
 

Suppressing the scattering of WIMP dark matter
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The continuously improving sensitivity of dark matter direct detection experiments has limited the
interaction between dark matter and nucleons being increasingly feeble, while the dark matter relic density
favors it to take part in weak interactions. After taking into account the constraints from the Large Hadron
Collider (LHC) search for Higgs bosons and sparticles, it is becoming difficult for the neutralino dark
matter in the minimal Supersymmetric Standard Model and the next-to-minimal supersymmetric Standard
Model to possess these two seemingly paradoxical features in their most natural parameter space for
electroweak symmetry breaking due to the limited theoretical structure. In contrast, the seesaw extension of
the next-to-minimal supersymmetric Standard Model, which was initially proposed to solve the neutrino
mass problem, enables the lightest sneutrino to act as a viable dark matter candidate, readily has these
features, and thus, it easily satisfies the constraints from dark matter and LHC experiments. Compared with
the Type-I seesaw extension, the dark matter physics in the inverse seesaw extension is more flexible,
allowing it to be consistent with the experimental results in broader parameter space. We conclude that
weakly interacting massive particles (such as the sneutrino in this study) work well in supersymmetric
theories as dark matter candidates.
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I. INTRODUCTION

Current astronomical observations have confirmed the
presence of dark matter (DM) and revealed that it accounts
for about 27% of the composition of the Universe [1].
Among the various DM candidates, the weakly interacting
massive particle (WIMP) is the most promising since it can
obtain the measured DM density naturally and straightfor-
wardly. In the popular supersymmetric theories, the lightest
supersymmetric particle (LSP) usually has such a property
and thus can act as a viable DM candidate [2]. In this case,
since the massive supersymmetric particles decay ulti-
mately to the LSP due to R-parity conservation, their
signals in colliders will contain missing momentum, a
feature widely used when searching for supersymmetry at
the Large Hadron Collider (LHC).
Although scientists have studied the WIMP as a popular

DM candidate for many years, the rapid progress of DM

direct detection (DD) experiments in recent years has
sharply restricted its interaction with nucleons [3,4], lead-
ing more and more people to question its rationality. Since
supersymmetric theories usually predicts WIMP DMs, they
are also facing unprecedented doubts. It is the primary
purpose of this work to discuss whether the WIMP DM
predicted by supersymmetry can be naturally consistent
with the results of the DM experiments. In particular,
although the DM density prefers it to take part in weak
interactions, the continuously improved sensitivity of DM
DD experiments has limited its interaction with nucleons
being increasingly feeble. As shown below, after taking
into account the constraints from the LHC search for Higgs
bosons and sparticles, it is becoming difficult for the
neutralino DM in the minimal supersymmetric Standard
Model (MSSM) [5–7] and the next-to-minimal supersym-
metric Standard Model (NMSSM) [8] to possess the two
seemingly paradoxical features in their most natural param-
eter space (i.e., the Natural SUSY scenario in the literature
[9]) due to the limited theoretical structure. However, the
seesaw extension of the NMSSM, which was initially
proposed to solve the neutrino mass problem, enables the
lightest sneutrino to act as a viableDMcandidate and readily
has these features, and thus, it easily satisfies the constraints
of both dark matter and LHC experiments.
As a starting point for discussion, we first consider

the MSSM [5–7]. When the correct DM density is required,
the lightest neutralino with a bino field as its dominant
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component is customarily taken as the DM candidate.1

Since the bino field transforms nontrivially under the
Uð1ÞY group of the Standard Model (SM), its coupling
with the SM-like Higgs boson is approximated as [10–12]
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if the Wino field is very massive, where mχ̃0
1
denotes the

lightest neutralino mass that relates with the bino mass M1

bymχ̃0
1
≃M1, μ represents Higgsino mass, tan β ¼ vu=vd is

the ratio of Higgs vacuum expectation values, and α is the
mixing angle of the CP-even Higgs states [7]. In obtaining
the final expression, we assume the decoupling limit of the
Higgs sector, i.e., mA ≫ v, where mA denotes the mass of
the CP-odd Higgs boson. Given that the spin independent
(SI) cross section of the DM scattering with nucleons is
mainly contributed to by the SM-like Higgs boson and thus
approximated by [13]
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we infer that, if M1 and μ are of the same sign, μ must be
sufficiently large to be consistent with the latest results of
the XENON-1T experiment [3]. Numerically speaking, we
find jμj≳ 430 GeVð350 GeVÞ for tan β ¼ 10ð20Þ if the
DM annihilated by a resonant SM-like Higgs boson to
obtain the correct relic density. These formulas also show
that, if M1 and μ are of opposite signs, which can result in
the blind spots of the scattering [14–17], jμj ∼ 100 GeV
seems to be experimentally allowed. However, such a
possibility has been limited by the XENON-1T search
for spin dependent (SD) DM-nucleon scattering because,
regardless of the relative sign between M1 and μ,
small values of jμj can enhance the scattering cross
section. This can be understood from the following
approximation [10–12]:
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with Cp ≃ 1.8 × 10−40 cm2 for protons and Cn ≃ 1.4 ×
10−40 cm2 for neutrons [18,19]. Furthermore, the LHC
search for electroweakinos can play a complementary role
in limiting such a possibility. In the Appendix of this work,
we study these experimental constraints in the blind spot
scenario of the MSSM, and find that the case of jμj ≲
300 GeV has been excluded for any mχ̃0

1
by the exper-

imental upper bound of the SD cross section, and jμj must
be larger than about 390 GeV in the Higgs funnel region
due to the LHC experiment. We note that a global fit of the
MSSM was recently performed [20], where various exper-
imental constraints, including those from the DM relic
density, PandaX-II (2017) results for the SI cross section
[21], PICO results for the SD cross section [22], and the
searches for supersymmetric particles at the 13 TeV LHC
with 36 fb−1 data (especially the CMS analysis of the
electroweakino production [23]), were considered. The
analysis showed that jμj≳ 350 GeV was favored at a
95% confidence level.2 Such a μ can induce a tuning of
about 3% to predict the Z-boson mass [9], and this situation
will be further exacerbated if future DM DD experiments
fail to detect the sign of the DM and/or forthcoming high
luminosity LHC experiments do not find the evidence of
the electroweakinos (see, e.g., the discussion in the
Appendix about the blind spot of the MSSM).
Next, we consider the NMSSM [8]. Since the coupling

of the Singlino field in this theory with SM particles may be
very weak, we discuss the case of the Singlino-dominated
neutralino as a DM candidate [24–27], which is feasible if
the Higgs self-coupling coefficients λ and κ satisfy λ > 2κ
and the gauginos are relatively massive. In the natural
NMSSM that essentially requires jμj ≲ 500 GeV [28], this
DM may annihilate by the following channels to obtain the
correct relic density (see, e.g., Ref. [12,13,19,26,27,
29–35]): χ̃01χ̃

0
1 → tt̄; hsAs; hAs;WW; ZZ; � � � through s-

channel exchange of nonresonant Z and Higgs bosons,
t=u-channel exchange of electroweakinos (h, hs, and As
denote SM-like, singlet-dominated CP-even, and CP-odd
Higgs bosons, respectively), the funnels in Z, As, h, and hs,
or the coannihilation with sleptons, χ̃02 (the next-to-lightest
neutralino), and χ̃�1 (the lightest chargino). Among these
channels, the cross sections for the first three are potentially
large, so each of them may be fully responsible for the
measured DM relic density [13]. However, one can verify
with effective field theory that such a possibility has been
tightly limited by the upper bounds of the SI and SD cross
sections (see the discussion in the Appendix). The basic
reason is that all of these channels require a large λ to
account for the density, and as a result, the DM couplings
with h and Z bosons are sizable, since

1If the DM is dominated by the Higgsino or Wino field, its relic
density is much smaller than the measured value when mDM ≲
1 TeV due to its relatively strong interaction with the SM
particles.

2We emphasize that this conclusion does not mean that the
case jμj < 350 GeV is completely excluded by the experiments.
It just implies that the case of jμj < 350 GeV has been tightly
limited and the probability of its occurrence is rather low in
frequentist statistics.
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for λv=jμj ≪ 1 and massive gauginos [13,18], where mχ̃0
1

denotes the DMmass and v≡ 174 GeV. The other channels
may play an important role in determining the density only
with a specific sparticle mass spectrum, and they do not
necessarily correspond to a large λ. However, given that the
current sensitivities of the DMDD experiments have reached
the precision of 10−47 cm2 for the SI cross section [3] and
10−42 cm2 for the SD cross section [4], a large portion of the
parameter space for the annihilations in the natural NMSSM
can predict SI and/or SD cross sections that are comparable
with or even larger than their bounds. As a result, the DD
experiments have tightly constrained the space [33,36].
Furthermore, the LHC experiments can limit the theory, since
theannihilations areusually accompaniedwith light sparticles
or Higgs bosons [33]. Recently, researchers performed
comprehensive studies of the naturalNMSSMbyconsidering
various experimental constraints [33,34]. In particular, they
included those from the DM and LHC experiments. The
conclusionwas that only some corners of the parameter space
are allowed, which have either of the following features:

(i) λ ≃ 2κ with λ≲ 0.05. This case corresponds to the
decoupling limit of theNMSSM [8] and theDMcoan-
nihilated with the Higgsinos to obtain the density [33].

(ii) κ ∼ 0.01, λ≲ 0.2 and there exists at least one light
singlet-dominated Higgs boson [34]. In this case, the
Singlino-dominated DM annihilates in certain fun-
nel regions, and the Higgsinos decay in a complex
way to satisfy the LHC constraints.

We emphasize that this conclusion is valid only for
jμj≲ 500 GeV, and it may be improved by more intensive
study. We also emphasize that, as indicated by Eqs. (1.5) and
(1.6), the increase in jμj is helpful to relax the constraints of
the DM DD experiments.3

Based on the discussion above, if the neutralino DM
transforms nontrivially under the electroweak gauge group
of the SM or it mixes with other fields and obtains the
charge of the group, its scattering cross sections with
nucleons tend to be relatively large for the Higgsino mass
μ upper bounded by several hundred GeV. These rates
usually contradict relevant experimental bounds after
accounting for the rapidly improving sensitivities of the
DM DD experiments in recent years. This implies that, if
one wants the scattering rate naturally suppressed, the DM
should be a gauge singlet field, or its singlet component
should at least be naturally far dominant over the other
components. Moreover, the situation of the MSSM and
NMSSM tells us that the DM is preferably not a neutralino
when one extends economically the models. We emphasize
that such a DM can still be a WIMP in the sense that it may
have weak couplings with the particles beyond the SM,
which is necessary to obtain the correct density naturally.
These inferences inspire us to augment the NMSSM with a
TeV-scale Type-I seesaw mechanism and choose the light-
est sneutrino ν̃1 as a DM candidate [37]. The resulting
theoretical framework not only produces neutrino mass, it
also guarantees that ν̃1 will be almost purely right-handed,
since the tiny neutrino Yukawa couplings suppress the
chiral mixing of the sneutrinos significantly [37–39] (note
that the possibility of a left-handed sneutrino as a feasible
DM candidate was ruled out by DM DD experiments one
decade ago [40,41]).
Given that the right-handed sneutrino field is a gauge

singlet, it can interact directly with the singlet Higgs field
by triple or quartic scalar vertexes. This feature allows these
fields to form a secluded DM sector, which communicates
with the SM sector only by small singlet-doublet Higgs
mixing and accounts for the relic density through the
annihilation of ν̃1 into a pair of singlet-dominated Higgs
bosons [37]. In addition, the singlet Higgs field could also
mediate the transition of the sneutrino pair into a Higgsino
pair and vice versa in the thermal bath of the early Universe.
If the sneutrino and the Higgsino approximately degenerate
in mass, the annihilation of the Higgsinos in the freeze-out
stage can affect the DM density significantly, which makes
the relic density consistent with its experimental measure-
ments [37] (in the literatures, this phenomenon is called
coannihilation [42,43]). Similar to the secluded DM case,
ν̃1 couples very weakly with the SM particles due to its
singlet nature, and this suppresses the DM scattering with
nucleons. Last but not least, since ν̃1 is a scalar particle with

3Very recently, we updated a previous study [33]. We no longer
required the fine-tuning of mZ to be less than 50. Instead, we
imposed the condition μ ≤ 1 TeV. We found that for the
Singlino-dominated DM, in addition to the regions mentioned
above, there is a new scenario that is consistent with current
experimental constraints, which is characterized by 0.4≲ λ≲ 0.7,
200 GeV ≲mχ̃0

1
≲ 600 GeV, 400 GeV ≲ μ ≲ 800 GeV, and the

splitting between mχ̃0
1
and μ is larger than approximately 80 GeV.

This conclusion is consistent with a previous report [13]. From
this scenario, one can also obtain the bino-Singlino well-tem-
pered DM scenario reported previously [13] by choosing a
negative M1 that satisfies jM1j < μ, and letting jM1j approach
the Singlino-dominated neutralino mass from below. In either
scenario, the SI cross section can be as low as 10−50 cm2, while
the SD cross section is usually larger than 10−42 cm2.
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a definite CP number, the SD cross section of its scattering
with nucleons always vanishes, which is another advantage
of ν̃1 coinciding with the results of the DM DD experi-
ments. We add that the seesaw extension of the MSSM does
not have all of these features (see the introduction in [37]),
and the aforementioned theoretical framework extends the
field content of the NMSSM only by three generations
of the right-handed neutrino superfield. Thus, the NMSSM
extensionmaybe themost economical supersymmetricmodel
that can suppress the DM-nucleon scattering naturally.
Similarly, one can embed the inverse seesaw mechanism

in the NMSSM, and the resulting theory has similar
features to the Type-I seesaw extension in DM physics
[44]. Compared with the Type-I extension, this theory has
at least two advantages. One is that the neutrino mass is
doubly suppressed so that the right-hand neutrino mass can
be naturally at the TeV scale even for sizable neutrino
Yukawa couplings. The other is that DM physics is very
rich due to its more complex structure in the neutrino/
sneutrino sector and can be consistent with the experi-
mental results in a more flexible way. The theory is another
economic model that naturally suppresses the DM-nucleon
scattering. In fact, given that the neutralino DM has been
tightly limited by DD experiments in recent years, the
sneutrino DM embedded in different extensions of the
MSSM has regained broad interest [45–64].
In the NMSSM with any of the seesaw mechanisms, the

scattering of the sneutrino DM with nucleons proceeds
mainly by the t-channel exchange of CP-even Higgs
particles. Although the cross section of the scattering is
usually small, it is still potentially large if the lightest CP-
even Higgs boson is significantly lighter than the SM-like
Higgs boson discovered at the LHC and it contains sizable
doublet Higgs components [37,44]. This case is not only
consistent with current Higgs data [65], it also has
theoretical advantages of enhancing the SM-like Higgs
boson mass and naturally predicting the Z-boson mass
[66,67]. Thus, this case is attractive. Studying the character-
istics of the DM-nucleon scattering in this special case for
both the seesaw extensions, in particular how it coincides
with the latest XENON-1T results, can improve our under-
standing of the scattering, which is the primary purpose of
this paper. In the following, we denote the NMSSM with
the Type-I seesaw mechanism as Type-I NMSSM and that
with the inverse seesaw mechanism as ISS-NMSSM.
We organize this paper as follows. In Sec. II, we introduce

the basics of the sneutrino sector in the Type-I NMSSM and
ISS-NMSSM, including its mass matrix, its interaction with
Higgs bosons, and its scattering with nucleons. In Sec. III,
we consider the particular configuration of the Higgs sector.
We vary the parameters in the sneutrino sector and compare
the mechanisms of the theories that keep the sneutrino DM
compatible with the DD experimental constraints. We also
discuss the phenomenology of the extensions. Finally, we
draw our conclusions in Sec. IV.

II. THEORETICAL PRELIMINARIES

As economic but complete supersymmetric theories to
account for neutrino mass, the Type-I NMSSM and ISS-
NMSSM adopt the same gauge groups as the NMSSM and
extend each lepton generation of the NMSSM only by
one and two gauge singlet chiral fields with the lepton
number, respectively (see Table I). These fields can couple
directly with the singlet Higgs field ŝ, and as a result, the
singlet-dominated Higgs bosons play extraordinary roles in
these theories: in addition to solving the μ problem of the
MSSM [8] and enhancing the theoretical prediction of the
SM-like Higgs boson mass through the singlet-doublet
Higgs mixing [66,68], they are responsible for the massive
neutrino mass and make the lightest sneutrino a viable DM
candidate [37–39,44]. This feature renders the two theories
quite different from seesaw extensions of the MSSM in
various aspects.
The common feature of the two extensions is that they

have same structure in the Higgs and neutralino/chargino
sectors as that of the NMSSM, so they predict three
CP-even Higgs bosons, two CP-odd Higgs bosons, five
neutralinos, and two charginos. Throughout this paper, we
label the particles with the same CP and spin quantum
numbers in an ascending mass order, e.g., mh1 <mh2 <mh3
for the CP-even Higgs bosons. We have discussed the
properties of these particles in our publications [37,44], and
here we only emphasize that they play an important role in
the annihilation of the sneutrino DM, which includes the
following channels [38,39]:
(1) ν̃1H̃ → XY and H̃H̃0 → X0Y 0, where H̃ and H̃0

denote Higgsino-dominated neutralinos or chargino,
and Xð0Þ and Yð0Þ represent any possible SM particles
(including the massive neutrinos and the extra Higgs
bosons if the kinematics are accessible). This anni-
hilation mechanism is called coannihilation in the
literature [42,43], and it is efficient only when the
mass splitting between H̃ and ν̃1 is less than about

TABLE I. Field content of the NMSSM with different seesaw
mechanisms. The first eight fields are predicted by the NMSSM,
the field ν̂ is necessary for both the Type-I NMSSM and the ISS-
NMSSM, and the field X̂ pertains only to the ISS-NMSSM.

SF Spin 0 Spin 1
2

Generations ðUð1Þ ⊗ SUð2Þ ⊗ SUð3ÞÞ
q̂ q̃ q 3 ð1

6
; 2; 3Þ

l̂ l̃ l 3 ð− 1
2
; 2; 1Þ

Ĥd Hd H̃d 1 ð− 1
2
; 2; 1Þ

Ĥu Hu H̃u 1 ð1
2
; 2; 1Þ

d̂ d̃�R d�R 3 ð1
3
; 1; 3̄Þ

û ũ�R u�R 3 ð− 2
3
; 1; 3̄Þ

ê ẽ�R e�R 3 ð1; 1; 1Þ
ŝ S S̃ 1 ð0; 1; 1Þ
ν̂ ν̃�R ν�R 3 ð0; 1; 1Þ
X̂ x̃ x 3 ð0; 1; 1Þ
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10%. As pointed out by the Bayesian analysis of the
Type-I NMSSM in [37], it is the most important
annihilation channel.

(2) ν̃1ν̃1 → ss�, where s denotes a light Higgs boson.
This channel proceeds via any relevant quartic scalar
coupling, the s-channel exchange of a Higgs boson,
and the t=u-channel exchange of a sneutrino. It is the
second important annihilation channel of the DM by
the analysis in [37].

(3) ν̃1ν̃1 → VV�,Vs,ff̄whereV andf denote anygauge
boson and SM fermion, respectively. This kind of
annihilation proceeds mainly by the s-channel ex-
change of a resonant CP-even Higgs boson.

(4) ν̃1ν̃1 → νhν̄h via the s-channel exchange of a Higgs
boson and the t=u-channel exchange of a neutralino,
where νh denotes a massive neutrino.

(5) ν̃1ν̃
0
1 → Að�Þ

i → XY and ν̃01ν̃
0
1 → X0Y 0 where ν̃01

denotes a sneutrino with an opposite CP number
to that of ν̃1. This annihilation channel is impor-
tant only when ν̃1 and ν̃01 are nearly degenerate in
mass.

The difference between the extensions and the NMSSM
arises only from the neutrino/sneutrino sector, which is
evident from their constructions. Since sneutrino DM is the
focus of this work, we recapitulate the basics of the
sneutrino sector in the following sections.

A. Sneutrino sector of Type-I NMSSM

With the field content in Table I, the superpotential and
the soft-breaking terms of the Type-I NMSSM are given
by [38,39]

W ¼ WMSSM þ λŝĤu · Ĥd þ
1

3
κŝ3 þ λ̄νŝν̂ν̂þ Yνl̂ · Ĥuν̂;

Lsoft ¼ LMSSM þm2
Hd
jHdj2 þm2

Hu
jHuj2 þm2

SjSj2 þ m̄2
ν̃ ν̃Rν̃

�
R

þ
�
λAλSHu ·Hd þ

1

3
κAκS3 þ λ̄νĀλνSν̃

�
Rν̃

�
R þ YνAνν̃

�
Rl̃Hu þ h:c:

�
; ð2:1Þ

where WMSSM and LMSSM represent the corresponding
terms of the MSSM without including those for the Higgs
sector, the coefficients λ and κ parametrize the interac-
tions between the Higgs fields, Yν and λ̄ν are neutrino
Yukawa couplings with the flavor index omitted, mi
(i ¼ Hu;Hd; � � �) denotes the soft-breaking masses, and
Ai (i ¼ λ; κ; � � �) are soft-breaking parameters for the tri-
linear terms. Noting that the soft masses m2

Hu
, m2

Hd
, and m2

S

are related to the vacuum expectation values of the fields
Hu, Hd and S, hHui ¼ vu=

ffiffiffi
2

p
, hHdi ¼ vd=

ffiffiffi
2

p
, and

hSi ¼ vs=
ffiffiffi
2

p
, by the minimization conditions of the Higgs

potential after electroweak symmetry breaking [8], we take
λ, κ, tan β≡ vu=vd, Aλ, Aκ, and μ≡ λvs=

ffiffiffi
2

p
as theoretical

inputs in the following discussion.
In the Type-I NMSSM, the active neutrino mass matrix is

formulated by mν ¼ 1
2
YνvuM−1YT

ν vu, withM ¼ ffiffiffi
2

p
λ̄νvs ≡

2λ̄νμ=λ representing the heavy neutrino mass matrix [69].
Since the active neutrino masses are at the 0.1 eVorder, the
magnitude of Yν should be around 10−6 if the massive
neutrino masses are taken at the TeV order. Moreover, to

reproduce neutrino oscillation data, mν must be flavor
nondiagonal. This can be realized by choosing a flavor
nondiagonal Yν and a diagonal λ̄ν [70]. If one further
assumes that the soft-breaking parameters in the sneutrino
sector, such as ml̃, m̄ν̃, and Āλν , are flavor diagonal, the
flavor mixing in the sneutrino mass matrix is induced only
by the off-diagonal elements of Yν, which is greatly
suppressed. Given these facts, it is sufficient to consider
only one-generation sneutrino in studying the sneutrino
DM [37]. In the following, we concentrate on the third-
generation case and use the symbols λν, Aλν , and mν̃ to
denote the 33 elements of λ̄ν, Āλν , and m̄ν̃, respectively.
After rephrasing the sneutrino fields by CP-even and

CP-odd parts,

ν̃L ≡ 1ffiffiffi
2

p ðν̃L1 þ iν̃L2Þ; ν̃R ≡ 1ffiffiffi
2

p ðν̃R1 þ iν̃R2Þ; ð2:2Þ

the sneutrino mass matrix in the bases (ν̃L1, ν̃R1, ν̃L2, ν̃R2) is
given by

M2
ν̃ ¼

0
BBBBBBBB@

m2
LL̄

m2
LRþm2

LR̄
þc:c

2
0 i

m2
LR−m

2
LR̄
−c:c

2

m2
LRþm2

LR̄
þc:c

2
m2

RR̄ þm2
RR þm2�

RR i
m2

LR−m
2
LR̄
−c:c

2
iðm2

RR −m2�
RRÞ

0 i
m2

LR−m
2
LR̄
−c:c

2
m2

LL̄

−m2
LRþm2

LR̄
þc:c

2

i
m2

LR−m
2
LR̄

−c:c
2

iðm2
RR −m2�

RRÞ
−m2

LRþm2
LR̄
þc:c

2
m2

RR̄ −m2
RR −m2�

RR

1
CCCCCCCCA
; ð2:3Þ
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where

m2
LL̄ ≡m2

l̃
þ 1

2
jYνvuj2 þ

1

8
ðg21 þ g22Þðv2d − v2uÞ;

m2
LR ≡ YνvuðλνvsÞ�;

m2
LR̄ ≡ 1

2
Yν½ð−λvsvdÞ� þ

ffiffiffi
2

p
AYν

vu�;

m2
RR̄ ≡m2

ν̃ þ 2jλνvsj2 þ
1

2
jYνvuj2;

m2
RR ≡ 1

2
λν½

ffiffiffi
2

p
Aλνvs þ ðκv2s − λvdvuÞ��: ð2:4Þ

If all the parameters in the matrix are real, i.e., there is no
CP violation, the real and imaginary parts of the sneutrino
fields will not mix. In this case, the 4 × 4mass matrix splits
into two 2 × 2 matrices,

1

2
ðν̃Li; ν̃RiÞ

 
m2

LL̄ �m2
LR þm2

LR̄

�m2
LR þm2

LR̄ m2
RR̄ � 2m2

RR

!�
ν̃Li

ν̃Ri

�
;

where i ¼ 1 and 2 denote CP-even and CP-odd states,
respectively, and the minus signs in the matrix elements are
relevant to the CP-odd states. These formulas indicate that
the chiral mixings of the sneutrinos are proportional to Yν,
and hence, they are negligible. Thus, the sneutrino mass
eigenstate and the chiral state coincide. In our study, we
selected the lightest right-handed state as the DM candi-
date. The formulas also indicate that the mass splitting
between CP-even and CP-odd right-handed states is given
by Δm2 ≡m2

even −m2
odd ¼ 4m2

RR, which implies that the
sneutrino DM has a definite CP number, i.e., it is CP even
if m2

RR < 0 and CP odd for the other case. In our study of
the sneutrino DM, we consider both CP possibilities.
The coupling strengths of the CP-even sneutrino DM

with Higgs bosons are given by

Cν̃1ν̃1hi ¼
λλνMW

g
ðsin βZi1 þ cos βZi2Þ

−
� ffiffiffi

2
p

λ
ð2λ2ν þ κλνÞμ −

λνAλνffiffiffi
2

p
�
Zi3;

Cν̃1ν̃1hihj ¼
1

2
λλνZi1Zj2 −

�
λ2ν þ

1

2
λνκ

�
Zi3Zj3;

Cν̃1ν̃1AmAn
¼ −

1

2
λλν cos β sin βZ0

m1Z
0
n1

−
�
λ2ν −

1

2
λνκ

�
Z0
m2Z

0
n2; ð2:5Þ

where Zij (i, j ¼ 1, 2, 3) and Z0
mn (m, n ¼ 1, 2) are the

elements of the rotations to diagonalize the CP-even
Higgs mass matrix in the bases (Re½H0

d�, Re½H0
u�, Re½S�)

and the CP-odd Higgs mass matrix in the bases
(A≡ cos βIm½H0

u� − sin βIm½H0
d�, Im½S�), respectively.

Those for the CP-odd DM case are obtained from the
formulas for the CP-even state by the substitution
λν → −λν. These expressions indicate that Cν̃1ν̃1hi is sup-
pressed by a factor λλν cos β if hi is the SM Higgs boson,
which corresponds to setting Zi1 ¼ cos β, Zi2 ¼ sin β, and
Zi3 ¼ 0, and all three couplings may be moderately large
only if the Higgs bosons are singlet dominant. Moreover,
among the parameters in the sneutrino sector, λν and Aλν
affect both the couplings and masses of the sneutrinos,
whilem2

ν̃ only affects the masses. These features are helpful
for understanding the behavior of the DM-nucleon scatter-
ing discussed below.

B. Sneutrino sector of ISS-NMSSM

Compared with the Type-I NMSSM, the ISS-NMSSM is
much more complex in its neutrino/sneutrino sector. With
the assignment of the quantum number for the fields in
Table I, its renormalizable superpotential and soft-breaking
terms take the following form [44]:

W ¼
�
WMSSM þ λŝĤu · Ĥd þ

1

3
κŝ3
�

þ
�
1

2
μXX̂ X̂þλνŝν̂RX̂ þ Yν l̂ · Ĥuν̂R

�
;

Lsoft ¼
�
LMSSM þm2

SjSj2 þ λAλSHu ·Hd þ
κ

3
AκS3

�

þ
�
m2

ν̃ ν̃Rν̃
�
R þm2

x̃x̃x̃
� þ 1

2
BμX x̃ x̃

þ ðλνAλνSν̃
�
Rx̃þ YνAνν̃

�
Rl̃Hu þ h:c:Þ

�
;

where the terms in the first bracket on the right side make
up the Lagrangian of the NMSSM, and those in the second
bracket are needed to implement the inverse seesaw
mechanism. The coefficients λν and Yν in the superpotential
are neutrino Yukawa couplings, Aλν and Aν in Lsoft are
coefficients for the soft-breaking trilinear terms, and all of
them are 3 × 3 (diagonal or nondiagonal) matrices in the
flavor space. Moreover, among the parameters in the
superpotential, only the matrix in the flavor space μX is
dimensional. This matrix parametrizes the effect of the
lepton number violation (LNV), which may arise from the
integration of heavy particles in an ultraviolet high-energy
theory with LNV interactions (see, e.g., [71–73]), so the
magnitude of its elements should be suppressed. Similarly,
the soft-breaking parameter BμX tends to be small.
By defining MD ¼ vuffiffi

2
p Yν, MR ¼ vsffiffi

2
p λν, and kMk≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðM†MÞ
p

for an arbitrary matrix M, one can approxi-
mate the mass matrix of the light active neutrinos by

Mν ≃ ½MT
DM

T−1

R �μX½ðM−1
R ÞMD�≡ FμXFT ð2:6Þ
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under the condition kμXk ≪ kMDk ≪ kMRk. In this
approximation, F≡MT

DM
T−1

R , and the magnitudes of its
elements are of the order kMDk=kMRk. Thus, in the inverse
seesaw mechanism, the active neutrino masses are sup-
pressed in a double way, i.e., by the smallness of the
LNV matrix μX and also by the suppression factor
kMDk2=kMRk2. For kμXk ∼OðKeVÞ, one can easily con-
clude that kYνk ∼Oð0.1Þ if the mass scale of the massive
neutrinos kMRk is taken at the TeV order.
Given the expression in Eq. (2.6), one can solve the

matrix μX with neutrino masses mνi and the unitary
Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS extrac-
ted from low-energy experiments [74] to obtain [75,76]

μX ¼ MT
Rm

T−1

D U�
PMNSm

diag
ν U†

PMNSmD
−1MR;

with mdiag
ν ¼ diagðmν1 ; mν2 ; mν3Þ. This formula indicates

that if the Yukawa couplings Yν and λν are flavor diagonal,
the neutrino oscillation observed in the low-energy experi-
ments is attributed only to the nondiagonality of μX. In this
case, being unitary in the neutrino sector requires [77]

½λν�11μ
½Yν�11λvu

> 14.1;
½λν�22μ

½Yν�22λvu
> 33.7;

½λν�33μ
½Yν�33λvu

> 9.4;

ð2:7Þ
which reveals that the ratio ½λν�33=½Yν�33maybe significantly
smaller than ½λν�11=½Yν�11 and ½λν�22=½Yν�22 once λ, μ, and vu
(or alternatively tan β) are given. Furthermore, if λν is
assumed proportional to the identity matrix, ½Yν�33 may be
much larger than ½Yν�11 and ½Yν�22.
In addition to the inputs λ, κ, μ, and tan β in the Higgs

sector, the sneutrino sector in the ISS-NMSSM involves
the parameters Yν, λν, Aν, Aλν , μX, and BμX and the soft-
breaking masses ml̃, mν̃, and mx̃. As a result, the squared
mass of the sneutrino fields is given by a 9 × 9 matrix in
three-generation ðν̃L; ν̃�R; x̃Þ bases, whose form is quite
complicated. However, we note the fact that among these
parameters, only μX must be flavor nondiagonal to predict
the neutrino oscillations, but since its elements are usually
less than 10 KeV [75], it can be safely neglected in
calculating the sneutrino mass. Thus, if there are no flavor
mixings for the other parameters, the matrix is flavor
diagonal, and one-generation ðν̃L; ν̃�R; x̃Þ bases can be used
to study the properties of the sneutrino DM. In this work,
we take the third-generation sneutrinos as the DM sector,
which is motivated by the fact that both the unitary bound
and the constraints of the LHC search for sparticles in this
sector are significantly weaker than those in the other
generations [44]. In the discussion below, when we refer to
the parameters Yν, λν, Aν, Aλν , mν̃, mx̃, and ml̃, we are
actually referring their 33 elements, which is the same as
what we did for the Type-I NMSSM.
If the sneutrino field are decomposed into CP-even and

CP-odd parts,

ν̃L ¼ 1ffiffiffi
2

p ðϕ1 þ iσ1Þ; ν̃R ¼ 1ffiffiffi
2

p ðϕ2 þ iσ2Þ;

x̃ ¼ 1ffiffiffi
2

p ðϕ3 þ iσ3Þ; ð2:8Þ

the squared mass matrix of the CP-even fields is given by

m2
ν̃ ¼

0
B@

m11 m12 m13

m�
12 m22 m23

m�
13 m�

23 m33

1
CA; ð2:9Þ

in the bases ðϕ1;ϕ2;ϕ3Þ, where

m11 ¼
1

4
½2v2uReðYνY�

νÞ þ 4Reðm2
l̃
Þ�

þ 1

8
ðg21 þ g22Þð−v2u þ v2dÞ1;

m12 ¼ −
1

2
vdvsReðλY�

νÞ þ
1ffiffiffi
2

p vuReðYνAνÞ;

m13 ¼
1

2
vsvuReðYνλ

�
νÞ;

m22 ¼
1

4
½2v2sReðλνλ�νÞ þ 2v2uReðYνY�

νÞ þ 4Reðm2
ν̃Þ�;

m23 ¼
1

8
f−2vdvuλλν þ 2½ð−vdvuλþ v2sκÞλ�ν þ v2sκλν�

þ
ffiffiffi
2

p
vs½−4ReðμXλ�νÞ þ 4ReðA�

λν
λνÞ�g;

m33 ¼
1

8
ð4v2sReðλνλ�νÞ þ 8ReðBμXÞ

þ 8ReðμXμ�XÞ þ 8Reðm2
x̃ÞÞ: ð2:10Þ

This matrix shows that the mixing of the ϕ1 field with the
other fields is determined by the parameters Yν and Aν. As
Yν approaches zero,m12 andm13 vanish, and consequently,
ϕ1 no longer mixes with the fields ϕ2 and ϕ3. This situation
is quite similar to that of the Type-I NMSSM. Moreover, if
the first terms in m22 and m33 are far dominant over the
other terms in their respective expressions, thenm22 ≃m33.
This results in maximal mixing between the ϕ2 and ϕ3

fields. In this case, ν̃1 is approximated by ν̃1 ≃ 1=
ffiffiffi
2

p ½ϕ2 −
sgnðm23Þϕ3� if the left-handed field is decoupled [44]. Such
a situation is frequently encountered in the ISS-NMSSM.
The mass matrix of the CP-odd sneutrino fields can be

obtained from that of the CP-even fields by the substitution
μX → −μX and BμX → −BμX . Since μX and BμX represent
the degree of the LNV, their effect on m33 should be much
smaller than the other contributions. In the extreme case
of μX ¼ 0 and BμX ¼ 0, any CP-odd sneutrino state is
accompanied by a mass-degenerate CP-even sneutrino
state. Consequently, the sneutrino particle as a mass
eigenstate corresponds to a complex field, and it has an
antiparticle [78]. Alternatively, if BμX takes a naturally
suppressed value, the mass splitting between the CP-even
and CP-odd states is usually tiny, e.g., less than 0.2 GeV for
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BμX ¼ 100 GeV2 and mν̃1 ∼ 100 GeV. Such a sneutrino is
called a pseudocomplex particle in the literature [73,79–
81]. This feature of the sneutrino DM is quite different from
that in the Type-I NMSSM.
In the ISS-NMSSM, the ν̃�1ν̃1hi coupling strength is

given by

Cν̃�
1
ν̃1hi ¼ Cν̃�

1
ν̃1Hd

Zi1 þ Cν̃�
1
ν̃1Hu

Zi2 þ Cν̃�
1
ν̃1SZi3;

where Cν̃�
1
ν̃1s (s ¼ Re½H0

d�;Re½H0
u�;Re½S�) denotes the cou-

pling of ν̃1 with the scalar field s. For one-generation
sneutrino case, it is given by

Cν̃�
1
ν̃1Re½H0

d� ¼ λYνvsV11V12 þ λλνvuV12V13 −
1

4
ðg21 þ g22ÞvdV11V11;

Cν̃�
1
ν̃1Re½H0

u� ¼ λλνvdV12V13 −
ffiffiffi
2

p
YνAνV11V12 − Y2

νvuV11V11 − λνYνvsV11V13

− Y2
νvuV12V12 þ

1

4
ðg21 þ g22ÞvuV11V11;

Cν̃�
1
ν̃1Re½S� ¼ λYνvdV11V12 − 2κλνvsV12V13 −

ffiffiffi
2

p
λνAλνV12V13 þ

ffiffiffi
2

p
λνμXV12V13

− λνYνvuV11V13 − λ2νvsðV12V12 þ V13V13Þ; ð2:11Þ

where V denotes the rotation matrix to diagonalize the squared mass matrix in Eq. (2.9). This formula indicates that, among
the parameters in the sneutrino sector, Yν, λν, Aν, and Aλν affect not only the interactions of the sneutrinos but also the mass
spectrum and the mixing of the sneutrinos. In contrast, the soft-breaking masses m2

ν̃ and m2
x̃ affect only the latter property.

Given the typical value of the quantities in Eq. (2.11), i.e., tan β ≫ 1, jV11j < 0.1, Yν; κ; λ; λν ∼Oð0.1Þ and
λνvs; λvs; Aν; Aλν ∼Oð100 GeVÞ, the couplings Cν̃1ν̃1S can be approximated by

Cν̃�
1
ν̃1Re½H0

d� ≃ λYνvsV11V12 þ λλνvuV12V13;

Cν̃�
1
ν̃1Re½H0

u� ≃ −
ffiffiffi
2

p
λνAνV11V12 − λνYνvsV11V13 − Y2

νvuV12V12;

Cν̃�
1
ν̃1Re½S� ≃ −2κλνvsV12V13 −

ffiffiffi
2

p
λνAλνV12V13 − λ2νvs; ð2:12Þ

and it can be estimated that jCν̃�
1
ν̃1Re½H0

d�j, jCν̃�
1
ν̃1Re½H0

u�j ≲
10 GeV and Cν̃�

1
ν̃1Re½S� ≲ 100 GeV. This estimation reflects

the fact that jCν̃�
1
ν̃1Re½S�j is usually much larger than the other

two couplings. The basic reason for this is that ν̃1 is a
singlet-dominated scalar, so it can couple directly with the
field S, while in the case of V11 ¼ 0, the other couplings
emerge only after electroweak symmetry breaking.

C. DM-nucleon scattering

Since the sneutrino DM in the NMSSM extensions is a
singlet-dominated scalar with definite CP and lepton
numbers, its interaction with nucleon N (N ¼ p, n) is
mediated mainly by theCP-even Higgs bosons hi (i ¼ 1, 2,
3), yielding the effective operator Lν̃1N ¼ fN ν̃�1ν̃1ψ̄NψN,
where the coefficient fN is given by [82]

fN ¼ mN

X3
i¼1

Cν̃�
1
ν̃1hi

m2
hi

ChiNN

¼ mN

X3
i¼1

Cν̃�
1
ν̃1hi

m2
hi

ð−gÞ
2mW

�
Zi2

sin β
FN
u þ Zi1

cos β
FN
d

�
;

andChiNN denotes the Yukawa coupling of the Higgs boson
hi with the nucleon N that relies on the nucleon form
factors fNG ¼ 1 −

P
q¼u;d;s f

N
q , FN

u ¼ fNu þ 4
27
fNG and FN

d ¼
fNd þ fNs þ 2

27
fNG with fNq ¼ m−1

N hNjmqqq̄jNi (for q ¼ u,
d, s). This operator does not contribute to the SD cross
section for the ν̃1 − N scattering, while it predicts the SI
cross section as follows [82]:

σSIν̃1−N ¼ μ2red
4πm2

ν̃1

f2N ¼ 4FN2
u μ2redm

2
N

π

×
nX

i
ðaui þ adiFN

d =F
N
u Þ
o
2
; ð2:13Þ

where μred ¼ mN=ð1þmN=mν̃1Þ is the reduced mass of
the nucleon with mν̃1 , and the quantities aui and adi are
defined by

aui ¼ −
g

8mW

Cν̃�
1
ν̃1hi

m2
hi
mν̃1

Zi2

sin β
;

adi ¼ −
g

8mW

Cν̃�
1
ν̃1hi

m2
hi
mν̃1

Zi1

cos β
ð2:14Þ
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to facilitate our analysis.4 If one uses the default setting of
the package micrOMEGAs [83–85] for the nucleon form
factors, i.e., σπN ¼ 34 MeV and σ0 ¼ 42 MeV [86], in
calculating σSIν̃1−p, then Fp

u ≃ 0.15 and Fp
d ≃ 0.14. Alter-

natively, if one takes σπN ¼ 59 MeV and σ0 ¼ 57 MeV
that were obtained in [87–89] and [90], respectively, Fp

u ≃
0.16 and Fp

d ≃ 0.13. This shows that different choices of the
σπN and σ0 can induce uncertainties of Oð10%Þ in Fp

u and
Fp
d , and this does not drastically change the cross section.

In addition, with the default setting, Fn
u ≃ 0.15 and

Fn
d ≃ 0.14. This implies the relation σSIν̃1−p ≃ σSIν̃1−n for the

Higgs-mediated scattering.
The expressions of aui and adi reveal the following

important features of the scattering:
(i) Although the SD cross section vanishes, the SI cross

section depends not only on the parameters in the
Higgs sector but also on those in the sneutrino
sector, which include λν, Aλν , and mν̃ for the Type-I
NMSSM and λν, Yν, Aλν , Aν,mν̃, andmx̃ for the ISS-
NMSSM. This feature provides the theories (espe-
cially the ISS-NMSSM) with a great deal of freedom
to be consistent with the experimental results. In
particular, a small jμj no longer enhance the cross
section, and it is quite often that, after fixing the
parameters in the Higgs sector, an experimentally
allowed DM candidate can be predicted by only
adjusting the inputs of the sneutrino sector. In
contrast, in the MSSM or the NMSSM with the
lightest neutralino being a DM candidate, the SI and
SD cross sections rely only on the DM mass and the
parameters in the Higgs sector. Due to different
dependencies of the cross sections on the parameters
and also due to the constraints of the LHC experi-
ments on the parameters, it is not easy to suppress
the two cross sections simultaneously in the light
Higgsino case [14,15,17–19].

(ii) Each of the hi contributions to the SI cross section is
naturally suppressed. Explicitly speaking, the mass
of the Re½H0

d�-dominated Higgs particle is usually at
the TeV order, so its contribution is suppressed by
the large mass. The Re½H0

u�-dominated scalar cor-
responds to the SM-like Higgs boson and its
coupling with ν̃1 is suppressed by the factor
λλν cos β and the small Yν. Moreover, as far as the
ISS-NMSSM is concerned, the accidental cancella-
tion between the different terms in Cν̃�

1
ν̃1Re½H0

u� can
further suppress the coupling. In most cases, the

contribution from the singlet-dominated scalar is the
most important, but it vanishes if there is no singlet-
doublet mixing in the CP-even Higgs sector.

Due to these features, the extensions can easily satisfy the
constraints of the DMDD experiments, and this was proven
by the Bayesian analysis of the Type-I NMSSM [37].
To further illustrate the behavior of the scattering rate, we

consider a special case where Cν̃�
1
ν̃1Hd

¼ Cν̃�
1
ν̃1Hu

¼ 0 and
mH� ≳ 1 TeV. We first integrate out the heavy doublet
Higgs field so that the CP-even Higgs sector contains
only the SM Higgs field sin βRe½H0

u� þ cos βRe½H0
d� and

the singlet field Re½S�. We then calculate the scattering
amplitude by the mass insertion method. The result takes
the following form:

X
i

aqi ¼ −
g

8mW

Cν̃�
1
ν̃1S

mν̃1

×
ðm2

h2
−m2

h1
Þ sin θ cos θ

m2
h1
m2

h2

≃ −
g

8mW

Cν̃�
1
ν̃1S

mν̃1

×
1

ð125 GeVÞ2 × δ × sin θ cos θ;

ð2:15Þ

where δ denotes the splitting between m2
h1

and m2
h2

normalized by the squared mass of the singlet-dominated
Higgs boson, and θ is the mixing angle of the SM Higgs
field and the singlet field. This formula indicates that,
besides reducing Cν̃�

1
ν̃1S in the specific parameter space of

the sneutrino sector, a small mixing angle obtained by
adjusting the parameters in the Higgs sector can suppress
the scattering. This small mixing, however, is favored by
the Higgs data at the LHC.
At first glance, it appears that the formula in Eq. (2.15)

may be applied to the NMSSM with the Singlino-
dominated neutralino being the DM candidate by the
replacement Cν̃�

1
ν̃1S=mν̃1 → Cχ̃0

1
χ̃0
1
S ≃ κ. This speculation is

incorrect because, in order to obtain the correct density, the
neutralino must contain sizable Higgsino components, and
this will induce the direct coupling of the neutralino with
the SM Higgs field. As a result, the scattering cross section
is quite large, even for the case of sin θ ¼ 0 (this is evident
from the fact that λ > 2κ, and it is demonstrated in the
example of Case II in the Appendix). In the seesaw
extensions of the NMSSM, however, the sneutrino DM
may naturally correspond to an almost pure singlet field. In
this case, its coupling with the SM Higgs field emerges
only after electroweak symmetry breaking and is sup-
pressed by the factors λλνvd and Y2

νvu. This is a significant
difference between these extensions and the NMSSM.
Before concluding the introduction of the theories, we

point out that DM physics in the BμX ¼ 0 case of the ISS-
NMSSM is slightly different from the previous description
in two aspects. One is that the sneutrino DM corresponds
to a complex field, and its antiparticle also acts as a DM
candidate with an equal contribution to the relic density.

4In the case that the DM candidate is a Majorana fermion, e.g.,
the lightest neutralino in the MSSM and NMSSM, the scattering
cross section takes the same form as Eq. (2.13) except that aqi is
obtained from Eq. (2.14) by the replacement Cν̃�

1
ν̃1hi=mν̃1 →

Cχ̃0
1
χ̃0
1
hi [44]. This similarity was used to compare the scattering

rate in different models [44].

SUPPRESSING THE SCATTERING OF WIMP DARK MATTER … PHYS. REV. D 101, 075003 (2020)

075003-9



As such, this case is actually a two-component DM theory.
The other is that the Z boson can mediate the elastic
scattering of the DM with nucleons, and consequently, it
contributes to the SI cross section. Since the total SI cross
section in such a theory is obtained by averaging over the
ν̃1N and ν̃�1N scatterings and the interferences between the
Z and the Higgs exchange diagrams for the two scatterings
have opposite signs [91], the SI cross section can be written
as [41]

σSIN ≡ σSIν̃1−N þ σSIν̃�
1
−N

2
¼ σhN þ σZN; ð2:16Þ

where σhN is the same as before, and the Z-mediated
contributions are given by

σZn ≡G2
FV

4
11

2π

m2
n

ð1þmn=mν̃1Þ2
;

σZp ≡G2
FV

4
11ð4sin2θW − 1Þ2

2π

m2
p

ð1þmp=mν̃1Þ2
; ð2:17Þ

where GF denotes the Fermi constant and θW is the weak
angle. In this case, σSIn may differ significantly from σSIp .
Consequently, the effective cross section of the coherent
scattering between the DMs and xenon nucleus (defined as
the averaged cross section σSIν̃1−Xe=A

2, where A denotes the
mass number of the xenon nucleus) is given by the
following general form:

σSIeff ¼ 0.169σSIp þ 0.347σSIn þ 0.484
ffiffiffiffiffiffiffiffiffiffiffiffi
σSIp σ

SI
n

q
; ð2:18Þ

where the three coefficients on the right side of the equation
are obtained by considering the abundance of different

xenon isotopes in nature. This effective cross section has
the property σSIeff ¼ σSIN if σSIp and σSIn are equal, and it can be
compared directly with the bound of the PandaX-II and
XENON-1T experiments if the SD scattering cross section
is negligible [91].
Using the micrOMEGAs code [83–85], we confirmed that

for BμX ≲ 200 GeV2, the DM observables, such as its relic
density and its current annihilation rate hσvi0, are insensi-
tive to the value of BμX [44]. However, as far as the SI cross
section is concerned, the predictions for the BμX ¼ 0 and
BμX ≠ 0 cases differ significantly due to the reason dis-
cussed above. Numerically speaking, we found that the DM
DD experiments require jV11j≲ 0.01 for the BμX ¼ 0 case,
since the Z-mediated contribution is usually much larger
than the Higgs-mediated contribution for sizable V11 [92].
In contrast, jV11jmay be as large as 0.1 for the BμX ≠ 0 case
(we will present the results in our forthcoming work). We
also confirmed that, when building the model file for the
micrOMEGAs with the package SARAH [93–95], taking ν̃1 as
a complex field (corresponding to BμX ¼ 0) or as a real field
(corresponding to BμX ≠ 0) significantly affects the time
cost for calculating the relic density: in the BμX ≠ 0 case,
more Feynman diagrams must be calculated, and conse-
quently, the computation is quite time expensive.
Throughout this work, we neglect the Z-mediated con-

tribution by setting BμX ¼ 100 GeV2.

III. NUMERICAL RESULTS

In this section, we compare how the sneutrino DM in the
two extensions stays consistent with the bound of the
XENON-1T experiment on the scattering cross section
under the premise of predicting the correct density and the
photon spectrum of the DM annihilation in dwarf galaxies

TABLE II. A special configuration of the Higgs sector and the default setting of the other unimportant parameters,
which corresponds to the benchmark setting of Region I in [65]. In this configuration, h2 acts as the SM-like Higgs
boson, h1 and A1 are singlet-dominated scalars, χ̃01;2 and χ̃�1 are Higgsino-dominated electroweakinos, and Zij for
i, j ¼ 1, 2, 3 are the elements of the rotation that diagonalize the mass matrix of theCP-even Higgs bosons in the basis
ðRe½H0

d�;Re½H0
u�;Re½S�Þ. All of the masses and Zij in this table are obtained by the setting Yν ¼ λν ¼ 0. Nonzero Yν

and λν may slightly alter their values due to sneutrino loop effects. In addition, the properties of h2 are consistent with
the Higgs results from the recent ALTAS analysis, which are based on 80 fb−1 data at the 13 TeV LHC [96].

Parameter Value Parameter Value Parameter Value

tan β 19.24 λ 0.16 κ 0.11
Aλ 1785.0 GeV Aκ −304.6 GeV μ 147.7 GeV
mq̃ 2000 GeV ml̃ 2000 GeV At 1354.7 GeV
M1 2000 GeV M2 2000 GeV M3 5000 GeV
mh1 96.1 GeV mh2 124.6 GeV mh3 2332.9 GeV
mA1

302.3 GeV mA2
2332.8 GeV mχ̃0

1
145.1 GeV

mχ̃0
2

155.8 GeV mχ̃�
1

152.9 GeV mχ̃�
2

2024.6 GeV
Z11 −0.01 Z12 −0.39 Z13 0.92
Z21 0.05 Z22 0.92 Z23 0.39
Z31 0.99 Z32 −0.05 Z33 −0.01
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compatible with the Fermi-LAT observation. We choose
the benchmark-setting of Region I in [65] for the param-
eters in the Higgs sector with detailed information pre-
sented in Table II. This setting predicts mh1 ≃ 96 GeV, a
TeV magnitude vs (vs ≡

ffiffiffi
2

p
μ=λ ¼ 1273.5 GeV), and large

singlet-doublet Higgs mixing. Thus, the DM-nucleon
scattering may be quite large by the expression of the
Cν̃1ν̃1S and the formula in Eq. (2.15). We emphasize that,
although the setting is consistent with the latest data of the
LHC related to the discovered Higgs boson and the search
for extra bosons at the LEP and LHC [65], it is actually a
rare case since the mixing angle is usually small in the
broad parameter space of the NMSSM after considering
the data. However, studying this extreme case is very
helpful for improving our understanding of the scattering.
In particular, it may reveal the mechanisms that keep the
theories to be consistent with the tight XENON-1T bound.
The procedure in our study is as follows. We first

construct the likelihood function for the DM physics and
perform sophisticated scans over the parameters of the
sneutrino sector for either theory by requiring the lightest
sneutrino as a DM candidate. We then plot the map of
the profile likelihood (PL) [37,97]5 in different two-
dimensional planes to illustrate their features and determine
the underlying physics. The likelihood function we adopt
is expressed as follows:

LDM ¼ LΩν̃1
× LDD × LID; ð3:1Þ

where LΩν̃1
, LDD, and LID account for the relic density, the

XENON-1T experiment, and the Fermi-LATobservation of
dwarf galaxies, respectively. Their expressions are as
follows:

(i) LΩν̃1
is Gaussian distributed, i.e.,

LΩν̃1
¼ e−

½Ωth−Ωobs �2
2σ2 ; ð3:2Þ

where Ωth denotes the theoretical prediction of the
density Ων̃1h

2, Ωobs ¼ 0.120 represents its experi-
mental central value [1], and σ ¼ 0.1 ×Ωobs is the
total (including both theoretical and experimental)
uncertainty of the density.

(ii) LDD takes a Gaussian form with a mean value of
zero [98],

LDD ¼ e
−
σ2
ν̃1−p
2δ2σ ; ð3:3Þ

where σν̃1−p denotes the theoretical prediction of
the DM-proton scattering rate, δσ is evaluated by
δ2σ ¼ UL2

σ=1.642 þ ð0.2σν̃1−pÞ2, ULσ denotes the
upper limit of the latest XENON-1T results on the
scattering cross section at a 90% C.L. [3], and
0.2σν̃1−p parametrizes the theoretical uncertainty
of σν̃1−p.

(iii) LID is calculated by the likelihood function pro-
posed in [99,100] with the data of the Fermi-LAT
Collaboration presented in [101,102].

In our study, we utilized the package SARAH-4.11.0

[93–95] to build the models, the SPheno-4.0.3 code [103]
to generate the particle spectrum, and the package
micrOMEGAs 4.3.4 [83,85,104] to calculate the DM observ-
ables. We set the soft-breaking masses for the first two-
generation sneutrino fields at 2 TeV throughout this work.

A. Features of sneutrino DM in Type-I NMSSM

We performed two independent scans over the following
parameter space of the Type-I NMSSM6:

0 < mν̃ < 200 GeV; 0.025 < λν < 0.5; jAλν j < 1 TeV;

ð3:4Þ

with the MultiNest algorithm [105,106] by taking the prior
probability density function as uniformly distributed and ν̃1
as a DM candidate to beCP-even and CP-odd, respectively.
With the samples obtained in the scan, we show the map of
the PL for the function LDM on different planes in Fig. 1.
From the results of the left panels for the CP-even case,
following facts are obtained:

(i) mν̃1 is concentrated on the range from 125 to
135 GeV, which is close to mχ̃0

1
. Since λν is small,

the annihilations ν̃1ν̃1 → h1h1; h1h2; h2h2 are unim-
portant (discussed below), and the sneutrino DM
mainly coannihilated with the Higgsino-dominated
electroweakinos to achieve its measured density. In
this case, the relic density is much more sensitive to
the splitting between mν̃1 and μ than to λν.

(ii) λν in the 2σ confidence interval (CI) is upper
bounded, e.g., λν ≲ 0.09 for mν̃1 ≃ 128 GeV and
λν ≲ 0.12 for mν̃1 ≃ 134 GeV. This feature is mainly
due to the constraints from the XENON-1T experi-
ment, which can be understood as follows. First, for

5In frequentist statistics, the PL for a likelihood function L
represents the most significant likelihood value in a specific
parameter space. With the two-dimensional (2D) PL as an
example, it is defined by

LðΘA;ΘBÞ ¼ max
Θ1;…;ΘA−1;ΘAþ1;…;ΘB−1;ΘBþ1;���

LðΘÞ;

whereΘ ¼ ðΘA;ΘB; � � �Þ is a set of parameters thatL depends on,
and one obtains the maximization by changing parameters other
than ΘA and ΘB.

6We note that the SM-like Higgs boson may decay into a
massive neutrino pair if it is lighter than about 60 GeV, and the
branching ratio may be significantly large since the boson in the
benchmark setting contains a sizable singlet Higgs component.
To avoid such a possibility, we require λν ≳ 0.025, so the decay is
kinematically forbidden.
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the parameters in Table II (in particular the remark-
able feature that both the ratio μ=λ and the singlet-
doublet Higgs mixing are quite large), the Cν̃1ν̃1h1
and Cν̃1ν̃1h2 couplings in Eq. (2.5) are contributed to
mainly by the terms in the second brackets. Thus,
one can conclude from Eq. (2.15) that

X
i

aqi ≃ −
g

8mWmν̃1

×

� ffiffiffi
2

p

λ
ð2λ2ν þ κλνÞμ −

λνAλνffiffiffi
2

p
�

×
0.25

ð125 GeVÞ2 : ð3:5Þ

This approximation reflects that the SI cross section
is roughly proportional to 1=m2

ν̃1
, and it increases

monotonically with λν. Second, the soft-breaking
term of the Type-I NMSSM in Eq. (2.1) and the

sneutrino mass matrix in Eq. (2.3) show that the
parameter mν̃ does not introduce any interactions,
and it is related to mν̃1 by

m2
ν̃1
≃m2

RR̄ þ 2m2
RR

¼ m2
ν̃ þ 2jλνvsj2 þ

1

2
jYνvuj2

þ λν½
ffiffiffi
2

p
Aλνvs þ ðκv2s − λvdvuÞ��: ð3:6Þ

As a result, one may substitute mν̃ with mν̃1 as an
input parameter. In this way, mν̃1 no longer relies on
λν and Aλν except that, to make the CP-even
sneutrino state as a DM candidate lighter than its
CP-odd partner, Aλν should be negative and satisfy
jAλν j≳ κ=λμ with κ=λμ ≃ 100 GeV in our parame-
ters. However, a negative Aλν ensures that the second

FIG. 1. Two-dimensional profile likelihoods of the function L in Eq. (3.1), which are projected onto the λν −mν̃1 and σSIν̃1−p −mν̃1
planes in the framework of the Type-I NMSSM, respectively. The left panels are the results for the CP-even DM case, and the right
panels are for the CP-odd DM case. Since χ2min ≃ 0 for the best point (marked with star symbol in the figure), the boundary for 1σ
confidence interval (red solid line) and that for 2σ confidence interval (white solid line) correspond to χ2 ≃ 2.3 and χ2 ≃ 6.18,
respectively. This figure reflects the preference of the DM measurements on the parameter space of the Type-I NMSSM.
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term in the curly brackets of Eq. (3.5) always
interferes constructively with the first term to
strengthen the constraint of the DD experiment.
Finally, we emphasize that a relaxed experimental
bound on the scattering cross section with the
increase in mν̃1 is also an important factor for
determining the upper bound.

(iii) The annihilation ν̃1ν̃1 → h1h1 for mh1 ≳ 96 GeV is
unable to account for the measured DM density.
This is because the density requires λν ≃ 0.17 for
the parameters in Table II if the channel is fully
responsible for the density through the quartic scalar
interactions (this conclusion was obtained by the
formula of the relic density in [107,108]). Such a
large λν, however, is strongly disfavored by the
XENON-1T experiment.

As for the upper left panel of Fig. 1, it may appear that
the dependence of the SI cross section on the parameter λν
becomes a step function at λν ≃ 0.09. A proper under-
standing of the panel involves the concept of the two-
dimensional (2D) PL Lðλν; mν̃1Þ, which is defined by
(footnote 5)

Lðλν; mν̃1Þ ¼ max
jAλν j≤1 TeV

LDDðλν; Aλν ; mν̃1Þ: ð3:7Þ

In plotting the panel, themaximization overAλν was obtained
through the following procedure: we split the λν −mν̃1 plane
into 80 × 80 equal boxes (i.e., we divided each dimension of
the plane by 80 equal bins), fitted the samples obtained in the
scan into each box so that the samples in each box corre-
sponded roughly equal λν and mν̃1 (but Aλν might differ
greatly), and finally selected the maximum likelihood value
from the samples in each boxas thePLvalue. It is obvious that
Lðλν; mν̃1Þ reflects the preference of the theory on the
parameters λν and mν̃1 , and for a given point in the λν −
mν̃1 plane, its value represents the capability of the point to
account for experimental data. Sequentially, one can define
the 2D CI as the region on the plane satisfying

χ2 − χ2min ≤ 6.18; ð3:8Þ
where χ2 ≡ −2 lnLðλν; mν̃1Þ, and χ2min is the χ2 value for
the best sample (best point) obtained in the scan. In our
study, χ2min ≃ 0 because the DM experimental data are
independent and consistent with each other, and the Type-I
NMSSM can explain the data well. With this knowledge, one
can infer that the CIs are not necessarily contiguous [37,97].
In fact, the panel actually reveals the following conclusions:
the 2D CI is mainly located in two isolated parameter islands
in the λν −mν̃1 plane, which are featured by λν ≲ 0.09,
125GeV≲mν̃1 ≲135GeV, and λν ≳ 0.08, mν̃1 ∼134GeV,
respectively, and the two islands are connected at mν̃1 ∼
132 GeV with 0.08 ≤ λν ≤ 0.09. We confirmed that at
the bridge, Aλν may vary from −260 to −410 GeV to predict
χ2 ≤ 6.18.

Next, we concentrate on the CP-odd sneutrino DM case,
where aqi is given by [discussed below Eq. (2.5)]

X
i

aqi ≃ −
g

8mWmν̃1

×

� ffiffiffi
2

p

λ
ð2λ2ν − κλνÞμþ

λνAλνffiffiffi
2

p
�

×
0.25

ð125 GeVÞ2 : ð3:9Þ

Compared with the CP-even case, the results on the right
panels of Fig. 1 show similar features except for three
aspects. The first is that λν in the coannihilation region can
take a much larger value than the CP-even case. The reason
is that Aλν in the CP-odd case may be either positive or
negative, and consequently, the second term in the curly
brackets of Eq. (3.9) can interfere destructively with the
first term to weaken the constraint of the DM DD experi-
ment. The second aspect is that the 1σ CI in the λν −mν̃1
plane includes some separated islands withmν̃1 ≲ 125 GeV
and λν ≃ 0.17. For samples located in these islands, the
annihilations ν̃1ν̃1 → h1h1; h1h2 can account for the mea-
sured density and the scattering cross section can be con-
sistent with the bound of the XENON-1Texperiment due to
the cancellation. The last aspect is that there is a broad 2σ
CI characterized by mν̃1 ≲ 125 GeV and λν ≲ 0.11. In this
region, the correct DM density cannot be achieved by the
coannihilation and the annihilation into Higgs bosons,
although the constraint from the DM DD experiment can
be satisfied. This region is a compromise of the two
constraints that maximize the PL in Eq. (3.7).
The information of the best point for the two cases is as

follows:
(i) CP-even case:

λν ¼ 0.05, Aλν ¼ −438 GeV, mν̃ ¼ 192.3 GeV,
Ωth ¼ 0.120, σν̃1−p¼4.1×10−49 cm2, ΔΩ ¼ 42.2,
Δσ ¼ 1.4, χ̄2 ≃ 0.

(ii) CP-odd case:
λν ¼ 0.08, Aλν ¼ 58.6 GeV, mν̃ ¼ 138.2 GeV,

Ωth ¼ 0.119, σν̃1−p¼1.7×10−49 cm2, ΔΩ ¼ 20.2,
Δσ ¼ 1.8, χ̄2 ≃ 0,

where χ̄2 ≡ −2 lnLDM, and the fine-tuning quantities ΔΩ
and Δσ are defined by7

ΔΩ ≡Maxi

				 ∂½Ωth=Ωobs�
∂ lnpi

				;
Δσ ≡Maxi

				 ∂½σν̃1−p=ð10−47 cm2Þ�
∂ lnpi

				; ð3:10Þ

7In the definition of Δσ , the unit of σν̃1−p, i.e., 10
−47 cm2,

represents its current experimental sensitivity. Since the relic
density has been precisely measured while the scattering cross
section is only upper bounded, we chose different definitions of
ΔΩ and Δσ to parametrize the theory’s ability to account for the
experimental results.
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where pi denotes any of the input parameters of the theory.
These quantities reflect the adaptation of the parameter
point to be consistent with the experimental measurements.
The larger they are, the more finely tuned the theory will
be to coincide with the measurements. From our numerical
results, we found that Ωth is most sensitive to the mass
splitting between ν̃1 and χ̃01, i.e., to mν̃, λν, and Aλν . In con-
trast, σν̃1−p is sensitive only to λν and Aλν . Given the values
of ΔΩ and Δσ for the best points, we concluded that the
Type-I NMSSM is natural in DM physics for either case.
Moreover, we also calculated the Bayesian evidence Z and
found that lnZ ¼ −8.98 for the CP-even case and lnZ ¼
−8.27 for the CP-odd case. Since the Jeffrey’s scale was
only 0.71, we concluded that the theory does not show
a strong preference of the CP-odd case over the CP-even
case [109,110].
Before concluding this section, we emphasize that the

1σ CIs of our results for either case also include the
regions characterized by mν̃1 ≃mh1=2 or by mν̃1 ≃mh2=2.
In these regions, the DM was annihilated by a resonant
Higgs boson to obtain its measured density. Quite similar
to the coannihilation case, λν may be very small, and
consequently, σν̃1−p can be as small as 10−50 cm2. These
regions, however, have been excluded by the LHC search
for the 2τ þ EMiss

T signal, which is induced by the process
pp → χ̃�1 χ̃

∓
1 , due to the large mass splitting between χ̃�1

and ν̃1 [37]. As such, we do not show them on the
panels.

B. Features of sneutrino DM in ISS-NMSSM

Similar to our approach for the Type-I NMSSM,
we scanned the following parameter space of the ISS-
NMSSM:

0 < Yν; λν < 0.7; 0 < mν̃; mx̃ < 250 GeV;

jAνj; jAλν j < 1 TeV; ð3:11Þ

by taking the lightest sneutrino as a DM candidate and
requiring that the Yukawa couplings Yν and λν satisfy the
unitary constraint in Eq. (2.7). The results of the CIs are
projected onto the λν −mν̃1 and λν − σν̃1−p planes in Fig. 2.
From this figure, one can learn the following facts:

(i) Formν̃1 ranging from about 127 to 133 GeV, the DM
mainly coannihilated with the Higgsino-dominated
χ̃01 to achieve the measured density. In this case,
σν̃1−p can be suppressed to 10−51 cm2. In contrast,
the cross section is usually larger than 10−50 cm2 in
the Type-I NMSSM for the same mass range.
Moreover, the XENON-1T experiment limits
λν ≲ 0.44, which is significantly weaker than the
limitation on λν in the Type-I NMSSM.8

(ii) Similar to the Type-I NMSSM, 1σ CIs is allowed to
be in the mass range 110 GeV≲mν̃1 ≲ 125 GeV,
where the DM obtains its density mainly through the
process ν̃1ν̃1 → h1h1; h1h2. The difference is that
the CI of the ISS-NMSSM is much broader than that
of the Type-I NMSSM, and the cross section can
be significantly lower than the prediction of the
Type-I NMSSM.

(iii) In the case of mν̃1 ∼ 95 GeV, ν̃1 annihilated mainly
through the channel ν̃1ν̃1 → h1h1. Correspondingly,
the DM density requires λν ∼ 0.35 (see the formula

FIG. 2. The map for the profile likelihood of the function LDM in Eq. (3.1), which is plotted in the λν −mν̃1 and σ
SI
ν̃1−p −mν̃1 planes in

the framework of the ISS-NMSSM, respectively. Since χ2min ≃ 0 for the best point (marked with star symbol in the figure), the 1σ
boundary (red solid line) and the 2σ boundary (white line) correspond to χ2 ≃ 2.3 and χ2 ≃ 6.18, respectively. This figure reflects the
preference of the DM measurements in the parameter space of the ISS-NMSSM.

8Note that the Yukawa coupling λν in the Type-I NMSSM
corresponds to 2λν in the ISS-NMSSM, which can be inferred by
comparing the strength of the quartic scalar coupling ν̃ν̃ss in the
two theories.
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for the relic density in [107,108]). This phenomenon
is absent in the Type-I NMSSM.

The differences reflect the fact that the ISS-NMSSM has
greater degrees of freedom for adjusting its parameters to be
consistent with relevant experimental constraints than the
Type-I NMSSM, and consequently, its DM physics is more
flexible. In addition, the left-handed slepton soft-breaking
mass ml̃ also plays a role in determining the DM observ-
ables through the matrix element V11, which is different
from the situation for the Type-I NMSSM. In presenting the
contours in Fig. 2, we fixed ml̃ ¼ 2 TeV. We verified that
the conclusions were not affected by this specific choice.
Instead, adopting a smaller ml̃ might slightly improve the
fit of the ISS-NMSSM to the DM observables. For
example, in the region with mν̃1 ≲ 125 GeV, we obtained
χ2min ≃ 0.45 for the best point with ml̃ ¼ 2 TeV and χ2min ≃
0.02 for ml̃ ¼ 400 GeV.
In Table III, we list the detailed information of the best

point in Fig. 2 (labeled as Point I with corresponding
χ2 ≃ 0) and a point with mν̃1 ≃ 96 GeV and χ2 ≃ 1.4
(labeled as Point II). From this table, the following is
evident:

(i) For Point I, the DM particle is dominated by the x̃
field in its component, while for Point II, it is an
equal mix of the ν̃R and x̃ fields.9 In contrast, the DM
in the Type-I NMSSM is mainly composed of the
ν̃R field.

(ii) The values ΔΩ ¼ 25 and Δσ ¼ 0.08 for Point I
reflect the insensitivity of these quantities to the
input parameters. The implication is that there is a
large parameter space around the point that satisfies
the experimental constraints. We checked that the
mass splitting of ν̃1 and χ̃01 was mainly determined
ΔΩ, which was similar to the best points of the
Type-I NMSSM.

(iii) Given ΔΩ ¼ 167 and Δσ ¼ 99, Point II requires
considerable tuning to coincide with the experimen-
tal results, and thus, it is difficult to obtain in the

scan. Our results indicate that, as far as the point is
concerned, Ωth is most sensitive to λν and Aλν , while
σν̃1−p is most sensitive to λν and Yν.

C. Effective natural NMSSM scenario

In the seesaw extensions of the NMSSM, the sparticle’s
signals may be distinct from those in the NMSSM, and so is
the strategy to look for them at the LHC. This feature is
reflected in two aspects. One is that, since the sneutrino DM
carries a lepton number and has very weak interactions with
particles other than the singlet-dominated Higgs boson and
massive neutrinos, the decay chain of the sparticles is usually
long. Moreover, the decay branching ratio depends not
only on the particle mass spectrum but also on new Higgs
couplings, such as Yν and λν. As a result, the phenomenol-
ogy of the sparticles is quite complicated. The other aspect
arises because both the DM search experiments and the
collider experiments relax significantly their constraints on
the extensions [65]. Consequently, broad parameter spaces in
the NMSSM, which have been excluded by the experiments,
are resurrected as experimentally allowed. In particular,
the Higgsino mass maybe around 100 GeV to predict
the Z-boson mass naturally [37,44]. This fact makes the
phenomenology of the extensions quite rich. Despite these
differences, we will show in the following that the phenom-
enology of the extensions may still mimic that of the
NMSSM in a particular case, which we dub the effective
natural NMSSM scenario (ENNS).
The ENNS contains only the fields of the NMSSM, with

its parameter space automatically satisfying the constraints
from DM physics and its potentially significant collider
signals self-contained in the framework. The following
observations motivate this scenario:

(i) From the discussion in previous sections and our
Bayesian analysis of the Type-I NMSSM in [37], the
coannihilation of the sneutrino DM with the lightest
neutralino is the most important mechanism to
obtain the measured DM density.10

TABLE III. Information of the benchmark points in the ISS-NMSSM.

Point I Point II Point I Point II

Yν 0.03 0.16 V11 0 0
λν 0.07 0.40 V12 −0.50 0.72
Aν −398.2 GeV 393.0 GeV V13 −0.87 −0.70
Aλν −372.1 GeV 344.1 GeV Ωth 0.120 0.125
mν̃ 207.6 GeV 187.3 GeV ΔΩ 25 167.3
mx̃ 153.3 GeV 213.1 GeV σSIν̃1−p 9.0 × 10−52 cm2 4.2 × 10−47 cm2

mν̃1 130.4 GeV 96.5 GeV Δσ 0.08 99.0

9This fact reflects the general conclusion that the maximal
mixing in the sneutrino sector is helpful for the ISS-NMSSM to
evade the experimental constraints. We infer this through in-
tensive scans over the parameter space of the model.

10Very recently, we performed an analysis of the ISS-NMSSM
that was similar to our analysis of the Type-I NMSSM. After
studying the posterior PDFs of the samples, we determined that
this conclusion also applies to the ISS-NMSSM.
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(ii) The coannihilation is insensitive to the parameter λν,
and it is consistent with the constraints from the DM
DD and ID experiments given that λν is not too large.

(iii) The coannihilation has the distinct kinematic feature
mν̃1 ≃mχ̃0

1
, which implies that the DM mass is

roughly determined by mχ̃0
1
in the NMSSM. In this

case, χ̃01 corresponds to missing momentum at
the LHC.

(iv) As indicated by the best points in previous discus-
sions, λν and Yν are preferred to be less than 0.1. In
this case, the ν̃R- or x̃-dominated sneutrino couples
very weakly with the other particles. For such a
sneutrino DM, it intervenes in the phenomenology
of the theories mainly by appearing in the decay
chain of heavy sparticles.

The key features of the ENNS are as follows
(i) The lightest neutralino is Higgsino dominated, so the

sneutrino DM can coannihilate with it to obtain the
right density. In this case, the Higgsino-dominated
particles χ̃01;2 and χ̃�1 act as the lightest supersym-
metric particles of the scenario and are shown as
missing momentum at the LHC if the splitting of
their masses with the sneutrino DMmass is less than
several tens of GeV. This situation is the same as the
natural MSSM [9].
The decay of the Singlino-dominated neutralino is

somewhat complicated. If its Higgsino component
is small, it may decay dominantly into DM and a
massive neutrino, which will subsequently decay
into Wτ, Zν, and hν states. This case, however, is of
less theoretical interest since this neutralino couples
weakly with the other heavier sparticles and has little
effect on their decay. Alternatively, if the neutralino
contains sizable Higgsino components, it prefers
to decay into the Higgsino-dominated neutralino/
chargino plus a vector boson or a Higgs boson.

(ii) The decays of the gaugino-dominated particles and
the colored sparticles are the same as the prediction
of the NMSSM with the lightest neutralino being a
DM candidate because they do not interact directly
with the sneutrinos.

(iii) The decay modes of charged sleptons are scarcely
changed. This can be understood as follows. The
extensions predict singlet-dominated particles νh
(massive neutrinos) and ν̃ (sneutrinos), so the left-
handed slepton has additional decay channels
l̃�L → ν̃H�, ν̃W�, χ̃�1 νh. Since H� is preferred to
be heavy by the LHC search for charged Higgs
bosons and also by B-physics measurements, the
decay l̃�L → ν̃H� is usually kinematically forbidden
for a moderately light l̃L. For the process l̃

�
L → ν̃W�,

it proceeds by the small ν̃L component in ν̃, so its
width is suppressed. The channel l̃�L → χ̃�1 νh is
induced by the Yukawa coupling Yν and can be
negligible if jYνj is much smaller than the magnitude

of the gaugino component in χ̃01, which enables
the decay l̃�L → l�χ̃01 to be dominant [11]. The
right-handed sleptons may also decay into these
final states. Compared with the left-handed sleptons,
the decays must be proceeded by an additional
chiral flipping l̃R → l̃L, so their widths are further
suppressed.

One may also discuss the decay of the left-handed
sneutrino, and the conclusion is that its decay pattern
changes little for a small Yν.

(iv) The singlet-dominated Higgs bosons may be light,
which is one of the interesting features in the
NMSSM. In this case, one can adjust the parameter
λν to enhancemνh so that the decay of the Higgs into
ν̄hνh is kinematically forbidden. In this case, the
decay of the Higgs boson is the same as the NMSSM
predictions.

We emphasize that the ENNS can be realized by only
requiring 2κ ≳ λ, and it corresponds to the case of the
extensions that is most favored by DM experiments. This
situation encourages the study of the phenomenology of the
NMSSM without considering the constraints from DM
experiments.

IV. CONCLUSIONS

With the rapid progress in the DM DD experiments, the
sensitivity to DM-nucleon scattering has reached unprec-
edented precision, which is at the order of 10−47 cm2 for
the SI cross section and 10−42 cm2 for the SD cross section.
These experiments, together with the fruitful LHC experi-
ments, have tightly limited the light Higgsino scenario of
popular supersymmetric theories such as the MSSM and
NMSSM, which customarily take the lightest neutrino as
the DM candidate, and thus deteriorate their naturalness in
predicting electroweak symmetry breaking. Therefore, it is
necessary to seek new mechanisms to suppress the scatter-
ing naturally. It is notable that such a mechanism usually
alters the DM properties and consequently changes the
phenomenology of the traditional theories. This property
may be helpful for the underlying theory to survive the
LHC experiments.
After analyzing the fundamental origin of the tight

constraints on the MSSM and NMSSM, we realized that,
if the DM corresponds to a singlet field under the SM gauge
group or at least its singlet component is naturally highly
dominant over the other components, the DM-nucleon
scattering can be spontaneously suppressed. Based on such
observations and our previous work, we pointed out that, in
the NMSSM augmented with the Type-I seesaw mecha-
nism or the inverse seesaw mechanism, the lightest sneu-
trino as a DM candidate can automatically possess this
property. Furthermore, due to the simplicity of the theo-
retical structure, these extensions are economical super-
symmetric theories that naturally suppress the scattering.
In addition, we showed that the singlet-dominated Higgs
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boson in this framework plays a vital role in multiple ways:
besides generating the Higgsino and massive neutrino
masses as well as significantly affecting the SM-like
Higgs boson mass, it also mediates the annihilation of
the DM or acts as the final state of the annihilation.
Consequently, the sneutrino in the extensions is a viable
WIMP DM.
Although it is known that the scattering is usually

suppressed in the framework, we considered a particular
configuration in the Higgs sector that was able to enhance
the scattering cross section to improve our understanding of
the DM-nucleon scattering. Our study of this dangerous
case revealed that the sneutrino DM could coannihilate with
the lightest neutralino to obtain the measured density. In
this case, the constraint from the DD experiment is readily
satisfied, and the induced tunings in the DM physics are not
serious. Our study of the dangerous case also revealed that
the DD experiments were able to exclude the annihilation
of the sneutrino DM into a pair of singlet-dominated Higgs
bosons as the dominant channel for the DM relic density in
the Type-I NMSSM. However, they still allowed the
process to account for the density in the ISS-NMSSM.
This conclusion shows that the ISS-NMSSM is more
flexible in DM physics than the Type-I NMSSM, since
the ISS-NMSSM has more theoretical parameters and a
more complex structure.
We also discussed the phenomenology of the seesaw

extensions of the NMSSM and showed that it might be
quite similar to that of the NMSSM in the coannihilation
case, which readily satisfies the constraints from DM
experiments. This fact implies that one may ignore the
constraints of DM physics on the NMSSM when studying
its phenomenology.
In summary, the WIMP DM (such as the sneutrino

discussed herein) in supersymmetric theories is still a good
DM candidate that can be naturally consistent with the DM
DD and ID experimental results and the LHC search for
sparticles even when the Higgsino mass is around 100 GeV.
Consequently, relevant supersymmetric theories deserve an
intensive study. We comment that, although we assume that
the sneutrino DM accounts for the total DM density, the
conclusion that the seesaw extensions can naturally sup-
press the DM-nucleon scattering is valid in the multi-
component DM case. In this case, this kind of theory is
valuable if one of the DM components corresponds to a
WIMP, and its scattering with nucleons is found to be tiny.
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APPENDIX

In this appendix, we mainly discuss the constraints of the
SD cross section measurement on the blind spots of the

MSSM and the NMSSM. So far, the strictest limit in this
regard arises from the analysis of the XENON-1T experi-
ment on DM-neutron scattering [4], and the relevant cross
section in the theories is given by [18,19]

σSD
χ̃0
1
−n ¼ 3.1 × 10−40 cm2 ×

�jN13j2 − jN14j2
0.1

�
2

; ðA1Þ

where N13 and N14 are the elements of the rotation to
diagonalize the neutralino mass matrix, which represent the
fractions of the Higgsino component in χ̃01. In the case of
jM1=μj ≪ 1 (jλv=μj ≪ 1) for the MSSM (NMSSM), one
may expand N13 and N14 in powers of M1=μ (λv=μ) to
obtain the approximation in Eq. (1.3) [Eq. (1.6)]. Since the
expansion is conditional [10–12] and cannot be applied to
all the cases that arise, we obtain the values of the elements
by numerically diagonalizing the neutralino mass matrix in
this appendix.
In the theories under consideration, the SI scattering is

induced by the SM-like Higgs boson and the otherCP-even
Higgs bosons. If the latter contribution to the cross section
is negligible, the blind spot condition of the MSSM with a
bino-dominated DM can be simplified as sin 2β ¼ −mχ̃0

1
=μ

[14]. In the heavy Wino limit,mχ̃0
1
¼ M1 by the formula for

mχ̃0
1
in [12]. Likewise, the blind spot of the NMSSM with a

Singlino-dominated DM is characterized by sin 2β ¼
mχ̃0

1
=μ and mχ̃0

1
¼ 2κμ=λ in the heavy gaugino limit

[12,18]. We will use these formulas in our discussion.

1. Constraints on blind spot of MSSM

Given sin 2β ¼ −M1=μ at the blind spot of the MSSM,
the neutralino mass matrix depends only on μ and the
gaugino masses M1;2. In the left panel of Fig. 3, we plot
the SD constraint of the XENON-1T experiment [4] in the
mχ̃0

1
− μ plane of the MSSM (the dark blue region) as well

as the constraint of the future LZ experiment [111,112] in
the plane (the purple region) by settingM2 ¼ 5 TeV. These
results show that the current bound of the SD cross section
requires jμj at the blind spot to be larger than about
300 GeV regardless of the DM mass, and the future
experiments can further exclude jμj up to 800 GeV.
As a useful complement to the DD experiments, we

also show collider constraints at the 95% confidence level
on the blind spot of the MSSM, which arise from the CMS
search for electroweakinos through multilepton signals of
the process pp → χ̃02;3χ̃

�
1 at the 13 TeV LHC with 36 fb−1

data [23]. We mark the excluded region with green color in
the left panel of Fig. 3. In obtaining this region, we
performed detailed simulations of the electroweakino
production process in the same way as previously reported
]33 ]. We compared our results with the upper bounds of

the cross section for the electroweakino production, which
were provided by the CMS Collaboration, and found
that they roughly coincided. Exclusion capabilities with
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300 fb−1 data at the 14 TeV LHC in the same search were
estimated in Fig. 16 of [16], and they are plotted as the
orange region in the left panel of Fig. 3. These results show
that jμj has been excluded by the LHC experiment up to
about 390 GeV formχ̃0

1
¼ 0 and will be further excluded up

to 700 GeV in the future. We emphasize that, in both
calculations of the exclusion capability, the branching
ratios Brðχ̃02;3 → χ̃01ZÞ and Brðχ̃02;3 → χ̃01hÞ were computed
in the decoupling limit mA ≫ v, and their effects on the
signal event number were taken into account in the
simulations.

2. Constraints of SD cross section
on blind spots of NMSSM

We discuss three cases of the natural NMSSM where the
channels χ̃01χ̃

0
1 → tt̄; hsAs; hAs are responsible, respectively,

for the measured DM relic density. The common feature of
the cases is that the density requires a moderately large
jλv=μj through an explicit or indirect dependence on the
combination, and under the circumstance that the hs
induced contribution to σSI

χ̃0
1
−N is negligible, rather strong

cancellation between the two terms on the right side of
Eq. (1.5) is necessary to render the case consistent with the
bound of the SI cross section (discussed below). This fact is
the basic reason that we considered the blind spot of the SI
cross section and studied the SD constraint for the cases
when discussing their compatibility with the DM DD
experiments.

The neutralino sector of the NMSSM involves the para-
meters λ, κ, tan β, μ, and the gaugino masses M1;2 [8].
After takingM1;2 ¼ 5 TeV and tan β ¼ mχ̃0

1
=μ ¼ 2κ=λ, the

SD cross section depends only on λ, κ, and μ. Considering
that the approximation of the χ̃01χ̃

0
1Z coupling in Eq. (1.6)

relies on the combinations λv=μ and mχ̃0
1
=μ and that a large

μ can relax the constraint, we project the SD constraint of
the XENON-1T experiment [4] onto the λv=μ −mχ̃0

1
=μ

plane by setting μ ¼ 500 GeV, which is shown on the right
panel of Fig. 3. This panel indicates that the region of
λv=μ ≳ 0.15, which corresponds to λ≳ 0.45 and is marked
with dark blue color, has been excluded. We also show
the exclusion capability of the future LZ experiment in the
same plane, which corresponds to the purple region of the
figure. The results indicate that the region of λv=μ≳ 0.06
(corresponding to λ≳ 0.18) will be excluded. Alternatively,
if we take a lower value of μ, e.g., μ ¼ 300 GeV, the region
of λv=μ≳ 0.14 (corresponding to λ≳ 0.23) has been
excluded, and a broader region bounded by λv=μ≳ 0.05
(corresponding to λ≳ 0.09) will be excluded.
Next, we consider the three cases mentioned above.
(i) Case I: the annihilation χ̃01χ̃

0
1 → tt̄ is responsible for

the DM density.
This case usually occurs when mχ̃0

1
> mt [13,19].

Barring the s-channel exchange of a resonant
Higgs boson, the annihilation is dominated by the
Z-mediated contribution, and the density requires
the coupling of the DM pair with Goldstone boson to
satisfy [13]

FIG. 3. Constraints from the detection of the SD DM-nucleon scattering on the blind spot scenarios of the MSSM (left panel) and the
NMSSM (right panel). The dark blue region has been excluded by the XENON-1T (2019) experiment, and the purple region can be
excluded by the future LZ experiment [112]. In the left panel, constraints from the CMS search for electroweakinos with 36 fb−1 data at
the 13 TeV LHC as well as the estimated exclusion capabilities with 300 fb−1 data at the 14 TeV LHC in the same search are also shown,
which correspond to the green region and the orange region, respectively. In the right panel, parameter points on the curve labeled by
Case I predict the right DM relic density through the annihilation channel χ̃01χ̃

0
1 → tt̄, while those on the curve labeled by Case II obtain

the correct density through the process χ̃01χ̃
0
1 → hsAs.
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jCχ̃0
1
χ̃0
1
G0 j ¼

ffiffiffi
2

p
mχ̃0

1
v

μ2
λ2 cos 2β ≃ 0.1: ðA2Þ

With the blind spot condition, the equation corre-
lates λ and κ by

κ2 ≃
λ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 0.16

p

8
: ðA3Þ

In the right panel of Fig. 3, we project this
correlation onto the λv=μ −mχ̃0

1
=μ plane to obtain

the curve labeled by Case I. This curve shows
that, although the parameter points on it are con-
sistent with the SI constraints, they do not satisfy
the density and the SD constraints simultaneously.
This conclusion has been pointed out explicitly
in [19].
As a supplement to the discussion above, we

comment on the SI cross section without the blind
spot condition. Equation (A2) implies that the first
term on the right side of Eq. (1.5) should be larger
than 0.1, while the XENON-1T bound on the SI
cross section requires jCχ̃0

1
χ̃0
1
hj≲ 0.02 for mχ̃0

1
¼

300 GeV. Thus, strong cancellation in Eq. (1.5) is
necessary and that is why we considered the blind
spot for Case I.

(ii) Case II: The annihilation χ̃01χ̃
0
1 → hsAs is responsible

for the DM density.
Without possible resonant contributions, this

annihilation proceeds mainly through the Sin-
glino-dominated χ̃01 in the t=u channel, and it is
usually the dominant channel when mχ̃0

1
< mt

[13,32]. Similar to Case I, the relic density requ-
ires [13]

jCχ̃0
1
χ̃0
1
hs j ¼ jCχ̃0

1
χ̃0
1
As
j ¼ −

ffiffiffi
2

p
κ

�
1 −

λ2v2

μ2

�

þ λ3v2ffiffiffi
2

p
μ2

sin 2β

≃ 0.2 ×

� mχ̃0
1

300 GeV

�
1=2

; ðA4Þ

which translates into the correlation

λκð1 − 0.24λ2Þ ≃ 0.067 ðA5Þ

at the blind spot for μ ¼ 500 GeV. In the λv=μ −
mχ̃0

1
=μ plane of Fig. 3, we show the correlation with

the curve labeled by Case II. Again, the case cannot
satisfy all the constraints of DM physics.

In analogy to the study of Case I, we discuss the
situation of the SI cross section. Equation (A4)
shows that κ ≃ 0.1 for mχ̃0

1
¼ 150 GeV is able to

predict the correct density. Given mχ̃0
1
≃ 2κμ=λ in

case of λv=μ ≪ 1 [12], the first term in Eq. (1.5) is
approximately 4

ffiffiffi
2

p
κ2v=mχ̃0

1
≃ 0.066. This fact to-

gether with the XENON-1T bound on the SI cross
section (i.e., jCχ̃0

1
χ̃0
1
hj≲ 0.016 for mχ̃0

1
¼ 150 GeV)

again inspired us to consider the blind spot.
(iii) Case III: The annihilation χ̃01χ̃

0
1 → hAs is responsible

for the DM density.
This channel proceeds mainly by the t=u-channel

exchange of Higgsino-dominated neutralinos [13,32].
The relic density for this case requires [13]

λ3 sin 2β ≃
�

μ

700 GeV

�
2

; ðA6Þ

which corresponds to λ2κ ≃ 0.25 at the blind spot for
μ ¼ 500 GeV. This correlation needs an even larger λ
than Case II, i.e., λv=μ ≳ 0.4 formχ̃0

1
< mt, and is not

shown on the panel of Fig. 3. In addition, regardless of
the blind spot condition, Eq. (A6) implies that the
magnitude of the second term in Eq. (1.5) is approxi-
mated by 0.25=λ for μ ¼ 500 GeV. Since the SI
constraint of the XENON-1Texperiment is equivalent
to jCχ̃0

1
χ̃0
1
hj≲ 0.016 for mχ̃0

1
¼ 150 GeV, strong can-

cellation in Eq. (1.5) is necessary for this case.
At the end of this section, we emphasize that the

conclusions are based on several hypotheses, i.e., the
negligible smallness of the non SM-like Higgs contribution
to the SI cross section, one single annihilation channel
responsible for the relic density, and jμj≲ 500 GeV. For a
general case of the NMSSM, these hypotheses are usually
violated. In particular, μmay be chosen at 1 TeV if one does
not consider the fine-tuning. In such a situation, these
annihilation channels may still be most important to obtain
the density [13,19]. We also emphasize that, although we
take μ ¼ 500 GeV as an example to show the tension
between the relic density and the SI/SD cross-section, it
holds for μ < 500 GeV.
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