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The LHCb collaboration, using its full data set from runs 1 and 2, announced in 2019 a surprising
update of the hidden-charm pentaquark states Pcð4380Þþ and Pcð4450Þþ, observed in 2015. A new state,
Pcð4312Þþ, was clearly seen at lower energies; furthermore, the original Pcð4450Þ resonance was resolved
into two individual states, named the Pcð4440Þþ and the Pcð4457Þþ. Motivated by the fact that these new
hidden-charm pentaquark states were successfully predicted by our chiral quark model, we extend herein
such study to the doubly charmed sector. The analyzed total spin and parity quantum numbers are JP ¼ 1

2
−,

3
2
− and 5

2
−, in the I ¼ 1

2
and 3

2
isospin channels. We find several possible narrow baryon-meson resonances

(theoretical masses in parenthesis): IJP ¼ 1
2
1
2
− ΣcDð4356Þ, 1

2
3
2
− Σ�

cDð4449Þ, 3
2
1
2
− ΣcDð4431Þ, 3

2
1
2
−

ΣcDð4446Þ, 3
2
3
2
− ΣcD�ð4514Þ and 3

2
5
2
− Ξ�

ccρð4461Þ whose widths are 4.8, 8.0, 2.6, 2.2, 4.0 and

3.0 MeV, respectively. Moreover, one shallow bound state is found, too, with quantum numbers IJP ¼
1
2
3
2
− Ξ�

ccπð3757Þ. These doubly charmed pentaquark states are expected to be identified in future
experiments.

DOI: 10.1103/PhysRevD.101.074030

I. INTRODUCTION

During the past 15 years, more than two dozens of
nontraditional charmonium- and bottomonium-like states,
the so-called XYZ mesons, have been observed at
B-factories (BABAR, Belle and CLEO), τ-charm facilities
(CLEO-c and BESIII) and also proton-(anti)proton col-
liders (CDF, D0, LHCb, ATLAS and CMS). Among all of
them, one can highlight the new three hidden-charm
pentaquark candidates observed in 2019 by the LHCb
collaboration [1] in the J=ψp invariant mass spectrum of
Λ0
b → J=ψK−p decays; they were signed as Pcð4312Þþ,

Pcð4440Þþ and Pcð4457Þþ, respectively. The story of
hidden-charm pentaquark states can actually be dated
back to 2015, when two exotic signals, Pcð4380Þþ and
Pcð4450Þþ, were announced by the same collaboration [2].
Two striking features characterized these states: they appear

quite close to baryon-meson thresholds and all are very
narrow; this is believed to be invaluable information
towards discriminating between different explanations on
how the quarks are arranged within the pentaquarks.
There is an intensive theoretical activity on explain-

ing the dynamical mechanism that produces the three
newly observed hidden-charm pentaquarks, Pcð4312Þþ,
Pcð4440Þþ and Pcð4457Þþ. A common one is the baryon-
meson molecular picture, i.e., ΣcD̄ð�Þ states described
within different kinds of formalisms such as effective field
theories [3,4], heavy quark spin symmetry approach [5,6],
coupled-channel computations constrained by heavy quark
spin symmetry [7], phenomenological potential models
[8–14], heavy hadron chiral perturbation theory [15], and
QCD sum rules [16,17]. The Pcð4312Þþ and Pcð4457Þþ
signals have been studied independently in Refs. [18,19]
using the S-matrix method but in the later case through
isospin-violating decay channels. Moreover, the decay
properties of the three Pþ

c states have been computed in
Ref. [20], and their photoproduction has been interestingly
discussed in Refs. [21,22].
It is important to highlight here that, before the LHCb’s

announcement of the three new hidden-charm pentaquark
states, their existence was predicted by some of the present
authors in Ref. [23] (see Tables III and IV). The Pþ

c ð4312Þ,
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Pþ
c ð4440Þ and Pþ

c ð4457Þ were described as baryon-meson
molecular states of the form JP ¼ 1

2
− ΣcD̄, 1

2
− ΣcD̄� and

3
2
− ΣcD̄�, respectively; belonging all of them to the isospin
I ¼ 1

2
sector. Moreover, these results are supported by

other theoretical studies such as the ones reported in
Refs. [3,4,6,20].
Apart from the hidden-charm pentaquark states, there are

also other pentaquark configurations triggering theoretical
interest. Pentaquarks with only one heavy antiquark,
Q̄qqqq, are analyzed within a constituent quark model
and no bound state is found [24]. Doubly heavy penta-
quarks are systematically studied in a phenomenological
potential model with the conclusion that either stable states
or narrow resonances are possible [25,26]. In Ref. [27],
light pseudoscalar meson and doubly charmed baryon
scattering lengths are calculated by means of the heavy
baryon chiral perturbation theory. Possible triply charmed
molecular pentaquarks such as ΞccD1ðD̄1Þ and ΞccD�

2ðD̄�
2Þ

are proposed using a one-boson-exchange model in
Ref. [28]; and the mass splittings for the S-wave triply
heavy pentaquark states are systematically calculated [29].
Meanwhile, some interesting reviews discussing the pen-
taquark issue but also collecting information about, e.g.,
tetraquark states can be found in Refs. [30,31]; moreover,
potential prospects on the production of multiquark sys-
tems containing heavy quarks with the ALICE experiment
at LHC are discussed in Ref. [32].
Within a chiral quark model formalism,1 we systemati-

cally study herein the possibility of having either bound or
resonance states in the doubly charmed pentaquark sector
with quantum numbers JP ¼ 1

2
−, 3

2
− and 5

2
−, and in the I ¼ 1

2

and 3
2
isospin sectors. This five-body bound state problem is

solved by means of the Gaussian expansion method (GEM)
[42], which has been demonstrated to be as accurate as a
Faddeev calculation (see Figs. 15 and 16 of Ref. [42]).
Note, too, that the same approach has been applied in
previous studies of Pc [23] and Pb states [43].
In this work, a powerful technique named complex

scaling method (CSM) is employed in order to disentangle
bound, resonance, and continuum (scattering) states
within the same calculation. As illustration, Fig. 1 shows
a schematic distribution of the complex energy two-body
states obtained by the CSM, according to Ref. [44]. As one
can see, the resonance states can be computed as an
equivalent bound-state problem without resorting to the
Lippmann-Schwinger equation formalism. To our knowl-
edge, this is the first time that the CSM is applied to the
study of pentaquark systems. During the past decades,
CSM has been extensively applied to nuclear physics

problems [44,45], and recently to the study of charmed di-
baryon resonances [46] and doubly-heavy tetraquarks [47].
The structure of the present work is organized in the

following way. In Sec. II the ChQM, pentaquark wave
functions, GEM and CSM, are briefly presented and
discussed. A note about the appropriateness of our non-
relativistic treatment of the doubly-charmed pentaquark
system is given in Sec. III. Section IV is devoted to the
analysis and discussion of our theoretical results. We
summarize and give some prospects in Sec. V.

II. THEORETICAL FRAMEWORK

Lattice-regularized QCD (LQCD) has made in the past
decade or so an impressive progress on understanding
multiquark systems [48,49] and meson-meson, meson-
baryon and baryon-baryon interactions [50–52]; however,
QCD-inspired quark models are still the main tool to shed
some light on the nature of the multiquark candidates
observed by experimentalists.
The general form of our five-body Hamiltonian, within

the CSM approach, is given by

HðθÞ ¼
X5
i¼1

�
mi þ

p⃗2
i

2mi

�
− TCM þ

X5
j>i¼1

Vðr⃗ijeiθÞ; ð1Þ

where each quark is considered nonrelativistic, TCM is the
center-of-mass kinetic energy and the two-body potential,

Vðr⃗ijeiθÞ ¼ VCONðr⃗ijeiθÞ þ VOGEðr⃗ijeiθÞ þ Vχðr⃗ijeiθÞ;
ð2Þ

includes color-confining, one-gluon-exchange and
Goldstone-boson-exchange interactions. Herein, the coor-
dinates of relative motions between quarks are transformed

Re(E)

Im(E)

continuum
states

resonance

bound states

scattering states

FIG. 1. Schematic complex energy distribution in the single-
channel two-body system.

1This approach has been successfully applied to the charmo-
nium, bottomonium and heavy baryon sectors, studying their
spectra [33–35], their electromagnetic, weak and strong decays
and reactions [36–38], and their coupling with meson-meson
thresholds [39–41].
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with a complex rotation, r⃗ → r⃗eiθ. Therefore, in the frame-
work of complex range, the five-body systems are solved in
a complex scaled Schrödinger equation:

½HðθÞ − EðθÞ�ΨJMðθÞ ¼ 0: ð3Þ

According to the so-called ABC theorem [53,54], there
are three types of complex eigenenergies of Eq. (3), as
shown in Fig. 1:

(i) Bound states below threshold are always located on
the energy’s negative real axis.

(ii) Discretized continuum states are aligned along the
cut line with a rotated angle of 2θ, related to the
real axis.

(iii) Resonance states are fixed poles under the complex
scaling transformation, and they are located above
the continuum cut line. The resonance’s width is
given by Γ ¼ −2ImðEÞ.

Coming back to the quark-(anti)quark interacting poten-
tials shown in Eq. (2), color confinement should be
encoded in the non-Abelian character of QCD. LQCD
studies have demonstrated that multigluon exchanges pro-
duce an attractive linearly rising potential proportional to
the distance between infinite-heavy quarks [55]. However,
the spontaneous creation of light-quark pairs from the QCD
vacuum may give rise at the same scale to a breakup of the
color flux tube [55]. We have tried to mimic these two
phenomenological observations by the following expres-
sion, in complex scaling:

VCONðr⃗ijeiθÞ ¼ ½−acð1 − e−μcrije
iθÞ þ Δ�ðλ⃗ci · λ⃗cjÞ; ð4Þ

where ac and μc are model parameters, and the SU(3)
color Gell-Mann matrices are denoted as λc. One can see
in Eq. (4) that the potential is linear at short interquark
distances with an effective confinement strength σ ¼
−acμcðλ⃗ci · λ⃗cjÞ, while it becomes constant at large distances.
Following de Rújula et al. [56] the one-gluon-exchange

(OGE) interaction is a standard color Fermi-Breit inter-
action obtained from the vertex Lagrangian,

Lqqg ¼ i
ffiffiffiffiffiffiffiffiffiffi
4παs

p
ψ̄γμG

μ
cλcψ ; ð5Þ

with Gμ
c the gluon field. The nonrelativistic reduction of the

derived quark-(anti)quark leading-order interaction dia-
gram provides the OGE potential which contains central,
tensor and spin-orbit contributions. We consider only the
central term but also with a complex transformation,
r⃗ → r⃗eiθ:

VOGEðr⃗ijeiθÞ ¼
1

4
αsðλ⃗ci · λ⃗cjÞ

�
1

rijeiθ

−
1

6mimj
ðσ⃗i · σ⃗jÞ

e−rije
iθ=r0ðμÞ

rijeiθr20ðμÞ
�
; ð6Þ

where mi is the quark mass and the Pauli matrices are
denoted by σ⃗. The contact term of the central potential has
been regularized as

δðr⃗ijeiθÞ ∼
1

4πr20

e−rije
iθ=r0

rijeiθ
; ð7Þ

with r0ðμijÞ ¼ r̂0=μij a regulator that depends on μij, the
reduced mass of the quark-(anti)quark pair.
The wide energy range needed to provide a consistent

description of mesons and baryons from light to heavy
quark sectors requires an effective scale-dependent strong
coupling constant. We use the frozen coupling constant of,
for instance, Ref. [57],

αsðμijÞ ¼
α0

lnðμ
2
ijþμ2

0

Λ2
0

Þ
; ð8Þ

in which α0, μ0 and Λ0 are parameters of the model.
A simple Lagrangian invariant under chiral transforma-

tions can be derived as [58,59]

L ¼ ψ̄ðiγμ∂μ −MUγ5Þψ ; ð9Þ

where Uγ5 ¼ exp ðiπaλaγ5=fπÞ, πa denotes the pseudosca-
lar fields ðπ⃗; Ki; η8Þ with i ¼ 1;…; 4, λa are the SUð3Þ
flavor matrices, fπ is the pion decay constant and Mðq2Þ is
the momentum-dependent constituent quark mass that acts
as a natural cutoff of the theory. One can see that if Uγ5 is
expanded in terms of boson fields as

Uγ5 ¼ 1þ i
fπ

γ5λaπa −
1

2f2π
πaπa þ � � � ; ð10Þ

the first term generates the constituent quark mass, the
second one gives rise to a one-boson exchange interaction
between quarks and the main contribution of the third term
comes from the two-pion exchange which can be simulated
by means of a scalar exchange potential, the so-called
σ-term.
The nonrelativistic reduction of the exchange inter-

actions explained above has been performed for the study
of nuclear forces in, for instance, Ref. [60]. The different
terms of the potential contain central and tensor or central
and spin-orbit contributions. The central terms are the only
ones considered herein and, within CSM, can be written as

Vπðr⃗ijeiθÞ ¼
g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π
mπ

�
YðmπrijeiθÞ

−
Λ3
π

m3
π
YðΛπrijeiθÞ

�
ðσ⃗i · σ⃗jÞ

X3
a¼1

ðλai · λaj Þ;

ð11Þ
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Vσðr⃗ijeiθÞ ¼ −
g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrijeiθÞ

−
Λσ

mσ
YðΛσrijeiθÞ

�
; ð12Þ

VKðr⃗ijeiθÞ ¼
g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K
mK

�
YðmKrijeiθÞ

−
Λ3
K

m3
K
YðΛKrijeiθÞ

�
ðσ⃗i · σ⃗jÞ

X7
a¼4

ðλai · λaj Þ;

ð13Þ

Vηðr⃗ijeiθÞ ¼
g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η
mη

�
YðmηrijeiθÞ

−
Λ3
η

m3
η
YðΛηrijeiθÞ

�
ðσ⃗i · σ⃗jÞ½cos θpðλ8i · λ8jÞ

− sin θp�; ð14Þ

where YðxÞ is the standard Yukawa function defined by
YðxÞ ¼ e−x=x. We consider the physical ηmeson instead of
the octet one and so we introduce the angle θp. The λa are
the SU(3) flavor Gell-Mann matrices. Taken from their
experimental values, mπ , mK and mη are the masses of the
SU(3) Goldstone bosons. The value of mσ used herein is
given by the partially conserved axial current (PCAC)
relation m2

σ ≃m2
π þ 4m2

u;d [61]. Note, however, that better
determinations of the mass of the σ-meson have been
reported since then, see the relatively recent review [62];
one should simply consider the value used herein as a
model parameter. Finally, the chiral coupling constant, gch,
is determined from the πNN coupling constant through

g2ch
4π

¼ 9

25

g2πNN

4π

m2
u;d

m2
N
; ð15Þ

which assumes that flavor SU(3) is an exact symmetry, only
broken by the different mass of the strange quark.
As it is well known, the quark model parameters are

crucial. In our case, the model parameters have been taken
from, e.g., Ref. [23] and, for completeness, they are listed
in Table I. Note that the same set of model parameters was
used in Refs. [23,43] to study, respectively, possible
hidden-charm and hidden-bottom pentaquark bound and
resonance states.
There are four sets of baryon-meson configurations for

ccqqq̄ðq ¼ u or dÞ systems,2 and they are shown in
Figs. 2–5. Moreover, the antisymmetry property in these
identical fermion systems is necessary; however, due to the
asymmetry between light and heavy quarks, the two

charmed quarks can be coupled first within a three-quark
cluster as shown in Fig. 2. Therefore, the antisymmetry
operator for the ccqq̄q pentaquark system is

A1 ¼ 1 − ð35Þ: ð16Þ

Figure 3 shows a different arrangement in the three-quark
cluster with two heavy quarks included. In this case, the
antisymmetry operator is given by

A2 ¼ 1 − ð12Þ − ð35Þ þ ð12Þð35Þ: ð17Þ

The cases in which the two charm quarks are separated in
different clusters are also considered and shown in Figs. 4

5

43

2

C C

q

q

q

1

FIG. 2. The configuration of ccqqq̄ ðq ¼ u or dÞ pentaquarks.
Two charmed quarks are in one cluster and coupled first.

TABLE I. Quark model parameters.

Quark masses mu ¼ md (MeV) 313
mc (MeV) 1752

Goldstone bosons Λπ ¼ Λσ (fm−1) 4.20
Λη (fm−1) 5.20
g2ch=ð4πÞ 0.54
θPð°Þ −15

Confinement ac (MeV) 430
μc (fm−1Þ 0.70
Δ (MeV) 181.10

OGE α0 2.118
Λ0 (fm−1) 0.113
μ0 (MeV) 36.976

r̂0 (MeV fm) 28.170

5

43

C C

q

q

q

21

FIG. 3. The configuration of ccqqq̄ ðq ¼ u or dÞ pentaquarks.
Two charmed quarks are in one cluster with the light and heavy
quark coupled first.

2Note that the diquark-diquark-antiquark configuration is not
considered herein because it goes beyond the scope of this work.
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and 5. When the two light quarks are coupled as in Fig. 4,
the antisymmetry operator is

A3 ¼ 1 − ð12Þ; ð18Þ

whereas the last configuration, shown in Fig. 5, has the
same antisymmetry operator of Eq. (17); this is to say

A4 ¼ A2: ð19Þ

The pentaquark wave function is a product of four terms:
color, flavor, spin and space wave functions. Concerning
the color degrees-of-freedom, multiquark systems have
richer structure than the conventional mesons and baryons.
For instance, the five-quark wave function must be color-
less but the way of reaching this condition can be done
through either a color-singlet or a hidden-color channel, or
both. The authors of Refs. [63,64] assert that it is enough to
consider the color singlet channel when all possible excited
states of a system are included. However, a more eco-
nomical way of computing is considering both; the color
singlet wave function:

χnc1 ¼ 1ffiffiffiffiffi
18

p ðrgb − rbgþ gbr − grbþ brg − bgrÞ

× ðr̄rþ ḡgþ b̄bÞ; ð20Þ

where n ¼ 1–4 is a label for each quark configuration
shown in Figs. 2–5, respectively (it is of the same meaning
for spin, flavor and space wave functions). In other words,

they have a common form but with different quark
sequence: 123;45, 132;45, 352;41 and 253;41. When
computing matrix elements, one should switch the last
three cases into the first one. The hidden-color channel is
given by

χnck ¼ 1ffiffiffi
8

p ðχnk3;1χ2;8 − χnk3;2χ2;7 − χnk3;3χ2;6 þ χnk3;4χ2;5

þ χnk3;5χ2;4 − χnk3;6χ2;3 − χnk3;7χ2;2 þ χnk3;8χ2;1Þ; ð21Þ

where k ¼ 2ð3Þ is an index which stands for the sym-
metric (antisymmetric) configuration of two quarks in the
three-quark cluster. All color configurations have been
used herein, as in the case of the Pþ

c ðPþ
b Þ hidden-charm

(-bottom) pentaquarks studied in Refs. [23,43].
According to the SU(2) symmetry in isospin space, the

flavor wave functions for the clusters mentioned above are
given by

B3
11 ¼ uuc; B3

1−1 ¼ ddc; ð22Þ

B4
11 ¼ ucu; B4

1−1 ¼ dcd; ð23Þ

B3
10 ¼

1ffiffiffi
2

p ðudþ duÞc; ð24Þ

B4
10 ¼

1ffiffiffi
2

p ðucdþ dcuÞ; ð25Þ

B3
00 ¼

1ffiffiffi
2

p ðud − duÞc; ð26Þ

B4
00 ¼

1ffiffiffi
2

p ðucd − dcuÞ; ð27Þ

B1
1
2
;1
2

¼ ccu; B1
1
2
;−1

2

¼ ccd; ð28Þ

B2
1
2
;1
2

¼ cuc; B2
1
2
;−1

2

¼ cdc; ð29Þ

M1
2
;1
2
¼ d̄c; M1

2
;−1

2
¼ −ūc; ð30Þ

M11 ¼ d̄u; M1−1 ¼ −ūd; ð31Þ

M10 ¼ −
1ffiffiffi
2

p ðūu − d̄dÞ; ð32Þ

M00 ¼ −
1ffiffiffi
2

p ðūuþ d̄dÞ; ð33Þ

where the superscript of the flavor wave functions of three-
quark clusters stand for the number of each pentaquark
configuration. Consequently, the flavor wave functions for
the five-quark system with isospin I ¼ 1=2 or 3=2 are

5

43

C C

q

q

q

21

FIG. 4. The configuration of ccqqq̄ ðq ¼ u or dÞ pentaquarks.
The two heavy quarks are divided into two clusters with light
quarks coupled first.

5

4
3

C C

q

q

q

21

FIG. 5. The configuration of ccqqq̄ ðq ¼ u or dÞ pentaquarks.
The two heavy quarks are divided into two clusters with the light-
and heavy-quark coupled first.
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χnf11
2
;1
2

ð5Þ ¼
ffiffiffi
2

3

r
Bn
11M1

2
;−1

2
−

ffiffiffi
1

3

r
Bn
10M1

2
;1
2
; ð34Þ

χnf21
2
;1
2

ð5Þ ¼ Bn
00M1

2
;1
2
; ð35Þ

χnf31
2
;1
2

ð5Þ ¼ Bn
1
2
;1
2

M00; ð36Þ

χnf41
2
;1
2

ð5Þ ¼ −
ffiffiffi
2

3

r
Bn

1
2
;−1

2

M11 þ
ffiffiffi
1

3

r
Bn

1
2
;1
2

M10; ð37Þ

χnf13
2
;3
2

ð5Þ ¼ Bn
1
2
;1
2

M1;1; ð38Þ

χnf23
2
;3
2

ð5Þ ¼ Bn
1;1M1

2
;1
2
; ð39Þ

where the third component of the isospin is set to be equal
to the total one without loss of generality, because there is
no interaction term in the Hamiltonian that can distinguish
such component.
We consider herein five-quark systems with total spin

ranging from 1=2 to 5=2. Our Hamiltonian does not
have any spin-orbital coupling dependent potential, and
thus we can assume that the spin wave function has its
third component equal to the total one, without loss of
generality:

χnσ11
2
;1
2

ð5Þ ¼
ffiffiffi
1

6

r
χnσ3

2
;−1

2

ð3Þχσ11 −
ffiffiffi
1

3

r
χnσ3

2
;1
2

ð3Þχσ10

þ
ffiffiffi
1

2

r
χnσ3
2
;3
2

ð3Þχσ1−1; ð40Þ

χnσ21
2
;1
2

ð5Þ ¼
ffiffiffi
1

3

r
χnσ11

2
;1
2

ð3Þχσ10 −
ffiffiffi
2

3

r
χnσ11
2
;−1

2

ð3Þχσ11; ð41Þ

χnσ31
2
;1
2

ð5Þ ¼
ffiffiffi
1

3

r
χnσ21

2
;1
2

ð3Þχσ10 −
ffiffiffi
2

3

r
χnσ21
2
;−1

2

ð3Þχσ11; ð42Þ

χnσ41
2
;1
2

ð5Þ ¼ χnσ11
2
;1
2

ð3Þχσ00; ð43Þ

χnσ51
2
;1
2

ð5Þ ¼ χnσ21
2
;1
2

ð3Þχσ00; ð44Þ

for S ¼ 1=2, and

χnσ13
2
;3
2

ð5Þ ¼
ffiffiffi
3

5

r
χnσ3
2
;3
2

ð3Þχσ10 −
ffiffiffi
2

5

r
χnσ3
2
;1
2

ð3Þχσ11; ð45Þ

χnσ23
2
;3
2

ð5Þ ¼ χnσ3
2
;3
2

ð3Þχσ00; ð46Þ

χnσ33
2
;3
2

ð5Þ ¼ χnσ11
2
;1
2

ð3Þχσ11; ð47Þ

χnσ43
2
;3
2

ð5Þ ¼ χnσ21
2
;1
2

ð3Þχσ11; ð48Þ

for S ¼ 3=2, and

χnσ15
2
;5
2

ð5Þ ¼ χnσ3
2
;3
2

ð3Þχσ11; ð49Þ

for S ¼ 5=2. These expressions can be obtained easily
using SU(2) algebra and considering the three-quark and
quark-antiquark clusters separately. They were derived in
Ref. [23] for the hidden-charm pentaquarks.
The complex Schrödinger-like five-body bound state

equation is solved using the Rayleigh-Ritz variational
principle, which is one of the most extended tools to solve
eigenvalue problems due to its simplicity and flexibility.
However, it is of great importance how to choose the basis
on which to expand the wave function. The spatial wave
function of a five-quark system is written as follows:

ψLML
¼ ½½½ϕn1l1ðρeiθÞϕn2l2ðλeiθÞ�lϕn3l3ðreiθÞ�l0
× ϕn4l4ðReiθÞ�LML

: ð50Þ

Taking the first pentaquark configuration shown in Fig. 2 as
an example,3 the internal Jacobi coordinates are defined as

ρ ¼ x1 − x2; ð51Þ

λ ¼ x3 −
�
m1x1 þm2x2
m1 þm2

�
; ð52Þ

r ¼ x4 − x5; ð53Þ

R ¼
�
m1x1 þm2x2 þm3x3

m1 þm2 þm3

�
−
�
m4x4 þm5x5
m4 þm5

�
: ð54Þ

This choice is convenient because, on one hand, the center-
of-mass kinetic term TCM can be completely eliminated for
a nonrelativistic system and, on the other hand, the spatial
wave functions related with the relative motions between
quarks can be also extended to the complex scaling.
In order to make the calculation tractable, even for

complicated interactions, we replace the orbital wave
functions, ϕ’s in Eq. (50), by a superposition of infinitesi-
mally shifted Gaussians (ISG) [42]:

ϕnlmðr⃗eiθÞ ¼ NnlðreiθÞle−νnðreiθÞ2Ylmðr̂Þ

¼ Nnllim
ε→0

1

ðνnεÞl
Xkmax

k¼1

Clm;ke−νnðr⃗e
iθ−εD⃗lm;kÞ2 ; ð55Þ

where the limit ε → 0 must be carried out after the matrix
elements have been calculated analytically. This new set of
basis functions makes the calculation of five-body matrix
elements easier without the laborious Racah algebra.

3The other three configurations are similar and differ only in
the arrangement of quark sequence.
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Moreover, all the advantages of using Gaussians remain
with the new basis functions.
Finally, in order to fulfill the Pauli principle, the com-

plete antisymmetry complex wave function is written as

ΨJM;i;j;kðθÞ ¼
X4
n¼1

An½½ψn
LðθÞχnσiS ð5Þ�JMχ

nfj
I χnck �; ð56Þ

where An is the antisymmetry operator of the five-quark
system and their expressions are shown in Eqs. (16)–(19).
This is needed because we have constructed an antisym-
metric wave function for only two quarks of the three-quark
cluster; the remaining (anti)quarks of the system have been
added to the wave function by simply considering the
appropriate Clebsch-Gordan coefficients.

III. RELATIVITY AND MODEL INDEPENDENCE

Model estimates of the mean momentum, hpi, of a light
constituent quark, with mass m, inside a meson typically
yield hp ∼mi. It might therefore be argued that bound-state
calculations involving light quark systems should only be
undertaken within models that, at some level, incorporate

relativity. This potential weakness of the nonrelativistic
quark model has long been considered. For example,
Ref. [65] remarks that a nonrelativistic treatment of quark
motion is inaccurate. However, using scales that are
internally consistent, it is not ultrarelativistic. Therefore,
the nonrelativistic approximation must be useful. The point
is also canvassed in Ref. [66], which opens with the ques-
tion “Why does the nonrelativistic quark model work?” and
proceeds to provide a range of plausible answers. These
discussions are complemented by Ref. [67], which devotes
itself to “The significance of the treatment of relativisti-
cally moving constituents by an effective nonrelativistic
Schrödinger equation […].” The conclusion of these dis-
courses and many others is simple: the nonrelativistic
model has proved very useful, unifying a wide range of
observables within a single framework.
This last observation provides our rationale for employ-

ing a nonrelativistic model for the analysis herein. Namely,
we take a pragmatic view: the nonrelativistic quark model
is a useful tool. The practical reason for its success is
simple: the model has many parameters; they are fitted to a
body of data; and, consequently, on this domain, the model
cannot be wrong numerically. If one adds relativistic effects

TABLE II. All possible channels for open-charm pentaquark systems with JP ¼ 1=2−, and I ¼ 1=2; 3=2. The

third and fifth columns show the necessary basis combination in spin ðχnσiJ Þ, flavor ðχnfjI Þ, and color ðχnck Þ degrees of
freedom, along with the possible configurations (n ¼ 1;…; 4) shown in Figs. 2–5. The physical channels with
color-singlet (labeled with the superindex 1) and hidden-color (labeled with the superindex 8) configurations are
listed in the fourth and sixth columns.

I ¼ 1
2

I ¼ 3
2

JP Index χnσiJ ; χ
nfj
I ; χnck ; ½i; j; k; n� Channel χnσiJ ; χ

nfj
I ; χnck ; ½i; j; k; n� Channel

1
2
− 1 ½4; 3; 1; 1; 2� ðΞccηÞ1 ½4; 2; 1; 1; 2� ðΞccπÞ1

2 ½4; 5; 3; 2; 3; 1; 2� ðΞccηÞ8 ½4; 5; 2; 2; 3; 1; 2� ðΞccπÞ8
3 ½2; 3; 1; 1; 2� ðΞccωÞ1 ½2; 2; 1; 1; 2� ðΞccρÞ1
4 ½2; 3; 3; 2; 3; 1; 2� ðΞccωÞ8 ½2; 3; 2; 2; 3; 1; 2� ðΞccρÞ8
5 ½4; 4; 1; 1; 2� ðΞccπÞ1 ½1; 2; 1; 1; 2� ðΞ�

ccρÞ1
6 ½4; 5; 4; 2; 3; 1; 2� ðΞccπÞ8 ½1; 2; 3; 1; 2� ðΞ�

ccρÞ8
7 ½2; 4; 1; 1; 2� ðΞccρÞ1 ½4; 3; 1; 3; 4� ðΣcDÞ1
8 ½2; 3; 4; 2; 3; 1; 2� ðΞccρÞ8 ½4; 5; 3; 2; 3; 3; 4� ðΣcDÞ8
9 ½1; 3; 1; 1; 2� ðΞ�

ccωÞ1 ½2; 3; 1; 3; 4� ðΣcD�Þ1
10 ½1; 3; 3; 1; 2� ðΞ�

ccωÞ8 ½2; 3; 3; 2; 3; 3; 4� ðΣcD�Þ8
11 ½1; 4; 1; 1; 2� ðΞ�

ccρÞ1 ½1; 3; 1; 3; 4� ðΣ�
cD�Þ1

12 ½1; 4; 3; 1; 2� ðΞ�
ccρÞ8 ½1; 3; 3; 3; 4� ðΣ�

cD�Þ8
13 ½5; 2; 1; 3; 4� ðΛcDÞ1
14 ½4; 5; 2; 2; 3; 3; 4� ðΛcDÞ8
15 ½3; 2; 1; 3; 4� ðΛcD�Þ1
16 ½2; 3; 2; 2; 3; 3; 4� ðΛcD�Þ8
17 ½4; 1; 1; 3; 4� ðΣcDÞ1
18 ½4; 5; 1; 2; 3; 3; 4� ðΣcDÞ8
19 ½2; 1; 1; 3; 4� ðΣcD�Þ1
20 ½2; 3; 1; 2; 3; 3; 4� ðΣcD�Þ8
21 ½1; 1; 1; 3; 4� ðΣ�

cD�Þ1
22 ½1; 1; 3; 3; 4� ðΣ�

cD�Þ8
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in one way or another, there are similar parameters in the
new potential. They, too, are fitted to data; and hence the
resulting model cannot produce results that are very different
from the original nonrelativistic version. The values of the
parameters in the potential are modified, but the potential is
not observable, so nothing substantive is altered.

IV. RESULTS

In the present calculation, we investigate the possible
lowest-lying and resonance states of the ccqqq̄ ðq ¼
u or dÞ pentaquark systems by taking into account the
ðccqÞðq̄qÞ, ðcqcÞðq̄qÞ, ðqqcÞðq̄cÞ and ðcqqÞðq̄cÞ configu-
rations in which the considered baryons have always
positive parity and mesons are either pseudoscalars ðJP ¼
0−Þ or vectors ð1−Þ. This means that, in our approach, a
pentaquark state with negative parity has L ¼ 0. In this
case, we assume that the angular momenta l1, l2, l3 and l4,
appearing in Eq. (50), are all equal to zero. Accordingly, the
total angular momentum, J, coincides with the total spin, S,
and can take values 1=2, 3=2 and 5=2. The possible baryon-
meson channels which are under consideration in the

computation are listed in Tables II and III; they have been
grouped according to total spin and parity JP, and isospin I.
The third and fifth columns of such Tables show the

necessary basis combination in spin ðχnσiJ Þ, flavor ðχnfjI Þ,
and color ðχnck Þ degrees of freedom, along with the possible
configurations (n ¼ 1;…; 4) shown in Figs. 2–5. The
physical channels with color-singlet (labeled with the
superindex 1) and hidden-color (labeled with the super-
index 8) configurations are listed in the fourth and sixth
columns of the same tables.
First, we perform a calculation of the lowest-lying

doubly-charm pentaquarks with a rotated angle θ ¼ 0°.
Tables IV, VI, VIII, IX, XI and XIII summarize our masses
of the ccqqq̄ systems with spin-parity JP ¼ 1

2
−, 3

2
− and 5

2
−,

isospin I ¼ 1
2
and 3

2
, respectively. In each table, the first and

fourth columns show the baryon-meson channel and also,
in parentheses, the experimental value of the noninteracting
baryon-meson threshold; the second column refers to color-
singlet (S), hidden-color (H) and coupled-channels (Sþ H)
calculations; the third and fifth columns show the theo-
retical mass of the pentaquark state. All of these states are

TABLE III. All possible channels for open-charm pentaquark systems with JP ¼ 3=2−; 5=2−, and I ¼ 1=2; 3=2.

The third and fifth columns show the necessary basis combination in spin ðχnσiJ Þ, flavor ðχnfjI Þ, and color ðχnck Þ
degrees of freedom, along with the possible configurations (n ¼ 1;…; 4) shown in Figs. 2–5. The physical channels
with color-singlet (labeled with the superindex 1) and hidden-color (labeled with the superindex 8) configurations
are listed in the fourth and sixth columns.

I ¼ 1
2

I ¼ 3
2

JP Index χnσiJ ; χ
nfj
I ; χnck ; ½i; j; k; n� Channel χnσiJ ; χ

nfj
I ; χnck ; ½i; j; k; n� Channel

3
2
− 1 ½3; 3; 1; 1; 2� ðΞccωÞ1 ½3; 2; 1; 1; 2� ðΞccρÞ1

2 ½3; 4; 3; 2; 3; 1; 2� ðΞccωÞ8 ½3; 4; 2; 2; 3; 1; 2� ðΞccρÞ8
3 ½3; 4; 1; 1; 2� ðΞccρÞ1 ½2; 2; 1; 1; 2� ðΞ�

ccπÞ1
4 ½3; 4; 4; 2; 3; 1; 2� ðΞccρÞ8 ½2; 2; 3; 1; 2� ðΞ�

ccπÞ8
5 ½2; 4; 1; 1; 2� ðΞ�

ccπÞ1 ½1; 2; 1; 1; 2� ðΞ�
ccρÞ1

6 ½2; 4; 3; 1; 2� ðΞ�
ccπÞ8 ½1; 2; 3; 1; 2� ðΞ�

ccρÞ8
7 ½1; 3; 1; 1; 2� ðΞ�

ccωÞ1 ½3; 3; 1; 3; 4� ðΣcD�Þ1
8 ½1; 3; 3; 1; 2� ðΞ�

ccωÞ8 ½3; 4; 3; 2; 3; 3; 4� ðΣcD�Þ8
9 ½1; 4; 1; 1; 2� ðΞ�

ccρÞ1 ½2; 3; 1; 3; 4� ðΣ�
cDÞ1

10 ½1; 4; 3; 1; 2� ðΞ�
ccρÞ8 ½3; 3; 3; 3; 4� ðΣ�

cDÞ8
11 ½4; 2; 1; 3; 4� ðΛcD�Þ1 ½1; 3; 1; 3; 4� ðΣ�

cD�Þ1
12 ½3; 4; 2; 2; 3; 3; 4� ðΛcD�Þ8 ½1; 3; 3; 3; 4� ðΣ�

cD�Þ8
13 ½3; 1; 1; 3; 4� ðΣcD�Þ1
14 ½3; 4; 1; 1; 3; 4� ðΣcD�Þ8
15 ½2; 1; 1; 3; 4� ðΣ�

cDÞ1
16 ½2; 1; 3; 3; 4� ðΣ�

cDÞ8
17 ½1; 1; 1; 3; 4� ðΣ�

cD�Þ1
18 ½1; 1; 3; 3; 4� ðΣ�

cD�Þ8
5
2
− 1 ½1; 3; 1; 1; 2� ðΞ�

ccωÞ1 ½1; 2; 1; 1; 2� ðΞ�
ccρÞ1

2 ½1; 3; 3; 1; 2� ðΞ�
ccωÞ8 ½1; 2; 3; 1; 2� ðΞ�

ccρÞ8
3 ½1; 4; 1; 1; 2� ðΞ�

ccρÞ1 ½1; 3; 1; 3; 4� ðΣ�
cD�Þ1

4 ½1; 4; 3; 1; 2� ðΞ�
ccρÞ8 ½1; 3; 3; 3; 4� ðΣ�

cD�Þ8
5 ½1; 1; 1; 3; 4� ðΣ�

cD�Þ1
6 ½1; 1; 3; 3; 4� ðΣ�

cD�Þ8
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scattering ones and thus the corresponding binding energies
are bigger than zero. However, also in real-range calcu-
lation ðθ ¼ 0°Þ, Tables V, VII, X and XII show our findings
about the possible existence of lowest-lying doubly-charm
pentaquarks with quantum numbers IðJPÞ ¼ 1

2
ð1
2
−Þ, 1

2
ð3
2
−Þ,

3
2
ð1
2
−Þ and 3

2
ð3
2
−Þ, respectively. In these tables, the first

column shows the baryon-meson channel in which a bound
state appears, it also indicates in parentheses the exper-
imental value of the noninteracting baryon-meson thresh-
old; the second column refers to color-singlet (S), hidden-
color (H) and coupled-channels (Sþ H) calculations; the
third and fourth columns show the theoretical mass and

binding energy of the pentaquark bound state; and the fifth
column presents the theoretical mass of the pentaquark
state but rescaled attending to the experimental baryon-
meson threshold, this is in order to avoid theoretical
uncertainties coming from the quark model prediction of
the baryon and meson spectra.
In addition to the study sketched briefly in the last

paragraph, we use the mentioned complex scaling method
(CSM) to investigate the nature of a given pentaquark state
in coupled-channels calculation. There exist (resonance)
poles for pentaquark states with quantum numbers
IðJPÞ ¼ 1

2
ð1
2
−Þ, 1

2
ð3
2
−Þ, 3

2
ð1
2
−Þ, 3

2
ð3
2
−Þ and 3

2
ð5
2
−Þ. No resonance

TABLE IV. The lowest eigenenergies of doubly-charm penta-
quarks with IðJPÞ ¼ 1

2
ð1
2
−Þ, and the rotated angle θ ¼ 0°. The first

and fourth columns show the baryon-meson channel and also, in
parentheses, the experimental value of the noninteracting baryon-
meson threshold; the second column refers to color-singlet (S),
hidden-color (H) and coupled-channels (Sþ H) calculations; the
third and fifth columns show the theoretical mass of the
pentaquark state (unit: MeV).

Channel Color M Channel M

Ξccη S 4351 Ξccω 4358
(4065) H 4787 (4300) 4608

Sþ H 4351 4358

Ξccπ S 3812 Ξccρ 4434
(3657) H 4620 (4293) 4613

Sþ H 3812 4434

Ξ�
ccω S 4412 Ξ�

ccρ 4488
(4403) H 4568 (4396) 4576

Sþ H 4412 4488

ΛcD S 3981 Σ�
cD� 4551

(4155) H 4299 (4527) 4779
Sþ H 3981 4551

ΣcD S 4384 ΣcD� 4503
(4324) H 4701 (4462) 4691

Sþ H 4384 4503

TABLE V. The lowest eigenenergies of ΛcD� with
IðJPÞ ¼ 1

2
ð1
2
−Þ, and the rotated angle θ ¼ 0°. The first column

shows the baryon-meson channel in which a bound state appears,
it also indicates in parentheses the experimental value of the
noninteracting baryon-meson threshold; the second column refers
to color-singlet (S), hidden-color (H) and coupled-channels
(Sþ H) calculations; the third and fourth columns show the
theoretical mass and binding energy of the pentaquark bound
state; and the fifth column presents the theoretical mass of the
pentaquark state but rescaled attending to the experimental
baryon-meson threshold (unit: MeV).

Channel Color M EB M0

ΛcD� S 4098 −2 4291
(4293) H 4312 þ212 4505

Sþ H 4098 −2 4291

TABLE VI. The lowest eigenenergies, in MeV, of doubly-
charm pentaquarks with IðJPÞ ¼ 1

2
ð3
2
−Þ, and the rotated angle

θ ¼ 0°. The first and fourth columns show the baryon-meson
channel and also, in parentheses, the experimental value of the
noninteracting baryon-meson threshold; the second column refers
to color-singlet (S), hidden-color (H) and coupled-channels
(Sþ H) calculations; the third and fifth columns show the
theoretical mass of the pentaquark state (unit: MeV).

Channel Color M Channel M

Ξccω S 4358 Ξccρ 4434
(4300) H 4619 (4293) 4648

Sþ H 4358 4434

Ξ�
ccπ S 3866 Ξ�

ccω 4412
(3760) H 4671 (4403) 4614

Sþ H 3866 4412

Ξ�
ccρ S 4488 ΛcD� 4100

(4396) H 4641 (4293) 4284
Sþ H 4488 4100

ΣcD� S 4503 Σ�
cD 4432

(4462) H 4689 (4389) 4702
Sþ H 4503 4432

Σ�
cD� S 4551

(4527) H 4729
Sþ H 4551

TABLE VII. The lowest eigenenergies of ΣcD� with
IðJPÞ ¼ 1

2
ð3
2
−Þ, and the rotated angle θ ¼ 0°. The first column

shows the baryon-meson channel in which a bound state appears,
it also indicates in parentheses the experimental value of the
noninteracting baryon-meson threshold; the second column refers
to color-singlet (S), hidden-color (H) and coupled-channels
(Sþ H) calculations; the third and fourth columns show the
theoretical mass and binding energy of the pentaquark bound
state; and the fifth column presents the theoretical mass of the
pentaquark state but rescaled attending to the experimental
baryon-meson threshold (unit: MeV).

Channel Color M EB M0

ΣcD� S 4503 0 4462
(4462) H 4689 þ186 4648

Sþ H 4502 −1 4461
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state is found in the present work with total spin JP ¼ 5
2
−

and isospin I ¼ 1
2
. As for those possible resonance states,

their complex energies (masses and widths) are estab-
lished in Figs. 6–11. Moreover, Table XIV summarized our

TABLE VIII. The lowest eigenenergies, in MeV, of doubly-
charm pentaquarks with IðJPÞ ¼ 1

2
ð5
2
−Þ, and the rotated angle

θ ¼ 0°. The first and fourth columns show the baryon-meson
channel and also, in parentheses, the experimental value of the
noninteracting baryon-meson threshold; the second column refers
to color-singlet (S), hidden-color (H) and coupled-channels
(Sþ H) calculations; the third and fifth columns show the
theoretical mass of the pentaquark state (unit: MeV).

Channel Color M Channel M

Ξ�
ccω S 4412 Ξ�

ccρ 4488
(4403) H 4683 (4396) 4741

Sþ H 4412 4488

Σ�
cD� S 4551

(4527) H 4655
Sþ H 4551

TABLE IX. The lowest eigenenergies of doubly-charm penta-
quarks with IðJPÞ ¼ 3

2
ð1
2
−Þ, and the rotated angle θ ¼ 0°. The first

and fourth columns show the baryon-meson channel and also, in
parentheses, the experimental value of the noninteracting baryon-
meson threshold; the second column refers to color-singlet (S),
hidden-color (H) and coupled-channels (Sþ H) calculations; the
third and fifth columns show the theoretical mass of the
pentaquark state (unit: MeV).

Channel Color M Channel M

Ξccπ S 3812 Ξccρ 4434
(3657) H 4682 (4293) 4685

Sþ H 3812 4434

Ξ�
ccρ S 4488 ΣcD 4384

(4396) H 4647 (4324) 4714
Sþ H 4488 4384

ΣcD� S 4503
(4462) H 4627

Sþ H 4503

TABLE X. The lowest eigenenergies of Σ�
cD� with

IðJPÞ ¼ 3
2
ð1
2
−Þ, and the rotated angle θ ¼ 0°. The first column

shows the baryon-meson channel in which a bound state appears,
it also indicates in parentheses the experimental value of the
noninteracting baryon-meson threshold; the second column refers
to color-singlet (S), hidden-color (H) and coupled-channels
(Sþ H) calculations; the third and fourth columns show the
theoretical mass and binding energy of the pentaquark bound
state; and the fifth column presents the theoretical mass of the
pentaquark state but rescaled attending to the experimental
baryon-meson threshold (unit: MeV).

Channel Color M EB M0

Σ�
cD� S 4548 −3 4524

(4527) H 4693 þ142 4669
Sþ H 4547 −4 4523

TABLE XI. The lowest eigenenergies of doubly-charm penta-
quarks with IðJPÞ ¼ 3

2
ð3
2
−Þ, and the rotated angle θ ¼ 0°. The first

and fourth columns show the baryon-meson channel and also, in
parentheses, the experimental value of the noninteracting baryon-
meson threshold; the second column refers to color-singlet (S),
hidden-color (H) and coupled-channels (Sþ H) calculations; the
third and fifth columns show the theoretical mass of the
pentaquark state (unit: MeV).

Channel Color M Channel M

Ξccρ S 4434 Ξ�
ccπ 3866

(4293) H 4708 (3760) 4692
Sþ H 4434 3866

Ξ�
ccρ S 4488 ΣcD� 4503

(4396) H 4678 (4462) 4719
Sþ H 4488 4503

Σ�
cD S 4432

(4389) H 4695
Sþ H 4432

TABLE XII. The lowest eigenenergies of Σ�
cD� with

IðJPÞ ¼ 3
2
ð3
2
−Þ, and the rotated angle θ ¼ 0°. The first column

shows the baryon-meson channel in which a bound state appears,
it also indicates in parentheses the experimental value of the
noninteracting baryon-meson threshold; the second column refers
to color-singlet (S), hidden-color (H) and coupled-channels
(Sþ H) calculations; the third and fourth columns show the
theoretical mass and binding energy of the pentaquark bound
state; and the fifth column presents the theoretical mass of the
pentaquark state but rescaled attending to the experimental
baryon-meson threshold (unit: MeV).

Channel Color M EB M0

Σ�
cD� S 4551 0 4527

(4527) H 4667 þ116 4643
Sþ H 4548 −3 4524

TABLE XIII. The lowest eigenenergies of doubly-charm pen-
taquarks with IðJPÞ ¼ 3

2
ð5
2
−Þ, and the rotated angle θ ¼ 0°. The

first and fourth columns show the baryon-meson channel and
also, in parentheses, the experimental value of the noninteracting
baryon-meson threshold; the second column refers to color-
singlet (S), hidden-color (H) and coupled-channels (Sþ H)
calculations; the third and fifth columns show the theoretical
mass of the pentaquark state (unit: MeV).

Channel Color M Channel M

Ξ�
ccρ S 4488 Σ�

cD� 4551
(4396) H 4727 (4527) 4706

Sþ H 4488 4551
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theoretical findings of these possible bound and resonance
states.
We proceed now to describe in detail our theoretical

findings:

A. The IðJPÞ= 1
2 ð12−Þ channel:

Among all the possible baryon-meson channels: Ξccη,
Ξccω, Ξccπ, Ξccρ, Ξ�

ccω, Ξ�
ccρ, ΛcD, ΛcD�, ΣcD, ΣcD�

and Σ�
cD�, only ΛcD� is possibly bound in real-range

calculation with a binding energy EB ¼ −2 MeV and its
modified mass is 4291 MeV. One can clearly see in Table V
that the coupling between color-singlet and hidden-color
channels is quite weak. However, after a coupled-channels
calculation for all of these possible channels in the complex
range with a rotated angle θ varied from 0° to 6°, one
possible ΣcD resonance state is obtained.
The distribution of complex energies with quantum

numbers IðJPÞ ¼ 1
2
ð1
2
−Þ are shown in Fig. 6. The green

dots on the positive real axis are the masses of coupled-
channels calculation with θ ¼ 0°. Meanwhile, black, red
and blue dots are for those with θ ¼ 2°, 4° and 6°,
respectively. Generally, they are aligned along the threshold
lines with the same color. If we focus on, e.g., Ξccπ
channel, whose lowest theoretical mass is 3812 MeV, the
nature of scattering state is clearly identified because the
obtained poles always move along the cut lines when
the scaling angle θ changes. This feature is also observed
for the other channels: ΛcD, ΛcD�, Ξ�

ccρ, ΣcD� and Σ�
cD�.

Note, too, that the radial excited state of Ξccπ is also
obtained, as shown in Fig. 6.
An important feature to highlight here is the following.

The bound state of ΛcD�, with a mass of 4291 MeV, is
pushed above its threshold within the coupled-channels
calculation. In Fig. 6, one can see that the pole of ΛcD� is
always going down with larger values of θ. Since we are
working with a finite Fock space, some numerical noise is
found in the high energy region, from 4.6 GeV. This issue
can be settled with a large number Gaussian basis; however,
such higher energies are not interesting for the scope of
this work.
The top panel of Fig. 6 also shows a dense distribution

of Ξccη, Ξccω, ΣcD, Ξ�
ccω and Ξccρ states in the energy

region 4.35–4.46 GeV; for this reason, the bottom panel
shows an enlarged version of it which concentrates on
½4.35–4.46� GeV. One can see that the calculated complex
energies fall mostly into the kind of continuum states,
except a possible resonance pole whose mass and width are
∼4416 and ∼4.8 MeV, respectively. In the same figure,
there are three almost overlapping points, circled in green,
which correspond to the CSM calculation with θ ¼ 2°, 4°
and 6°. These points correspond to a resonance state which
is above the threshold of ΣcD. After a mass shift according
to this channel, the rescaled mass for the ΣcD resonance is
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FIG. 6. Top panel: Pentaquark’s complex energies of coupled-
channels calculation with quantum numbers IJP ¼ 1

2
1
2
− and for

θð°Þ ¼ 0 (green), 2 (black), 4 (red) and 6 (blue). Bottom panel:
Enlarged top panel, with real values of energy ranging from 4.35
to 4.46 GeV.

TABLE XIV. Possible bound and resonance states of doubly
charmed pentaquarks. The last column lists, in MeV, either the
binding energy of the bound state or the decay width of the
resonance.

Quantum state EB (MeV)

Bound states 1
2
1
2
− ΛcD�ð4291Þ −2

1
2
3
2
− ΣcD�ð4461Þ −1

3
2
1
2
− Σ�

cD�ð4523Þ −4
3
2
3
2
− Σ�

cD�ð4524Þ −3
1
2
3
2
− Ξ�

ccπð3757Þ −3

Quantum state Γ (MeV)

Resonance states 1
2
1
2
− ΣcDð4356Þ 4.8

1
2
3
2
− Σ�

cDð4449Þ 8.0
3
2
1
2
− ΣcDð4431Þ 2.6

3
2
1
2
− ΣcDð4446Þ 2.2

3
2
3
2
− ΣcD�ð4514Þ 4.0

3
2
5
2
− Ξ�

ccρð4461Þ 3.0
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4356 MeV, with a width of 4.8 MeV. The nature of
this resonance state, ΣcDð4356Þ, is very similar to the
Pþ
c ð4312Þ hidden-charm pentaquark observed by the

LHCb collaboration, i.e., its quantum numbers IJP are
1
2
1
2
− which are the ones preferred for the Pþ

c ð4312Þ
[3,4,6,20,23]; moreover, its five-quark configuration is
identified with a molecular state of ΣcD̄ with mass and
width 4311.9� 0.7þ6.8

−0.6 and 9.8� 2.7þ3.7
−4.5 MeV, respec-

tively. Hence, this new resonance state is expected to
be identified in the near future high-energy physics
experiments.

B. The IðJPÞ = 1
2 ð32−Þ channel:

The baryon-meson channels studied in this case are

Ξð�Þ
cc ω, Ξð�Þ

cc ρ, Ξ�
ccπ, ΛcD� and Σð�Þ

c Dð�Þ, and Table VI shows
our findings with θ ¼ 0°. The definition of each column is
the same as that in Table IVof the IðJPÞ ¼ 1

2
ð1
2
−Þ case. No

bound state is found in these channels; however, a loosely
bound one of ΣcD� with a binding energy of E ¼ −1 MeV
could be obtained, as shown in Table VII. For the possible
bound state of ΣcD�ð4461Þ, the hidden-color channel helps
a little in forming the baryon-meson molecular state.
When the rotated angle θ is varied from 0° to 6° in

coupled-channels calculation, several interesting results
are observed. In Fig. 7, the possible channels are mostly
scattering states moving along their corresponding cut
lines. Besides, there is a Ξ�

ccπð3757Þ bound state circled
with purple in the real axis. Its binding energy is E ¼
−3 MeV when compared with the threshold’s theoretical
value, 3866 MeV in Table VI. Therefore, after a mass shift
with respect to the experimental value 3760 MeV, the
modified mass is 3757 MeV. Consequently, the coupled-
channels calculation results in a Ξ�

ccπð3757Þ bound state
with IðJPÞ ¼ 1

2
ð3
2
−Þ, and it is also expected to be observed

in future experiments.
Similar to the case of ΛcD�ð4291Þ with IJP ¼ 1

2
1
2
−,

the original bound state of ΣcD�ð4461Þ turns to be a
scattering one due to interacting effects of lower channels

ðΞ�
ccπ;ΛcD�;Ξð�Þ

cc ω;Ξccη;Σ�
cD andΞð�Þ

cc ρÞ. The nature of the
ΣcD� scattering state can be identified clearly in Fig. 7
where the corresponding calculated poles (E ∼ 4.5 GeV in
real axis) go always down when increasing the rotated
angle, θ.
An enlarged figure for the energy region 4.4–4.6 GeV is

shown in the bottom panel of Fig. 7. A resonance state is
obtained and surrounded by a green circle (three calculated
results of different θ are almost unchanged inside of it). The
resonance’s mass and width are about 4492 and 8.0 MeV,
respectively. Because this pole is above two almost
degenerate scattering states of Σ�

cD and Ξccρ whose
theoretical thresholds are 4432 and 4434 MeV, in the
present work, the obtained resonance state is preferred to be
identified as a molecular state of Σ�

cD. Hence, after a mass
shift according to Σ�

cDð4389Þ with Δthreshold ¼ 43 MeV,

the obtained resonance state has a mass of E ¼ 4449 MeV
and a width of Γ ¼ 8.0 MeV respectively. Note again that
there is also a significant similarity between Σ�

cDð4449Þ
and the hidden-charm Pþ

c ð4457Þ state. The later one is
explained as the ΣcD̄� molecular state with quantum num-
bers IJP ¼ 1

2
3
2
− [3,4,6,20,23], and its experimental mass

and width is 4457.3� 0.6þ4.1
−1.7 and 6.4� 2.0þ5.7

−1.9 MeV,
respectively. The nature of our candidate Σ�

cDð4449Þ
molecular state is deserved to be investigated in future
experimental facilities.

C. The IðJPÞ= 1
2 ð52−Þ channel:

Table VIII lists the masses of possible states in the
channels Ξ�

ccω, Ξ�
ccρ and Σ�

cD�, taking into account singlet-
color, hidden-color and their coupling. The real-range
calculation with rotated angle θ ¼ 0° does not provide
bound states. In a further complex-scaling study within
coupled-channels calculation, neither bound nor resonance
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channels calculation with quantum numbers IJP ¼ 1

2
3
2
− and for

θð°Þ ¼ 0 (green), 2 (black), 4 (red) and 6 (blue). Bottom panel:
Enlarged top panel, with real values of energy ranging from 4.40
to 4.60 GeV.
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states are obtained. In Fig. 8, the continuum states of Ξ�
ccω,

Ξ�
ccρ and Σ�

cD� are shown and they basically fall along the
corresponding cut lines.

D. The IðJPÞ= 3
2 ð12−Þ channel:

Among all of the possible channels Ξccπ, Ξ
ð�Þ
cc ρ and

Σð�Þ
c Dð�Þ listed in Tables IX and X, only Σ�

cD�ð4523Þ is
possibly a bound state, in real-range calculation. Its binding
energy is EB ¼ −3 MeV when only the singlet-color
channel is considered, and EB ¼ −4 MeV if the coupling
with hidden-color channel is included. Therefore, the Σ�

cD�
modified mass is 4523 MeV.
Our results from the coupled-channels calculation within

the CSM taking into account a range of rotated angle θ ∈
½0°; 6°� is shown in Fig. 9. The distribution of Ξccπ states is
the same as that seen in the IJP ¼ 1

2
1
2
− case; other channels

show state’s behavior which resembles the one expected
from the continuum. Let us focus on the middle panel of
Fig. 9, from the 4.45–4.62 GeV energy region, where

Σð�Þ
c Dð�Þ and Ξð�Þ

cc ρ are established. On one hand, it is clear
that the effects of coupled channels lead to a scattering state
of Σ�

cD� whose original modified bound state mass is
4523 MeV and the corresponding pole (E ¼ 4547 MeV in
the real axis of Fig. 9) descends gradually with a larger
values of the rotated angle θ. On the other hand, an
unchanged resonance pole with mass (E) and width (Γ)
of 4491 and 2.6 MeV, respectively, is circled with green.
We identify this state as a baryon-meson molecule of nature
ΣcD with a shifted mass of 4431 MeV due to the difference
between our theoretical and the experimental values of the
ΣcD threshold.
The bottom panel of Fig. 9 shows our results in the

energy interval of 4.50 to 4.53 GeV. One can guess that
another possible ΣcD resonance state is found, whose mass

and width are 4506 and 2.2 MeV, respectively. By a mass
shift with respect to ΣcD, according to previous discussion,
the obtained resonance state is ΣcDð4446Þ with a very
small width of Γ ¼ 2.2 MeV. As one can elucidate from
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our discussion until now is that the doubly-charmed
pentaquark states present similar features than those hid-
den-charm ones observed experimentally, Pþ

c ð4312Þ,
Pþ
c ð4440Þ and Pþ

c ð4457Þ [1], which are mainly explained as

molecular states of Σð�Þ
c D̄ð�Þ configurations [3–6,8–20,23].

We expect that, in the near future, the potential molecular
candidates in the doubly-charm sector, ΣcDð4431Þ and
ΣcDð4446Þ, being confirmed experimentally.

E. The IðJPÞ = 3
2 ð32−Þ channel:

Two almost degenerate bound states of Σ�
cD� are found

among the possible channels: Ξð�Þ
cc ρ, Ξ�

ccπ and Σð�Þ
c Dð�Þ. As

listed in Table XII, these two states 3
2
1
2
− Σ�

cD� and 3
2
3
2
− Σ�

cD�

have masses of 4523 and 4524 MeV, with binding energies
close to −3 MeV.
With a rotational manipulation for the relative motions of

five-quark systems in the complex plane, the coupled-

channels results are shown in Fig. 10. Again, the lowest
and radial excited states of Ξ�

ccπ are both scattering
ones with theoretical a mass of 3866 and 4305 MeV,
respectively.
A possible resonance state of ΣcD� is found in the

bottom panel of Fig. 10 which is an enlarged part
involving the energy interval 4.48–4.65 GeV. Clearly,
there are three almost overlapped poles inside the green
circle which is above the cut lines of ΣcD�, and the
corresponding masses and widths can be clustered around
4555 and 4.0 MeV respectively. This resonance can
be identified as a ΣcD�ð4514Þ molecular state whose
modified mass E ¼ 4514 MeV is obtained by a mass
shift of Δ ¼ 41 MeV according to the calculated results
of ΣcD�ð4462Þ channel in Table XI. Finally, as in the
3
2
1
2
−Σ�

cD�ð4523Þ case in coupled-channels calculation, the
original bound state of Σ�

cD�ð4524Þ turned into a scatter-
ing one with an unstable pole with a theoretical mass of
4548 MeV in Fig. 10.

F. IðJPÞ= 3
2 ð52−Þ channel:

Only two baryon-meson channels contribute to this case:
Ξ�
ccρ and Σ�

cD�. Table XIII shows that we do not find any
bound state in these two configurations. However, in
coupled-channels calculation within complex scaling, a
possible Ξ�

ccρ resonance state with a small decay width is
found. In Fig. 11, an unchanged pole, circled in green,
above the threshold lines of Ξ�

ccρ appears, and its corre-
sponding mass and width are 4553 and 3.0 MeV, respec-
tively. Therefore, after a mass shift Δ ¼ 92 MeV with
respect to the experimental value of Ξ�

ccρ threshold, the
obtained resonance mass is 4461 MeV. It would be
interesting to explore the possible existence of this high-
isospin and -spin Ξ�

ccρ resonance, although we understand
that it is experimentally challenging.
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V. EPILOGUE

The hidden-charm pentaquark signals Pcð4380Þþ and
Pcð4450Þþ were first discovered by the LHCb collaboration
in 2015, and then three new pentaquark states Pcð4312Þþ,
Pcð4440Þþ and Pcð4457Þþ were also announced by the
same collaboration with a much more higher statistical sig-
nificance in 2019. Extensive theoretical investigations have

been devoted to explain these possible Σð�Þ
c D̄ð�Þ molecular

states. In Ref. [23], within a chiral quark model formalism,
the Pcð4380Þþ was suggested to be a bound state of Σ�

cD̄
with quantum numbers IJP ¼ 1

2
3
2
−. Furthermore, the three

newly observed pentaquark states Pcð4312Þþ, Pcð4440Þþ
and Pcð4457Þþ can also be identified as molecular states of
JP ¼ 1

2
− ΣcD̄, 1

2
− ΣcD̄� and 3

2
− ΣcD̄�, respectively, belonging

all of them to the 1
2
isospin sector. Accordingly, with this

effective phenomenological model, it is natural to expect a
subsequent observation of the doubly charmed pentaquark
states within a similar energy range (4.3 to 4.5 MeV).
In the present work, we have systematically studied the

possibility of having pentaquark bound- and resonance-
states in the doubly-charm sector with quantum numbers
JP ¼ 1

2
−, 3

2
− and 5

2
−, and in the 1

2
and 3

2
isospin sectors.

The chiral quark model used is based on the existence of
Goldstone-boson exchange interactions between light quarks
that are encoded in a phenomenological potential which
already contains the perturbative one-gluon exchange and
the nonperturbative linear-screened confining terms. Note
that the model parameters have been fitted in the past
through hadron, hadron-hadron and multiquark phenom-
enology. Within the same framework, there is also a
successful explanation to the observed hidden-charm penta-
quark states and a prediction of their Pþ

b partners. Moreover,
the five-body bound, scattering and resonance states prob-
lems are accurately solved by means of the Gaussian
expansion method along with the complex scaling method.

Several possible bound and resonance states are found
for doubly-charm pentaquark states within the scanned
quantum numbers: JP ¼ 1

2
−, 3

2
−, 5

2
− and I ¼ 1

2
, 3

2
. These

are characterized by the following features: (i) there are
bound states of 1

2
1
2
− ΛcD�ð4291Þ, 1

2
3
2
− ΣcD�ð4461Þ, 3

2
1
2
−

Σ�
cD�ð4523Þ and 3

2
3
2
− Σ�

cD�ð4524Þ, their binding energies
are −2, −1, −4 and −3 MeV, respectively. However, all
of them become a scattering state in coupled-channels
calculation, (ii) narrow baryon-meson resonance states
are obtained in coupled-channels cases, 1

2
1
2
− ΣcDð4356Þ,

1
2
3
2
− Σ�

cDð4449Þ, 3
2
1
2
− ΣcDð4431Þ, 3

2
1
2
− ΣcDð4446Þ, 3

2
3
2
−

ΣcD�ð4514Þ and 3
2
5
2
− Ξ�

ccρð4461Þ, their resonance widths
are 4.8, 8.0, 2.6, 2.2, 4.0 and 3.0 MeV respectively, (iii) one
Ξ�
ccπð3757Þ bound state with binding energy EB ¼

−3 MeV is identified within the coupled-channels calcu-
lation of quantum number IJP ¼ 1

2
3
2
−. Note here that the

former numbers within parentheses are all of the modified
masses.
Last but not least, based on the success of Ref. [23]

in explaining Pcð4380Þþ and predicting Pcð4312Þþ,
Pcð4440Þþ and Pcð4457Þþ hidden-charm pentaquark
states, the possible bound and resonance states in the
doubly-charm sector mentioned above are expected to be
identified in future high energy physics experiments.
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