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We introduce a potentially powerful new method of searching for new physics at the LHC, using
autoencoders and unsupervised deep learning. The key idea of the autoencoder is that it learns to map
“normal” events back to themselves, but fails to reconstruct “anomalous” events that it has never
encountered before. The reconstruction error can then be used as an anomaly threshold. We demonstrate the
effectiveness of this idea using QCD jets as background and boosted top jets and R-parity violating (RPV)
gluino jets as signal. We show that a deep autoencoder can significantly improve signal over background
when trained on backgrounds only, or even directly on data which contain a small admixture of signal.
Finally, we examine the correlation of the autoencoders with jet mass and show how the jet mass
distribution can be stable against cuts in reconstruction loss. This may be important for estimating QCD
backgrounds from data. As a test case, we show how one could plausibly discover 400 GeV RPV gluinos
using an autoencoder combined with a bump hunt in jet mass. This opens up the exciting possibility of
training directly on actual data to discover new physics with no prior expectations or theory prejudice.
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I. INTRODUCTION

Deep learning is a hot topic in high energy physics. It has
been applied to tagging boosted jets of various kinds
[1–15], to quark/gluon discrimination [16–18], and to full
event classification [19–21]. These are all examples of
supervised learning where the training sets are labeled with
truth information. More recently, people have been starting
to explore forms of weakly supervised and unsupervised
learning (see e.g., Refs. [22–33]). In some weak-super-
vision approaches, binary classification is attempted on a
data sample with only imperfect labels, for instance using
class proportions or mixed samples [22–24]. Or there have
been recent attempts to train a machine-learning algorithm
to learn the probability distribution of the background and
then compare this to the data to discover new physics
[29,31]. Another approach to weakly supervised anomaly
detection is to extend bump hunts with machine learning
[25,28]. Applications of deep learning in high energy
physics do not stop at classification tasks; pileup removal
[34], generative models [35], and many others (for a review
and more references, we refer to Ref. [36]) have all been
studied.

Although the LHC has performed hundreds, if not
thousands, of searches for new physics since its inception,
so far no definitive evidence for physics beyond the
Standard Model has turned up. All the searches for new
physics in the expected places (supersymmetry, composite
Higgs, fourth generations, Z0s, etc.) have turned up empty.
This strongly motivates methods to look for physics with-
out as much top-down theory prejudice. We need more
ways to discover the unexpected at the LHC, and here is
where unsupervised machine learning comes into play.
In this paper, we study one promising avenue to perform

open-ended searches for new physics at the LHC: anomaly
detection with autoencoders and deep learning. An autoen-
coder [37] is a simple idea with various incarnations and
many real world applications to anomaly detection, denois-
ing [38], generative models [39], feature selection, and
more. (For an introduction to autoencoders and their appli-
cations, see e.g., Refs. [40–42].) In its simplest form, it is a
lossy algorithm that maps an input to a latent compressed
representation and then back to itself. This is illustrated in
the cartoon in Fig. 1. A measure for how well the auto-
encoder performs is the difference between input and
output according to some distance metric—the “reconstruc-
tion error.” For example, for images, it could be the
pixelwise, summed mean-squared difference between input
and output. Typically, one trains an autoencoder on a
sample of background events with the objective of mini-
mizing reconstruction error on the sample. In this way,
it learns what background “looks like.” Any anomaly

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 075021 (2020)

2470-0010=2020=101(7)=075021(13) 075021-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.075021&domain=pdf&date_stamp=2020-04-13
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.1103/PhysRevD.101.075021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(the signal, e.g., new physics) is then expected to be poorly
reconstructed by an autoencoder optimized on a sufficiently
different background. Hence, we can use a cut on the
reconstruction error as an anomaly threshold.
For concreteness, we will focus in this work on dis-

tinguishing “fat” QCD jets from other types of heavier,
boosted resonances decaying to jets. Building on previous
work on top tagging [12], we will concentrate on machine-
learning algorithms that take jet images as inputs. For
signal, we will consider all-hadronic top jets, as well as
400 GeV gluinos decaying to three jets via R-parity
violating (RPV). Obviously, this is not meant to be an
exhaustive study of all possible backgrounds and signals
and methods but is just meant to be a proof of concept. The
idea of autoencoders for anomaly detection is fully general
and not limited to these signals. We will comment on other
forms of inputs in Sec. V. Moreover, there are many other
anomaly detection techniques that are not based on
autoencoders and/or on reconstruction (loss) which are
worth exploring in future work. For instance, see Ref. [32]
for a different approach to anomaly detection that combines
supervised feature learning with autoencoders for dimen-
sionality reduction and clustering. Autoencoders have also
been recently used in other high energy physics applica-
tions: in parton shower simulation [30] and for automated
detection of detector aberrations in CMS [33].
We will explore various architectures for the autoen-

coder, from simple dense neural networks to convolutional
neural networks (CNNs), as well as a shallow linear
representation in the form of Principal Component
Analysis (PCA). We will see that, while they are all
effective at improving signal over background (S=B) by
factors of ∼10 or more, they have important differences.
The reconstruction errors of the dense and PCA autoen-
coders correlate more highly with jet mass, leading to
greater S=B improvement for the 400 GeV gluinos com-
pared to the CNN autoencoder. While this may seem better
at first glance, we discuss how one might want to use an
autoencoder that is decorrelated with jet mass, in order to
obtain data-driven sideband estimates of the QCD back-
ground and perform a bump hunt in jet mass. Indeed, we
show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we
show how this can be used to improve S=B by a factor of
∼6 in a jet mass bump hunt for the 400 GeV gluino signal.
We will study the performance of the autoencoder in two

modes: a version where it is trained on background-only
events and a version where it is trained on a mixed sample
containing both background and signal, meant to be
representative of the actual data. An autoencoder trained
on a sample of background-only events is an example of
weakly supervised machine learning. One could still
imagine applying this directly to data, provided one can
prepare a control sample that consists only of representative
backgrounds. Or one could train on Monte Carlo (MC)
backgrounds and hope that the MC is an accurate repre-
sentation of the background events in the data. As a first test
of this assumption, we will train on PYTHIA and evaluate on
both PYTHIA and HERWIG, and we will see that the results
are similar.
By contrast, the autoencoder trained on mixed samples

of background and signal is an example of fully unsuper-
vised machine learning, and as such is a much more
exciting potential application. We will show that, surpris-
ingly, the autoencoder performance is remarkably stable
against signal contamination; the performance is barely
degraded even if signal is 10% of the training sample.
Evidently, there is not much difference between the weakly
supervised and fully unsupervised modes. Somehow, the
autoencoder learns to preferentially reconstruct the back-
ground, and still poorly reconstructs the signal, even
though it sees the signal as part of the training process.
This raises the exciting possibility that the autoencoder
could be trained directly on the data, and then could
potentially discover any anomalous signal of new physics
in the background (perhaps when combined with other
variables, for instance a mass cut or bump hunt), provided it
looks different enough from Standard Model (SM) objects.
This would be an ideal method to discover the unexpected
or to perform open-ended searches for new physics at
the LHC.
Aside from open-ended anomaly detection, the autoen-

coder could be viewed as a general-purpose background
cleaner. That is, we could train it on the background (or

FIG. 1. The schematic diagram of an autoencoder. The input is mapped into a low(er)-dimensional representation, in this case six
dimensions, and then decoded.
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directly on the data) and then cut on reconstruction loss in
order to remove “boring” QCD events, leaving behind a
sample that is presumably more signal rich. We could then
study these events in more detail, using other techniques
and variables to isolate the signal.
We stress that using an autoencoder to search for new

physics involves two different and important concepts in
data analysis and machine learning: dimensionality reduc-
tion and anomaly detection. The novelty of the approach
described in this paper is combining a dimensionality
reduction method optimized on the training data (the
encoder) together with a way of measuring the quality
of the dimensionality reduction (the decoder and the
reconstruction loss) and using this for anomaly detection.
In other words, the autoencoder is not merely a method of
dimensionality reduction; it also learns to decode the latent
space back to the original space, which is at the heart of the
anomaly detection method. Moreover, it accomplishes both
in an unsupervised and data-driven way. In principle, one
could imagine accomplishing the dimensionality reduction
in other ways, e.g., more physics motivated, such as the
basis of N-subjettiness variables described in [9]. However,
they do not necessarily come equipped with an obvious
inverse mapping; nor are they optimized on the data. While
it would be interesting to explore using other dimension-
ality reduction techniques for anomaly detection, we
believe this is the first attempt to do so in the literature.
The outline of the paper is as follows. In Sec. II, we

define autoencoders quantitatively and present the archi-
tectures employed in the rest of the paper. We also describe
the details of event generation used to obtain the data sets.
Section III is devoted to the main results of the weakly
supervised mode (with pure background training set). We
compare the performance of the different architectures,
discuss the methods by which we choose the size of the
latent space, and perform a MC comparison in the form of
PYTHIA vs HERWIG. In Sec. IV, we turn our attention to the
fully unsupervised mode. We study the consequences of
having a small fraction of signal in the training set, and then
we discuss correlation between jet mass and reconstruction
loss of the trained autoencoders. We show how by using the
CNN autoencoder, a bump hunt in jet mass could poten-
tially reveal the presence of 400 GeV RPV gluinos in the
actual data. Finally, we conclude in Sec. V with a summary
and list of future directions.

II. METHODS

Let us start with a more detailed introduction to
autoencoders. Given an input x ∈ Rn, we want to learn
a mapping into x̂ ∈ Rn while passing through a latent
representation y ∈ Rk. This mapping is implemented by
two functions: the encoder f∶Rn → Rk and the decoder
g∶Rk → Rn. The functional forms of f and g are deter-
mined by the autoencoder architecture; they are parame-
trized by sets of learnable weights, θf and θg, respectively.

The aim of the autoencoder (and the aim of the machine-
learning training process) is to ensure that x and x̂ ¼
gðfðx; θfÞ; θgÞ are as close as possible under a given metric.
Useful results are obtained when the dimension of the latent
space is smaller than the input one, k ≪ n, so that the trivial
mapping cannot be learned. Thus, the autoencoder learns a
compressed representation of the input, optimized on its
features.
To evaluate the distance between x and x̂, we will use the

L2 norm, also known as the mean-squared reconstruction
error:

Lðx; x̂Þ ¼ 1

n

Xn

i¼1

jxi − x̂ij2: ð2:1Þ

By training the autoencoder to minimize L on a sample of
background events, we learn to encode and decode the
typical events that arise from the background distribution.
Then, when the autoencoder is evaluated on signals that do
not come from the background distribution, the hope is that
it will result in a larger L than usual. Thus, the tail of the L
distribution is more likely to be signal than background,
and by cutting on L, we can cut out background and better
detect signals. This one of the possible ways to use an
autoencoder as anomaly detector.

A. Sample generation

The jet image samples used in this work follow the exact
same specifications as the “CMS jets” used in Ref. [12].
We describe this briefly here, but we refer the reader to
Ref. [12] for more detailed information.
The jets are generated using PYTHIA8.219 [43] for

hadronization and DELPHES3.4.1 [44] for detector simula-
tion. All jets are clustered with FASTJET3.0.1 [45]. We
use anti-kT jets with R ¼ 1, and we require pT ∈
½800; 900� GeV and jηj < 1.
The background (used for training the autoencoders)

consists of light QCD jets, while for examples of signal, we
will employ top quark jets and gluino jets with mass
mg̃ ¼ 400 GeV. The tops are assumed to decay hadroni-
cally, while the gluinos decay to three light-quark jets via
RPV supersymmetry. All the samples are generated by
simulating pair production of the heavy resonance starting
from pp collisions at 13 TeV (LHC Run II conditions).
In order to ensure that the decay products of the heavy

resonance are predominantly contained within the fat jet, we
apply a merge requirement of ΔR < 0.6 at the truth level on
the partonic daughters of the decayed heavy resonance. We
also require a geometric match requirement of ΔR < 0.6
between the fat jet and the original heavy resonance.
In all of our studies, we use sample sizes of 100,000 for

training and testing. We have checked with smaller sample
sizes that the performance of the autoencoders seems to
saturate at 100,000, but we have not performed a
detailed study.
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After generating the fat jets, we apply several prepro-
cessing steps described in Ref. [12] (center, rotate, flip,
normalize), and then we pixelize the jets into 37 × 37
images whose pixel intensities correspond to total pT . We
stick to grayscale images in this work for simplicity.

B. Autoencoder architectures

In this work, we compare two deep-learning autoencoder
architectures, as well as a simpler autoencoder based on
PCA that could be considered as a baseline. All of our
autoencoders take the jet images as inputs. In the Appendix,
we will provide full descriptions in the form of KERAS code.
In this sub-section, we will describe them briefly and
qualitatively:

(i) For preliminary exploration, we will use PCA. The
principal components correspond to the eigenvectors
of the correlation matrix, ordered in decreasing
eigenvalues. The encoder projects the inputs onto
the first k principal components, and the decoder
embeds the first k principal components back into the
original space. It can be shown that this minimizes the
mean-squared error in the space of linear projections.
Thus, in this sense, PCA is comparable to a linear
model (e.g., one layer with linear activations and k the
dimension of the latent space) with the convenient
property of being deterministic.

(ii) The simplest architecture we consider is just a series
of dense (fully connected) layers. One starts by
flattening the N × N image into a single column
vector of length N2. This is then fed to the dense
layers of successively smaller size until one arrives
at the latent layer. Then, this process is reversed until
one arrives back at a column vector of the initial size.

(iii) For a more sophisticated autoencoder, we consider a
CNN. Here, the dimensionality reduction is accom-
plished via the usual max-pooling layers. After a
series of convolutional and max-pooling layers, the
output is fed to a series of dense layers, resulting
finally in the latent representation. The entire proc-
ess is reversed [with two-dimensional (2D) upsam-
pling layers in place of the max-pooling layers] to
arrive back at an image with the same dimensions.
(For the arithmetic of the max pooling and upsam-
pling to work out, we zero-pad the inputs to the CNN
autoencoder so that they are 40 × 40 pixels.)

All the architectures have been implemented using
KERAS2.1.5 with TENSORFLOW1.7.0 backend on Nvidia
GPUs (Pascal 100 and GeForce GTX 1080). For training,
we used the default Adam algorithm with minibatch size of
10241 and a mild early stopping criterion: threshold ¼ 0
and patience ¼ 3 (¼ 5) for the CNN (dense) autoencoder.

As this is a proof-of-concept paper, we have not optimized
heavily the training algorithm (e.g., we have not studied the
effect of learning rate annealing or momentum).

III. TRAINING ON BACKGROUNDS: WEAKLY
SUPERVISED MODE

We now present our results for each autoencoder descri-
bed in the previous section. In this section, we study the
weakly supervised case with pure background events for
training, leaving the unsupervised case with samples
contaminated by a small fraction of anomalous events to
the next section.

A. Autoencoder performance

Shown in Fig. 2 are histograms of the reconstruction
errors computed with a CNN autoencoder, and k ¼ 6 latent
dimensions, for the background sample of QCD jets and the
two different signals we consider in this paper (tops and
gluinos). We see that the autoencoder works as advertised:
it learns to reconstruct the QCD background that it has been
trained on (to be precise, we train on 100,000 QCD jets, and
then we evaluate the autoencoder on a separate sample of
QCD jets), and it fails to reconstruct the signals that it has
never seen before. For comparison, the typical per-pixel
variance is Oð10−2Þ (keep in mind that the jet images have
been normalized to unit total pixel intensity), so we expect a
baseline of Oð10−4Þ for the reconstruction error.
This is further illustrated in Fig. 3, which shows the

average QCD, top, and gluino jet image before and after
autoencoder reconstruction. We see by eye that the QCD
images are reconstructed well on average, while the others
contain more errors.

FIG. 2. Distribution of reconstruction error computed with a
CNN autoencoder with k ¼ 6 latent dimensions on test samples
of QCD background (gray) and two signals: tops (blue) and
400 GeV gluinos (orange). For comparison, the typical per-pixel
variance is Oð10−2Þ (keep in mind that the jet images have been
normalized to unit total pixel intensity), so we expect a baseline of
Oð10−4Þ for the reconstruction error.

1We found that a smaller minibatch size resulted in worse
performance—the autoencoder converged too quickly and then
overtrained.
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By sliding the reconstruction loss threshold L > LS
around, we can turn the histograms in Fig. 2 into receiver
operating characteristic (ROC) curves. The ROC curves for
the different autoencoder architectures are shown in Fig. 4
for the top and gluino signals. For comparison, we have also
included the ROCcurve obtained by cutting on jetmass as an
anomaly threshold. For dense and CNN, we show the

performance of one run, given the small variance between
each run of training. While the three architectures have
comparable performances, it is clear there are some impor-
tant differences. For tops, the CNN outperforms the others,
while for gluinos, the situation is largely reversed.
Surprisingly, for gluinos, the CNN is even outperformed
by the humble PCA autoencoder at all but the lowest
signal efficiencies. We will explore this in more detail in
Sec. IV B, but a clue as to what is going on is shown in the
comparison of the PCA ROC curve with the jet mass ROC
curve. For gluinos, they track each other extremely closely,
suggesting that the PCA reconstruction error is highly
correlated with jet mass. We will confirm this in Sec. IV
B. Evidently, the PCA autoencoder (and to a lesser extent the
dense autoencoder) has learned to reconstruct the more
numerous lowmass QCD jets at the expense of the rarer high
mass QCD jets. In this sense, the PCA autoencoder has not
learned to reconstruct the mass well. Meanwhile, the CNN
reconstruction loss is less correlated with jet mass at higher
jet masses (again, see Sec. IV B). This is evidence that the
CNN has learned to better reconstruct jet mass. This is to be
expected, given the higher expressive power of CNNs.
In Table I, we show the signal efficiency at 90% and 99%

background rejection (which we refer to as E10 and E100,
respectively). The values reported in each case are the
average over five independent training runs to ameliorate
the intrinsic variance (apart from PCA, which is determin-
istic). We see that rejecting 99% of background will keep
more than 10% of the signals for both of the deep-learning-
based autoencoders.

B. Choosing the latent dimension

Here, we will explore the dependence of the autoencoder
on the dimension of the latent space. This is one of the most

FIG. 3. Each panel represents the average of 100,000 jet
images. Pixel intensity corresponds to the total pT in each pixel.
Upper row: original sample. Middle row: after reconstruction.
Lower row: pixelwise squared error. Left column: QCD jets.
Middle column: top jets. Right column: g̃ jets. The reconstruc-
tions have been computed with a CNN autoencoder and k ¼ 6
latent dimensions.
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FIG. 4. ROC curves of tagging efficiency ϵS vs background rejection 1=ϵB computed with a CNN autoencoder and k ¼ 6 latent
dimensions on test samples consisting of top jets (left) and gluino jets (right). These ROC curves are for a single training of the
autoencoder; we have checked that the variance from training to training is sufficiently small so as to make a negligible difference to
the plot.
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important choices to make in the design of an autoencoder
for anomaly detection. If the dimensionality is too low, the
autoencoder is not able to capture all the salient features of
the training set. On the other hand, as the encoding space
gets larger, we get closer to the trivial representation.
Hence, we would like to find an optimal compromise.
In choosing the latent dimension of the autoencoder, it is

important to keep in mind the unsupervised nature of our
endeavor. So, optimizing the latent dimension using vari-
ous signals is not the approach we want to take.
One unsupervised method for finding an optimal work-

ing point is to use PCA as the initial step. Shown in Fig. 5
(left) is the amount of variance in the data explained by
each eigenvector of PCA, in descending order. (This kind
of plot is conventionally referred to as a “scree plot” by
PCA practitioners who also happen to be mountaineers.)
An obvious and common prescription is to choose the
number of principal components close to the “elbow” of the
scree plot; other choices might be motivated upon more
detailed inspection of the cumulative accounted variance
(e.g., one might choose the number of encoding dimensions
corresponding to 95% or 99% of the total variance). We
could then use the same value for the dimensionality of the
encoding space in our deep networks.
We can also search for a similar behavior in the loss

function. This is shown in Fig. 5 (right) for the different

autoencoders. We see the loss plateaus around the same
place for the various autoencoders, and that corresponds
roughly to the elbow of the PCA scree plot. The loss
function first sharply decreases as more important and
meaningful features are learned by the encoded represen-
tation. It reaches a plateau supposedly when only marginal
information is added to the encoding space.
Following the above logic, we choose k ¼ 6 encoding

dimensions for all of the autoencoders presented in
the paper.
Finally, let us examine the wisdom of our choice by

looking at the top signal for example. Shown in Fig. 6
is E10 and E100 for the top signal (averaged over five
training runs) as a function of the latent dimension. This
shows the same behavior as we saw above—the perfor-
mance of the autoencoders plateau around k ¼ 6. This is
encouraging evidence for our unsupervised method of
choosing the latent dimension based on PCA and
reconstruction loss.

C. Robustness with other Monte Carlo

Before turning to unsupervised approaches in the next
section, let us consider here the main weakness of the
weakly supervised approach: the reliance on accurate
background-only samples for training.
One data-driven approach would be to define a control

sample of fat jets, e.g., by inverting a lepton selection. This
of course assumes the signal is never produced in associ-
ation with leptons.
Alternatively, one would train on background

Monte Carlo, and then apply the autoencoder to data.
This would work only insofar as the Monte Carlo accu-
rately represents the background in the data, or that any
artifacts special to the Monte Carlo are not learned by the
autoencoder. In particular, different hadronization schemes

TABLE I. E10 and E100 values for various signals. Results for
dense and CNN, with k ¼ 6 latent dimensions, are obtained as the
average of five runs of training on the 100,000 sample (the
variances are at the ∼0.01 level).

t g̃

PCA 0.51=0.04 0.98=0.36
Dense 0.66=0.13 0.90=0.39
CNN 0.70=0.19 0.77=0.23
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FIG. 5. Left: Scree plot for PCA. Contribution to the variance of each principal component in descending order. Right: average loss as
a function of encoding space dimensions. Each dot corresponds to the average of five independent training runs on the 100,000 training
sample (apart from PCA, which is deterministic and has no variance).
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could have an impact on the final shape of the jets we study
and deteriorate the results of an autoencoder.
In this subsection, we will explore the dependence of the

autoencoder on the choice of MC generator by evaluating
our CNN autoencoder (trained on PYTHIA) on fat jets
produced with HERWIG. Figure 7 shows the resulting
distributions of the reconstruction error. The differences
are small, and crucially the separation between background
and anomaly is preserved. This can be seen as another proof
that the autoencoder has mostly learned fundamental jet
features which should depend only weakly on the hadro-
nization scheme details.
We can quantify the degradation in performance by

fixing a common threshold. For convenience, we choose it
such that on PYTHIA we have the usual 90% and 99%

background rejection. We select one training instance of the
CNN autoencoder at random, which corresponds to E10 ¼
0.71 and E100 ¼ 0.19. Applying the same threshold and the
same algorithm to the HERWIG set, we obtain precisions of
ϵs ¼ 0.74 and ϵs ¼ 0.21, respectively, with corresponding
background rejection of 87% and 98%.

IV. TRAINING DIRECTLY ON DATA:
UNSUPERVISED MODE

A. Contamination study

In the previous section, we have explored how autoen-
coders can be trained on samples of background-only jets,
and then be used to discover signals such as top quarks
and RPV gluinos. This is a prime example of “one-class
classification” and weakly supervised learning. It could
potentially have direct applications to LHC searches for
new physics, provided the background sample can be
validated somehow.
In this section, we will turn to a potentially much more

exciting application of autoencoders in the form of unsu-
pervised learning. Rather than train on a sample of back-
ground-only jets, we will train on a sample of backgrounds
“contaminated” by a small fraction of signal events. We
will see how, somewhat surprisingly, the autoencoder still
succeeds in detecting anomalies in the test set even though
they are present in the training set. Evidently, as long as the
autoencoder does not see “too many” anomalies in the
course of its training, its performance will be largely
preserved.
Figure 8 shows how the amount of contamination with

anomalous events in the training set affects the performance
of autoencoders. Here, we use top jet samples for anoma-
lous events. The horizontal axis denotes the fraction fcont of
top jets in the entire training set. In the left and right panels,
the values of E10 and E100 for top jet signals are shown,
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FIG. 6. Dependence of performance of autoencoders in the weakly supervised learning on number of dimensions of latent space. The
values of E10 and E100 for top jet signals are shown, respectively, in the left and right panels. Each dot corresponds to the average of five
independent training runs on the 100,000 training samples (apart from PCA, which is deterministic and has no variance).

FIG. 7. Comparison of reconstruction error distributions be-
tween PYTHIA and HERWIG generated test samples, full colored
histograms, and outlines, respectively. Gray is QCD and blue
tops. The results are obtained after training a CNN on the PYTHIA

train dataset.
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respectively. For dense and CNN autoencoders, each point
represents the average of five runs. In every architecture, as
the contamination ratio increases up to 0.1, the values of
E10 and E100 tend to gradually decrease, but the reduction is
not dramatic. This indicates that the contamination does not
give a significant impact on the performance of our
autoencoders.
Shown in Fig. 9 is a similar comparison for contami-

nation with gluinos. We see that at fixed background
rejection, the signal efficiency decreases by 10%–20% as
the contamination fraction of the training sample is
increased from 0% to 10%.
Just to emphasize how powerful this method potentially

is, we see that with the CNN autoencoder, even with 10%
signal present in the training sample, the autoencoder

arrives at E100 ∼ 0.1, so after this cut on reconstruction
loss, we would end up with S=B ∼Oð1Þ.
Of course, without some way of estimating the back-

ground, this unsupervised method of searching for new
physics would still probably have limited utility. With just a
pure counting experiment (counting the number of events
above some reconstruction error threshold), we would have
no way of knowing whether we have found new physics,
unless we knew beforehand what to expect from the SM
background. In the next subsection, we will explore the
possibility of combining the autoencoder with a variable
like jet mass, in order to perform a bump hunt, with data-
driven background estimates coming from sidebands.

B. Correlation with jet mass

In this subsection, we will explore the correlation of the
different autoencoders with jet mass.2 We are motivated by
how the autoencoder would be applied in the real world to
look for new physics. We are looking for subtle signals in
an open-ended way buried in the QCD background. Given
that there is no reliable way to estimate the QCD back-
ground other than data-driven methods, and given that we
are not expecting to achieve extremely high S=B signifi-
cances, a pure counting experiment seems implausible.
Instead, we will still need another variable to sideband in
order to estimate the QCD background from the data. Since
a large class of new physics starts from the decay of a heavy
new resonance, jet mass is an obvious candidate to side-
band in.
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FIG. 8. The performance of autoencoders in the unsupervised learning case where the training set is contaminated with anomalous
events. We take top jet samples for anomalous events. The horizontal axis denotes the ratio fcont of top jet samples in the whole training
set with 100,000 samples. In the left and right panels, the values of E10 and E100 for top jet signals are shown, respectively. The gray,
blue, and red curves denote the cases of the PCA, dense, and convolutional autoencoders (each dot representing the average of five runs).

0.0 0.2 0.4 0.6 0.8 1.0
1

10

100

1000

104

S

1
B

fcont 0

fcont 0.04

fcont 0.1

FIG. 9. ROC curves for CNN autoencoders trained on samples
of QCD events contaminated with a fraction fcont of gluino
events.

2Since we are studying a narrow range of pT ’s in this paper and
we have normalized away the total pT of each jet image, it may be
more correct to say that we are studying the correlation with
m=pT . Indeed, we have checked for several values of m and pT
that the effect is similar.
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From this point of a view, the ideal autoencoder would be
one whose reconstruction error is minimally correlated with
jet mass. We could then cut hard on the reconstruction error
to “clean” out the QCD background, and then look for a
bump in the jet mass distribution, confident that the
autoencoder cut did not sculpt an artificial peak into the
jet mass distribution of the QCD background.
Shown in Fig. 10 (left) is the mean jet mass computed

in bins of increasing autoencoder loss, for the QCD
background. We see that PCA (gray) and dense (blue)
reconstruction errors are correlated with jet mass all the
way up to 400 GeV. So, cutting on the PCA loss is
roughly equivalent to cutting on the jet mass. However,
for CNNs, the correlation stops for jet masses above
∼250–300 GeV. Equivalently, the jet mass distribution
should be stable against cutting on the CNN loss for cuts
above ∼10−6.

This is borne out in Fig. 10 (right). Here, we see the jet
mass distribution after cuts on CNN loss that reduce the
QCD background by a factor of 10 (blue), 100 (orange),
and 1000 (green). The jet mass distribution is remarkably
stable as we cut harder on CNN loss. This makes it the
superior autoencoder for doing a bump hunt in jet mass for
jet masses above ∼300 GeV.3

To illustrate the possibilities of searching for new physics
in this way, by first “cleaning” the QCD background using
the CNN autoencoder and then doing a bump hunt in jet
mass, we include Fig. 11. These are the jet mass histograms
for QCD background and 400 GeV gluinos, now
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FIG. 10. The left figure shows the average mass in bins of increasing reconstruction error, for the different autoencoder architectures.
We see that the PCA and dense autoencoder losses are highly correlated with jet mass all the way up to 400 GeV, while the CNN
becomes uncorrelated for masses above ∼300 GeV. The right figure illustrates this with jet mass histograms for the QCD background.
We see that they are stable against increasingly hard cuts on the reconstruction error.

FIG. 11. Jet mass histograms for QCD background and 400 GeV RPV gluinos, normalized to their LO cross sections, before (left) and
after (right) a cut on CNN autoencoder loss that rejects a factor of 1000 of the QCD background.

3We note that a better approach would probably be to explicitly
decorrelate the autoencoder output with jet mass, e.g., using an
adversarial network. This would be interesting to explore further
(in fact, see Ref. [46]), but it is beyond the scope of this work.
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normalized to the leading order (LO) gluino and QCD cross
sections, before (left) and after (right) a cut on CNN
autoencoder loss that removes a factor of 1000 of the
QCD background. Importantly, we have trained the autoen-
coder on a mixed sample containing the expected fraction
of gluino jets, corresponding to an overall contamination
fraction of 10−3. This would be representative of the actual
data, if it really contained these gluinos.
We see that the S=B achievable here in a mass window

around the gluino mass is ≈25%. As can be seen clearly
from the histograms, this is an impressive improvement on
the S=B before the cut (i.e., just from the raw jet mass
histogram), which is only ≈4%. This improvement in S=B
could be important in situations where S=B is small and we
are limited by systematic and not statistical errors.
We can similarly quantify the gain in statistical signifi-

cance. According to the ROC curve in Fig. 4 right (again,
the ROC curve for unsupervised learning with this small
amount of contamination will be very similar), the signifi-
cance improvement ϵS=

ffiffiffiffiffi
ϵB

p
is approximately a factor of

1.25 at this working point. At working points with higher
efficiency, it is as much as a factor of 2–3. One could
plausibly discover new physics this way.

V. CONCLUSIONS

In this paper, we have shown how autoencoders—
machine-learning algorithms that learn how to compress
and decompress a sample of inputs—are potentially power-
ful new tools for performing open-ended searches for new
physics at the LHC. While autoencoders have many real-
world applications to anomaly detection, they have up till
now not been widely adopted in high energy physics.
We explored autoencoders in both weakly supervised and

unsupervised forms. In the former mode, we trained autoen-
coders based on dense and convolutional neural networks on
a sample of highpT ,R ¼ 1QCD jet images and showed how
they could learn to accurately reconstruct these jet images.
Then, the hope of using autoencoders for open-ended
anomaly detection is that it would fail to reconstruct signals
it had not been trained on, and then one could use the
reconstruction error as an anomaly threshold. In this paper,
we demonstrated that the deep autoencoders work as
advertised, by applying them to signals consisting of all-
hadronic top jets and RPV gluinos. We saw that by thresh-
olding on reconstruction error, the autoencoder could
improve S=B’s on these signals by sizable amounts.
We also showed how the autoencoder could operate in an

unsupervised mode, and discover signals despite having
been trained on data that actually contained those signals.
In fact, we saw that varying the signal fraction even up to
10%, the autoencoder performance was remarkably stable.
This implies that one could simply train the autoencoder
directly on the data, and then look for a feature corre-
sponding to new physics. As a proof of concept, we showed
how this could be done with a jet mass bump hunt. We

showed that the CNN autoencoder is reasonably decorre-
lated with jet mass, meaning that we could use the
autoencoder to reduce the QCD background and then
search for a bump in the jet mass distribution. We saw
that it could achieve S=B ∼ 25% for a 400 GeV RPV gluino
signal, an improvement of over a factor of 6 from the bump
hunt without autoencoder.
We believe this is a very exciting new direction in the

search for new physics at the LHC, very unlike conven-
tional approaches. There are many future directions that we
envision. Some of these include:

(i) Testing out the autoencoder on other signals and
backgrounds. For concreteness, we focused fat jets
in a narrow range of pT ’s, treating QCD as back-
ground, and heavy resonances with three subjets as
signal. But obviously, the idea is general and can be
applied to any training and test samples in principle.
One could envision applying this to other numbers
of subjets, dark showers, nonresonant particles, etc.

(ii) Going further, it would be fascinating to train an
autoencoder to flag entire events as anomalous,
instead of just individual fat jets.

(iii) We focused on just a few autoencoder architectures
in this paper, for the proof of principle, but there are
many others on the market. For instance, recurrent
neural networks originally designed for sequences
and natural language processing. These have proven
to be useful for boosted-object tagging [7,8,11,17],
so we expect they will also be useful here. There are
also even more complex types of anomaly detection
in the computer-science literature based on the idea
of generative adversarial networks (GANs) [47–49]
that may also prove useful in this context.

(iv) It would be interesting to dive deeper into the latent
representation that is learned by the autoencoder. Do
signals and backgrounds cluster in this latent space?
Do the latent dimensions correlate strongly with
known variables such as jet mass and N-subjettiness?

(v) We saw here how the CNN autoencoder was
reasonably decorrelated with mass. It would be
interesting to explore ways to more explicitly de-
correlate in mass. The “variable planing” ideas of
Refs. [3,50] may be useful in this context. Or one
could envision training an ensemble of autoencoders
on jet samples corresponding to different bins in jet
mass. A small enough bin width would probably
ensure practical absence of correlation between mass
and reconstruction loss. This is well beyond the
scope of our study; we reserve this for future work.

Autoencoders are a form of weakly supervised or
unsupervised machine learning which could be ideally
suited to the current situation at the LHC, where many top-
down-motivated searches have not turned up any evidence
for new physics, and many people are wondering what we
should be looking for. With an autoencoder approach, one
does not need to know what one is looking for. It is a
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powerful new method to search for any signal of new
physics in the data, without prejudice.
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APPENDIX: KERAS CODE FOR AUTOENCODER ARCHITECTURES

1. Dense

1 input img ¼ Input ðshape ¼ ð37 � 37; ÞÞ
2 layer ¼ Dense ð32; activation ¼ ’relu’Þ ðinput imgÞ
3 encoded ¼ Dense ð6; activation ¼ ’relu’Þ ðlayerÞ
4
5 layer ¼ Dense ð32; activation ¼ ’relu’Þ ðencodedÞ
6 layer ¼ Dense ð37 � 37; activation ¼ ’relu’Þ ðlayerÞ
7 decoded ¼ Activation ð’softmax’Þ ðlayerÞ
8
9 autoencoder ¼ Model ðinput img;decodedÞ
10 autoencoder:compileðloss ¼ keras:losses:mean squared error,
11 optimizer ¼ keras:optimizers:AdamðÞÞ

2. CNN

1 input img ¼ Input ðshape ¼ ð40; 40; 1ÞÞ
2
3 layer ¼ input img
4 layer ¼ Conv2D ð128; kernel size ¼ ð3; 3Þ,
5 activation ¼ ’relu’;padding ¼ ’same’Þ ðlayerÞ
6 layer ¼ MaxPooling2D ðpool size ¼ ð2; 2Þ;padding ¼ ’same’Þ ðlayerÞ
7 layer ¼ Conv2D ð128; kernel size ¼ ð3; 3Þ,
8 activation ¼ ’relu’;padding ¼ ’same’Þ ðlayerÞ
9 layer ¼ MaxPooling2D ðpool size ¼ ð2; 2Þ;padding ¼ ’same’Þ ðlayerÞ
10 layer ¼ Conv2D ð128; kernel size ¼ ð3; 3Þ,
11 activation ¼ ’relu’;padding ¼ ’same’Þ ðlayerÞ
12 layer ¼ Flatten ðÞ ðlayerÞ
13 layer ¼ Dense ð32; activation ¼ ’relu’Þ ðlayerÞ
14 layer ¼ Dense ð6Þ ðlayerÞ
15 encoded ¼ layer
16
17 layer ¼ Dense ð32; activation ¼ ’relu’Þ ðencodedÞ
18 layer ¼ Dense ð12800; activation ¼ ’relu’Þ ðlayerÞ
19 layer ¼ Reshape ðð10;10;128ÞÞ ðlayerÞ
20 layer ¼ Conv2D ð128; kernel size ¼ ð3; 3Þ,
21 activation ¼ ’relu’;padding ¼ ’same’Þ ðlayerÞ
22 layer ¼ UpSampling2D ðð2;2ÞÞ ðlayerÞ
23 layer ¼ Conv2D ð128; kernel size ¼ ð3; 3Þ,
24 activation ¼ ’relu’;padding ¼ ’same’Þ ðlayerÞ
25 layer ¼ UpSampling2D ðð2;2ÞÞ ðlayerÞ
26 layer ¼ Conv2D ð1; kernel size ¼ ð3; 3Þ;padding ¼ ’same’Þ ðlayerÞ
27 layer ¼ Reshape ðð1;1600ÞÞ ðlayerÞ
28 layer ¼ Activation ð’softmax’Þ ðlayerÞ
29 decoded ¼ Reshape ðð40;40;1ÞÞ ðlayerÞ

(Table continued)
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(Continued)

30
31 autoencoder ¼ Model ðinput img;decodedÞ
32 autoencoder:compile ðloss ¼ keras:losses:mean squared error,
33 optimizer ¼ keras:optimizers:AdamðÞÞ
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