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The self-consistent mean field approximation of the two-flavor Nambu–Jona-Lasinio (NJL) model,
which introduces a free parameter α (α reflects the weight of different interaction channels), is employed to
investigate the contributions of the vector channel at a finite isospin chemical potential μI , zero baryon
chemical potential μB, and zero temperature T. The calculations show that the consideration of the vector-
channel contributions leads to a lower value of pion condensate in a superfluid phase, compared with the
standard Lagrangian of the NJL model (α ¼ 0). In a superfluid phase, we also obtain a lower isospin
number density, and the discrepancy is getting larger with the increase of the isospin potential. Compared
with the recent results from lattice QCD, the isospin density and energy density we obtained with α ¼ 0.5
agree with the data of the lattice well. In the phase diagram in the T – μI plane for μB ¼ 0, we can see that
the difference of the critical temperatures of a phase transition between the results with α ¼ 0 and α ¼ 0.5
is up to 3%–5% for a fixed isospin potential. All of these indicate that the vector channels play an important
role in the isospin medium.
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I. INTRODUCTION

The study of thermodynamics of strongly interacting
system under extreme conditions is helpful for us to
develop a better understanding to the physical scene shortly
after the big bang [1,2], the structure of compact stars [3,4],
and heavy-ion collision experiments [5,6]. The probe of the
properties of strongly interacting matter at such large
temperatures and densities is carried on at CERN, BNL,
and GSI, etc. [7,8], in particular, searching for the position
or even the existence of the critical end point (CEP) [9].
One of the interesting phenomena in extending the phase

diagram to the nonzero isospin region is the appearance of a
new phase. It is known that the isospin chemical potential
has an effect on hadronic matter, which can rotate the

quark-antiquark condensate, and the phenomenon is named
as a pion condensation, since it indicates the direction of the
UIð1Þ symmetry breaking corresponding to the conserva-
tion of the pion number. When the isospin chemical
potential exceeds the pion mass (μI > mπ), a superfluid
of charged pions in the zero momentum state will occur,
i.e., the pion superfluid phase. This Bose-Einstein con-
densate (BEC) of pions is an electromagnetic supercon-
ductor [10,11]. Different from the normal phase (μI ≤ mπ),
where pion condensation is zero, the realization of pion
condensation can change the low energy properties ofmatter,
such as the mass spectrum and the lifetimes of mesons
[12–14], and are also related to a lot of phenomena [15,16].
Therefore, it is important for us to study the thermodynamics
of strongly interacting system in an isospin medium.
Theoretically, quantum chromodynamics (QCD) is rec-

ognized as the fundamental theory of the strong interaction.
It is generally thought that there exist rich phase structures
of quantum chromodynamics at a finite temperature and
finite density. At high temperatures and/or high densities,
the perturbative QCD can describe the nature of the
phases well. At vanishing density and finite temperature,
lattice simulations from the first principle of QCD have
provided valuable insights into the QCD phase diagram.
Nevertheless, at finite baryon density, lattice simulations
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are hindered by the sign problem [17], and there is no
problem for lattice simulations at a finite isospin density in
principle [18]. Beside that, there are lots of low-energy
effective models, such as the chiral perturbation theory
[14,19], random matrix method [20,21], and Nambu–Jona-
Lasinio (NJL) model [22–25], to be used as tools to
investigate the phase structures in isospin matter, in which
the NJL model described the chiral dynamics of QCD
well [26].
In this paper, we study the contributions of the vector

channels at a finite isospin potential in the framework of a
NJL model with the self-consistent mean field approxima-
tion. The standard Lagrangian of the NJL model contains
scalar ðψ̄ψÞ2 and pseudoscalar-isovector ðψ̄iγ5τψÞ2 chan-
nels [26]. Making use of Fierz transformations, not only
scalar and pseudoscalar-isovector channels but also other
interaction channels can be produced. These interaction
channels play an important role in the case of external
fields. For instance, when the finite chemical potential is
involved, the vector-isoscalar channel is very important
[27]. Similarly, when we discuss the axial chemical
potential, the isovector-isoscalar channel becomes very
important [28–31], and in the study of the chirally
imbalanced system, the contribution of the axial-vector
channel cannot be neglected [32]. In this connection, if we
study the system under the condition of finite isospin
density, the contributions of the vector-isoscalar channels
and the pseudoscalar-isovector channels should be consid-
ered. In previous analyses of the NJL model, people usually
ignore the contributions of various channels from the Fierz-
transformed term or manually add the relevant terms [33].
As shown below, the above mean field approximation
approach is not self-consistent. In this paper, we will
employ the self-consistent mean field approximation [34]
of the NJL model to study the thermodynamics of a
strongly interacting system at nonzero isospin chemical
potential. This model introduces a free parameter α to
reflect the proportion of the different channel contributions
from the Fierz-transformed term.
This paper is organized as follows. In Sec. II, the two-

flavor NJL model by the self-consistent mean field
approximation in the case of isospin chemical potential
is introduced, and we can get the self-consistent gap
equations. In Sec. III, we discuss the contributions of
the vector channels to relevant thermodynamic quantities
and phase diagram, and the comparison of our results with
lattice data is also given. In the last section, we summarize
our findings.

II. THE SELF-CONSISTENT MEAN FIELD
APPROXIMATION OF NJL MODEL

In the present work, only two flavors are considered, i.e.,
Nf ¼ 2. The standard flavor SUð2Þ NJL model Lagrangian
density is defined as [26]

LNJL ¼ ψ̄ði∂ −m0Þψ þ G½ðψ̄ψÞ2 þ ðψ̄ iγ5τψÞ2� ð1Þ

with scalar and pseudoscalar interactions related to σ
and π excitations, respectively, where G is the coupling
constant and the matrix of the current quark mass is
m0 ¼ diagðm0u; m0dÞ.
Performing the Fierz transformation [26] on the four-

Fermion interaction terms, we have

LIF ¼ G
8Nc

½2ðψ̄ψÞ2 þ 2ðψ̄iγ5τψÞ2 − 2ðψ̄τψÞ2

− 2ðψ̄iγ5ψÞ2 − 4ðψ̄γμψÞ2 − 4ðψ̄iγμγ5ψÞ2
þðψ̄σμνψÞ2 − ðψ̄σμντψÞ2�; ð2Þ

where color octet contributions have been neglected and the
number of colors is Nc ¼ 3. Then the Lagrangian becomes

LF ¼ ψ̄ði∂ −m0Þψ þ LIF: ð3Þ

The original Lagrangian LNJL and the transformed
Lagrangian LF are equivalent, since the Fierz transforma-
tion is a mathematical identity transformation. Considering
the LNJL and LF are mathematically equivalent, the most
general effective Lagrangian can be introduced [34]: LR ¼
ð1 − αÞLNJL þ αLF where the parameter α is an arbitrary c
number, and the Lagrangian does not change with α.
Through Fierz transformation, we can obtain more general
interaction terms. It is very helpful for us to understand and
deal with the problem of a strongly interacting system
under the condition of external fields. As mentioned in the
Introduction above, the various channel contributions are
not negligible if we study the system with external fields.
However, when the mean field approximation is applied,

the contributions of LNJL and LF are found to be no longer
identical; this is because the Fierz transformation and the
mean field approximation are not commutative. Especially
when the system is in external fields, the results yielded by
two Lagrangians are very different [26]. This means that it
is important for us to know the contributions of each
interacting term once the mean field approximation is used.
Actually, just as pointed out by Refs. [34–36], there is no
physical requirement to constrain the value of α. α in
principle should be determined by experiments rather than
the self-consistent mean field approximation itself. The
Lagrangian of the self-consistent mean field approximation
is adopted as hLRim ¼ ð1 − αÞhLNJLim þ αhLFim [34],
where him denotes the mean field approximation.
In order to investigate the system where a u and d quark

are asymmetric, we can introduce the isospin chemical
potential μI, which connects to the isospin number density
nI ¼ ðnu − ndÞ=2. Just as the chemical potential μ can
reflect the density n of the quark, we introduce the isospin
chemical potential to denote the imbalance between the u
and d quarks. In the imaginary time formulism of finite
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temperature field theory [37], the partition function for a
system at finite baryon and isospin densities can be
represented as

ZðT; μI; μB; VÞ ¼
Z

½dψ̄ �½dψ �e
R

β

0
dτ
R

d3x⃗ðLþψ̄μγ0ψÞ; ð4Þ

where V is the volume of the system, β is the inverse
temperature β ¼ 1=T; the quark number density operator n̂,
and the quark isospin number density operator n̂I are ψ̄γ0ψ
and 1

2
ψ̄γ0τ3ψ , and μB and μI are the baryon and isospin

chemical potentials, where μ ¼ diagðμu; μdÞ is the matrix
of quark chemical potential in flavor space with the u and d
quark chemical potentials,

μu ¼
μB
3
þ μI

2
;

μd ¼
μB
3
−
μI
2
; ð5Þ

the factors 1
3
and 1

2
reflect the fact that three quarks make up

a baryon and quark’s isospin quantum number is 1
2
.

Following Refs. [34–36], the equivalent Lagrangian in
this work can be rewritten as

LR ¼ ð1 − αÞLNJL þ αLF þ ψ̄μγ0ψ : ð6Þ

In our study, we only care about the contributions from
scalar, vector, and pseudoscalar-isovector channels. Other
terms have no effect on our calculation at the level of mean
field approximation. Applying the mean field approxima-
tion to this Lagrangian and dropping the irrelevant terms,
we can get the effective Lagrangian,

Leff ¼ ψ̄ði∂ −M þ μ0γ0 þ 2Gπiγ5τ1Þψ
− Gðσ2 þ π2Þ þ βn2; ð7Þ

where M is called the constituent quark mass,

M ¼ m0 − 2Gσ; ð8Þ

and

μ0 ¼ μ − 2βn: ð9Þ

Employing the Eqs. (5) and (9), one can obtain the
following relation at μB ¼ 0 (in this paper, only the zero
baryon density case is considered):

μ0I ¼ μI − 8βnI; ð10Þ

where, for convenience, we redefine the parameter β ¼
−2Gα
11α−12 in the formalism.
The quark condensation σ ¼ hψ̄ψi, the pion condensa-

tion π ¼ hūiγ5di þ hd̄iγ5ui, the quark number density

n ¼ hψ̄γ0ψi ¼ hūγ0ui þ hd̄γ0di, and the isospin number
density nI ¼ 1

2
hψ̄γ0τ3ψi ¼ ðhūγ0ui − hd̄γ0diÞ=2 can be

determined in a thermodynamically self-consistent way.
We can insert the effective Lagrangian (7) into the partition
function (4) to get the mean-field thermodynamic potential,

Ω ¼ −
T
V
lnZ

¼ Gðσ2 þ π2Þ − βn2 þ ΩM; ð11Þ

where ΩM is expressed as

ΩM ¼ −2Nc

Z
Λ

0

d3p⃗
ð2πÞ3 ½E

−
p þ Eþ

p þ 2NfTðlnð1

þ exp ð−E−
p=TÞÞ þ ln ð1þ exp ð−Eþ

p =TÞÞÞ�; ð12Þ

here, the effective quark energies E�
p are given by

E�
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp � μ0I=2Þ2 þ 4G2π2

q
; ð13Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þM2

q
: ð14Þ

Given the extremum condition of the thermodynamic
potential ∂Ω

∂σ ¼ 0; ∂Ω∂π ¼ 0; ∂Ω∂n ¼ 0; ∂Ω∂nI ¼ 0, we can get the
quark condensate,

σ ¼
Z

Λ

0

d3p
ð2πÞ3

2NcM
Ep

�
Ep − μ0I=2

E−
p

ðfðE−
pÞ − fð−E−

pÞÞ

þ Ep þ μ0I=2
Eþ
p

ðfðEþ
p Þ − fð−Eþ

p ÞÞ
�
; ð15Þ

the pion condensate,

π ¼ −4NcGπ
Z

Λ

0

d3p⃗
ð2πÞ3

�
1

E−
p
ðfðE−

pÞ − fð−E−
pÞÞ

þ 1

Eþ
p
ðfðEþ

p Þ − fð−Eþ
p ÞÞ

�
; ð16Þ

the quark number density,

n ¼ 2

3
Nc

Z
Λ

0

d3p
ð2πÞ3 ½fðE

−
pÞ þ fð−E−

pÞ þ fðEþ
p Þ

þ fð−Eþ
p Þ − 2�; ð17Þ

and isospin number density,

nI ¼ Nc

Z
Λ

0

d3p
ð2πÞ3

�
Ep − μ0I=2

E−
p

ðfðE−
pÞ − fð−E−

pÞÞ

−
Ep þ μ0I=2

Eþ
p

ðfðEþ
p Þ − fð−Eþ

p ÞÞ
�

ð18Þ
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with the Fermi-Dirac distribution function,

fðxÞ ¼ 1

ex=T þ 1
: ð19Þ

Finally, inserting Eqs. (15)–(18) into the Eqs. (8)–(10), we
will obtain the self-consistent gap equations in the case of
finite isospin chemical potential μI.
The parameter set used for the purpose of the present

study are the current quark mass m0u ¼ m0d ¼ m0 ¼
4.76 MeV, the coupling constant G¼4.78×10−6MeV−2,
and the cutoff Λ ¼ 659 MeV, which are obtained by fitting
the pion mass mπ ¼ 131.7 MeV as used by lattice QCD
[38] at T ¼ μI ¼ μB ¼ 0, and other parameters are the
decay constant fπ ¼ 92.4 MeV and the quark condensate
per flavor hψ̄ψi ¼ −ð250 MeVÞ3.

III. NUMERICAL RESULTS AND DISCUSSION

It is mentioned above that the Refs. [34–36] indicate the
parameter α can be constrained by experiments. One
choice, for example, in Refs. [35,36], is that α can be
determined by astronomical observation data on the latest
neutron star mergering. However, with the lack of reliable
experiment data on the strongly interacting matter at finite
density currently, so in our study, we consider α as a free
parameter. In this paper, we will show our results with
different α’s, α ¼ 0 represents the standard NJL model
[26], α ¼ 0.5 is found to be in good agreement with recent
lattice data, α ¼ 0.9 is adopted from Ref. [35], and α ¼
1.044 is taken from Ref. [34].
By solving the Eqs. (15) and (16) simultaneously the

condensates π and σ scaled by the quark condensate σ0 ¼
−2ð250 MeVÞ3 in the vacuum with different α’s at T ¼
μB ¼ 0 are shown in Figs. 1 and 2, respectively. We can see
from Fig. 1 that the pion condensates with different α’s all
keep the vacuum value (i.e., π ¼ 0 corresponding to the
system in the normal phase) at smaller isospin chemical
potential, and then they all go up when μI > mπ , and the

larger the value of α, the smaller the pion condensate. The
largest difference of pion condensate with these different
α’s occurs at μI ∼ 1.5mπ . Note that when the critical isospin
chemical potential equals to the pion mass (μcI ¼ mπ), there
is the onset of pion condensation (i.e., π ≠ 0 corresponding
to the system in the pion superfluidity phase), and the
critical isospin chemical potential μcI is not changed as α
changes. As shown in Fig. 2, we have similar behavior for
the σ condensate; the σ condensates with different α’s all
keep the vacuum value σ0 ¼ −2ð250 MeVÞ3 at first, and
after that, they all go down as μI increases.
In the following, we will compare our results for some

thermodynamic quantities with the corresponding recent
lattice QCD results [15]. Due to only the pressure p and the
energy density ϵ relative to the physical vacuum
Ωv ¼ ΩðT¼μI¼μB¼0Þ, which in the mean field approximation
we have

ðΩvÞm ¼ ðMðT¼μI¼μB¼0Þ −m0Þ2
4G

− 4Nc

×
Z

Λ

0

d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þM2

ðT¼μI¼μB¼0Þ
q

; ð20Þ

can be measured, we introduce the rescaled thermodynamic
potential,

Ωr ¼ Ω − ðΩvÞm: ð21Þ

The energy density ϵ at zero temperature, and zero baryon
density and finite isospin density is defined as

ϵ ¼ −pþ μ0InIðp ¼ −ΩrÞ: ð22Þ

In Figs. 3 and 4, the normalized isospin density and
energy density with respect to the isospin chemical poten-
tial scaled by mπ are shown, respectively. These plots have
mainly focused on the region of μI ≲ 2mπ throughout
which lattice QCD data are available. Generally, the

FIG. 1. The normalized pion condensate π=σ0 as a function of
the normalized isospin chemical potential μI=mπ at T ¼ μB ¼ 0.

FIG. 2. The normalized quark condensate σ=σ0 as a function of
the normalized isospin chemical potential μI=mπ at T ¼ μB ¼ 0.
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maximum value of μI within lattice QCD calculations is
constrained by the value of the lattice spacing. From the
figures, we can see that the lattice QCD data can be
described well by our calculation with α ¼ 0.5, although
some data are located on the α ¼ 0 curve (i.e., the standard
NJL model results) around μI ∼ 1.5mπ . More lattice data
for isospin density can clarify the situation. These results
mean the contributions of the vector channels play an
important role in isospin medium.
The nonzero net isospin density nI ¼ ðnu − ndÞ=2 in the

superfluidity phase (π ≠ 0) in Fig. 3 is caused by the Bose-
Einstein condensate of charged pions, which leads to
different flavor densities. In order to see this clearly, we
plot the flavor densities for each flavor with α ¼ 0 and
α ¼ 0.5 in Fig. 5. Each pure flavor number density can be
expressed from the difference between the corresponding
quark number density and antiquark number density,
nu ¼ nþu − n−u ; nd ¼ nþd − n−d . Making use of the method
of the positive and negative energy projectors [23], n�u;d can
be separated from nu;d,

nþu ¼ Nc

Z
Λ

0

d3p⃗
ð2πÞ3

�
fðE−

pÞ þ fð−E−
pÞ

þ Ep − μ0I=2
E−
p

ðfðE−
pÞ − fð−E−

pÞÞ
�
; ð23Þ

n−u ¼ −Nc

Z
Λ

0

d3p⃗
ð2πÞ3 ½fðE

þ
p Þ þ fð−Eþ

p Þ

−
Ep þ μ0I=2

Eþ
p

ðfðEþ
p Þ − fð−Eþ

p ÞÞ − 2�; ð24Þ

nþd ¼ Nc

Z
Λ

0

d3p⃗
ð2πÞ3

�
fðEþ

p Þ þ fð−Eþ
p Þ

þ Ep þ μ0I=2
Eþ
p

ðfðEþ
p Þ − fð−Eþ

p ÞÞ
�
; ð25Þ

n−d ¼ −Nc

Z
Λ

0

d3p⃗
ð2πÞ3

�
fðE−

pÞ þ fð−E−
pÞ

−
Ep − μ0I=2

E−
p

ðfðE−
pÞ − fð−E−

pÞÞ − 2

�
: ð26Þ

From Fig. 5, one gets the relation nþu ¼ n−d > nþd ¼ n−u
for both α ¼ 0 and α ¼ 0.5, which results in the net isospin
density. Therefore, the number of πþ in the system should
be larger than the number of π−. Besides, we find that the
flavor number density nþu ð¼ n−d Þ with α ¼ 0.5 is smaller
than that with α ¼ 0 in the superfluidity phase, and the
same behavior is obtained for n−u ð¼ nþd Þ, but the difference
between α ¼ 0 and α ¼ 0.5 of n−u ð¼ nþd Þ is smaller than
that of nþu ð¼ n−d Þ. From this, we can see that the difference
between α ¼ 0 and α ¼ 0.5 of the nonzero net isospin
density mainly comes from the contribution of nþu ð¼ n−d Þ,
i.e., the difference in the number of πþ.
The solution of Eq. (16) for π separates the region of the

pion superfluidity phase (π ≠ 0) from the region of the
normal phase (π ¼ 0). The phase transition lines with

FIG. 3. The normalized isospin density nI=m3
π as a function of

the normalized isospin chemical potential μI=mπ at T ¼ μB ¼ 0.

FIG. 4. The normalized energy density ϵ=m4
π as a function of

the normalized isospin chemical potential μI=mπ at T ¼ μB ¼ 0.

FIG. 5. The normalized flavor densities nq=m3
π as a function of

the normalized isospin chemical potential μI=mπ at T ¼ μB ¼ 0.
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α ¼ 0 and α ¼ 0.5 delimitating these two regions are given
in Fig. 6 in the T – μI plane for μB ¼ 0. It can be seen that in
the real world with nonzero current quark mass, the systems
for α ¼ 0 and α ¼ 0.5 are both in the pion superfluidity
phase at high enough temperature, regardless of the value
of the isospin chemical potential; But at low temperature,
the systems are both in the normal phase only at low isospin
chemical potential, especially at zero temperature the
critical isospin chemical potential μcI of the phase transition
both have μcI ¼ mπ.
As depicted in Fig. 6, the phase transition line with α ¼ 0

is located above the one with α ¼ 0.5 in the T – μI plane. So
for the same isospin chemical potential, the critical temper-
ature of the phase transition with α ¼ 0.5 is smaller than
that of α ¼ 0. In other words, at the fixed isospin chemical
potential, the temperature for the occurrence of the phase
transition in the case α ¼ 0.5 is lower than that in the case
α ¼ 0, and at μI ∼ 1.5mπ the difference between α ¼ 0 and
α ¼ 0.5 is the largest, which is up to 5%.

IV. SUMMARY

In this paper, the self-consistent mean field approxima-
tion of the NJL model is employed to study the contribu-
tions of the vector channels in the finite isospin chemical
potential. A free parameter α, which reflects the weight of

different interaction channels, is introduced in the model. In
our calculation, we consider the contributions of the scalar,
vector (not appear in the standard Lagrangian of NJL model
[26]), and pseudoscalar-isovector channels with different
cases of α ¼ 0, α ¼ 0.5, α ¼ 0.9, and α ¼ 1.044, and
compare relevant thermodynamic quantities with the recent
lattice QCD data [15]. We find that in superfluid phase
(π ≠ 0), the lower value of the pion condensate and the
higher value of the σ condensate appear with the increasing
α compared with that of the α ¼ 0 case (the standard NJL
model), and the largest difference of the pion condensate
occurs at μI ∼ 1.5mπ. Our results show that, when α ¼ 0.5,
the isospin density and energy density agree with lattice
data well except around μI ∼ 1.5mπ . This indicates the
contributions of the vector channels in isospin medium. To
see the difference of the isospin density between α ¼ 0 and
α ¼ 0.5 more clearly, we also plot the different flavor
densities versus isospin chemical potential and then find
that the difference mainly comes from the contribution of
the flavor density nþu ð¼ n−d Þ (i.e., the difference in the
number of πþ between α ¼ 0 and α ¼ 0.5). Finally, we
draw the phase diagram in the T – μI plane for μB ¼ 0 and
show that for the fixed isospin chemical potential with the
temperature increasing, the occurrence of the phase tran-
sition in the case α ¼ 0.5 is earlier than the case α ¼ 0, and
also at μI ∼ 1.5mπ , the difference becomes the largest
which is up to 5%. In conclusion, through considering
the contributions of the vector channels (α ¼ 0.5) in our
study, we can get the results (including the isospin density
and energy density), which match lattice QCD data better
compared with the standard NJL model (α ¼ 0) except
around μI ∼ 1.5mπ . This means that the vector channels
play an important role in isospin medium.
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