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We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical potential μ
and temperature T, for two different lattice spacings and two different quark masses. We find that the
quarkyonic region, where the behavior of the quark number density and the diquark condensate are
described by a Fermi sphere of almost free quarks distorted by a Bardeen-Cooper-Schrieffer gap, extends to
larger chemical potentials with decreasing lattice spacing or quark mass. In both cases, the quark number
density also approaches its noninteracting value. The pressure at low temperature is found to approach the
Stefan–Boltzmann limit from below.
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I. INTRODUCTION

The structure of strongly interacting matter at high
densities and low to moderate temperatures remains an
outstanding problem, with applications to compact stars,
neutron star mergers, and the next generation of heavy-ion
colliders at FAIR and NICA. First-principles studies of this
regime are hindered by the sign problem: with chemical
potential μ ≠ 0 the Euclidean action becomes complex,
and can therefore not be used as a probability weight in
Monte Carlo simulations, which are the mainstay of lattice
gauge theory, the method of choice for first-principles,
nonperturbative quantum field theory. Despite recent
progress in alternative sampling approaches such as the
density of states method [1], complex Langevin [2] and
Lefschetz thimble and related approaches [3,4], we do not
as yet have any method that has been shown to yield valid
and reliable results for real QCD.
The problem may be circumvented by studying QCD-

like theories without a sign problem, such as theories with
adjoint fermions in any gauge group, QCD with isospin

chemical potential [5], or QCD with gauge groups SU(2)
(QC2D) [6–8] or G2 (G2-QCD) [9,10]. Although these
theories all have qualitative features which distinguish them
from real QCD at nonzero baryon chemical potential—
notably a gauge-invariant Bose–Einstein condensate (BEC)
above an onset chemical potential μo—they share salient
features such as spontaneous chiral symmetry breaking and
confinement at T ¼ μ ¼ 0, and may be used as laboratories
for strongly interacting theories at high density. Lattice
results from these theories may also be used as a check on
the approximations made in other approaches which do not
suffer from the sign problem, including Polyakov-loop
extended Nambu–Jona-Lasinio models [11,12], massive
perturbation theory [13,14], quark–meson(–diquark) cou-
pling models [15], the functional renormalization group
[16] or Dyson–Schwinger equations [17,18].
In a previous series of papers [6–8,19], we have studied

the phase structure of QC2D with Nf ¼ 2Wilson fermions.
The main findings of these studies have been that at high
density and low temperature, there is a “quarkyonic” phase
[6] where the diquark condensate and quark number density
scale with the quark chemical potential μ in the sameway as
in a system composed of noninteracting fermions disrupted
by a Bardeen-Cooper-Schrieffer (BCS) gap. The diquark
condensate, signaling superfluidity, vanishes at a critical
temperaturewhich appears to be approximately independent
of μ above the onset chemical potential μo ¼ mπ=2 [8]. At
high temperature, there is a transition to a deconfined quark–
gluon plasma, with the pseudocritical temperature Td
decreasing with increasing μ [8]. It is as yet unclear whether
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Td goes to zero at any finite μ and hencewhether there is any
deconfinement transition at high density and low temper-
ature; early indications of such a transition [19] may have
been complicated by lattice artefacts.
These studies have all been carried out with quite heavy

quarks (mπ=mρ ¼ 0.8) and on fairly coarse lattices
(a ¼ 0.18–0.23 fm). The aim of the current paper is firstly
to gain control over lattice artefacts by reducing the lattice
spacing at fixed mπ=mρ, and secondly to explore the quark
mass dependence by studying a system with lighter quarks
at fixed lattice spacing. The latter is of particular signifi-
cance as it might point to a “BEC region” which can be
described using chiral perturbation theory (χPT) incorpo-
rating both mesonic and baryonic (diquark) Goldstone
degrees of freedom [20].
There have been a number of other lattice studies of

dense QC2D in recent years, using staggered [21–23] and
Wilson [24] fermions. These have to a large extent
confirmed the picture outlined above, with some additions.
Notably, in [21], with a smaller pion mass than in [6–8], a
BEC region was found where the diquark condensate and
quark number density agree with predictions from chiral
perturbation theory, followed by a transition to a quar-
kyonic region at higher μ. Also, the chiral condensate was
found to vanish in the chiral limit in both the BEC and
quarkyonic regions. The system was found to be confined
at low temperature, with deconfinement only setting in at
much larger chemical potential [22]. Similar conclusions
were found in [24].
It is also worth noting that a recent study of QCD with

nonzero isospin chemical potential [5] found a phase
diagram very similar to that of [8], namely a pion
condensed phase at low T and large μ, with a critical
temperature that is nearly independent of μ, and a decon-
finement transition line that intersects with the pion
condensation transition.
The structure of this paper is as follows. In Sec. II we

describe our simulation parameters and determination of the
lattice spacing for our new (fine) ensemble.Results from this
ensemble are presented in Sec. III. First, in Sec. III A we
present results for the superfluid order parameter, the
diquark condensate, including its scaling with chemical
potential and estimates for the critical temperature.
Section III B contains our results for the Polyakov loop
and deconfinement transition, while Sec. III C contains
results for the quark number density. Section IV contains
our results from simulations with lighter quarks. We
summarize our findings in Sec. V.

II. SIMULATION DETAILS AND SCALE SETTING

We study QC2D with a conventional Wilson action for
the gauge fields and two flavors of Wilson fermion. The
fermion action is augmented by a gauge- and isosinglet
diquark source term which serves the dual purpose of
lifting the low-lying eigenvalues of the Dirac operator and

allowing a controlled study of diquark condensation. The
quark action is

SQ þ SJ ¼
X
i¼1;2

ψ̄ iMψ i þ κj½ψ tr
2 ðCγ5Þτ2ψ1 − H:c:�; ð1Þ

where i ¼ 1, 2 is a flavor index and

Mxy ¼ δxy − κ
X
ν

½ð1 − γνÞeμδν0UνðxÞδy;xþν̂

þ ð1þ γνÞe−μδν0U†
νðyÞδy;x−ν̂�: ð2Þ

Further details about the action and the Hybrid Monte Carlo
algorithm used can be found in [19].
We have studied three ensembles, which in the following

we call “coarse,” “fine,” and “light.” The parameters are
shown in Table I, together with the values obtained for the
pion (pseudoscalar meson) mass mπ , ratio of pion to rho
(vectormeson)massmπ=mρ and lattice spacinga. The coarse
ensemble is the same aswas used in [6–8]. The parameters for
the fine ensemble were chosen to give the same value of
mπ=mρ as the coarse ensemble, while those of the light
ensemblewere chosen to give approximately the same lattice
spacing as the coarse ensemble, but with a smaller value of
mπ=mρ ≈ 0.6. Further details about the coarse and light
ensemble parameters can be found in [7].
To determine the lattice spacing, we extracted the static

quark potential VðrÞ from rectangular Wilson loopsWðr; τÞ
by fitting Wðr; τÞ ¼ expð−VðrÞτÞ for τ=a ¼ Tmin; Nτ − 1.

TABLE I. Simulation parameters, pion and rho meson masses
and lattice spacing at μ ¼ j ¼ 0.

Name β κ amπ mπ=mρ a (fm)

Light 1.7 0.1810 0.438(15) 0.61(5) 0.189(4)
Coarse 1.9 0.1680 0.645(8) 0.805(9) 0.178(6)
Fine 2.1 0.1577 0.446(3) 0.810(7) 0.138(6)
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FIG. 1. Static quark potential versus spatial separation of the
Wilson loop on the fine ensemble for T ¼ μ ¼ 0, for different
values of the minimum time extent Tmin of the Wilson loop.
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The lattice spacing was then determined by fitting the static
quark potential to the Cornell form

VðrÞ ¼ Cþ α=rþ σr; ð3Þ

and taking the string tension to be
ffiffiffi
σ

p ¼ 440 MeV. The
static quark potential for the fine ensemble is shown in
Fig. 1 and the best fit values are given in Table II.
We have performed scans in μ at fixed temperature for

four temperatures on the fine ensemble, and three temper-
atures on the light ensemble. The lattice volumes, temper-
atures and range of chemical potentials are given in
Table III, along with those from the coarse ensemble that
are used for comparison. For most of these temperatures
and chemical potentials we have produced configurations at
two values for the diquark source, namely ja ¼ 0.02, 0.03
on the fine ensemble, and ja ¼ 0.02, 0.04 on the light
ensemble. A third diquark source value (ja ¼ 0.01 for the
fine ensemble, ja ¼ 0.03 for the light ensemble) has
been added for selected parameter values to control the
systematics of the j → 0 extrapolations. For a few param-
eters, mostly at the highest and lowest μ-values, only a
single j-value has been used; in these cases, only results
for the Polyakov loop, which is only weakly dependent on
j, will be shown here. In addition, we have performed
temperature scans at fixed values of μa ¼ 0, 0.2, 0.3, 0.4,
0.5 on the fine ensemble, with Nτ ¼ 18–4 corresponding
to T ¼ 63–356 MeV.
We note that by assigning a temperature T > 0 to our

ensembles with Nτ ≥ Ns we deviate from what is com-
monly done in lattice thermodynamics studies. This is

appropriate in the presence of a chemical potential (which
modifies the temporal boundary conditions). At weak
coupling and low temperature, relativistic quarks form a
Fermi surface with Fermi momentum kF ≃ μq. The result-
ing ground state is highly degenerate, so that unlike the case
when μ ¼ 0 the discrete momenta on the finite volume do
not lead to a large energy gap. For this reason in our view
one should always consider T as nonzero when studying
systems with μq ≠ 0, even if Ns < Nτ.
For enhanced separation of scalesmπ ≪ mρ, the behavior

as μ increases at zero temperature may be analyzed using
χPT [20], in this context an effective theory of tightly-bound
qq̄ mesons and qq; q̄ q̄ baryons. For μ ¼ 0 the chiral
symmetry of continuum QC2D is spontaneously broken
from SUð2NfÞ to Spð2NfÞ yielding Nfð2Nf − 1Þ − 1

Goldstones; for Nf ¼ 2 these are the pseudoscalar pion
triplet and a scalar diquark/antidiquark pair. As μ is raised
there is a second-order onset transition at μo ¼ mπ=2 to a
phase where the baryon density nq and superfluid diquark
condensate hqqi are both nonzero:

hqqi
hq̄qi0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ4o
μ4

s
θðμ − μoÞ; ð4Þ

nq ¼ 8NfF2
πμ

�
1 −

μ4o
μ4

�
θðμ − μoÞ: ð5Þ

Here hq̄qi0 is the chiral condensate at μ ¼ 0 and Fπ the χPT
parameter known as the pion decay constant. Note that the
onset transition in physical QCD is first order.

III. RESULTS FROM FINE ENSEMBLE

A. Diquark condensation

Figure 2 shows the diquark condensate,

hqqi≡ ∂ lnZ
∂j ¼ κ

2
hψ2trCγ5τ2ψ1 − ψ̄1Cγ5τ2ψ̄2tri; ð6Þ

divided by the square of the chemical potential, as a
function of chemical potential, for all temperatures.
Physically, hqqi is the density of relativistic quark pairs
contributing to the superfluid condensate. In the case of a
weakly coupled BCS condensate at the Fermi surface, this
should be roughly equal to the momentum-space volume of

TABLE II. Fit parameters for fits of the static quark potential on the fine ensemble to the Cornell form (3), and the corresponding
lattice spacing values found for various minimum temporal extents Tmin of the Wilson loop.

Tmin σa2 α Ca χ2=Ndof a (fm)

2 0.1283þ9−9 0.2179þ21−20 0.5224þ29−29 2.45 0.1706þ6−6
3 0.0987þ15−15 0.2578þ36−32 0.5902þ50−51 1.25 0.1496þ12−12
4 0.0840þ65−86 0.2779þ146−206 0.6245þ286−200 0.249 0.1380þ52−72

TABLE III. Temperatures T and chemical potential values μ
used in this study.

Ensemble Ns Nτ T (MeV) μa μ (MeV)

Fine 16 32 45 0.1–0.8 143–1142
16 20 71 0.1–0.7 143–999
16 16 89 0.1–0.6 143–857
16 12 119 0.1–0.6 143–857

Coarse 12 24 47 0.25–1.1 277–1217
16 12 94 0.4–0.9 443–996
16 8 141 0.4–0.7 443–775

Light 12 24 43 0.1–0.8 104–834
16 12 87 0.1–0.8 104–834
16 8 130 0.1–0.7 104–730
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a shell centered on the Fermi surface with thickness OðΔÞ,
the superfluid gap; by contrast leading order χPT (4)
predicts hqqi to be μ-independent for μ ≫ μo and hence
the quantity plotted should fall off like μ2.
For the two lowest temperatures, we find that hqqi=μ2 is

almost independent of both μ and T for μ≳ μo. This agrees
with what was found previously for the coarse ensemble
[7]. For μ < μo the diquark condensate rises gradually from
zero; we take this to be primarily an artefact of the linear
extrapolation in j.
To further investigate the diquark source dependence, in

Fig. 3 we show hqqi as function of j for different values of
the chemical potential. With our current data, we see no

evidence of deviation from a linear form at any μ.
Specifically, the form hqqi ¼ Aj1=3, which should hold
exactly at μ ¼ μo, does not fit the data for any of our μ-
values, even with the addition of a constant term. Fits to a
more general power-law form, hqqi ¼ Aþ Bjα, yield
powers ranging from α ∼ 0.9 for μ < μo to α ∼ 0.6 at
μa ¼ 0.4. The apparent linear j-dependence at all μmay be
an indication that nonanalytic behavior only sets in at lower
j-values than we have here. To improve on the diquark
source extrapolation, it may be necessary to carry out a
reweighting procedure as outlined in [5], or explore much
smaller values of the source ja [21].
At T ¼ 90 MeV (Nτ ¼ 16) we see that hqqi is signifi-

cantly smaller for all values of μ, suggesting that this
temperature is near the critical temperature for the super-
fluid to normal phase transition. This is again in agreement
with what was found for the coarse lattice in [7,8]. Finally,
at the highest temperature, T ¼ 120 MeV (Nτ ¼ 12), the
diquark condensate is consistent with zero, suggesting that
at this temperature we are in the normal phase.
To study the superfluid to normal phase transition in

more detail, we have performed temperature scans at fixed
values of chemical potential aμ ¼ 0.3, 0.4, 0.5 and
aj ¼ 0.02, 0.03. These are fixed-scale temperature scans;
i.e., the temperature is varied by changing Nτ, without
changing the lattice spacing. This means that although our
data for hqqi are not renormalized, this will just contribute
an overall factor without changing the shape of the curves.
The results of these scans are shown in Fig. 4. From the

data extrapolated to j ¼ 0 using a linear Ansatz, we see
evidence of a phase transition at Ts ≈ 110 MeV, indepen-
dent of the chemical potential. In order to determine this
transition in a more controlled manner, we find the
inflection points for ja ¼ 0.03 and 0.02 using a cubic
spline interpolation, and extrapolate these to j ¼ 0. The
results are shown in Table IV. This yields a somewhat lower
temperature Ts ¼ 90–100 MeV, which is consistent with
the result quoted in [8], Ts ¼ 93ð8Þ MeV. We note that the
data are for a single volume and we can therefore not
determine the order of the transition, but it is expected to be
a second order transition (in the O(2) universality class),
and the data are consistent with this.

B. Deconfinement

Figure 5 shows the order parameter for deconfinement,
the Polyakov loop hLi, for our four different temperatures.
The renormalized Polyakov loop LR is given in terms
of the bare Polyakov loop L0 and the temperature T ¼
1=ðaNτÞ by

LRðT; μÞ ¼ ZNτ
L L0

�
1

aNτ
; μ
�
: ð7Þ

Just as in [8], we use two different renormalization
schemes,

0 0.01 0.02 0.03
ja

0

0.005

0.01

0.015

0.02

<
qq

>

a = 0.15
a = 0.20
a = 0.25
a = 0.30
a = 0.35
a = 0.40

FIG. 3. The diquark condensate hqqi on the fine ensemble, as a
function of the diquark source, for different values of the
chemical potential μ. The solid lines are linear fits to the data,
while the dash-dotted lines are fits to a power-lawþ constant
form hqqi ¼ Aþ Bjα.
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FIG. 2. The diquark condensate hqqi=μ2 on the fine ensemble,
extrapolated to j ¼ 0 for Nτ ¼ 32, 20, 16, 12 (T ¼ 45, 71, 89,
119 MeV). The vertical dashed lines denote the onset transition at
zero temperature, μo ¼ mπ=2.
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SchemeA LR

�
T ¼ 1

4a
; μ ¼ 0

�
¼ 1;

SchemeB LR

�
T ¼ 1

4a
; μ ¼ 0

�
¼ 0.5:

The results in Fig. 5 have been obtained using Scheme A.
We see no evidence of any deconfinement transition at our

lowest temperature, T ¼ 45 MeV, corresponding to
Nτ ¼ 32. This suggests that the high-density deconfine-
ment transition found on coarser lattices at temperatures of
40–50 MeV [7,19] is primarily a lattice artefact.
At higher temperatures we see that hLi increases rapidly

from zero above a chemical potential μdðTÞ which is a
decreasing function of temperature, in agreement with
previous results.
To determine the transition line, we study the variation of

the renormalized Polyakov loop with temperature at fixed
values of the chemical potential μa ¼ 0.2, 0.3, 0.4, 0.5. The
results from Scheme B are shown in Fig. 6. The results are
indicative of a broadening of the transition and a reduction
in the transition temperature as the chemical potential is

0

0.005

0.01

0.015

0.02

ja = 0.03
ja = 0.02
j = 0

0

0.005

0.01

0.015

0.02

<
qq

>

0 100 200 300 400
T [MeV]

0

0.01

0.02

0.03

 = 428 MeV

 = 571 MeV

 = 714 MeV

FIG. 4. The diquark condensate hqqi on the fine ensemble,
as a function of temperature, for chemical potentials
μ ¼ 428; 571; 714 MeV (aμ ¼ 0.3; 0.4; 0.5).

TABLE IV. Inflection points TsðjÞ for hqqiðTÞ at ja ¼ 0.03,
0.02 and critical temperature Ts obtained from extrapolating
TsðjÞ to j ¼ 0. The first set of uncertainties is statistical; the
second set is due to systematic uncertainties in the interpolation.

aμ 0.3 0.4 0.5

aTsð0.03Þ 0.0782þ14þ3−26−1 0.0711þ43þ86−12−0 0.0715þ6þ0−5−33
aTsð0.02Þ 0.0734þ2þ7−3−8 0.0722þ7þ18−17−0 0.0677þ38−11
aTs 0.063(6)(3) 0.075(8)(10) 0.060(8)(6)
Ts (MeV) 90(10) 107(18) 86(10)

0 200 400 600 800 1000 1200
μ [MeV]

0

0.2

0.4

0.6

0.8

1

L
R

T = 45 MeV (x0.05)
T = 71 MeV
T = 89 MeV
T = 119 MeV

FIG. 5. The renormalized Polyakov loop using Scheme A, as a
function of chemical potential, for all temperatures. The open
symbols are for ja ¼ 0.03; the shaded symbols are for ja ¼ 0.02.
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T [MeV]

0

0.2

0.4
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<
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>

 = 0 Scheme A
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 = 286 MeV
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 = 714 MeV

FIG. 6. The renormalized Polyakov loop hLi in Scheme B as a
function of temperature T for ja ¼ 0.03 and chemical potentials
μ corresponding to μa ¼ 0.2, 0.3, 0.4, 0.5. Also shown in the
μ ¼ 0 Polyakov loop renormalized according to Scheme A,
divided by 2 for ease of comparison.
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increased. However, this effect is not large: the inflection
point in Scheme B actually appears to increase between
μ ¼ 0 and μa ¼ 0.2, and even at our highest chemical
potential, μa ¼ 0.5, the inflection point in Scheme B
is still consistent with the μ ¼ 0 inflection point in
Scheme A. As can be seen from Fig. 7, the transition in
Scheme A happens at a considerably lower temperature
than in Scheme B, which may be taken as an indication of
the width of the crossover and associated uncertainty in the
transition temperature. It would be useful to compare these
scheme-dependent results with other quantities sensitive to
deconfinement, such as the static quark potential [22] or the
entropy of a static quark [25].

Our results for the deconfinement transition temperature
are shown in Table V and Fig. 8. We find a large
discrepancy between the two schemes, and this discrepancy
increases with μ; however, the uncertainties are large, in
particular in scheme A which has a lower Td. There are
indications that, rather than decreasing monotonically
toward 0 at large μ, Td approaches a constant value which
is above (scheme B) or close to (scheme A) the superfluid
transition temperature Ts ≈ 90 MeV. If this is confirmed, it
means there is no deconfining transition at T ¼ 0, and that
the superfluid phase remains confined at all μ.

C. Quark number density

The final quantity to consider is the quark number
density nq, which forms the basis for computing bulk
thermodynamic properties such as the pressure. In Fig. 9
we show the quark number density extrapolated to zero
diquark source (using a linear extrapolation) at the lowest
temperature studied, corresponding to Nτ ¼ 32. As was the
case for the diquark condensate, we do not find significant
evidence of a deviation from a linear behavior for the range
of j-values we have. The data are plotted in dimensionless
form by normalizing by the density nSB for a gas of
massless noninteracting fermions. Figure 9 shows results
obtained using two choices for nSB: first using the con-
tinuum result

nSBq ¼ NfNc

3

�
μT2 þ μ3

π2

�
; ð8Þ

and second, using a form nlatSB evaluated as a mode sum
using the action (1), (2) with κ ¼ 0.125 and Uμ ≡ 1 on a
finite lattice as described in [19]. Both forms were explored
in [7], with the conclusion that while nlatSB offers a better
correction for UV artifacts at large μa, it is prone to
significant IR artifacts for μ≳ μo, so that ncontSB is preferred

0 100 200 300 400

T [MeV]

0

0.2

0.4

0.6

<
L

>

Scheme A
Scheme B

FIG. 7. The renormalized Polyakov loop hLi as a function of
temperature T for ja ¼ 0.03 and μa ¼ 0.4, with two different
renormalization schemes: Scheme A (red squares) and Scheme B
(black circles), see text for details. Scheme A data have been
divided by 2 to ease the comparison between the schemes. The
solid (dashed) lines are the derivatives of cubic spline interpo-
lations of the data points for Scheme A (B). The smaller, shaded
symbols are results for ja ¼ 0.02.

TABLE V. Inflection points TdðjÞ for hLðTÞi at ja ¼ 0.03, 0.02 using renormalization schemes A (upper rows) and B (lower rows).
The uncertainties in the inflection points at μ ¼ 0 and in scheme B at all μ are purely statistical. In scheme A, with the exception of
μa ¼ 0.2; ja ¼ 0.03, it was only possible to determine a region where the transition occurs. Also shown are estimates for the j → 0
extrapolated Td in each scheme. For μa ¼ 0.2 the ja ¼ 0.03 values have been used.

μa 0.0 0.2 0.3 0.4 0.5

aTA
d ð0.03Þ 0.1187þ30−45 0.072–0.125 0.057–0.113 0.055–0.094

aTA
d ð0.02Þ � � � 0.06–0.16 0.050–0.094 0.063–0.087

aTA
d ðj ¼ 0Þ 0.1362þ21−27 0.10(5) 0.073(30) 0.075(20)

TA
d (MeV) 194(4) �170ð7Þ 143(70) 105(45) 107(30)

aTB
d ð0.03Þ 0.1813þ16−27 0.1613þ14−9 0.1561þ35−60 0.1385þ14−8

aTB
d ð0.02Þ � � � 0.1565þ3−4 0.1529þ5−5 0.1423þ13−20

aTB
d ðj ¼ 0Þ 0.164þ7−2 0.147(3) 0.147(12) 0.150(6)

TB
d (MeV) 234(10) �259ð4Þ 210(4) 210(17) 214(9)
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in this regime. In the current work we have addressed
this issue by evaluating nlatSB on a much larger spatial
volume than that used for simulation, specifically 963 × Nτ

(with 1283 × Nτ checked to see that this was sufficient).
This removes the IR artifacts but retains the UV
corrections.
We find that nq=nSB rises rapidly above the onset transi-

tion, then descends to reach a plateau for μ≳ 500 MeV.
This is in qualitative agreement with the predictions of
χPT shown in Fig. 3 of [19]. Within the fairly large errors
resulting from the j → 0 extrapolation the results obtained in
the neighborhood of onset with continuum and lattice
free fermions are compatible, but for μ≳ 700 MeV the
ncontSB curve continues to rise while the lattice normalization
yields a plateau with nq=nSB ≲ 1; for the reasons given in
the previous paragraph this is the normalization we prefer
and will use henceforth. Also shown in Fig. 9 is the
ratio evaluated using free massive Wilson fermions with
κ ¼ 0.120; in this case the value of nq=nSB on the plateau is
consistent with unity. Due to the difficulties inherent in
assigning a bare quarkmass for interactingWilson fermions,
we therefore do not draw any physical conclusions from the
plateau height at this stage.
An important observation is that there is no longer

evidence for a regime at high μ where nq=nSB increases
above its value on the plateau (cf. Fig. 11 of [7]; were the
high-μ behavior in that plot physical, then a correspond-
ing rise would be expected on the fine lattice at
μ ≈ 700 MeV). In conclusion, at the lowest temperature
studied the equation of state looks “quarkyonic”, i.e., with
nqðμÞ ≈ nSB, all the way along the μ-axis, with no evidence
of a qualitative change associated with deconfinement.
This is consistent with our results for the Polyakov loop,
which show no sign of a deconfinement transition at low

temperature, and the high-μ increase seen in [7] is therefore
most likely a lattice artefact.
As shown in Fig. 10, this behavior persists for the lowest

three temperatures, which according to the results in
Sec. III A are all in the superfluid region (or near the
transition temperature, for Nτ ¼ 16). The data suggest the
plateau value of nq=nSB falls with increasing T, although
uncertainties following the j → 0 extrapolation are signifi-
cant. At the highest temperature, T ¼ 119 MeV (Nτ ¼ 12),
which falls in the quark–gluon plasma phase, we see
indications of nq=nSB monotonically increasing with μ,
in qualitative agreement with the findings of [7].
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FIG. 9. The quark number density nq=nSB from the fine
ensemble at the lowest temperature (T ¼ 43 MeV) extrapolated
to j ¼ 0, with normalization as described in the text. The vertical
lines indicate the location of the onset transition at T ¼ 0.
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FIG. 10. The quark number density nq=nSB from the fine
ensemble, extrapolated to j ¼ 0, for the four temperatures
studied.
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Table IV.
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To make this comparison quantitative, we show the
results from the fine and coarse ensemble together, in units
of the onset chemical potential μo ¼ mπ=2 (allowing also
for a comparison of results for the different quark masses),
in figure 11. At low temperature (upper panel) there is
quantitative agreement between the two ensembles for
μ≲ 2μo. For larger μ the rise in nq=nSB seen for the coarse
ensemble (which might have signaled a transition to a
different state of matter) is absent for the fine ensemble, and
instead we see that nq remains close to nSB throughout.
This is consistent with our results for the Polyakov loop,
which show no sign of a deconfinement transition at low
temperature, and the high-μ increase seen in [7] is therefore
most likely a lattice artefact. The same pattern is repeated at
high temperature (lower panel), where now we see nq
approach nSB from below. However, part of the difference
between the two ensembles may in this case be due to the
slightly different temperatures (120 vs 130MeV for the fine
and coarse ensembles respectively).

Next we discuss the pressure, which as outlined in [7,19]
can be obtained in the limit of low T via an integral of the
form p ¼ R

μ nqðμ0Þdμ0. In order to arrive at the dimension-
less ratio p=pSB starting from our data there are several
different quadrature schemes available: here we use

p
pSB

¼ 1

pcont
SB

Z
μ

μ0

ncontSB ðμ0Þ
nlatSBðμ0Þ

nqðμ0Þdμ0; ð9Þ

introduced as “scheme II” in [7] (μ0 is the lowest available
value in the dataset). Reassuringly, with nlatSB now defined
on a large spatial volume to eliminate IR artifacts we find
results compatible with those computed using scheme I,
which was not the case in [7]. The results for data
extrapolated to j → 0, at low temperatures where there
are enough μ-points to control the numerical integration,
are shown in Fig. 12.
The main result is that p=pSB increases sharply after

onset, reaching a plateau at μ=μo ≈ 2. It appears to
approach the plateau from below, in contrast to the χPT
prediction that the SB limit is approached from above [19].
While, as in the discussion of nq=nSB, it is premature to
assign a precise value to the height of the plateau, it is worth
recalling that e.g., in the Van der Waals equation of state the
ideal gas pressure receives a downward correction due to
attractive forces between particles.

IV. RESULTS FROM LIGHT ENSEMBLE

We now study the effect that reducing the quark mass
may have on the phase structure and equation of state.
While our parameters are still very far from the chiral limit,
this may give us an idea of which, if any, qualitative
changes may occur as we approach this limit.
Figure 13 shows the diquark condensate from the light

ensemble for our three different temperatures, extrapolated
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FIG. 11. The quark number density from the fine, coarse and
light ensembles, divided by density in the noninteracting limit, as
a function of chemical potential in units of the onset chemical
potential μo. Upper panel: low temperature (T ≈ 45 MeV); lower
panel: high temperature (T ≈ 130 MeV).
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FIG. 12. The pressure p=pSB at low temperature (T ≈ 45 MeV)
from both fine and light ensembles, extrapolated to j ¼ 0 and
plotted as a function of μ=μo.
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to j ¼ 0. On the face of it, these results are qualitatively
different from our results with heavier quarks, in that the
diquark condensate no longer scales like μ2 in the region
just above the onset transition. This might be taken as
an indication that a BEC window is opening up where,
rather than following the BCS scaling hqqi ∝ μ2, the
condensate behaves according to the predictions (4) of
zero-temperature chiral perturbation theory.
To facilitate this comparison, we have included in Fig. 13

the χPT curve (4), with an arbitrary prefactor, and we see
that the data for μo < μ < 400 MeV make contact with
this curve.
This interpretation is, however, complicated by our lack

of control of the j → 0 extrapolation. For nearly all points,
we only have two values of the diquark source (ja ¼ 0.02,
0.04) available and have used a simple linear extrapola-
tion. For μa ¼ 0.2, 0.25 and 0.3 on the 123 × 24 lattice
we also have data for ja ¼ 0.03, and have also
used a quadratic extrapolation as well as a power lawþ
constant form, hqqiðjÞ ¼ Aþ Bjα. While the quadratic
extrapolation gives results roughly consistent with the
linear form, the power law form gives a result which is
consistent with BCS scaling at all μ. It should be noted
that near the onset transition, we expect a power-law
scaling with α ¼ 1=3.
We also find that hqqi ≠ 0 also for μ < μo, and we take

this to be an indication that the linear extrapolation breaks
down in this regime. Figure 14 shows the diquark con-
densate as a function of j for those chemical potentials
where we have 3 j-values at our disposal. We see that the

data are consistent with a linear behavior as was also found
for the fine ensemble, but may also be described
with a power-lawþ constant form. A better control over
the diquark source extrapolation, for example along the
lines of [5], is required to determine whether there is indeed
a BEC window for these parameters.
The hqqi results for T ¼ 87 MeVðNτ ¼ 12Þ are

almost identical to those for T ¼ 43 MeV, except for
μ≳ 600 MeV. However, at the highest temperature, T ¼
130 MeV (Nτ ¼ 8) we see that the diquark condensate is
much smaller, and vanishes at high μ. It is worth noting,
however, that hqqi does not vanish at all μ, as was the
case at comparable temperatures for the coarse and fine
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FIG. 14. The diquark condensate hqqi for the lowest temper-
ature on the light ensemble, as a function of the diquark source,
for different values of the chemical potential μ. The solid lines are
fits to a power-law + constant form hqqi ¼ Aþ Bjα.
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FIG. 13. The diquark condensate hqqi=μ2 from the light
ensemble, extrapolated to j ¼ 0 for T ¼ 43, 87, 130 MeV. For
T ¼ 43 MeV (Nτ ¼ 24), three different extrapolation forms have
been used: linear hqqi ¼ AþBj; quadratic hqqi ¼ AþBjþCj2;
and constantþ power hqqi ¼ Aþ Bjα. The vertical dashed line
denotes the onset transition, μo ¼ mπ=2. The solid curve shows
the prediction (4) from χPT, with an arbitrary prefactor.
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FIG. 15. The unrenormalized Polyakov loop from the light
ensemble as a function of chemical potential μ, for all temper-
atures. The open symbols are for ja ¼ 0.04, the shaded symbols
for ja ¼ 0.02, and the filled symbols are extrapolated to j ¼ 0.

DENSE TWO-COLOR QCD TOWARDS CONTINUUM AND CHIRAL … PHYS. REV. D 101, 074506 (2020)

074506-9



ensembles. This may be taken as a first indication of a
μ-dependent superfluid to normal transition temperature.
A controlled j → 0 extrapolation combined with temper-
ature scans at fixed μ would be required to draw a firm
conclusion.
Looking now at the deconfinement transition, Fig. 15

shows the Polyakov loop as function of chemical potential
for our three temperatures. In the absence of a μ ¼ 0
temperature scan to fix the renormalization constant, we
show the unrenormalized Polyakov loop. This does not
affect the shape of each of the curves, only the relative
magnitude of the data at different temperatures. We see the
same picture as before, where hLi ≃ 0 at low temperature
(except for μ≳ 800 MeV, corresponding to μa≳ 0.8,
which in the light of previous results we attribute to a
lattice artefact), but increasing with μ at higher temperature.
At T ¼ 130 MeV (Nτ ¼ 8), we note that hLi ≠ 0 also at

μ ¼ 0, suggesting that this temperature is near the transition
region for this ensemble.
In Fig. 16 we show the quark number density nq=nSB

calculated using the same procedure outlined in Sec. III C.
At low temperature, this has a plateau for μ > μo, in line
with our previous results, while at high temperature we see
a steeper increase with μ, as seen before, which is much
more pronounced than that for the fine lattice shown in
Fig. 10. On a coarse lattice the impact of UVartefacts in this
regime cannot be excluded. However, as can be seen in the
lower panel of Fig. 16, the quark number density at the
lowest temperature is also consistent with the χPT pre-
diction (5), as indicated by the j → 0 extrapolated curve
tending to a nonzero constant as μ → μoþ. It therefore
remains an open question whether we for these parameters
have a window characterized by a Bose-Einstein conden-
sate of tightly bound diquarks.
In Fig. 11 we compare our results for the quark

number density with those obtained on the coarse
ensemble in [7]. We see that the smaller quark mass
has a large quantitative effect, giving a much lower
number density. Because μoa is now smaller, the increase
in n=nSB at large μ, which is likely to be a lattice artefact,
now only appears at larger μ=μo. At high temperature,
however, we do not see any plateau in nq=nSB, as was the
case for the fine ensemble, but instead a monotonic
increase with μ.
Finally, we note that results for p=pSB for the light

ensemble are included in Fig. 12. The notable feature is
that the rise from zero following onset is now much
steeper, and an approximate plateau established by
μ=μo ≲ 1.5. As before, we are reluctant to overinterpret
the disparity in plateau height between fine and light
ensembles.

V. CONCLUSIONS AND OUTLOOK

We have performed lattice simulations of two-color
QCD at different lattice spacings and different quark
masses, as a step toward the continuum and chiral (or
light-quark) limits of this theory. Our investigation of the
phase structure of the theory in the ðT; μÞ plane has yielded
results in qualitative agreement with earlier studies [6–8];
most notably it has confirmed the quarkyonic phase at low
T and intermediate to high μ. In this phase, quarks are
confined but the bulk thermodynamics as well as the
diquark condensate behave as if the system consists of a
Fermi sphere of weakly interacting quarks. This phase is
found to extend to larger μ as the lattice spacing or the
quark mass is reduced. A striking result is that at the lowest
temperatures explored the quark number density is found to
be very close to the Stefan–Boltzmann value. Because we
have not yet determined the physical quark mass, it is not
possible to state with confidence whether the ratio nq=nSB
is greater or less than one in this regime. However, Fig. 11
does suggest that the ratio falls as the quark mass decreases.
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FIG. 16. Quark number density nq from the light ensemble
at j ¼ 0 divided by nlatSB (top) and at T ¼ 43 MeV divided by
the chiral perturbation theory form μð1 − μ4o=μ4Þ (bottom).
The dashed vertical line indicates the onset transition at zero
temperature.
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The superfluid phase transition temperature is found to
be independent of μ at least for our heavier quark mass,
corresponding to mπ=mρ ¼ 0.8. The transition temperature
Ts ≈ 90 MeV is in quantitative agreement with that found
on a coarser lattice in [8]. This qualitative behavior also
agrees with what has been found for QCD at high isospin
density [5]. For lighter quarks, however, there are indica-
tions that Ts may increase with μ.
Although we find a deconfinement transition at high

temperature, the deconfinement transition previously seen
at low T and high μ appears to be a lattice artefact—at
T ∼ 45 MeV the Polyakov loop appears to increase from
zero at μa ∼ 0.8 for all lattice parameters. Simulations
using staggered fermions at a relatively high temperature
T > 100 MeV [21,22] have found a deconfinement tran-
sition at μ ≈ 750 MeV characterized by the string tension
dropping to zero. This is not in contradiction with the
absence of any deconfinement transition at T ≈ 45 MeV.
The location of the high-temperature deconfinement

transition is not yet clear. Our results suggest a broad
crossover with a transition temperature Td that decreases
with increasing μ. The analysis is complicated by lack of
precise data for the renormalized Polyakov loop at low
temperature, as well as a small but nontrivial diquark source
dependence. There are indications that Td may tend to a
constant at large μ and that Td ≳ Ts for all μ.
There remain significant uncertainties relating to the

extrapolation to zero diquark source j, with our data unable
to distinguish between a linear j-dependence and the
nonanalytic behavior expected at least in the vicinity of
the onset transition. This may be mitigated by adopting the
reweighting method introduced in [5] and implemented in
the context of QC2D in [24]; this will be left for future
investigations.
Another source of uncertainty is the use of relatively

small volumes, with Ns < Nτ for our lowest temperatures.

Additional simulations on larger volumes would be
required to reliably determine if our assignment of a
nonzero temperature to these ensembles is correct. We
note that finite volume effects were studied previously in
Ref. [7]; there it was found that the results for the various
physical quantities, and in particular the Polyakov loop,
agreed between the two volumes considered, suggesting
that finite volume effects are indeed small.
A reliable continuum extrapolation would require sig-

nificantly finer lattices than those used in this study. The
first step toward further reducing the lattice spacing errors
would be to employ an improved fermion action. This,
together with algorithmic improvements, would also allow
us to study lighter quark masses which are out of bounds
with the unimproved Wilson action used here.
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