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There are currently several existing and proposed experiments designed to probe sub-GeV dark matter
(DM) using electron ionization in various materials. The projected signal rates for these experiments
assume that this ionization yield arises only from DM scattering directly off electron targets, ignoring
secondary ionization contributions from DM scattering off nuclear targets. We investigate the validity of
this assumption and show that if sub-GeV DM couples with comparable strength to both protons and
electrons, as would be the case for a dark photon mediator, the ionization signal from atomic scattering via
the Migdal effect scales with the atomic number Z and 3-momentum transfer q as Z2q2. The result is that
the Migdal effect is always subdominant to electron scattering when the mediator is light, but that Migdal-
induced ionization can dominate over electron scattering for heavy mediators and DM masses in the
hundreds of MeV range. We put these two ionization processes on identical theoretical footing, address
some theoretical uncertainties in the choice of atomic wave functions used to compute rates, and discuss the
implications for DM scenarios where the Migdal process dominates, including for XENON10,
XENON100, and the recent XENON1T results on light DM scattering.
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I. INTRODUCTION

Although the evidence for dark matter (DM) is over-
whelming, its microscopic properties remain unknown and
motivate various experimental techniques to uncover its
possible nongravitational interactions [1]. In recent years,
there have been several novel experimental techniques
introduced to directly detect hitherto inaccessible DM
candidates below the GeV scale [2]. One particularly
promising strategy involves detecting single-electron ion-
ization from DM-electron scattering [3–27].
Since momentum transfer from the DM to a target

particle T is most efficient when mDM > mT , a bound
atomic electron can capture an order-1 fraction of the DM
kinetic energy for mDM > me and be ionized. Similar
reasoning would suggest that DM lighter than an atomic
nucleus cannot efficiently transfer momentum to the
nucleus, which is why experiments searching for nuclear
recoils are typically insensitive to mDM < mp. However, in

a bound atomic system, momentum transfer to the entire
atom will be redistributed among electrons and the nucleus
through the electronic binding energy. This is known as the
Migdal effect [28–34] and can also result in a final state
with an ionized electron and a recoiling atom. Until now,
the Migdal effect has solely been used to set limits on
nucleon coupling for low mass weakly interacting massive
particle models [35–38].
The main result of this paper is the following: in models

where sub-GeV DM couples comparably to electrons and
protons, the ratio of the differential ionization rate dRM=dq
due to the Migdal effect (which we will refer to as “Migdal
scattering” for brevity) to the corresponding direct electron
scattering rate dRe=dq satisfies

dRM=dq
dRe=dq

> Z2

�
me

mN

�
2

ðqraÞ2; ð1Þ

where mN is the mass of the target nucleus, Z its atomic
number, q the 3-momentum transferred from the DM to the
atom, and ra an effective atomic radius which we will
define more precisely in Sec. III B.1 As we will show, the
rate computation for both electron scattering and Migdal
scattering involves identical atomic ingredients because the
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1If DM couples equally to protons and neutrons, Z should be
replaced by the mass number A.
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initial hard scatter factorizes from the dynamics of ioniza-
tion in bound atoms. However, the scattering probability in
the latter case is enhanced by Z2 due to coherent scattering
off the nucleus, and simultaneously suppressed by the small
electron mass compared to the heavy nucleus, though this
suppression is mitigated somewhat when the momentum
transfer to the atom is large.
Due to these competing effects, the Migdal scattering

rate in heavy atoms such as Xe is generically dominated by
the largest kinematically permitted momentum transfers,
typically hundreds of keV, which are small on nuclear
scales but large on electron scales; by contrast, direct DM-
electron scattering is dominated by the smallestmomentum
transfers. Thus, the direct DM-electron scattering rate
generically dominates over Migdal scattering for light-
mediator exchange, which favors small momentum trans-
fers, whereas Migdal scattering can dominate for heavier
mediators and heavier DM which imparts larger momen-
tum transfers to the target system. When Eq. (1) is
integrated over the momentum transfer q, the total rate
RM will then dominate over Re for sufficiently heavy DM.
This paper is organized as follows. In Sec. II we define

our reference model of DM coupling to both electrons and
protons. In Sec. III we develop in parallel the formalisms
for electron and Migdal scattering, illustrating their simi-
larities and differences. In Sec. IV we discuss the con-
version from electron recoil spectra to observed ionization
spectra in Xe and highlight the importance of the electron
binding energies and wave functions in obtaining accurate
exclusion curves. We conclude in Sec. V with a comparison
of Migdal and electron exclusion curves for XENON10 and
XENON100 data [39,40], as well as the recent XENON1T
results on light DM scattering [41]. We emphasize through-
out that considerable theoretical uncertainty exists as to the
correct choice of wave functions to use in computing limits
on both Migdal and electron scattering. Consequently, our
limits presented here should be considered provisional
pending a dedicated analysis of relativistic and electron
correlation effects in heavy atomic systems.

II. REFERENCE MODEL

Our benchmark model consists of a DM candidate χ,
which scatters off both electrons and protons through the
exchange of a massive dark photon A0 [42,43]. The A0
kinetically mixes with the visible photon, and after rotating
away the kinetic mixing term ϵ

2
FμνF0

μν, the Lagrangian for
this scenario contains

L ¼ −
1

4
F0
μνF0μν þm2

A0

2
A0
μA0μ þ A0

μðgDJμD þ ϵeJμEMÞ; ð2Þ

where ϵ is the kinetic mixing parameter, mA0 is the A0 mass,
JμEM ¼ P

f Qff̄γμf is the electromagnetic current of all
Standard Model fermions f with charges Qf, gD ≡ ffiffiffiffiffiffiffiffiffiffiffi

4παD
p

is the dark photon gauge coupling, and JμD ¼ χ̄γμχ or
iχ�∂μχ is the DM current for a Dirac fermion or complex
scalar DM candidate, respectively. The fiducial nonrela-
tivistic cross section for χ scattering off a free-particle target
T is defined at a reference 3-momentum transfer q0 as

σ̄T ¼ 16πϵ2ααDμ
2
χT

ðm2
A0 þ jq0j2Þ2

; ð3Þ

where μχT is the χ − T reduced mass; by coincidence this
same parametric expression hold for both complex scalar
and Dirac fermion DM candidates.
This popular scenario features comparable mediator

couplings to electrons and protons, so it serves as a good
benchmark for comparing DM-induced ionization from
direct electron scattering and Migdal scattering. Indeed,
both processes will always be present, so for the remainder
of this paper, we will only consider this model. However,
comparable quark and lepton couplings are by no means
unique to dark photons. This feature applies to most
anomaly-free Uð1Þ extensions to the Standard Model (SM)
(e.g., gauged B − L) whose gauge bosons couple to
DM [44]; it is also generic for (pseudo)scalar-mediated
DM scattering to feature comparable electron and proton
couplings [45,46].
We note for completeness that, in the general case with

arbitrary mediator couplings to different particle species,
the relationship between Migdal and electron scattering in
Eq. (1) becomes

dRM=dq
dRe=dq

≳
�
Zgp þ ðA − ZÞgn

ge

�
2
�
me

mN

�
2

ðqraÞ2; ð4Þ

where ge and gp;n are the mediator’s couplings to electrons,
protons, and neutrons, respectively. Thus, unless gp;n ≪ ge,
there is a kinematic regime for which Migdal scattering can
predominate over electron scattering.

III. COMPARISON OF ELECTRON SCATTERING
AND MIGDAL SCATTERING

In this section, we carefully define the kinematics and
dynamics relevant for sub-GeV DM interacting with atoms
through electron and Migdal scattering. Wewill work in the
framework of the dark photon model described above in
Sec. II, where the dark photon mediates DM-SM inter-
actions and couples equally to electrons and protons with
strength ϵjej, but our results are applicable to any model
where the momentum dependence of DM-electron and
DM-proton scattering [that is, the form factor FDMðqÞ
defined below Eq. (16)] is identical.

A. Kinematics

In both Migdal and electron scattering, the incoming and
outgoing states are the same: a DM particle plus a bound
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atom and a DM particle plus an ionized atom plus an
unbound electron, respectively. The incoming DM is
assumed to be a plane wave, which is both an energy
eigenstate and a momentum eigenstate. The incoming atom
(at rest in the lab frame) is an energy eigenstate, and is also
a momentum eigenstate for the total momentum of the
atom pA ¼ pN þP

Z
i¼1 pi, where the sum runs over the Z

electrons in the electron cloud of the (neutral) atom. The
outgoing DM is also a plane wave, but the outgoing atom
can either be treated as an ionized atom with a separate
ionized electron, or an atom in an excited state where the
ionized electron belongs to the continuum spectrum of
the atomic Hamiltonian. Following Ref. [32], we will take
the second perspective where energy-momentum conser-
vation is more transparent, in which case the entire atom
recoils with velocity vA and has momentum pA ¼ m̄AvA,
where m̄A ¼ mN þ Zme is the nominal mass of the atom
neglecting binding energy. In all cases wewill consider, it is
appropriate to approximate m̄A by mN since the nucleus is
so much heavier than the electron cloud. The energetics of
the ionized electron are accounted for by treating it as an
excited state of the electron cloud.
To summarize, when treating the atom as a composite

system of electrons and nucleus with a spectrum of internal
energy levels, both energy and momentum are conserved in
DM-atom interactions. For DM with mass mχ , incoming
velocity v, and outgoing momentum p0

χ , momentum con-
servation requires

q≡mχv − p0
χ ¼ mNvA ð5Þ

and energy conservation requires

ΔEe ¼
1

2
mχv2 −

jmχv − qj2
2mχ

−
q2

2mN
¼ q · v −

q2

2μχN
; ð6Þ

where μχN ¼ mχmN=ðmχ þmNÞ is the DM-nucleus
reduced mass and ΔEe ≡ Ee;f − Ee;i is the energy trans-
ferred to the scattered electron.
We emphasize that these kinematics are identical for

electron scattering and Migdal scattering, provided the
ionized electron is treated as a scattering state of the electron
cloud Hamiltonian. In thinking of the nucleus and electrons
as a singlemany-particle system in this formalism, it helps to
regard q as simply the momentum transferred from the DM,
rather than as a momentum transferred to any particular
constituent of the target system. However, since the nucleus
makes up the vast majority of the mass of the atom, one may
think of q as the nuclear recoil momentum, as shown
in Eq. (5).

B. Dynamics

While the kinematics of Migdal and electron scattering
are identical, their dynamics differ in a crucial way
depending on whether DM interacts directly with electrons

or nuclei. In the language of nonrelativistic quantum
mechanics, the perturbing Hamiltonian for the DM-atom
interaction in the case of electron scattering is

Hint;e ¼ −
Z

d3q
ð2πÞ3 e

iq·ð−xχþ
P

Z
i¼1

xiÞMeχðqÞ
4mχme

; ð7Þ

where MeχðqÞ is the Lorentz-invariant matrix element for
DM scattering off a free electron through 4-momentum
transfer q ≈ ð0;qÞ, and xχ and xi are the position operators
for the DM and electrons, respectively. Because the DM
interacts directly with electrons, we can ignore the nuclear
part of the atomic Hamiltonian, and the rate will be
proportional to [3]

Re ∝ jhΨfjHintjΨiij2 ∼ jhψfjeiq·xjψ iij2; ð8Þ

where we have made the approximation that the initial- and
final-state electron cloud wave functions (Ψi and Ψf,
respectively) factorize such that only a single electron
(with position operator x) participates in a transition
between the single-electron states ψ i and ψf. The scale of
atomicwave functions is parametrically the size of the atom:
to make this precise, we define an effective atomic radius ra
as ra ≡ 1=jqjmax, where jqjmax is the momentum transfer at
which thematrix element in Eq. (8) ismaximized, for a given
choice of initial and final states. Thus we may expect the
electronic matrix element in Eq. (8) to be as large as Oð1Þ
when jqjra ¼ Oð1Þ. Typical ra are on the scale of the Bohr
radius a0, which is ∼1=keV in natural units, and hence
q · x≳Oð1Þwhere the atomicwave functions have support.
Note that for DM heavier than 1MeV, a momentum transfer
of 1=ra is always kinematically allowed, since the DM
carries momentum of at least 1 keV.
For Migdal scattering, where the fundamental DM-

atom interaction is with the nucleus, the interaction
Hamiltonian is

Hint;N ¼ −
Z

d3q
ð2πÞ3 e

iq·ðxN−xχÞ MNχðqÞ
4mχmN

; ð9Þ

where xN is the position operator for the nucleus.
Hint;N does not involve the electron position operators
xi, so by itself, it cannot induce electronic transitions.
However, the light-crossing time of the electron cloud is
∼nm=c ∼ 5 keV−1, so the timescale of momentum transfer
to the nucleus is “fast” as long as the mediator mass mA0

satisfies mA0 ≫ keV.2 In this regime, the entire atom

2By construction, this always holds for contact interactions,
FDM ¼ 1, but it is not clear to us if the formalism developed in
Ref. [32] remains valid for ultralight mediators with FDM ∝ q−2,
where for sufficiently small momentum transfers, the timescale
for momentum transfer can be slow enough that the atomic state
changes adiabatically.
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suddenly acquires velocity vA but leaves behind its sta-
tionary electrostatic potential; the electrons of the moving
atom are no longer in energy eigenstates of the old electron
cloud Hamiltonian. As a result, electronic transitions can
arise, but not through a matrix element with the perturbing
Hamiltonian Hint;N .
Rather, following Ref. [32], we construct approximate

energy eigenstates of the moving atom by applying a
Galilean transformation with velocity parameter vA, which
results in a final-state atomic wave function containing a
phase expðiPZ

i¼1 qe · xiÞ multiplying the full wave func-
tion of the atom at rest, where qe ≡mevA.

3 Consequently,
as shown in Ref. [32], the matrix element of the nuclear
wave function with Hint;N results in a factor of MeNðqÞ
times the overlap of the electronic wave functions, and
thus

RM ∝ jhΨvA jΨiij2 ∼ jhψfjeiqe·xjψ iij2; ð10Þ

where ΨvA is the Galilean transformation of the initial state
Ψi of the electron cloud, with velocity parameter vA. We
have made the same approximation as in Eq. (8) that only
a single electronic transition contributes; note that qe
instead of q appears in the exponent.
By momentum conservation from Eq. (5),

qe ¼
me

mN
q: ð11Þ

Unlike the case for electron scattering, where q · x≳ 1 for
all DM masses greater than a MeV, qe · x ≪ 1 for all
sub-GeV DM because me=mN ≪ 1. Indeed, ra ∼ 4a0 for
xenon, and qe < 1=ra as long as mχ < 100 GeV. As
qe → 0, the matrix element in Eq. (10) must vanish
because ψf and ψ i are energy eigenstates of the same
Hamiltonian with different energy eigenvalues, by
assumption. Hence the leading order term in the Taylor
expansion of the exponential is linear in qe, and RM scales
as q2

e ¼ q2ðme=mNÞ2. There are also additional selection
rules now that the matrix element has a dipole form,
hψfjxjψ ii, but in general, for a given q and a choice of
initial- and final-state wave functions, the ratio of Migdal
and electron scattering spectra for each i → f transition
scales as

dRM=dq
dRe=dq

> q2r2a

�
me

mN

�
2 jMχNðqÞ=mN j2
jMχeðqÞ=mej2

; ð12Þ

where the appearance of ra arises from the expectation
value of x, which is parametrically of order ra. We have
written the above relation as an inequality because, for
sufficiently large momentum transfers (jqj ≫ keV), the
exponential in Eq. (8) will oscillate rapidly and Re will
become suppressed, thereby enhancing the Migdal rate
relative to the electron scattering rate. On the other hand,
the Migdal spectrum may always be approximated by a
dipole matrix element which scales with q2r2a, since qe <
1=ra for all targets relevant for sub-GeV DM.

C. Spectra and rates

To compute the ionization rate for both processes, we
must integrate over the momentum transfer q and the DM
velocity v, and sum over the final electronic states ψf,
weighted by a delta function enforcing energy conservation
(3-momentum conservation has already been enforced
in the definitions of q and qe above).4 We perform the
integral over v by approximating the DM velocity distri-
bution as spherically symmetric, fðvÞ ¼ fðvÞ, such that the
total rate between initial state i and final state f is

Ri→f ¼
ρχ
mχ

Z
d3vfðvÞσvi→f; ð13Þ

where ρχ is the local DM density. For the sum over final
states, we choose the normalization [3,16]

X
f

¼ 1

2

X
l0m0

Z
k03d lnEe

ð2πÞ3 ; ð14Þ

which is appropriate for scattering states in a spherically
symmetric potential which have asymptotic momentum
k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2meEe
p

and angular momentum quantum numbers l0
andm0. Here, Ee is the recoil energy of the ionized electron
asymptotically far away from the ionized atom; from now
on our final state f will always be a scattered electron of
energy Ee, and the initial state i will be a bound state of
(negative) energy Enl indexed by principal quantum num-
ber n and angular momentum quantum number l, appro-
priate for a spherically symmetric atom ignoring spin-orbit
coupling and relativistic effects. The only difference
between Migdal and electron scattering in the above
procedure is the expression for σvi→f.
To perform the integral over q and compute σvi→f we

must specify the free-particle matrix elements. In the dark
photon model, we can define a spin-averaged fiducial cross

3It is important to note that qe is not to be interpreted as the
momentum of the outgoing electron, but rather the effective
momentum which appears in the matrix element due to the
Galilean transformation to account for the atomic recoil velocity
vA. The advantage of defining this quantity is to explicitly enable
the dipole approximation of the matrix element for the masses
considered here. Care should be taken not to place too much
physical interpretation in this quantity, and so we translate our
final result in Eq. (12) below back in terms of the physical
momentum of the atomic system q.

4Note that integrating over q is equivalent to integrating over
the nuclear recoil energy ER ≈ q2=ð2mNÞ, since in this paper we
are concerned only with the electronic energy spectrum.
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section for DM χ scattering off an isolated target T with
charge jej as in Eq. (3). For T ¼ p, e, these fiducial cross
sections satisfy

σ̄e
μ2χe

¼ σ̄p
μ2χp

; ð15Þ

so σ̄e and σ̄p are proportional by a factor which only
depends on the DM mass χ. To emphasize the point
that σ̄e and σ̄p are related in this model, we shall refer to
σ̄e as simply σ̄.
The fiducial cross section defined in Eq. (3) is related to

the free-particle scattering matrix element as

jMðqÞj2 ¼ 16πm2
χm2

T σ̄T
μ2χT

jFDMðqÞj2; ð16Þ

where we have assumed that the appropriate electron and
DM spins have been summed and/or averaged. Here,
FDMðqÞ is the DM form factor which parametrizes all
momentum dependence in the free-particle matrix element:
if mA0 ≪ mχv, FDMðqÞ ∝ 1=q2, while if mA0 ≫ mχv,
FDMðqÞ ¼ 1. Note that in the dark photon model with
equal proton and electron couplings,

jMχNðqÞj2
m2

N
¼ Z2jFNðqÞj2

jMχeðqÞj2
m2

e
ð17Þ

in Eq. (12), where FN is the form factor of the nucleus; this
relation between the matrix elements gives Eq. (1).
Putting all the pieces together, the electron recoil

spectrum per unit detector mass for both electron and
Migdal scattering is

dRe;M

d lnEe
¼ NT

ρχ
mχ

σ̄

8μ2χe
Ie;MðEeÞ; ð18Þ

where NT is the number of atomic targets and

Ie;MðEeÞ¼
Z

djqjjqjjFDMðqÞj2ηðvminÞjfe;MðEe;qÞj2:

ð19Þ

Here, we have solved the delta function for energy

conservation, δðEe − Enl þ q2

2μχN
− q · vÞ, to perform the

integral over the DM velocity distribution, resulting in a
factor of ηðvminÞ≡ hv−1θðv − vminÞi, the mean inverse DM
speed in the lab frame, as a function of

vmin ¼
ΔEe

jqj þ jqj
2μχN

¼ jEnlj þ Ee

jqj þ jqj
2μχN

; ð20Þ

which is the minimum DM velocity required to ionize the
target electron through a momentum transfer jqj. The lab

frame velocity distribution is cut off at vE þ vesc, where
vE ∼ 240 km=s is the average speed of Earth relative to the
DM halo, and vesc: ¼ 544 km=s is the galactic escape
velocity (these parameters are chosen to facilitate compari-
sons with Ref. [16]).
The differences between the Migdal and electron scatter-

ing processes are entirely contained in the ionization form
factors jfe;MðEe;qÞj2, which are independent of all DM
properties and depend only on the electronic and nuclear
structure of the target. We will discuss in some detail in
Sec. IV B the issues with accurately computing the atomic
wave functions required for these ionization form factors.
For electron scattering,

jfeðEe;qÞj2 ¼
k03

4π3
× 2

X
n;l;l0;m0

jhψf
Ee
jeiq·xjψ i

Enl
ij2; ð21Þ

where ψ i
Enl

is a bound orbital of energy Enl with unit norm
(the factor of 2 accounts for the approximate spin degen-
eracy of occupied states) and ψf

Ee
is an unbound electronic

state of energy Ee (indexed by the continuously valued
energy Ee and the angular momentum quantum numbers l0
and m0), normalized to

hψE1;l;mjψE2;l0;m0 i ¼ ð2πÞ3
k21

δðk1 − k2Þδll0δmm0 ; ð22Þ

where k1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meE1;2

p
. For Migdal scattering, the analo-

gous ionization form factor is

jfMðEe;qÞj2 ¼
k03

4π3
Z2jFNðqÞj22

X
n;l;l0;m0

jhψf
Ee
jeiqe·xjψ i

Enl
ij2:

ð23Þ

The differences with respect to electron scattering are
the appearance of Z2 from coherent scattering off all the
protons in the nucleus, a nuclear form factor FN para-
metrizing loss of coherence at large momentum transfers
(which is largely irrelevant for the sub-MeV momentum
transfers typical of sub-GeV DM), and the appearance
of qe instead of q in the matrix element between initial and
final states.
The key quantity controlling the relative size of Migdal

and electron scattering rates is q. From Eq. (20), the
smallest allowed jqj is

jqjmin ¼
Eb

vmax
; ð24Þ

where Eb is the first ionization energy (positive by
convention) of the atom in question, and vmax is the largest
possible DM speed, which is the galactic escape velocity in
the lab frame. Note that jqjmin is independent of the DM
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mass: for xenon with Eb ∼ 12 eV, and vmax ∼ 770 km=s,
jqjmin ∼ 5 keV. Thus for all kinematically allowed momen-
tum transfers, jqjra > 1, and electron scattering is domi-
nated by the smallest possible q before feðEe;qÞ is
suppressed by the quickly oscillating exponential in the
matrix element. On the other hand, the largest allowed jqj is

jqjmax ¼ 2μχNvmax ∼ 5 keV

�
mχ

MeV

�
; ð25Þ

which grows with DMmass and can be as large as hundreds
of keV for mχ ¼ Oð100 MeVÞ. For these momentum
transfers, jfMðEe;qÞj2 still does not feel any suppression
from the nuclear form factor FN, which is still ∼1 for
jqj≲MeV, and likewise is still in the regime of small qe

and so grows with q2. Thus the Migdal ionization form
factor is largest when q is the largest, and Migdal scattering
is dominated by the largest kinematically allowed momen-
tum transfers.5

We illustrate this behavior in Fig. 1 for mχ ¼ 300 MeV,
Ee ¼ 10 eV, and FDM ¼ 1. The left plot shows
jfe;MðEe;qÞj2 evaluated at Ee ¼ 10 eV, and the right plot
shows the integrand of Eq. (19) which is weighted by
ηðvminÞ. The q values plotted span the kinematically
allowed range between jqjmin and jqjmax, as can be seen

from the right plot where the velocity distribution cuts off
the integrand at small and large q. To compute fe;M for both
electron and Migdal scattering from the same set of wave
functions, the orthogonality of ψf and ψ i is crucial, and to
ensure this, both bound and free wave functions must be
constructed from the same atomic Hamiltonian. A complete
treatment would require a full numerical solution to the
many-body Schrödinger equation for the atom in question,
but here we capture the essential features by using hydro-
genic wave functions for the 5p shell of Xe and matching
the effective nuclear charge to the binding energy of the 5p
state, with scattering states constructed from the same
hydrogenic potential. This unphysical choice of wave
functions is for illustrative purposes only; the wave func-
tions used in the remainder of this paper are discussed in
detail in Sec. IV B. We note that for a DM form factor
proportional to 1=q2, as would be the case for an ultralight
dark photon mediator, the spectrum integrand is weighted
by 1=q4 ∼ 1=q4 which heavily suppresses the Migdal
spectrum compared to the electron spectrum for all DM
masses.6 For these form factors, electron scattering always
dominates over Migdal scattering by several orders of
magnitude, and as such, for the remainder of this paper
we will focus on the case FDM ¼ 1.
We can confirm the relative strength of Migdal and

electron scattering by considering the full electron recoil

FIG. 1. Qualitative comparison of electron (green) and Migdal (purple) ionization form factors and spectrum integrands
for mχ ¼ 300 MeV, Ee ¼ 10 eV, and FDM ¼ 1. The form factors from Eqs. (21) and (23) are plotted in the left panel, and the
integrand from Eq. (19) (which is weighted by the inverse mean DM speed) is plotted in the right panel. The electron scattering rate is
dominated by small q while the Migdal scattering rate is dominated by large q. These plots are computed using initial- and final-state
electronic wave functions constructed from a hydrogenic potential for Xe, but the qualitative features are independent of the choice of
wave function.

5In principle, there should be interference between electron
and Migdal scattering, which have identical final states, but
the distinct kinematics of these two processes should minimize
these effects.

6As noted in footnote, long-range interactions may result in
adiabatic rather than sudden changes in atomic states during
Migdal scattering, which would further suppress electronic
transitions.
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spectrum, as shown in Fig. 2. Here, to facilitate comparison
with the literature, the electron spectra are calculated using
the wave functions and binding energies of Ref. [16], and
the Migdal spectra are calculated using fM as tabulated
in Ref. [32]. Despite some differences in these wave
functions and binding energies (which we discuss further
in Sec. IV B), the intuition developed above holds well: for
sufficiently large DM masses and equal couplings to
protons and electrons, the Migdal spectrum dominates
over the electron spectrum for all electron recoil energies.

IV. NUMERICAL MODELING AND
SYSTEMATIC UNCERTAINTIES

To apply the formalism of the previous section to
experimental data, we must choose a model for generating
ionization spectra from recoil spectra, as well as a set of
atomic wave functions. We choose the previously pub-
lished low-threshold analysis [16] of the XENON10
[47,48] and XENON100 [49] detectors, as well as the
newly released S2-only analysis [41] from the XENON1T
detector [50]. These data are chosen for containing a
relatively large exposure (for this mass range) at extremely
low thresholds. All of these experiments use xenon time
projection chambers to measure charge and light produced
from energy deposited in liquid xenon.

An interaction in the xenon will create some number of
xenon ions Ni and initially excited xenon atoms N⋆. These
atoms will form dimer states in the xenon which will
release energy in the form of charge and UV scintillation
photons. Scintillation photons produced at this step are
immediately detected in what is referred to as the S1 signal.
Before they can recombine, emitted electrons are drifted in
a ∼300 V=cm electric field to a liquid-gas interface where a
stronger (∼10 kV=cm) extraction field is used to accelerate
the electrons into the gas, producing a second (amplified)
burst of light, referred to as the S2 signal. It has been well
measured that (relatively speaking) interactions with xenon
nuclei preferentially deposit energy via S1, whereas inter-
actions with electrons in the detector preferentially deposit
energy via S2 [51–54]. In the case of sub-GeV DM
interacting with a xenon atom through either electron or
Migdal scattering, the momentum transfer to the recoiling
atom is sufficiently small that the S1 signal is expected to
be effectively zero. Thus, we consider an S2-only analysis
using a 1(4) electron threshold for XENON10(100) [16]
and a 5 electron threshold for XENON1T [41].

A. Ionization model and quantization

To compare with data, we must quantize the calculated
recoil spectra in terms of the number of electrons extracted.
For this, we adopt the ionization model from Refs. [3,16] to
determine the number of electrons produced (ne) from an
initial energy transferΔEe which ionizes an electron from a
specified electron shell with binding energy Enl to the
continuum with energy Ee. We begin by considering the
ejected electron, which has a probability fR to recombine
(avoiding detection). According to the Thomas-Imel
recombination model, fR is determined to be very small
at low energies [51,55] in good agreement with measure-
ment [56] and is assumed to be zero for this analysis. We
can thus write the probability of observing an initially
produced electron as

f0 ¼
1 − fR

1þ ðN⋆=NiÞ
≈ 0.83; ð26Þ

where the ratio of initially excited atoms to initially ionized
atoms satisfies N⋆=Ni ≈ 0.2 at high energies [57,58].
At high energies, the average energy W required to

produce one charge quantum in xenon is measured to be
W ¼ 13.7 eV [51]. To convert Ee and Enl into an expected
quantized signal, we consider nt trials of a binomial process
with probability of success f0 which satisfy

nt ¼ floor
�
Ee

W

�
þ floor

�jEnlj − Eb

W

�
; ð27Þ

where jEnlj − Eb is the available deexcitation energy. Thus,
we can write

FIG. 2. Comparison of electron (dashed lines) and Migdal
(solid lines) spectra for reference values σ̄ ¼ 5 × 10−39 cm2 and
mχ ¼ 100 (blue) and 300 MeV (red). For both spectra, we show
the inclusive rates summed over all Enl → Ee transitions in
xenon, where contributions from nl ¼ 5p, 5s, and 4d dominate.
Migdal spectra are computed using the wave functions and
binding energies from Ref. [32], while electron spectra are
computed using wave functions and binding energies from
Ref. [16]. The differences between these choices are irrelevant
for our qualitative argument here and are discussed further in
Sec. IV B.
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ne ¼ ð1 − fRÞ þ
nt
f0

� �
; ð28Þ

where we assume that the number ne of quanta produced is
equivalent to the number of electrons extracted (observed),
as the extraction efficiency should be ∼100% [59,60]. An
example of quantized spectra for the FDM ¼ 1 case and
different DM masses are shown in Fig. 3. This simple
ionization model is sufficient for comparing electron
and Migdal scattering here, but a more robust model would
be needed to correctly interpret a signal through either
channel.
Upper limits on the number of events for each

value of ne in XENON10(100) have been determined in
Ref. [16] to be r1 < 15.18, r2 < 3.37, r3 < 0.95, and
r4 < 0.35ð0.17Þ counts kg−1 day−1. Upper limits from
XENON1T [41] are not given directly. Instead, an
upper bound of 22.5 events is reported in the range
165–275 photoelectrons in 15 ton=day of exposure.7

We take the measured ratio of photoelectrons detected
per ne (single-electron gain) to be ∼33 [41] and conserva-
tively assume that all events in the reported range are
for the lowest encompassed bin ne ¼ 5, to obtain
r5 < 0.0015 counts kg−1 day−1. These rates already
account for analysis and detector efficiencies and thus
can be directly compared against our quantized spectra.

B. Electron binding energies and wave functions

The dominant quantity controlling the sensitivity for
small DM masses (≲100 MeV) is the outer-shell binding

energy of xenon, or equivalently its first ionization energy.
This quantity is well measured experimentally with a value
of 12.1 eV [61]. Following Ref. [32], we define the electron
shell binding energies Enl as an average over angular
momentum states κ,

Enl ¼
1

2

X
κ

δl;jκþ1=2j−1=2Enκ; ð29Þ

but define the ionization energy Eb as the minimum binding
energy for all spin states in the atom. As a result, if spin-
orbit coupling is ignored, Eb ¼ jE5pj, but the measured
values show an ∼5% difference between the two, as can be
seen in Table I.
Ideally, one wishes to compute the ionization spectrum

using atomic wave functions with energy eigenvalues
matching the observed binding energies. The binding
energies used in the two analyses in Refs. [16,32] are
compared in Table I. As can be seen from this table,
obtaining accurate binding energies is not entirely trivial,
as the flexible atomic code [64] used in Ref. [32] gives
an outer-shell binding energy of 9.8 eV, a significant

FIG. 3. Quantized rate spectra for DM-electron scattering (left panel) and DM-Migdal scattering (right panel) in xenon per number of
electrons observed in the case of a heavy mediator (FDM ¼ 1) for various DM masses between 10 and 1000 MeV. We normalize these
spectra to an exposure of 1000 kg yr and a fiducial cross section of σ̄ ¼ 5 × 10−39 cm2.

TABLE I. Comparison of the ionization energy Eb and
electron binding energies jEnlj (eV) of the 5p, 5s, and 4d electron
shells of xenon from calculations using the formalisms of
Refs. [16,32]. The measured values [61,62] tend to fall some-
where in the middle.

Method Eb jE5pj jE5sj jE4dj
Ibe et al. [32] 9.8 9.8 21 61
Essig et al. [16,63] 12.4 12.4 25.7 75.6
Measured [61,62] 12.1 12.8 23.3 68.5

7The average exposure for the range 165–198 photoelectrons
has been determined from Figs. 1 and 4 of Ref. [41].
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difference of 20% from the observed value. On the other
hand, the procedure used in Ref. [16] takes the calculated
binding energy from the Roothaan-Hartree-Fock atomic
wave functions tabulated in Ref. [63] and constructs
outgoing wave functions from a hydrogenic potential with
a shell-dependent effective nuclear charge which reprodu-
ces the appropriate binding energy for each electron shell.
As the binding energies from Ref. [63] are closer to the
observed values, this procedure retains the physical binding
energies at the cost of losing orthogonality between initial
and final electronic states, as well as any electron corre-
lation effects. This orthogonality is crucial in order to
obtain the behavior of fM as a function of q, as discussed
above, so it is not possible to compute Migdal scattering
rates using these wave functions. However, as noted in
Sec. III C, electron scattering is dominated by the region
where q · x≳ 1, so the form factor never probes the region
where the matrix element must vanish as q → 0; thus, the
overall kinematic features of electron scattering are suffi-
ciently captured by this formalism.
While our interest in this paper is primarily a qualitative

comparison of electron and Migdal scattering, we estimate
one source of systematic error which can affect both
processes by computing electron scattering rates using
hydrogenic final-state wave functions (as in Ref. [16]),
but constructed from the systematically lower binding
energies used in Ref. [32]. The main difference from the
illustrative example computed in Sec. III C is that the
initial-state wave functions are now taken from Ref. [63]
instead of using a crude hydrogenic potential, in order to
isolate the effects of binding energies and final-state wave
functions. Figure 4 compares the cross section limits
obtained from these binding energies to the published
electron scattering limits from Ref. [16]. The systematic
error on the electron scattering case associated with this
procedure is less than an order of magnitude over the full
DM mass range, but as expected, smaller binding energies
lead to stronger cross section limits. The same procedure
cannot be directly applied to Migdal scattering as the wave
functions from Ref. [16] are not orthogonal, but the
magnitude of the difference should be comparable (about
a factor of 2 for masses above 100 MeV where Migdal
scattering dominates).
We leave to future work a precise determination of

experimental limits on Migdal scattering using more
sophisticated quantum chemistry codes which correctly
reproduce the observed binding energies with orthogonal
wave functions. Indeed, recent progress for electron scat-
tering has already been made by incorporating relativistic
effects and electron-electron interactions into a many-body
calculation, using the observed ionization energies from
photoabsorption data as a figure of merit for the quality of
the wave functions [65]; the result is that at large ne, the
spectrum differs significantly from that obtained with
hydrogenic final-state wave functions, potentially affecting

the limits at large DM masses by an order of magnitude. In
particular, the size of the relativistic effects will grow as the
atomic number of the atom increases, so this may be a
significant source of systematic uncertainty for Migdal
scattering in xenon.

V. RESULTS AND CONCLUSION

In this paper we have placed sub-GeV DM detection via
electron and Migdal scattering on equivalent theoretical
footing. Intriguingly, we have found that if DM couples
comparably to electrons and protons through a contact
interaction (FDM ¼ 1Þ, the Migdal rate can dominate for
masses above ∼100 MeV. Thus, all existing limits for
electron scattering in such models (such as dark photon-
mediated scenarios), including those from XENON10,
XENON100, and XENON1T [16,41], have omitted the
dominant signal component at higher DM masses. In
Fig. 5, we recalculate the full signal for DM-xenon
scattering in XENON100 and XENON1Tand extract upper
bounds on σ̄ which include both electron and Migdal
scattering. It is clear that by exploiting the combination of
electron and Migdal scattering, experiments with exposures
and background rates comparable to XENON1T can start
to probe the target parameter space for complex scalar DM
freezing out through a heavy dark photon, mA0 ≫ mχ , but
as we have emphasized, a definitive conclusion requires a
more careful treatment of the atomic wave functions than
has been used previously in the literature. In the event of a
signal in the DM mass range where electron and Migdal

FIG. 4. Effect of wave function and binding energy choices on
90% C.L. limits on σ̄ for direct DM-electron scattering in
XENON10 with ne ¼ 1 (blue curves), 2 (green curves), and 3
(purple curves) and in XENON100 with ne ¼ 4 (red curve). Solid
curves are published limits from Ref. [16] and dashed curves use
binding energies from Ref. [32] to construct hydrogenic final-
state wave functions.
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rates are within a few orders of magnitude of each other, the
unique spectral shapes can be used as a discriminant,
though interference effects should be carefully considered.
Although our treatment here has focused on scattering

from isolated atoms, we note that additional ionization from
Migdal scattering should also contribute in semiconductor
targets (mainly Si and Ge), for which low electronic band
gaps represent the next frontier in electron-ionization direct
detection. This additional signal channel can be probed
by numerous future and ongoing experiments, including
DAMIC at SNOLAB [80], SENSEI [26], SuperCDMS [24],
and DAMIC-M [81]. However, a proper comparison of
electron scattering andMigdal scattering in suchmaterials is
beyond the scope of the present work and deserves a
dedicated study. At a minimum, the formalism for Migdal
scattering must incorporate the nontrivial harmonic poten-
tial between neighboring ions, which may result in some
portion of the DM energy loss appearing as phonons rather
than electronic excitations.
Despite its robust theoretical underpinnings, Migdal

scattering has not yet been experimentally observed. We
emphasize that the same theoretical uncertainties which

apply to Migdal scattering are present for the case of DM-
electron scattering. We take advantage of this fact to show
that the systematic uncertainty in the rate calculations due
to different computations of the xenon binding energies can
be estimated to be a factor of a few at high masses, where
the Migdal scattering rate is dominant, but other sources of
theoretical uncertainty due to relativistic effects and elec-
tron correlations may be equally important. The uncertainty
due to the ionization model does not significantly affect the
relative comparison of our calculated electron and Migdal
scattering limits, but does explain the bulk of the difference
between our limits and those in Ref. [38] when interpreted
in the dark photon model.
This analysis further highlights the importance of

developing low-energy calibration techniques. We have
shown that Migdal and electron scattering processes probe
the same atomic wave functions, but in different kinematic
regimes. As noted in [65], atomic many-body effects
are crucial for understanding DM-atom interactions.
Calibrations of both ionization processes, Migdal scatter-
ing and electron scattering, would help to resolve the
theoretical uncertainty in the wave functions, which we

FIG. 5. Limits on σ̄ [defined below Eq. (15); to compare with standard conventions, the reference cross section for electron scattering
is σ̄e ¼ σ, and the reference cross section for proton scattering is σ̄p ¼ σ̄ × μ2χp=μ2χe] for heavy A0 (FDM ¼ 1) mediated DM-electron
(dashed purple curves) and DM-Migdal (dashed red curves) scattering are shown for ne ¼ 4 for XENON100 (left panel) and for ne ¼ 5
for XENON1T (right panel). In the mass and coupling range shown in the plot, the XENON10 limits are subdominant. For comparison,
we show the published electron scattering limits [16,41] computed with hydrogenic final-state wave functions and binding energies from
Ref. [16] (solid purple curve); our electron scattering results use the smaller (unphysical) binding energies from [32] to facilitate a
comparison with Migdal scattering using the same binding energies (see Sec. IV B). The thick blue curve is the complex scalar DM
freeze-out target (particle-antiparticle symmetric DM population). Points along this curve account for the full DM abundance as long as
mA0 ≫ mχ ; near resonance at mA0 ≈ 2mχ this target moves down in the parameter space, but is otherwise robust [66,67]. The thin blue
curve is the looser asymmetric Dirac fermion DM target. Any points above this line can account for the full DM abundance, but with
different particle-antiparticle asymmetries [2,66]; points below this curve are excluded by Planck limits on cosmic microwave
background energy injection from the annihilation of the symmetric component [68]. The dotted blue curve taken from Ref. [2]
represents sensitivity targets for ELDER DM [69]; points above this curve correspond to SIMP DM models with the same A0 mediator
considered here [70]. Shaded regions represent an envelope of exclusions from beam dump searches (LSND [71], E137 [72,73], and
MiniBooNE [74,75]), nuclear recoil direct detection limits from CRESST II [76], and the BABAR monophoton search for invisibly
decaying dark photons [77–79].
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believe has been substantially underappreciated by the
sub-GeV DM community.
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