

; ð87Þ

where p12
0 ¼ p0 þ Tðθ1 þ θ2Þ.

These factors arise from Landau damping, and involve a
difference of hard energies. The difference is a soft energy,
so we need to expand Ep−k ≈ k − k̂ · pþ… Since we are
computing the self-energy for Euclidean momentum, we
work in the static limit, p0 ¼ 0. For simplicity we assume
θ1 ¼ 0 and θ2 ¼ θ. Under these approximations,

I2 ≈
1

−k̂ · pþ iTθ
ðnðkÞ − nðk − k̂ · pþ iTθÞÞ ≈ −

d
dk

nðkÞ:

ð88Þ

and

I3 ≈
1

k̂ · pþ iTθ
ðnðk − k̂ · p − iTθÞ − nðkÞÞ ≈ −

d
dk

nðkÞ:

ð89Þ

Each term is nonzero, but the point is that it is independent
of both the external spatial momentum, p, and the hol-
onomy, Tθ. This is most unexpected, as it is certainly
possible for the result to depend upon the dimensionless
ratio jpj=ðθTÞ.
It is also useful to consider the behavior of the free

energy. At one loop order any mode with nonzero energy,
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p0 ≠ 0, clearly contributions to the determinant, tr logΔ−1,
are regular about θa ¼ 0. Thus modes with nonzero
energy contribute only to the terms quadratic and
quartic in the θa’s:, ∼ðθa − θbÞ2 and ∼ððθa − θbÞ2Þ2 in
B4ððθa − θbÞ=ð2πÞÞ, Eqs. (10) and (11). There is also a
cubic term in B4ððθa − θbÞ=ð2πÞÞ, ∼ððθa − θbÞ2Þ3=2; it is
easy to show that this arises uniquely from the mode with
static energy, p0 ¼ 0. Thus the origin of the cubic term in
the one loop potential is similar as that of F 3 when θa ¼ 0,
Eq. (78). When the θa are soft, this cubic term at one loop
order is ∼g3, like that in perturbation theory. Similarly,
those at two loop order are ∼g5. What is unexpected is that
the free energy does not appear to be continuous as Θ → 0:
there are cubic terms ∼jθaj3 when θa ≠ 0, but these vanish
as θa → 0. In contrast, at zero holonomy there is a cubic
term ∼g3.

B. Diagonal elements to ∼g3

In principle, the computation of the contribution of color
diagonal gluons to the free energy at weak holonomy is
straightforward. As argued previously, gauge invariant
sources must be used, minimized with respect to the
background field, and the Debye masses in the presence
of the background field computed.
We show that when the explicit potentials are computed,

that a surprise arises. Because the potential at one loop
order involves a sum over an infinite number of loops, any
source must also involve an infinite sum, of a specific form.
Our arguments can be made precise for two and an

infinite number of colors. After treating these two examples
in detail, we discuss arbitrary N.

1. Two colors

For two colors, define θ1 ¼ −θ2 ¼ πq. To one loop order
the perturbative potential is

V1ðqÞ ¼ π2T4

�
−

1

15
þ 4

3
q2ð1 − qÞ2

�
: ð90Þ

We set T ¼ 1 for convenience. Normalized to unity, the
Polyakov loop l ¼ cosðπqÞ, with q ¼ 0 the perturbative
vacuum, and q ¼ 1=2 the confined. We add two sources,

VjðqÞ ¼ 4j1ðl2 − 1Þ þ 16j2ðl4 − 1Þ: ð91Þ

The potential with just j1 was considered in Ref. [27]; that
with j1 and j2 was discussed in Ref. [28]. The total
potential is then

V totðqÞ ¼ V1ðqÞ þ VjðqÞ: ð92Þ

For large values of j1 and j2 the potential minimizes the
loop, and drives the theory to the confined vacuum,
q ¼ 1=2. Our interest is how this occurs.

Begin with j2 ¼ 0. As j1 increases, there is a transition
from q ¼ 0 to q ≠ 0 at

j01 ¼
π2

48
; j2 ¼ 0: ð93Þ

This transition is of first order, directly to the confining
vacuum with q ¼ 1=2 [27,28].
This is not what we require, however, but rather a

transition to a nonzero but arbitrarily small value of
q ≠ 0. Consider expanding about the confined phase, with
q ¼ 1=2:

V tot

�
1

2
− δq

�
≈
π2

12
− 4j1 − 16j2 þ 4π2

�
j1 −

1

6

�
δθ2

þ 4

3
π4
�
−

1

π2
þ j1 − 12j2

�
δθ4 þ � � �

ð94Þ

Thus there is a line of second order transitions from the
deconfined to the confined phase when j1 ¼ 1=6.
For the quartic coupling to be positive [28],

j2 ≥
1

12

�
1

6
−

1

π2

�
: ð95Þ

This is not sufficient: at j1 ¼ 1=6 and this value of j2, the
value of the potential at q ¼ 1=2 is higher than at q ¼ 0,
not lower.
Fix j1 ¼ 1=6, and move up in j2 to

jcrit1 ¼ 1

6
; jcrit2 ¼ 1

16

�
π2

12
−
2

3

�
: ð96Þ

At this point, the potential has an uncommon form,
illustrated in Fig. 1. The value of the potential is equal

0.1 0.2 0.3 0.4 0.5

0.170

0.175

0.180

FIG. 1. A plot of the potential for the critical first order point,
Eq. (96). The masses squared is nonzero about the perturbative
vacuum, q ¼ 0, but vanishes about the confining vacuum,
q ¼ 1=2.
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at q ¼ 0 and q ¼ 1=2, with a barrier between them, and so
the transition is of first order. Nevertheless, the mass in the
confining vacuum, at q ¼ 1=2, vanishes. We call this a
critical first order transition; they also occur at infinite N in
some matrix models [29,30]. It occurs for two colors
because the potential is not just a simple polynomial in q.
Moving up in j2 for a constant value of j1 ¼ 1=6, there is

a standard second order transition. Now consider first
increasing j1 from jcrit1 . From Eq. (94), the potential at
q ¼ 1=2 vanishes along the straight line

j2 ¼
1

4
ðj01 − j1Þ: ð97Þ

Along this line, there is a first order transition from q ¼ 0
directly to the confining vacuum, q ¼ 1=2.
The behavior for j1 < jcrit1 is more involved. In this case

we take

j1 ¼ jcrit1 − δj1; j2 ¼
1

4
δj1 þ δj2: ð98Þ

Expanding about this point, we find a first order transition
from q ¼ 0 to q ¼ 1=2 − δq,

ðδqÞ2 ¼ 8aδj1; δj2 ¼ −aδj21; a ¼ 9π2

3π4 þ 16
: ð99Þ

That δq ∼
ffiffiffiffiffiffiffi
δj1

p
, instead of δq ∼ δj1, follows because the

mass vanishes about the confined phase at jcrit1 .
Thus there is a line of first order transitions as j1

decreases. Along this line, there is a first order transition
from q ¼ 0 to a value of q0 < 1=2. This line goes down to
j1 ¼ 0, where there is a first order transition at j1 ¼ 0 and
j02 ≈ 0.03615…; at this point, the minimum of the potential
jumps from q ¼ 0 to q0 ≈ 0.145….
This gives rise to the phase diagram of Fig. 2. There is an

unbroken line of first order transitions, with no smooth
transition from hqi ¼ 0 to a nonzero value. This phase
diagram is qualitatively different form Fig. 1 in Ref. [28],
where the line of first order transitions terminates at jcrit1 .
Thus the two sources used in Eq. (91) are not adequate to

generate a small value of Θ for arbitrarily small sources.
Consider the expansion for small q. Then the sources, as
functions of cosðπqÞ, begin at quadratic order. The same is
true for the potential at one loop order, but in addition, there
is a term of cubic order, with a negative sign. The terms
from the sources can be tuned so that the coefficient of the
quadratic term vanishes, but that still leaves negative cubic
term, which drives a first order transition.
This argument is unavoidable for two colors, and can be

immediately generalized to three colors. We comment that
the appearance of a cubic term, which implies nonanaly-
ticity in q, is because the potential involves a sum over an
infinite number of loops.

2. Infinite colors

For four or more colors, there is more than one
independent θa. While the presence of a cubic term in
the perturbative potential, B4ðθa − θbÞ, suggests that one
cannot smoothly move from θa ¼ 0 to nonzero θa, it is not
evident that it might not happen for one special direction of
the θa.
In this subsection we compute for an infinite number of

colors, using standard techniques for matrix models at
large N [29,32,33,43], and in particular using the known
solution for this particular model [30,31]. We revert to
using the θa, as in Refs. [30,31] At large N we replace
the discrete label a by a continuous index x, where
x ¼ a=N − 1=2, and introduce the eigenvalue density,

ρðθÞ ¼ dx
dθ

: ð100Þ

At large N the one loop potential is N2 times

V1ðθÞ ∼
Z

π

−π
dθ1

Z
π

−π
dθ2ρðθ1Þρðθ2Þ

× jθ1 − θ2j2
�
1 −

jθ1 − θ2j
2π

�
2

; ð101Þ

up to an overall constant, Eq. (10). For small θ we certainly
expect a cubic term of negative sign, but to establish this
definitively requires the explicit solution for the eigenvalue
density [31]. Previous study concentrated on the transition
from the confined to the deconfined phase, but the analysis
can be adapted to how the theory leaves the perturba-
tive limit.
In terms of the eigenvalue density the nth Polyakov loop

equals

FIG. 2. The phase diagram for the effective model for two
colors, with the potential of Eq. (94). There are three regions:
strict perturbative, with hqai ¼ 0; holonomous plasma, with
0 < hqai < 1=2, and confined, with hqai ¼ 1=2. The cross
denotes ðjcrit1 ; jcrit2 Þ, Eq. (96). Note that there is an unbroken line
of first order transitions between the confined and perturbative
phases.

FREE ENERGY OF A HOLONOMOUS PLASMA PHYS. REV. D 101, 094025 (2020)

094025-13



ln ¼
1

N
trLn ¼

Z
π

−π
dθρðθÞeinθ: ð102Þ

We assume that by an overall ZðNÞ rotation the expectation
value of all loops is real, so the eigenvalue density ρðθÞ is
an even function in θ.
The perturbative potential can be rewritten in a power

series in Polyakov loops, Eq. (10). Notice that the overall
sign is negative, so the potential is minimized when all
loops are maximal: all ln ¼ 1, so all θaðxÞ ¼ 0.
In studying the transition from the confined to the

deconfined phase, Ref. [31] assumed that the coefficient
of Eq. (10) is positive. The potential is then minimized
when all loops vanish, which is the confined phase.
The eigenvalue density for large N is soluble regardless

of the overall sign of Eq. (10). In the notation of Ref. [31],
the solution is the case s ¼ 4. While the effective potential
is a function of all ln, we can integrate out all loops except
for the first, l1. It is necessary to introduce an external field
for l1, ω. The potential for ω is

F 1ðωÞ ¼ þ2

Z
ω

0

dω0l1ðω0Þ: ð103Þ

The sign on the right-hand side is positive, opposite to the
negative sign in Eq. (31) of Ref. [31]. This is due to overall
change in sign of the potential in Eq. (10).

The solution for the eigenvalue density is [31]

ρðθÞ ¼ 1

2π
ððπ − θ0 − 2ω sin θ0Þðδðθ − θ0Þ þ δðθ þ θ0ÞÞ

þ 1þ 2ω cos θÞ: ð104Þ

The is defined for jθj ≤ θ0, with two δ-function singular-
ities at each end, for θ ¼ �θ0. The solution vanishes when
jθj > θ0, which we call a single gap (as ρðθÞ is even in θ).
The eigenvalue density can be computed for s ¼ 1, 2, 3,
and 4, but the singularities at θ ¼ �θ0 are special to
s ¼ 4 [31].
The endpoint of the gap, θ0, is related to the background

field, ω, through the relation

ω ¼ 1

6

� ðπ − θ0Þ3
sin θ0 þ ðπ − θ0Þ cos θ0

�
: ð105Þ

The strict perturbative limit is when θ0 ¼ 0, as

ρpertðθÞ ¼ δðθÞ; ω ¼ ωc ¼
π2

6
: ð106Þ

Expanding in ω,

ω ¼ π2

6
− δω; ð107Þ

the solution of Eq. (105) is

θ0ðωÞ ¼
2

π

�
δωþ 1

3

�
1þ 6

π2

�
δω2 þ 2

9

�
1þ 1

π2
þ 30

π4

�
δω3 þ 5

27

�
1 −

1

π2
þ 144

π6

�
δω4 þ � � �

�
: ð108Þ

With the eigenvalue density of Eq. (104), the first Polyakov loop equals

l1ðωÞ ¼
1

π
ðωθ0 þ sin θ0 þ cos θ0ðπ − θ0 − ω sin θ0ÞÞ: ð109Þ

Loops with n ≥ 2 are given by

ln≥2 ¼
1

π

�
ðπ − θ0Þ cosðnθ0Þ þ

sinðnθ0Þ
n

þ 2ωn
n2 − 1

ð−n sin θ0 cosðnθ0Þ þ cos θ0 sinðnθ0Þ
�
: ð110Þ

We need to compute these loops not as functions of θ0, but of the external field, ω. For l1,

l1ðδωÞ ≈ 1 − b2δω2 − b3δω3 − b4δω4 þ � � � ; ð111Þ

where

b2 ¼
2

π2
; b3 ¼

4

9π2

�
1þ 12

π2

�
; b4 ¼

2

9π2

�
1þ 1

π2
þ 84

π2

�
: ð112Þ

Solving for F 1 from Eqs. (103),

F 1ðωÞ − F 1ðωcÞ ¼ 2

�
δω −

b2
3
δω3 −

b3
4
δω4 þ � � �

�
: ð113Þ
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The potential, as a function of l1, is given by

V1ðl1Þ − V1ð1Þ ¼ F 1ðωÞ þ 2ωl1ðωÞjω¼ωðl1Þ − ðF 1ðωcÞ þ 2ωcÞ: ð114Þ

As a function of ω,

V1ðl1Þ − V1ð1Þ ≈
2

3
δω2 þ 4

27

�
1 −

6

π2

�
δω3 þ 2

27

�
−1þ 8

π2
þ 24

π4

�
δω4 þ � � � : ð115Þ

The right-hand side is a function of δω, but it is necessary to invert Eq. (111) and write it as a function of l1. We introduce

ðδρÞ2 ¼ π2

2
ð1 − l1Þ; ð116Þ

this δρ is, by definition, a measure of the deviation from zero for all eigenvalues. Equation (111) gives

δω ¼ δρ −
1

9

�
1þ 12

π2

�
δρ2 þ 2

81

�
−1þ 111

4π2
−

9

π4

�
δρ3 þ � � � : ð117Þ

Substituting this into Eq. (115), we obtain

V1ðl1Þ − V1ð1Þ ≈
2

3
ðδρÞ2 − 8

3π2
ðδρÞ3 þ 2

9π2

�
1þ 12

π2

�
ðδρÞ4 þ � � � : ð118Þ

As a function of δω, the nth Polyakov loop of Eq. (110) is

lnðδωÞ ¼ 1 −
2

π2
n2ðδωÞ2 − 4ð12þ π2Þ

9π4
n2ðδωÞ3 − 2

9π6
ð84n2 þ ð4 − 3n2Þn2π2 þ n2π4ÞðδωÞ4 þ � � � : ð119Þ

Using Eq. (117),

lnðl1Þ ≈ 1 −
2

π2
n2ðδρÞ2 þ 2

3π4
n2ðn2 − 1ÞðδρÞ4 þ � � � : ð120Þ

From Eq. (116), δρ is defined as the deviation of l1 from
unity, and so all terms of higher order in δρ, vanish. This
explains why the quartic term in l1 vanishes. For any n,
while there is a term cubic in δω in Eq. (119), there is no
term cubic in δρ. This accords with the intuition that in
expanding about the perturbative vacuum, that it is an
expansion in even powers of the θa, and hence of δρ.
Consider adding a constraint (or source) to a general

form for the effective potential of l1,

Veffðl1Þ ¼ V1ðl1Þ þ
X∞
n;m¼1

cmn l2m
n : ð121Þ

The term quadratic in δρ vanishes when

X
n;m

cmn n2 ¼
π2

6
: ð122Þ

At this point,

Veffðl1Þ − Veffð1Þ ≈ −
8

3π2
ðδρÞ3 þOðδρ4Þ: ð123Þ

Thus at the point where the term quadratic in δρ vanishes,
there is a term cubic in δρ, with negative sign. This
implies that there is a transition of first order before
this point is reached. The presence of a cubic term is
nontrivial, as any single Polyakov loop does not have such
as term, Eq. (120). It is the natural extension of the cubic
term in the θa’s, expressed in terms of the correct
eigenvalue density.
There is a caveat to the above. In adding terms propor-

tional to the second or higher Polyakov loops, the eigen-
value densities sometimes develop solutions with two or
more gaps [33]. We ignore this possibility, but it seems
reasonable to suggest that even such multigap solutions will
exhibit the first order transition above.
Consequently, as for the case with two colors, for any

constraint with a finite number of Polyakov loops, there
is a solid region of nonzero measure where the strict
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perturbative regime holds, with a first order transition to a
holonomous plasma.

3. Potentials

In Sec. (IV B 1) we showed explicitly that a potential
involving the two sources of Eq. (91) necessarily involves a
first order transition. This is immediately generalized to any
finite number of loops, due to the cubic term in the
perturbative potential. We showed in the previous section
that this remains valid for an infinite number of colors. It is
natural to assume this is true for any N.
What is required is a source which is linear inΘ for small

Θ. Consider the Bernoulli polynomial,

B2ðΘÞ ∼
X∞
n¼1

1

n2
jtrLnj2: ð124Þ

In this case, Eq. (122) naively diverges. The sum is given in
Eq. (19), and has a term linear in the θa for small θa.
This is true for anyBnðxÞwhenn is odd.However, the odd

BnðxÞ are also odd inx, and any termadded to the actionmust
be even in x. This suggests thatB2ðxÞ is a natural term to use
either as a source, or as a nonperturbative potential in
effective models [35–39]. Of course this does not imply
that B2ðxÞ must be used, only that any such potential must
involve a sumover an infinite numberofPolyakov loops, and
have a term linear in θa about the origin.

V. CONCLUSIONS

In this paper we have considered the behavior of the free
energy at nonzero holonomy in perturbation theory, and
showed that they exhibit several unexpected features.
At one loop order, Sec. II, the free energy at nonzero

holonomy is automatically gauge invariant. This is no
longer true at two loop order, ∼g2, Sec. III. The simplest
way to ensure gauge invariance is by using sources which
are themselves gauge invariant. As the thermal Wilson line
is an SUðNÞ matrix, it has N − 1 eigenvalues which are
gauge invariant. Thus one expects that it should suffice to
use sources which are a sum over N − 1 Polyakov loops.
To two loop order, the free energy is the same if

computed by various other means, as long as it is expressed
as a function of the eigenvalues of the thermal Wilson line.
Since any Polyakov loop is a nonlinear function of the
background field, these sources contribute not just to a term
linear in quantum fluctuations, but to terms of quadratic and
higher order. These quadratic terms are a novel contribution
to the gluon self-energy, and are essential to ensuring that
the gluon self-energy is transverse in the momentum, and
so obeys the Ward identity of Eq. (70).
The new contributions to the gluon self-energy do not

matter for the free energy to ∼g2, but when the holonomy is
weak, they do affect terms ∼g3, Sec. IV. At this order, it is
possible to separate between the contributions of off-
diagonal and diagonal gluons.

The contribution of off-diagonal gluons is unusual.
Typically, as a source is turned off, the contribution of the
source to free energy vanishes smoothly.We show that this is
not true for nonzero holonomy: while off-diagonal gluons
contribute to ∼g3 at zero holonomy, their contribution
vanishes when the holonomy is small but nonzero, even
infinitesimally. This was shown directly by computation in
Ref. [24], and by using the methods of hard thermal loops in
Sec. IVA. The latter has the advantage of being independent
of the details of the computation, and so more general.
In future work the BRST identities are used to analyze

the free energy to ∼g4, and used to show that this
contribution vanishes smoothly as the holonomy does
[25]. This is reasonable, since for weak holonomy the
∼g3 term from off-diagonal gluons is uniquely sensitive to
the infrared physics, while terms ∼g4 only probe strong
holonomy, and are not sensitive to infrared divergences.
The contribution of diagonal gluons is also novel. Most

sources are linear in the field, and so the change in the field
is small when the source is. This is not true for nonzero
holonomy, using sources which involve a finite number of
Polyakov loops. By checking if an extremal point is in fact
a minimum, we show that for two and an infinite number of
colors, that sources which are a sum of any finite number of
Polyakov loops do not suffice, and expect this remains true
for anyN. This analysis depends crucially upon the fact that
in 3þ 1 dimensions, at one loop order the free energy for
nonzero holonomy has a cubic term with negative sign.
Instead, to obtain a source which changes the field linearly
for small values, it is necessary to sum over an infinite
number of Polyakov loops. We present one form which
suffices in Sec. IV B 3, which arises for a massless field in
1þ 1 dimensions.
The discontinuity in the free energy to ∼g3 is rather

peculiar, and is not expected to arise if the holonomy is
generated dynamically. Nonzero holonomy can be studied
on a femto-torus [44], where the free energy is certainly
continuous when the radius of the torus is small. Of course
this does not exclude a discontinuity as the radius of the
torus diverges, as then the semiclassical techniques which
can be used for small radii do not apply.
In a future work the generation of holonomy by

dynamical fields is studied in a simple toy model [45].
This is a theory of a massless, adjoint ghost field which
lives on a 1þ 1 dimensional manifold, which is embedded
isotropically in 3þ 1 dimensions. Using such a model, it is
shown that the peculiarities found for static sources do not
arise. If the holonomy is generated dynamically, then
adding the contribution of off-diagonal ghosts to the free
energy gives a result in which the free energy to ∼g3
behaves smoothly as the holonomy vanishes. This accords
with the prejudice that discontinuities should not arise in
physical quantities.
This example also confirms the principal lesson of

the present analysis. Which is that even apparently
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straightforward computations in perturbation theory, when
done with care, can yield insight into such nonperturbative
phenomenon as the generation of nonzero holonomy.
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