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We develop further the codim-2 future-past extremal surfaces stretching between the future and past
boundaries in de Sitter space, discussed in previous work. We first make more elaborate the construction of
such surfaces anchored at more general subregions of the future boundary, and stretching to equivalent
subregions at the past boundary. These top-bottom symmetric future-past extremal surfaces cannot
penetrate beyond a certain limiting surface in the northern/southern diamond regions: the boundary
subregions become the whole boundary for this limiting surface. For multiple disjoint subregions, this
construction leads to mutual information vanishing and strong subadditivity being saturated. We then
discuss an effective codim-1 envelope surface arising from these codim-2 surfaces. This leads to analogs of
the entanglement wedge and subregion duality for these future-past extremal surfaces in de Sitter space.
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I. INTRODUCTION

de Sitter space is of great interest for various reasons:
theoretically there is the striking fact that it has thermo-
dynamic properties, with temperature and entropy [1] (see
the review [2]). This entropy arises as the area of the
cosmological horizon in the static patch coordinatization
for observers in the northern/southern diamond regions
who view these as event horizons. It is fascinating to ask
how de Sitter entropy can be understood via gauge/gravity
duality [3–6] for de Sitter space, or dS=CFT [7–9], which
associates a hypothetical nonunitary dual Euclidean con-
formal field theory (CFT) at the future boundary Iþ, which
might be regarded as the natural boundary of de Sitter space
(see, e.g., [10]). The dS=CFT dictionary ΨdS ¼ ZCFT [9],
with ΨdS is the late-time Hartle-Hawking wave function of
the Universe with appropriate boundary conditions and
ZCFT the dual CFT partition function, is quite different from
Zbulk ¼ ZCFT in the AdS case. For instance, for dS4, we
have (semiclassically)

ZCFT¼Ψds∼eiScl∼e−
R
k
R2
dSk

3φ0
−kφ

0
kþ…;

hOkOk0 i∼
δ2ZCFT

δφ0
kδφ

0
k0
; hφkφk0 i∼

Z
Dφφkφk0 jΨdS½φk�j2: ð1Þ

The CFTd energy momentum tensor 2-point correlation
functions yield central charges that are negative or

imaginary (odd dimensions), effectively analytic continu-
ations from AdS: e.g., taking Ok as appropriate Tij

components gives the real, negative, central charge − R2
dS
G4

reminiscent of ghost-like (c < 0) theories. In [11], a higher
spin dS4 duality was conjectured involving a 3-dim CFT of
anti-commuting (ghost) scalars, which exemplifies this (see
also, e.g., [12–20]). While dual operator correlation func-
tions are obtained by a differentiate prescription applied to
ZCFT, bulk expectation values are obtained by weighting
with the bulk probability jΨdSj2. The fact that bulk
observables in this formulation require both ΨdS and
Ψ�

dS suggests that two copies of the dual CFT are required
for a fixed dS background (strictly one should also sum
over final 3-metrics in jΨdS½φ; g3�j2).
In this context it is interesting to ask if the various

ideas and techniques pertaining to holographic entangle-
ment unravelled in AdS=CFT [21–23] (reviewed in, e.g.,
[24–26]) have analogs in de Sitter space, perhaps leading to
insights into de Sitter entropy as some sort of generalized
entanglement entropy. In the AdS case, the areas of
extremal surfaces anchored at the boundary of subsystems
in the boundary theory encode the entanglement entropy of
the subsystem in the dual field theory. It is known that AdS
is special in many ways: many apparently gravitational or
geometric quantities are actually field theory quantities. For
instance, the extremal surfaces encoding entanglement are
geometric objects but very strikingly they automatically
satisfy the various inequalities that entanglement entropy in
field theory is required to satisfy. In these cases, the dual
field theory includes the time direction. It is thus not clear if
any of these ideas and mathematical formulations of
entanglement make sense away from AdS=CFT, or more
generally gauge/gravity duality for ordinary field theories.
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In de Sitter, the natural boundary is at (future or past)
timelike infinity and is spatial so the dual is hypothesized to
be a Euclidean nonunitary CFT.
One way to set up the analog of the Ryu-Takayanagi

formulation in dS, for one thing simply as a geometric
problem, is to look for extremal surfaces pertaining to
subregions at the future boundary (see [27] for a review of
these investigations). Since the theory is Euclidean, there is
no natural time direction: as a calculational crutch, one
could pick one of the spatial symmetry directions as
boundary Euclidean time and look for extremal surfaces
on bulk slices corresponding to these. All such slices must
be equivalent however since none of these is sacrosanct. In
the Poincare slicing, this exercise shows that surfaces that
begin at Iþ do not turn back somewhere in the bulk to
return to Iþ: there is no real turning point for such timelike
surfaces ending on the spatial boundary. There are complex
extremal surfaces with turning points, amounting to ana-
lytic continuation from the AdS Ryu-Takayanagi surfaces
but their interpretation is unclear.
In [28], certain codim-2 timeline extremal surfaces were

found stretching from the future boundary to the past: this
is perhaps natural given that surfaces do not return to Iþ, so
they could instead end at I−. This also dovetails with the
fact that bulk expectation values require two copies of the
wave function and so two CFT copies and therefore two
boundaries. These surfaces begin at Iþ, the future boundary
of the future universe F, have a turning point in the
northern/southern diamond regions N=S and then end at
the past boundary I− of the past universe P. These are
analogous to rotated versions of the surfaces discussed by
Hartman, Maldacena [29] in the eternal AdS black hole. It
turns out that these surfaces cannot penetrate into the
northern/southern diamond regions N=S beyond a certain
point (for dS4 and higher dimensions): the turning point has
a real-valued solution only for certain subregions of N=S.
The limiting surface arises as the subregion at I� becomes
the whole space (this limit was identified erroneously
in [28]).
These surfaces turn out to have various interesting

properties, as we will explore in this paper. We restrict
attention to “top-bottom symmetric” surfaces, stretching
between a subregionA ∈ Iþ and an equivalent subregion at
I−: this in some sense simulates the bulk inner product
Ψ�

IþOΨIþ in (1), with ΨI− ≡Ψ�
Iþ . First we will make more

elaborate (Sec. II) the construction of these extremal
surfaces for more general subregions, as well as discuss
the limiting surface in more detail. This construction shows
that for multiple disjoint subregions, mutual information
vanishes and strong subadditivity is saturated. This is
reminiscent of finite temperature systems in AdS=CFT,
and is perhaps consistent with the fact that the bulk de Sitter
spacetime has a temperature. We then argue that there is an
effective codim-1 envelope surface formed from the union
or envelope of all the codim-2 surfaces. This leads to

analogs of the entanglement wedge (Sec. III) and a version
of subregion duality, adapting to this de Sitter case the
various arguments on the entanglement wedge in AdS=CFT
[30–32]. We close with a Discussion (Sec. IV).

II. DE SITTER SPACE AND FUTURE-PAST
EXTREMAL SURFACES

In AdS, surfaces starting at the boundary dip into the
radial direction and exhibit turning points where they begin
to return to the boundary. In dS, the boundary at Iþ is
spatial: surfaces dip into the time direction (which is
holographic) giving a crucial minus sign that ensures that
there is no real turning point where the surface starting at
Iþ begins to turn back toward Iþ [33,34]. For instance, in

the Poincaré slicing ds2 ¼ R2
dS
τ2
ð−dτ2 þ dx2i Þ, a strip sub-

system on some boundary Euclidean time w ¼ const slice
of Iþ with width along x gives a bulk extremal surface xðτÞ
described by _x2 ≡ ðdxdτÞ2 ¼ B2τ2d−2

1þB2τ2d−2
(B2 > 0). w, x can be

any of the xi (no boundary Euclidean time slice is special).
A turning point where the surface starting at Iþ begins to
turn back requires j_xj → ∞ while here j_xj ≤ 1. If such a
turning point existed, the extremal surface, initially dipping
into the bulk time direction (so that j dwdτ j < 1), would have
to stop moving in time and hit j dwdτ j → ∞ which is a
spacelike condition. Thus the surface needs to transit from
being timelike to being spacelike and then again timelike:
this appears incompatible with the extremality of the
surface, which is taken to be smooth. (There are also
complex extremal surfaces with turning points, amounting
to analytic continuation from the AdS Ryu-Takayanagi
surfaces [33–36]: their interpretation is unclear, the time
parameter taking imaginary time paths, thus lying outside
the original de Sitter time parametrization.)
Since real surfaces starting at the future boundary Iþ

keep marching on into the bulk without returning, it is
interesting to ask if they could instead end at the past
boundary I− [28]. The bulk probability Ψ�

dSΨdS suggests
two CFT copies: so such connected extremal surfaces
stretching between I� are perhaps expected. Toward study-
ing this, we recast dSdþ1 in the static coordinatization
ds2 ¼ −ð1 − r2=l2Þdt2 þ dr2

1−r2=l2 þ r2dΩ2
d−1 as

ds2dþ1 ¼
l2

τ2

�
−

dτ2

1 − τ2
þ ð1 − τ2Þdw2 þ dΩ2

d−1

�
; ð2Þ

where τ ¼ l
r w ¼ t

l. Now τ is “bulk” time: 0 ≤ τ ≤ 1 define
the future-past universes F=P while the northern/southern
diamond regions N=S have 1 < τ ≤ ∞ (with w time).
There are horizons at τ ¼ 1: their area is πl2

G4
. The boundary

at τ ∼ 0 is Euclidean Rw × Sd−1.
Since the asymptotic region enjoys rotational invariance

in Sd−1 as well as w-translations, we could pick either some
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equatorial plane of the Sd−1 or a w ¼ const slice as a
boundary Euclidean time slice. The area functional for a
codim-2 surface on an Sd−1 equatorial plane is

S ¼ ld−1VSd−2

Z
dτ
τd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − τ2
− ð1 − τ2Þðw0Þ2

r
: ð3Þ

Such codim-2 extremal surfaces are consistent with the
scaling ld−1

Gdþ1
of de Sitter entropy. (The w ¼ const slice turns

out to be difficult to analyse in detail, although certain
aspects such as the leading divergence are straightforward
to see.) Extremizing this gives the surface equation and its
area as

_w2 ≡ ð1 − τ2Þ2
�
dw
dτ

�
2

¼ B2τ2d−2

1 − τ2 þ B2τ2d−2
;

S ¼ 2ld−1VSd−2

4Gdþ1

Z
τ�

ϵ

dτ
τd−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2 þ B2τ2d−2

p : ð4Þ

Here _w is the y-derivative, with

y ¼
Z

dτ
1 − τ2

¼ 1

2
log

���� 1þ τ

1 − τ

���� ð5Þ

the “tortoise” coordinate, useful near the horizons. The
turning point is the “deepest” location to which the surface
dips into in the bulk, before turning around: this is given by

j _wj → ∞∶ 1 − τ2� þ B2τ2d−2� ¼ 0: ð6Þ

With B2 > 0, real τ�ðB2Þ arises only if τ > 1, i.e., within
N=S. For any finite B2 > 0, we have _w → 0þ near τ → 0,
with _w < 1 for τ < 1 (within F) and _w → 1 as τ → 1.

Overall this gives the smooth “hourglass”-like red curve in
Fig. 1 representing the codim-2 extremal surface stretching
from a subregion Δw × Sd−2 at Iþ to an equivalent one at
I−, intersecting the horizons, turning around smoothly at τ�
in N=S. The full extremal surface for the subregion consists
of the left and right portions of the surface. We will discuss
this more elaborately in what follows.

A. Future-past extremal surfaces for general subregions

We would like to construct these future-past extremal
surfaces for general subregions at I�, restricting however to
surfaces which are top-bottom symmetric: as we have
stated, this in some sense simulates the bulk inner product
(1). In other words, the surface is symmetric about the
w ¼ 0 slice passing horizontally through the middle of the
Penrose diagram, i.e., the top half-surface (anchored at Iþ)
is identical pictorially to the bottom half-surface (anchored
at I−); see Fig. 1. To describe these explicitly, consider any
Sd−1 equatorial plane and a subregion at Iþ defined as

A≡ ðwL;0; wR;0Þ; wR;0 > wL;0; ð7Þ

where wR;0 is the “right” edge and wL;0 is the “left” edge of
the subregion at Iþ. We take the convention that Iþ is
parametrized by w with the left end being w → −∞ and the
right end being w → ∞ (see, e.g., [2]). Then I− is para-
metrized with w → ∞ at the left end and w → −∞ at the
right end (the flow of ∂w is reversed). This dovetails with
taking wR;0 > wL;0. To be concrete, consider first the
subregion in Fig. 1, which is also left-right symmetric
(we will consider more general subregions later). The full
future-past surface is defined by two sets of equations, one
for the top half-surface (anchored in the future universe)
and the other for the bottom half-surface (anchored in the
past universe),

top∶ wLðyÞ ¼ wL;0 −
Z

y

0

dy _wLðBLÞ;

wRðyÞ ¼ wR;0 þ
Z

y

0

dy _wRðBRÞ;

bottom∶ wLðyÞ ¼ −wL;0 þ
Z

y

0

dy _wLðBLÞ;

wRðyÞ ¼ −wR;0 −
Z

y

0

dy _wRðBRÞ; ð8Þ

with _wLðBLÞ and _wRðBRÞ given by (4), taking the positive
square root, with parameters BL and BR respectively. The
top and bottom half-surfaces are reflections of each other
about the w ¼ 0 slice: i.e., the bottom surface is obtained
from the top one as wðyÞ → −wðyÞ. The parameters BL, BR
are related to the turning points (6) of the surfaces wLðyÞ
and wRðyÞ as

FIG. 1. Future-past extremal surfaces in de Sitter stretching
between I�. These are akin to rotated Hartman-Maldacena
surfaces in the eternal AdS black hole. The red curve is for
generic subregion. The blue curve is a limiting curve obtained as
the subregion becomes the whole space.
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1 − τ2�;L þ B2
Lτ

4
�;L ¼ 0; 1 − τ2�;R þ B2

Rτ
4
�;R ¼ 0;

τ�;L;R ¼ e2y�;L;R þ 1

e2y�;L;R − 1
: ð9Þ

The turning points lie in the N=S regions as stated earlier,
so we have used the corresponding expressions for τ�ðyÞ
using (5). The figure is top-bottom symmetric, as are the
extremal surfaces as we have stated. Thus the turning points
lie on the w ¼ 0 slice: so we have for the top half-surface
[using (8)]

0 ¼ wLðy�;LÞ ¼ wL;0 −
Z

y�;L

0

dy _wLðBLÞ;

0 ¼ wRðy�;RÞ ¼ wR;0 þ
Z

y�;R

0

dy _wRðBRÞ; ð10Þ

which are also automatically satisfied for the bottom half-
surface. This gives a relation between the boundary
conditions at I�, the turning points and the parameters B,

wL;0¼
Z

y�;L

0

dy _wLðBLÞ; wR;0¼−
Z

y�;R

0

dy _wRðBRÞ: ð11Þ

In other words, the boundary condition wL;0 at Iþ implies a
turning point at a specific location τ�;L (and likewise for the
right side surface): the bottom part of the left surface can
join smoothly to the top part only if its turning point
matches with that of the top part, which in turn implies that
wL;0 for the bottom part should match appropriately with
the top part. This is why wbottom

0 ¼ −wtop
0 , as we have taken

in defining the top and bottom half-surfaces (8). In the
vicinity of the turning point, we have wðτÞ ∼� ffiffiffiffiffiffiffiffiffiffiffiffi

τ� − τ
p

for
the top part of the surface: this joins smoothly with
wðτÞ∼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffi

τ� − τ
p

from the bottom part of the surface. It
can now be shown that the integral

R y�
0 dy _w in fact takes

negative values: we will see this explicitly in a special case
later, and it can also be checked numerically. Given this, we
see from (11) that

wL;0 < 0; wR;0 > 0; ð12Þ

for the surface of the form (8) above: this has the left and
right parts on the left and right halves of Iþ respectively, as
for the left-right symmetric subregion with the red curves in
Figure 1. As we see from (8), such a future-past surface
stretches from w0 ∈ Iþ to −w0 ∈ I−, passing through the
turning point at w ¼ 0. Then the size of a subregion A (7) at
Iþ is

Δw ¼ wR;0 − wL;0; ð13Þ

where w0’s are given by (11). For the left-right symmetric
subregion in Fig. 1, we have

wtop
R;0 ¼ −wtop

L;0; wbottom
R;0 ¼ −wbottom

L;0 ;

and wtop
R;0 ¼ −wbottom

R;0 ; wtop
L;0 ¼ −wbottom

L;0 ; ð14Þ

the last two relations following from top-bottom symmetry.
Left-right symmetry also means _wL ¼ _wR ≡ _w and so the
size of the subregion becomes

Δw ¼ −2
Z

y�

0

dy _w; ð15Þ

where y� refers to the turning point for both left and right
parts of the surface, which are now symmetric. This
subregion size at I� can be evaluated, using (4), as

Δw ¼ −2
Z

y�

0

dy
Bτ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − τ2 þ B2τ4
p ¼ −2

Z
y�

0

dy _w

¼ −2
Z

Y

0

dy _w − 2

Z
y�

Y
dy _w; τ ¼ τðyÞ: ð16Þ

In the last expression, we have broken up the integral into
the contribution outside the horizon and that inside the
horizon. Near the horizon, where y → ∞, we have intro-
duced a cutoff Y to regulate the calculation. Now note that
_w → 1 near the horizon so the contribution near the horizon
can be estimated as

R
Y dyþ

R
Y dy ¼ Y − Y, and the

apparent divergence cancels: the near horizon contribution
to Δw is nonsingular. This can also be seen in the τ-
coordinates, where we regulate the near horizon region with
a cutoff T as T ¼ 1 − ε for τ < 1 and T ¼ 1þ ε for τ < 1:
this gives

R
1−ε dτ

1−τ2 þ
R
1þε

dτ
1−τ2 ∼ − log ε − ð− log εÞ, which

is smooth. For generic subregion, the surface equation wðτÞ
has a turning point at a single zero of the denominator: then
near the turning point, we have wðτÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffi

τ� − τ
p

from the
contribution near the turning point which is finite. Thus for
generic subregion, the width does not grow large but
remains finite: this occurs for generic values of 0 ≤ B < 1

2

for dS4.
More generally, we see a relation between the equation

describing a future-past surface and the corresponding
boundary condition w0 ∈ Iþ,

wðyÞ ¼ w0 ∓
Z

y

0

dy _wðBÞ ⇒

w0 ¼ �
Z

y�

0

dy _wðBÞ ≶ 0; ð17Þ

so that the top sign corresponds to a surface anchored in the
left part of Iþ and the bottom sign to the right part of Iþ. So
consider, e.g., the more general subregion and the red
surfaces in Figure 2: this is top-bottom symmetric but not
left-right symmetric. Now we have both wL;0, wR;0 < 0

(with wR;0 > wL;0): thus both surface equations wL;RðyÞ are
of the form (17) with minus signs: explicitly
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top∶ wLðyÞ ¼ wL;0 −
Z

y

0

dy _wLðBLÞ;

wRðyÞ ¼ wR;0 −
Z

y

0

dy _wRðBRÞ; ð18Þ

with the bottom half-surfaces given by wb
LðyÞ ¼ −wLðyÞ,

wb
RðyÞ ¼ −wRðyÞ. The B ¼ 0 surface with _w ¼ 0 is a

vertical line from Iþ to I−, passing through the bifurcation
point.
The full surface for a given subregion (7) consists of the

left and right portions of the surface: the area is thus given
by the sum of the areas

S½A� ¼ S½wL;0� þ S½wR;0� ð19Þ

of the left and right portions of the surface, where each S½w�
is given by the area in (4). Each of the left and right portions
of the surface of course connects the boundaries of the
equivalent subregions at Iþ and I−, but is disconnected
from the other portion. The fact that the two sides of the full
surface are disconnected from each other dovetails with the
fact that a surface anchored at Iþ does not return to Iþ but
ends at I−. This disconnectedness has interesting conse-
quences as we will see.

B. The limiting surface and its area

We will now see that the turning point relation (6) shows
the existence of a limiting surface at some finite τ�: these
are shown as the blue curves in Fig. 1. These future-past
extremal surfaces cannot penetrate deeper than a certain
location in the northern/southern diamond regions N=S
beyond the horizons: they are in some sense “repelled” by
the poles (the left/right boundaries in N=S). This is
analogous to the repulsive nature of the singularity with

regard to the Hartman-Maldacena surfaces [29] in the
eternal AdS black hole.
From (6), we see that as B → 0, we have τ� → 1. On the

other hand, we see that the expression cannot vanish if τ is
too large: e.g., beyond τ2d−2� B2 ≳ τ2�, the two terms cannot
cancel. This suggests a nontrivial solution around
τ2d−4� ∼ 1

B2. Focusing on dS4, we can complete squares
for B → 1

2
giving

½dS4� B →
1

2
∶ 1 − τ2 þ B2τ4 →

�
1 −

τ2

2

�
2

⇒ τ� →
ffiffiffi
2

p
; ð20Þ

and the expression in (6) acquires a double zero. Now the
width integral can acquire a logarithmic divergence: the
surface is almost completely inside the horizon now (within
the N=S regions). Here we can approximate τ ≳ 1 and so
the subregion width (13), (15), can be approximated as

Δw ∼ −2
Z

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2 þ B2τ4

p
����
τ�

ð21Þ

mostly arising from the contribution inside the horizon
(ignoring finite constants). This is further vindicated since
as we have seen above, the region near the horizon is
smooth and the apparently divergent terms cancel after
regulating. The subregion is becoming the whole space
now, since Δw → ∞: the left and right edges are going to
the boundaries of I�.
To see all this more explicitly, we evaluate the width at

this double zero location B ¼ 1
2
. We have

Δw¼−2
Z

1−ε

0

dτ
1− τ2

τ2=2
1− τ2=2

−2

Z ffiffi
2

p
−δ

1þε

dτ
1− τ2

τ2=2
1− τ2=2

:

ð22Þ

The ε is related to the cutoff Y mentioned earlier near the
horizon (we are symmetrically “point-splitting” the hori-
zon), while δ is a cutoff near the turning point τ� ¼

ffiffiffi
2

p
which will illustrate the logarithmic divergence. Noting
1

1−τ2
τ2=2

1−τ2=2 ¼ 1
1−τ2 −

2
2−τ2, the integrals over τ < 1 and over

τ > 1 are evaluated as

τ< 1∶
Z

dτ
1− τ2

τ2=2
1− τ2=2

¼ 1

2
log

1þ τ

1− τ
þ 1ffiffiffi

2
p log

ffiffiffi
2

p
− τffiffiffi

2
p þ τ

;

τ> 1∶ −
Z

dτ
τ2−1

τ2=2
1− τ2=2

¼ 1

2
log

1þ τ

τ−1
þ 1ffiffiffi

2
p log

ffiffiffi
2

p
− τffiffiffi

2
p þ τ

:

ð23Þ

Then evaluating (22) vindicates the statements after (16) on
the near horizon cutoff, giving

FIG. 2. Future-past extremal surfaces in de Sitter stretching
between I� for a generic subregion: these lie on some Sd−1

equatorial plane and have endpoints wL;0 at the left edge and wR;0

at the right edge.
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Δw ¼ −
�
log

1

ε
þ log 2þ

ffiffiffi
2

p
log

ffiffiffi
2

p
− 1ffiffiffi

2
p þ 1

�

−
�
log

ffiffiffi
2

p þ 1ffiffiffi
2

p
− 1

þ
ffiffiffi
2

p
log

δ

2
ffiffiffi
2

p − log
1

ε

�

∼
ffiffiffi
2

p
log

1

δ
: ð24Þ

Since δ → 0, we see that the width Δw diverges logarithmi-
cally at the double zero location B → 1

2
, where the sub-

region becomes the whole space. The Δw here has identical
contributions from the left and right portions of the surface.
We can also evaluate the area: this again is the sum of the

areas of the left and right portions of the surface, both of
which give identical contributions. For either of them, first
the divergent part of the area arises from the region near the
boundary, which can be approximated as the portion
outside the horizon,

Sdiv ∼
2ld−1VSd−2

4Gdþ1

Z
1

ϵ

dτ
τd−1

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p !dS4 πl2

G4

1

ϵ
: ð25Þ

This area law divergence arises for any subregion. The
scaling of the finite part of the area can be obtained in the
limit we have discussed above of the subregion becoming
the whole space, i.e., Δw → ∞. We have (regulating near
the turning point as above)

Sfin ∼
πl2

G4

Z ffiffi
2

p
−δ

1

dτ
1 − τ2=2

∼
πl2

G4

log
1

δ
∼
πl2

G4

cΔw; ð26Þ

using the scaling expression (24) above (and c is some
Oð1Þ number). Thus we see that the finite cutoff-indepen-
dent part of the area scales linearly with the subregion size,
as the subregion becomes the whole space. This is in some
ways related to the linear growth in time of entanglement
[29] in the eternal AdS black hole.
We have seen that this limiting extremal surface arises as

the subregion becomes the whole space: there is an
accumulation of surfaces in the vicinity of this limiting
surface, beyond which, these extremal surfaces do not
penetrate.
These surfaces are on Sd−1 equatorial plane slices: in the

w ¼ const slice, similar surfaces appear difficult to identify,
although the area law divergence is straightforward to see.

1. Geodesics, or the dS3 case

dS3 turns out to be special, specially in regard to the
above discussion on limiting surfaces. This case is tech-
nically equivalent to discussing geodesics in any dSdþ1, and
we discuss this now. The action for timelike geodesics is

S¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gττdτ2−gwwdw2

q
¼
Z

dτ
τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1−τ2
−ð1−τ2Þðw0Þ2

r

ð27Þ

which is identical to the action for dS3 extremal surfaces.
Then (4) gives

_w2 ≡ ð1 − τ2Þ2ðw0Þ2 ¼ B2τ2

1 − ð1 − B2Þτ2 ; ð28Þ

and the turning point where _w2 → ∞ is

τ� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − B2
p : ð29Þ

For real τ�, we see that the parameter B is restricted to the
range 0 ≤ B ≤ 1. However in this case we see that τ� → ∞
as B → 1 so that there is no limiting surface at finite τ�:
geodesic curves reach the north/south poles in N=S as the
subregion becomes the whole space. This also means that
dS3 is special, with no limiting surface structure of the kind
discussed above. The surface equation can be written as

wðyÞ ¼ w0 �
Z

y

0

dy _w;

wðτ�Þ ¼ 0 ⇒ w0 ¼∓
Z

y�

0

dy _w: ð30Þ

These are top-bottom symmetric, with the turning point τ�
lying on the w ¼ 0 slice in the middle. The integration can
be done explicitly in this case giving

w0¼
Z

1−ε

0

dτ
1− τ2

Bτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ð1−B2Þτ2

p
−
Z

τ�

1þε

dτ
τ2−1

Bτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ð1−B2Þτ2

p ∼
1

2
logð1−B2Þ: ð31Þ

We have, as before, broken up the integral into the portion
outside the horizon and that inside, regulating near the
horizon τ ¼ 1with a cutoff ε. The near horizon divergences
cancel giving the scaling with B above. We see that
w0 → −∞ as B → 1 or equivalently τ� → ∞ and
w0 → 0 as B → 0 (i.e., τ� → 1). The area of the surface
(e.g., the left portion in Fig. 1) becomes

S ¼ l
2G3

Z
τ�

ϵ

dτ
τ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − B2Þτ2

q ¼ l
2G3

log
2τ�
ϵ

: ð32Þ

The cutoff independent part scales as log τ� ∼ w0. Since the
subregion width is Δw ¼ 2w0 for a left-right symmetric
subregion, the finite part of the area of the corresponding
extremal surface grows linearly with the subregion size.
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C. Multiple subregions and mutual information

As we have seen, if we consider top-bottom symmetric
subregions and the corresponding extremal surfaces, then
the turning points always lie on the w ¼ 0 slice passing
through the middle of the Penrose diagram. Then from (17),
we have w0 ¼ � R y�

0 dy _wðBÞ ≶ 0, i.e., given the location
w0 of the boundary condition at Iþ, there is a unique
surface with turning point y� on the wðy�Þ ¼ 0 slice. This
surface stretches between w0 ∈ Iþ and −w0 ∈ I− turning
at w ¼ 0.
For a single subregion A ∈ Iþ defined by the boundary

conditions A≡ ðw1; w2Þ, the equivalent subregion Ā ∈ I−

is defined by Ā≡ ð−w1;−w2Þ. The extremal surface
comprises the portion stretching from the top left edge
w1 ∈ Iþ and that from the top right edge w2 ∈ Iþ. Thus the
area of the extremal surface arises from both portions as
stated earlier, giving

S½A� ¼ S½w1� þ S½w2�;

S½w0�≡ πl2

G4

Z
τ�ðw0Þ

0

dτ
τ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2 þ B2τ4

p ;

w0 ¼ �
Z

y�

0

dy _wðBÞ; 1 − τ2� þ B2τ4� ¼ 0; ð33Þ

noting the relations between the boundary condition at I�,
the parameter B and the turning point τ� (equivalently y�).
The turning point above, as we have seen, necessarily lies
in the N=S regions, satisfying τ� ≥ 1: the real, positive,
solution to the quartic with a smooth B → 0 limit (as
τ� → 1) is

τ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4B2

p

2B2

s
: ð34Þ

This structure of these top-bottom symmetric extremal
surfaces and their areas is special. Consider two disjoint
subregions (restricting to top-bottom symmetric ones),
defined by the boundary conditions at Iþ,

A≡ ðw1; w2Þ; B≡ ðw3; w4Þ: ð35Þ

This is shown in Fig. 3. One can then ask if there is any
analog of the connected surfaces that arise in holographic
mutual information defined as

I½A;B� ¼ S½A� þ S½B� − S½A ∪ B�: ð36Þ

In, e.g., AdS, if the subregions A, B are far apart, then the
minimal area surface for A ∪ B is simply the two dis-
connected surfaces around A and B so I½A;B� vanishes.
However when A, B are nearby, there is a new connected
surface with lower area [37]: with A≡ ðx1; x2Þ and
B≡ ðx3; x4Þ, this new surface has one part with endpoints
ðx1; x4Þ and another stretching between ðx2; x3Þ. Since

S½A ∪ B� has lower area, we have I½A;B� > 0. As the
subsystem separation increases, the area of this new
connected surface increases: at some critical separation,
S½A ∪ B� equals that of the two disconnected surfaces and
then I½A;B� vanishes. This is a large N disentangling
transition for mutual information.
In the present dS case however, it appears that such new

surfaces connecting the subregions A, B above cannot
exist. If they did, there would be a portion of the surface
that stretches between w2 and w3 connecting the adjacent
edges ofA, B. However this requires a turning point for this
portion of the surface which starts at w2 ∈ Iþ and returns to
w3 ∈ Iþ: as we have seen, such turning points do not exist,
except the ones we have discussed (lying in the N=S
regions, which give the future-past surfaces). In other
words, the only surfaces for a subregion ðw2; w3Þ comprises
the future-past surfaces at w2 and w3, disconnected from
each other: the left and right components of this are
already contained in the surfaces for A, B separately.
Thus it appears that mutual information vanishes always.
Equivalently, for each of the boundary points wI, there is a
unique future-past surface, so the area is

S½A∪B� ¼ S½w1�þS½w2�þS½w3�þS½w4� ¼ S½A�þS½B�;
ð37Þ

and I½A;B� vanishes. The A ∪ B surface is identical to the
two disconnected surfaces for A and B separately. This is
true for any disjoint subregions: there is no critical
separation between the subregions, unlike the AdS case.
Now consider three adjacent regions A, B, C, that do not

overlap: in Fig. 3, the subregions at Iþ are

A≡ ðw1; w2Þ; B≡ ðw2; w3Þ; C≡ ðw3; w4Þ; ð38Þ

so

1 2 3 4

F

N S

P

I−

+
ww ww I

FIG. 3. Two disjoint subregions A≡ ðw1; w2Þ and B≡
ðw3; w4Þ at Iþ along with the equivalent ones at I−, and the
corresponding future-past extremal surfaces.
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A ∪ B≡ ðw1; w3Þ; B ∪ C≡ ðw2; w4Þ;
A ∪ B ∪ C≡ ðw1; w4Þ: ð39Þ

Then using (33), the areas give

S½A ∪ B� þ S½B ∪ C� ¼ S½w1� þ S½w3� þ S½w2� þ S½w4�
¼ S½A ∪ B ∪ C� þ S½B�: ð40Þ

Thus strong subadditivity is always saturated, dovetailing
in a sense with vanishing mutual information (and sug-
gesting that tripartite information [38] as well as the
entanglement wedge cross section [39] also vanish). This
fact is independent of the detailed scaling of the area with
the subregion size: it follows from the fact that there is a
unique surface stretching from a given boundary location
w0 ∈ Iþ and that these are future-past surfaces stretching
from Iþ → I−, with no Iþ → Iþ turning point. The top-
bottom symmetry that we have been focusing on has been a
crucial ingredient here.
The above observations might suggest that the surfaces

encode nothing, with no correlations between any two
subregions at Iþ. However the vanishing of mutual infor-
mation here is in fact reminiscent of a finite temperature
system: for subsystem sizes and separation above the scale
set by the temperature, the entanglement entropy scales
linearly ensuring that mutual information vanishes (see,
e.g., [40] for a study of holographic mutual information in
finite temperature AdS=CFT). This appears consistent with
the fact that the bulk de Sitter space is a thermodynamic
object, with an entropy and a temperature (in a sense like
the AdS black hole): however it is perhaps a special feature
that this vanishing of mutual information holds for any
disjoint subregions, independent of the separation (in some
sense, subregions here are already “well-separated” unlike
the AdS case). This is in the leading gravity (large N)
approximation, with possibly nonvanishing subleading
(Oð1Þ) contributions.

III. ENTANGLEMENT WEDGE:
FUTURE-PAST SURFACES

Wewould like to discuss the analogs of the entanglement
wedge in AdS=CFT [30–32] (see also the reviews, e.g.,
[24–26]) in the present de Sitter case. Although the present
case has very different features, there are analogs here of
the “entanglement wedge” and subregion duality.

A. A codim-1 “envelope” surface from
codim-2 surfaces

Given some boundary Euclidean time slice and a
boundary subregion on it, we can use de Sitter isometries
to generate other equivalent (codim-1) boundary subre-
gions, since no such slice is special: e.g., a subregion with
width Δw on any Sd−1 equatorial plane can, by an

asymptotic rotation, be transformed to another subregion
on any Sd−1 equatorial plane. This suggests that the true
bulk subregion is a codim-0 subregion with any slice giving
a codim-1 subregion. Likewise in the bulk, the codim-2
extremal surface anchored at the boundary of any codim-1
subregion can be rotated to any equivalent extremal surface
anchored on an equivalent subregion: this suggests that the
natural bulk object is a codim-1 extremal surface obtained
as a “union” or “envelope” of the family of codim-2
extremal surfaces. Although the only role of the codim-1
envelope surface is to encode the codim-2 surfaces in its
slices, it is the natural object here since no boundary
Euclidean time direction is sacrosanct. This codim-1 sur-
face will play essential roles in what follows.
Note that this is not equivalent to defining the boundary

subregion as the codim-0 boundary subregion Δw × Sd−1

directly and constructing the corresponding codim-1
bulk extremal surface. Such a codim-1 extremal surface

in dSdþ1 is described by the area functional S ¼
ldVSd−1

R
dτ
τd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1−τ2 − ð1 − τ2Þðw0Þ2
q

and can be seen to scale

as ld. These are structurally similar to codim-2 surfaces in
dSdþ2, the extremization giving

_w2 ≡ ð1 − τ2Þ2
�
dw
dτ

�
2

¼ B2τ2d

1 − τ2 þ B2τ2d
;

S ¼ 2ldVSd−1

4Gdþ1

Z
τ�

ϵ

dτ
τd

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2 þ B2τ2d

p ; ð41Þ

with the turning point

j _wj → ∞∶ 1 − τ2� þ B2τ2d� ¼ 0: ð42Þ

These surfaces in dS4 have a leading area divergence
S ∼ 2l3VS2

R
1
ϵ

dτ
τ3

1ffiffiffiffiffiffiffi
1−τ2

p ¼ 4πl3ð 1
ϵ2
þ log 2

ϵÞ, thus containing a

subleading logarithmic divergence. So these ab initio
codim-1 surfaces are qualitatively different from the
codim-1 “envelope” surfaces described above. The latter
have area scaling as de Sitter entropy on each boundary
Euclidean slice with no subleading logarithmic divergence.
We have constructed the codim-2 surfaces on boundary
Euclidean time slices: this crutch appears in accordance
with setting up a subsystem in the dual field theory on some
constant Euclidean time slice and defining entanglement
thereof. The effective codim-1 envelope surface arises as
above since no such slice is special.

B. Domains of dependence and Cauchy horizons

1. Domains of dependence

As we have been saying, the boundary theory is
Euclidean, as are the subregions: so there is no intrinsic
boundary time. Boundary Euclidean time directions, used
in the construction of the extremal surfaces above, are all
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equivalent: these serve as a crutch to organize the surfaces
simulating entanglement in the dual field theory, but they
are simply spatial directions in the end.
Thus, we take the only natural notion of the domain of

dependence to be that defined from the bulk point of view.
The natural subregion in the Euclidean boundary at Iþ is
codim-0, i.e., a 3-dim subspace of the 3-dim boundary
(focussing on dS4). In order that entanglement be defined
on boundary Euclidean time slices of the full space, we
construct this codim-0 subregion A ∈ Iþ as the interior of
the boundary at Iþ of the codim-1 bulk envelope surface we
have discussed above. In other words, the codim-0 boun-
dary subregion is the interior of the codim-1 boundary
obtained as the envelope of all the codim-2 boundaries of
the codim-2 subregions. Thus this codim-0 subregion is
essentially the union or envelope of the various codim-1
subregions (on boundary Euclidean time slices): the latter
are of the form Δw × S1 on some equatorial plane of the S2

in dS4. Thus the codim-0 envelope arising as the union of
the subregions on all such equatorial planes becomes
Δw × S2. This is represented schematically in Fig. 4 for
a subregion symmetrically placed in Iþ for convenience for
now (we will discuss more general subregions later). Note
that these figures are to be regarded as describing the
envelope surfaces and the envelope subregions on some
slice (all of which are equivalent).
Given A ∈ Iþ, its complement Ac is the rest of the

boundary. Then the bulk domain of dependence of A is the
past lightcone wedge of A, shown by the pink region in F in
Fig. 4. Technically, the domain of dependence of A is the
set of all points p such that any nonspacelike curve
originating at p will necessarily intersect A (see, e.g.,
[41]). In other words, any event occurring at p will
necessarily influence the Cauchy data on A: it is clear
that this is the past light cone of A. Figure 5 shows the
subregion, the corresponding extremal surface and the

domain of dependence in the limit where the subregion
becomes the full space.
Finally, we note again that we are restricting to top-

bottom symmetric surfaces: thus the subregion A ∈ Iþ has
an equivalent subregion Ā ∈ I− (with a future domain of
dependence, its future light cone wedge).

2. Cauchy horizons

The boundary of the domain of dependence D½A� is
referred to as a Cauchy horizon (see, e.g., [41]). This is a
boundary for the past Cauchy development of A ∈ Iþ (or
the future Cauchy development of Ā ∈ I−). From the
Cauchy data on A, it is not possible to infer events outside
D½A�: in other words, a point outside D½A� could commu-
nicate (by sending particles/light via timelike/null trajecto-
ries) to the region outside A without influencing A. Thus
the boundary of D½A� is a horizon for past development of
the Cauchy data on A.
For the subregion A becoming the whole space, i.e.,

A → Iþ, the past domain of dependence becomes the entire
future universe F. The corresponding Cauchy horizons are
then the horizons bounding F: these appear as event
horizons to observers in the static patches which are the
northern/southern diamonds N=S, but have very different
nature for subregions at I�.

3. Subregions and “causal shadows”

We take the “causal shadow” of the subregionA to be the
region outside the domain of dependence ofA. We see that
this is the region outside the past lightcone wedge ofA. It is
to be noted that an observer in this causal shadow region
can still communicate with the subregion A (via timelike/
null trajectories) so this is not quite like the AdS case
where the causal shadow means no communication

−

F

N S

P

I+

I

FIG. 5. Subregion becoming all Iþ, limiting surface, domain of
dependence.

FIG. 4. Generic subregion, extremal surface and domain of
dependence.
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exists: however they do not necessarily influence A, lying
beyond the Cauchy horizons of A.
For the boundary subregion taken as A ∪ B, the causal

shadow is the region outsideD½A� ∪ D½B�, the union of the
two domains of dependence. The fact that we have
decomposed the boundary subregion into two disjoint
subregions implies that the bulk domains of dependence
D½A� ∪ D½B� are distinct from, and smaller than,D½A ∪ B�.
For the subregion becoming the whole space, i.e.,

A → Iþ, the domain of dependence is the entire future
universe F and the causal shadow comprises the entire
northern/southern diamonds N ∪ S. Similar statements
hold for subregions at I− and the past universe P.

C. Future-past surfaces, entanglement wedge,
and subregions

1. Extremal surfaces and causal shadows

We continue to focus on top-bottom symmetric sub-
regions and the corresponding extremal surfaces. So con-
sider a subregion A at the future boundary Iþ and its
equivalent subregion at I− and the area of the correspond-
ing bulk future-past extremal surface stretching between
the two copies ofA (e.g., the red curve in Fig. 1). Wewould
like to interpret the area of this surface as some sort of
entanglement. Since this procedure requires two copies of
the boundary theory, the entanglement represented by the
area of the extremal surface in question is unlikely to be a
boundary quantity, but is likely a bulk one. This is
analogous to the fact that bulk expectation values are
obtained by weighting by the bulk probability jΨdSj2,
along the lines of dS=CFT (1). The surfaces can be
described as discussed earlier.
Now we note that these future-past extremal surfaces

stretching between I� in fact lie in the causal shadow, as
defined above, of the boundary subregion A, as we see in
Fig. 4. First note that we are considering the codim-1
envelope surface obtained from all the codim-2 surfaces, as
we have discussed previously. The extremal surface is
anchored at the boundary of the subregion A and is
timelike: thus it lies outside the past light cone wedge of
A and so is in the causal shadow. It appears that this will be
true for any Euclidean subregion A if the extremal surface
is timelike, dipping into the holographic direction which is
time in this case. This would not have been true if the
extremal surface, anchored at ∂A, were spacelike. Thus in
fact the absence of a turning point where the surface from
Iþ begins to return to Iþ ensures that the surface is timelike,
thereby lying in the causal shadow of the subregion at Iþ
(which is spacelike).
This appears consistent in fact with bulk causality if we

take the area of these future-past extremal surfaces to
encode entanglement pertaining to A (independent of
the precise nature of the entanglement). Following the

arguments in [32], consider any other spacelike surface A0,
say with wiggles etc, but with the same boundary
∂A0 ¼ ∂A: thus A0 is any other subregion homologously
equivalent to A. Then A0 has the same past domain of
dependence as the original subregion A and so is expected
to be unitarily equivalent to A with regard to entanglement
properties: the two reduced density matrices will likely be
related by the unitary transformation corresponding to bulk
time evolution. Thus we expect A0 to have the same
entanglement properties as A, and therefore the same
extremal surfaces. So we expect that the extremal surfaces
should lie in the causal shadow since if they did not, they
would contradict the above causality requirement.

2. Extremal surfaces and the “entanglement wedge”

There have been various interesting investigations on the
entanglement wedge [30–32] pertaining to extremal sur-
faces in AdS=CFT. We will now try to adapt some of those
ideas and constructs to the present de Sitter case: although
the spacetime structure here is quite different, we will see
that some key features have analogs in this case as well.
We define the “entanglement wedge” here on a constant

boundary Euclidean time slice (e.g., an Sd−1 equatorial
plane) as the region enclosed between the extremal surface
and the boundary subregion A on I�: this gives the shaded
regions in Fig. 6. The figure on the left is the entanglement
wedge for the red curve in Fig. 1 while that on the right
shows the limit as the subregion is becoming the whole
space. In the strict limit where the subregion at I� is the
whole space, the extremal surface (which is the limiting
surface, Sec. II B) is essentially contained entirely in the
northern/southern diamond regions N=S. We see that the
entanglement wedge now encompasses the future and past
universes F=P, but is substantially bigger: it now contains
the Cauchy horizons at τ ¼ 1 entirely and a substantial
portion of the N=S regions. Thus while the “causal wedge”,
which can be taken as the past domain of dependence in
this de Sitter case, is necessarily bounded by the Cauchy
horizons, the entanglement wedge contains more. This is
reminiscent of the fact that in AdS, the causal wedge cannot
contain points behind event horizons while the entangle-
ment wedge can. Since the boundary dual theory is
Euclidean here, no boundary Euclidean time slice can be
regarded as sacrosanct as we have been discussing. Then
the natural subregion is the effective codim-0 subregion on
I� while the bulk region is the interior of the envelope
surface obtained from the union of the codim-2 extremal
surfaces. Thus the true bulk entanglement wedge should be
taken as the union of the entanglement wedge on each of
the slices. This generates a codim-0 bulk region corre-
sponding to the interior of the codim-1 envelope surfaces
obtained from the union of the codim-2 surfaces. This is
represented schematically in Fig. 6. See also Fig. 7
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3. Subregion duality and entanglement shadows

The entanglement wedge above appears to naturally lead
to an analog of subregion duality in the de Sitter case.
Given a subregion at Iþ and its equivalent subregion at

I−, we have seen that the top-bottom symmetric future-past
surfaces define an entanglement wedge which is the interior
of the codim-1 envelope surface obtained from all the
codim-2 extremal surfaces on boundary Euclidean time
slices. For multiple disjoint subregions, the entanglement
wedges thus obtained do not intersect or overlap: the
entanglement wedges foliate the bulk space (see below
however). Thus each boundary subregion at Iþ (and its
equivalent one at I−) lead to a corresponding bulk sub-
region defined by the entanglement wedge of the associated
future-past extremal surface. Figure 8 shows multiple
disjoint boundary subregions, the corresponding top-
bottom symmetric future-past extremal surfaces and the

FIG. 7. Some more general subregions (see, e.g., Fig. 2), the corresponding extremal surfaces and the associated entanglement
wedges. Also shown within is the bulk domain of dependence of these subregions.

FIG. 6. The entanglement wedge for generic extremal surface (left), the limiting surface (right).

FIG. 8. Multiple subregions at I� and their corresponding top-
bottom symmetric future-past extremal surfaces. The correspond-
ing entanglement wedges suggest an analog of subregion duality.
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associated entanglement wedges. In some sense, this
appears to be the analog of subregion duality in this de
Sitter case as defined by the future-past extremal surfaces
we have been discussing.
It appears that a large part of the bulk space, including

the future and past universes F, P, as well as a large part of
the northern/southern diamond regions N, S, is obtainable
in this manner as some bulk subregion dual to some
boundary subregion. However as we have seen in
Sec. II B, in dS4 (and higher dimensions), there is a
limiting bulk extremal surface obtained as the boundary
subregion becomes all I�: this surface and the correspond-
ing entanglement wedge is shown in the right part of Fig. 6.
As is clear, the white (unshaded) regions of the northern/
southern diamonds N=S, are not accessible by any of these
future-past extremal surfaces. These regions appear to be
“entanglement shadows”. It would be interesting to under-
stand how precisely these parts of N=S become such
shadow regions.

IV. DISCUSSION

We have discussed various aspects of the future-past
extremal surfaces in de Sitter space, building on previous
work [28]. These are rotated analogs of the Hartman-
Maldacena surfaces in the eternal AdS black hole [29].
These top-bottom symmetric codim-2 surfaces (on boun-
dary Euclidean time slices) stretch between a subregion at
Iþ in the future universe F and an equivalent one at I− in
the past universe P, with a turning point in the northern/
southern diamond regions N=S. There exists a real-valued
turning point only for a certain range in dS4 and higher
dimensions: so these surfaces do not penetrate beyond a
certain point in N=S, a limiting surface arising as the
subregion at I� becomes the whole space (this limit was
identified erroneously in [28]). The subregion size Δw for
this limiting surface acquires a logarithmic divergence, as
we saw in Sec. II B.
For a given subregion at I� as in Fig. 1 or Fig. 2, the full

top-bottom symmetric surface consists of the left and right
portions: each of these connects I� but is disconnected
from the other portion. This disconnectedness reflects the
fact that a surfaces anchored at Iþ does not return to Iþ but
ends at I−. This then implies that for multiple disjoint
subregions, mutual information vanishes, as we discussed
in Sec. II C. This is reminiscent of a finite temperature
system in AdS=CFT, perhaps reflecting the fact that the
bulk de Sitter space has a temperature (in some sense, de
Sitter space being thermodynamic is akin to the AdS black
hole, rather than pure AdS). This disconnectedness further
implies that strong subadditivity is saturated. Also, it
suggests related points, such as vanishing tripartite infor-
mation [38] and vanishing entanglement wedge cross
section [39]. It is important to note that the analysis here
is all in the leading gravity (large N) approximation:
presumably subleading contributions (at Oð1Þ order) will

lead to nonvanishing entanglement quantities. It would be
interesting to explore further properties/inequalities that
these surfaces satisfy, and their implications via dS=CFT.
In this regard, since the dual CFT is expected to be non-
unitary, it must be noted that the interpretations thereof
(e.g., vanishing leading mutual information suggesting no
correlations) may be different from those in ordinary
unitary theories.
Since the Euclidean boundary theory has no intrinsic

time (all boundary slices are equivalent), these codim-2
surfaces define an effective codim-1 envelope surface and
(in dSdþ1) a codim-0 boundary subregionΔw × Sd−1, as we
saw in Sec. III A. This leads to analogs of the entanglement
wedge for these future-past extremal surfaces as we saw in
Sec. III. The associated entanglement wedge defined as the
bulk region bounded by the extremal surfaces and the
boundary subregions is a bigger region than the causal
wedge (or the domain of dependence) for the subregion in
question. This entanglement wedge suggests an analog of
subregion duality, Fig. 8: the bulk subregion enclosed by
the extremal surfaces and the boundary subregions at I� is
dual to the boundary subregion in question. For the limiting
surface, corresponding to the boundary subregion becom-
ing all of Iþ, the entanglement wedge covers the future-past
universes F=P as well as a substantial part of the northern/
southern diamond regions N=S. However there is a sub-
stantial “shadow” part of N=S which is not accessible via
these extremal surfaces for dS4 and higher dimensions (it is
interesting to ask if these regions of N=S can be described
by, e.g., analogs of mirror operators [42]).
Our analysis here has been based on the geometric

properties of these future-past extremal surfaces, and there-
fore heuristic in some essential sense. It would be interesting
to understand more directly if these heuristic geometric
observations can be made more precise toward better under-
standing the physical interpretation, for instance via the
analog in dS=CFT of the interrelations between the entan-
glement wedge, modular flow, relative entropy, error cor-
rection codes and so on [43–45] (see also the reviews [24–
26]). It would also be interesting to understand the role of
HKLL bulk reconstruction [46–48] with regard to these
future-past extremal surfaces (see, e.g., [20] in thehigher spin
dS=CFT context; see also [49,50]).
Our discussions so far have focused on bulk extremal

surfaces. Operationally we have considered a boundary
(spatial) subregion at Iþ and its equivalent boundary
subregion at I−, and extremal surfaces stretching between
them through the holographic (time) direction. The top-
bottom symmetry in some sense simulates the bulk inner
product Ψ�

IþOΨIþ , with ΨI− ≡Ψ�
Iþ (it is in some sense

reminiscent of the in-in formalism). By focusing first on
boundary Euclidean time slices, we have simulated setting
up entanglement entropy in the dual field theory, leading to
codim-2 surfaces: the fact that these slices are all equivalent
leads to an effective codim-1 envelope surface. The area of
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these future-past codim-2 surfaces is positive and exhibits
(for dS4) an area law divergence l2

G4

1
ϵ for generic subregions:

the finite part scales as l2
G4
Δw linearly with the subregion

size Δw as the subregions become all I�. The coefficients
scale as dS4 entropy, which is akin to the number of degrees
of freedom in the dual CFT. The fact that these future-past
surfaces are defined with two boundaries suggests that the
area is a sort of bulk entanglement entropy, especially if we
take the (analog of) subregion duality above seriously. Thus
overall these future-past extremal surfaces are perhaps best
interpreted as a way to organize bulk entanglement in terms
of boundary subregions in de Sitter space (in some sense,
these surfaces suggest entanglement between timelike
separated regions; see below). It would be interesting to
clarify this further. On a related note, it would also be useful
to explore more general boundary subregions (e.g., caps on
the sphere Sd−1 etc): in such cases we feel similar future-
past extremal surfaces will arise but these appear difficult to
analyze in detail, so it is unclear if the various features we
have noted here will hold more generally (including for
subregions that are not top-bottom symmetric, as might
arise under, e.g., a shock wave perturbation in the bulk).
From the dual point of view, ghostlike CFTs as [9,11],

might suggest, are expected to have negative norm states/
configurations, thus suggesting “negative entanglement.”
Various investigations involving ghostlike theories,
including simple toy quantum-mechanical models of
“ghost-spins,” in fact exhibit this nonpositive entanglement
quite explicitly, e.g., [51,52] (reviewed in [27]). However,
“correlated” states entangling identical ghost-spins
between two copies of ghost-spin ensembles can be shown
to have positive norm, reduced density matrices (RDMs)
and entanglement. Considering two copies of 3-dim N-
level ghost-spin systems as microscopic realizations in the
universality class of ghost-CFT3’s dual to dS4 with N ∼ l2

G4

finite albeit large, “correlated” states [28] of the form jψi ¼P
ψ iFn ;iPn jiniFjiniP entangling ghost-spin configurations

jiniF from CFTF at Iþ with identical ones jiniP from
CFTP at I−, are entirely positive, giving positive RDM and
entanglement. These are in some sense consistent with the
top-bottom symmetric future-past surfaces we have been
discussing, stretching between I�. Bulk time evolution
maps states at I− to Iþ [8], and suggests the states above are
unitarily equivalent to entangled states in two CFTF copies

solely at Iþ. CFTP ≡ CFTF implies a single CFT, but the
state above is perhaps best regarded as a particular
entangled slice in a doubled system, akin to the thermofield
double dual to the eternal AdS black hole [53]. This
suggests the speculation [28] that dS4 is perhaps approx-
imately dual to CFTF × CFTP (or CFTF × CFTF)
entangled as above, dS4 entropy arising as entanglement.
See also [54] for a related discussion.
It would appear that our discussions here are consistent

with the natural holographic screens for de Sitter space
(obtained via mapping along light rays) being at future and
past timelike infinity [55] (see [10] for an early discussion
of holography and asymptotics, and elaborated on for de
Sitter space [7,8]). Both boundaries I� are required: these
are thus preferred screens for anchoring the future-past
extremal surfaces. Since these surfaces intersect all
τ ¼ const surfaces in F=P precisely once, it would appear
that moving the screens toward the interior (i.e., moving
the screens from I� at τ ¼ ϵ ∼ 0 to say τ ¼ τ0 with
ϵ < τ0 ≪ 1) does not affect the construction of these
extremal surfaces. How this gels with, e.g., the area law
in [56] will be interesting to understand. It would also be
interesting to understand other screens such as the Poincaré
horizon [55]: see, e.g., [57]. One might hope that the
considerations here may help in understanding and organ-
izing holography for cosmologies more generally.
Finally, all our explorations here have been analogs of

the classical RT/HRT story in AdS=CFT, viewed via a
dS=CFT perspective (see [58,59] for a different approach,
based on the dS=dS correspondence [60]): it would be
interesting to understand if these investigations can be
obtained via analogs of [61] or bulk replicas [62,63]. It
would then be interesting to understand subleading cor-
rections, quantum extremal surfaces [64,65] and beyond.
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