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The finite size effect on hadron physics and quark matter has attracted much interest for more than three
decades; normally, both the periodic (with a zero-momentum mode) and the antiperiodic (without a zero-
momentum mode) spatial boundary condition are applied for fermions. By comparing the thermody-
namical potential, it is found that, if there is no other physical constraint, the droplet quark matter is always
more stable when the periodic spatial boundary condition is applied, and the catalysis of chiral symmetry
breaking is observed with the decrease of the system size, while the pions excited from the droplet vacuum
remain as pseudo–Nambu-Goldstone bosons. Furthermore, it is found that the zero-momentum-mode
contribution brings a significant change of the chiral apparent phase transition in a droplet of cold dense
quark matter: The first-order chiral apparent phase transition becomes quantized; i.e., the first-order
apparent phase transition is completed in two steps, which is a brand-new quantum phenomenon. It is
expected that the catalysis of chiral symmetry breaking and the quantized first-order phase transition are
common features for fermionic systems with a quantized momentum spectrum with a zero-mode
contribution, which also shows up in quark matter under a magnetic field.
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I. INTRODUCTION

The size effect attracts wide interest in different physical
systems. For example, in a recent article [1], scientists
realized that the most essential factor of making a grape
plasma in a microwave oven is the grape size, which is
comparable with the typical microwave length, so that the
grape can “trap” microwaves. Finite size effects on phase
transitions were studied four decades ago [2], and the finite
size effect in quantum chromodynamics (QCD) of hadron
physics has attracted much interest for more than three
decades [3–7], which is important to extract hadron
properties from numerical simulations on finite and discrete
Euclidean space-time lattices. The study of the finite size
effect on quark matter and QCD phase structure becomes
necessary and important [8–14] due to the fact that the hot
and dense matter created through heavy-ion collisions has a

finite volume with the typical size of a nuclei. The quark
droplet has also been investigated in neutron stars [15].
When considering the mixed phase of quark matter and
nuclear matter, one has to solve the Wigner-Seitz cell
structure, e.g., drop (bubble), rod (tube), and slab structure,
and it is found that the size of the Wigner-Seitz cell can be
as small as several femtometers as shown in Ref. [16].
As there is a typical length in grape plasma, i.e., the

microwave length, in a QCD system the typical length is
the pion Compton length λπ ¼ 1=mπ ∼ 1.41 fm. When the
system size is much larger than the pion Compton length
L ≫ λπ , hadron properties and phase transitions satisfy
some finite size scaling behavior [2,5]. When the system
size is comparable to or even smaller than the pion
Compton length L ∼ λπ , the size effect becomes significant.
In the case of finite volume, the general method is to

replace the momentum integral to momentum summation,
i.e.,

R d3p
ð2πÞ3 →

1
V

P
p, with V the volume of the system. For

bosons, the most natural choice of boundary condition in
the spatial direction is periodic, which implies that the
momentum is summed from the exact zero-momentum
mode p⃗ ¼ 0 in a finite system. However, for fermions or
quarks in a finite system, its boundary condition (BC) in the
spatial directions is not determined by a physical constraint,
and one is free to choose either periodic (P) or antiperiodic
(AP) boundary conditions. In lattice QCD simulations, the
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periodic boundary condition (PBC) is normally applied for
fermions or quarks, and the antiperiodic boundary con-
dition (APBC) is applied in most cases for fermions in the
spatial direction in order to keep the so-called permutation
symmetry between the time and space directions [13,14]
and also to be consistent with the results of the volume-
dependent pion mass from the chiral perturbation theory [5].
The boundary condition becomes important when the

system size is comparable to the pion wavelength.
Applying the APBC and PBC to fermions induces two
opposite results on the properties of the QCD vacuum: The
APBC induces chiral symmetry restoration, while the PBC
induces the catalysis of chiral symmetry breaking in the
vacuum. The catalysis of chiral symmetry breaking in a
small system with a PBC including the zero-momentum-
mode contribution immediately reminds us of the system
of quark matter under a strong magnetic field B [17,18],
where the summation of discrete energy is taken from
the lowest Landau level, which is basically the zero-
momentum mode. It is not difficult to understand the
similarity between the two systems, if we recognize that,
for a charged particle carrying charge q, the magnetic
length l is proportional to the inverse of the square root of
the magnetic field, i.e., l ∼ 1ffiffiffiffiffiffi

jqjB
p [19]; thus, the stronger the

magnetic field, the smaller the magnetic length will be.
In this work, we carefully investigate quark matter in a

finite system with both the antiperiodic and periodic spatial
boundary conditions applied for quarks and analyze the
two different physical results. In Sec. II, we compare the
thermodynamical potential of the small size system apply-
ing the PBC (with a zero mode) and APBC (without a zero
mode), respectively, and the lower thermodynamical poten-
tial determines the stable ground state of the small system.
The results of catalysis of chiral symmetry breaking and
pseudo–Nambu-Goldstone (NG) pions are obtained in
Sec. III, and then in Sec. IV we show the quantized first-
order phase transition in cold droplet quark matter. Last, we
give a summary and discussion. It is worth mentioning that
actual phase transitions are possible only for infinite vol-
umes; thus, we use “apparent phase transition” for finite size
systems in the whole paper.

II. DROPLET QUARK MATTER WITH THE PBC
AND APBC FOR QUARKS

It is noticed that, in this work, we focus only on
discussing the boundary condition of fermions and neglect
the finite size effect from gluon dynamics; therefore, we
can use the simplest four-fermion interacting Nambu–Jona-
Lasinio (NJL) model. The Lagrangian density of the two-
flavor NJL model with an interaction only in the scalar
channel [20] is given by

L ¼ ψ̄ðiγμ∂μ −mÞψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�; ð1Þ

where ψ ¼ ðu; dÞT is the doublet of the two light quark
flavors u and d with the current mass m ¼ mu ¼ md and
τ⃗ ¼ ðτ1; τ2; τ3Þ the isospin Pauli matrix. Introducing the
auxiliary scalar and pseudoscalar fields σ ¼ −2Ghψ̄ψi and
π⃗ ¼ −2Ghψ̄iγ5τ⃗ψi and considering only the scalar con-
densation in the vacuum, the effective potential of the
system in the Pauli-Villars regularization scheme takes the
form of

Ω ¼ σ2

4G
− 2NcNf

Z
∞

−∞

d3p
ð2πÞ3

"X3
j¼0

cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ jΛ2

q

þ T lnð1þ e−½ðEþμÞ=T�Þ þ T lnð1þ e−½ðE−μÞ=T�Þ
#
; ð2Þ

withM ¼ mþ σ the constituent quark mass, the dispersion
relation E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, T the temperature, and μ the

quark chemical potential, respectively. Model parameters
are fixed as c0 ¼ 1, c1 ¼ −3, c2 ¼ 3, c3 ¼ −1, and Λ ¼
782.37 MeV and G ¼ 6.197=Λ2 by fitting pion decay
constant fπ ¼ 93 MeV and quark constitute mass M ¼
330 MeV.
Putting quark matter in a cubic box with finite length L,

the momentum integral is replaced by the summation of

the discrete momentum
R d3p⃗

ð2πÞ3 →
1
V

P
p⃗ with V ¼ L3 the

volume of the system. There is no strict rule to rule out
either PBC p⃗2 ¼ ð2πL Þ2

P
i¼x;y;z n

2
i or APBC p⃗2 ¼

ð2πL Þ2
P

i¼x;y;zðni þ 1
2
Þ2 with ni ¼ 0; 1; 2;… for fermion

momentum summation; therefore, both spatial boundary
conditions have been applied for fermions for several
decades in the literature [8–14].
It is well known that the ground state of the system is

determined by the effective potential. We show the effective
potential of the finite size system by applying the PBC and
APBC in Fig. 1. At T ¼ 0, μ ¼ 0, it is observed that, when
applying the PBC for quarks, the effective potential
becomes lower with a decreasing size, while when applying
the APBC for quarks, the effective potential becomes
higher with a decreasing size. This indicates that, if there
is no other physical constraint, the quark droplet prefers the
PBC for quarks, in which the zero-momentum mode is
taken into account.
From the effective potential in Fig. 1, we can read the

chiral condensation in the vacuum, and the corresponding
constituent quark mass and pion mass are shown in Fig. 2
by applying the PBC and APBC for quarks, respectively.
We can read that when applying the PBC for quarks, with
the decreasing of the system size, the chiral condensate
enhances while the pion mass remains a constant. This is
the familiar phenomenon of catalysis of chiral symmetry
breaking also observed in quark matter under strong
magnetic fields, where only the neutral pion remains a
pseudo-NG boson. On the other hand, if the APBC is
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applied for quarks, it is found that the chiral symmetry is
restored in a small system and pions become heavier in the
vacuum.
The main difference between the PBC and APBC is

whether to take into account the zero-momentum-mode
contribution. For discrete momentum, the gap between the
zero mode and the first mode is 2π

L ; therefore, when the
system becomes small enough, the zero-momentum-mode
contribution becomes dominant, which can be seen from
the constituent quark mass with only a zero-mode con-
tribution, as shown in Fig. 2, where M0 and M1 are
obtained by solving gap equation (4) with and without a
zero-mode contribution, respectively. This is also the same
as the case of a strong magnetic field where the lowest
Landau-level contribution dominates. Remember that, for a
charged particle carrying charge q, the magnetic length l is
proportional to the inverse of the square root of magnetic
field, i.e., l ∼ 1ffiffiffiffiffiffi

jqjB
p ; thus, putting charged particles under

the strong magnetic field in some sense is similar to putting
these particles in an elongated cylinder with small radius l.
Furthermore, it is very interesting to notice that the

difference of the thermodynamical potential or the pressure
difference between L ¼ 2 fm and L ¼ ∞ is on the order of
½200 MeV�4, which is the typical value of the bag constant
in the MIT bag model [21]. If we consider the spherical
shape droplet quark matter, we will obtain qualitatively the
same results as that for cubic droplet quark matter shown
in Figs. 1 and 2 when the PBC and APBC are applied for
quarks, respectively. In Fig. 3, we show three scenarios of
a quark droplet: (a) MIT bag model, (b) quark droplet with
the PBC, and (c) quark droplet with the APBC. The MIT
bag model consists of free quarks q with the bag constant B
putting by hand at the surface of the bag, and the quark
droplet with the PBC consists of massive quarks Q with
catalysis of chiral symmetry breaking and the pseudo–
Nambu-Goldstone pion cloud. However, for the quark
droplet with the APBC, the quarks restore chiral symmetry
and the quark mass becomes very small; instead, the pions
become very heavy, and, therefore, we can imagine that the
heavy pions stay inside the bag with a light quark cloud. We
can see that the quark droplet with the PBC is very similar
to the scenario of the MIT bag model, except that we can
have spontaneous chiral symmetry breaking as well as
Nambu-Goldstone pions in the quark droplet with the PBC.
Therefore, the quark droplet with the PBC looks like a
bag model with dynamical quarks; on the other hand,
the quark droplet with the APBC is a bag with heavy pions.
Of course, in this paper, we are not intending to derive
the MIT bag model; we just want to show that the droplet
of quark matter under the periodic boundary condition
inducing catalysis of chiral symmetry breaking and
Nambu-Goldstone pions simultaneously is a reasonable
result in the vacuum. In the future, it might be interesting
to reinvestigate the bag model from the point of view of
droplet-quark matter.

FIG. 2. The constituent quark mass and pion mass as a function
of the system size L at T ¼ 0, μ ¼ 0 by applying the PBC and
APBC for quarks, respectively.Mzero-mode is obtained with only a
zero-mode contribution.

FIG. 1. The effective potential of the small system for three
different sizes L ¼ 5, 3, 2 fm as a function of the chiral
condensate σ at T ¼ 0, μ ¼ 0 by applying the periodic (blue
lines) and antiperiodic (green lines) spatial boundary conditions
for quarks, respectively.

(a) MIT bag model (b) Quark droplet
with PBC

(c) Quark droplet
with APBC

FIG. 3. The schematic picture for three scenarios of droplet
quark matter: (a) The MIT bag model consists of free quarks q
with the bag constant B putting by hand at the surface of the bag.
(b) The quark droplet with a periodic boundary condition consists
of massive quarks Q with catalysis of chiral symmetry breaking
and the pseudo–Nambu-Goldstone pions’ cloud. (c) The quark
droplet with an antiperiodic boundary condition consists of heavy
pions inside the bag and light quarks’ cloud. It is noticed that here
the numbers and colors of quarks are shown in a schematic way.
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III. QUANTIZED FIRST-ORDER APPARENT
PHASE TRANSITION IN COLD DROPLET

QUARK MATTER

In the last section, we showed that the ground state of the
small system favors applying the PBC for quarks, and the
zero-mode contribution becomes dominant in the small
system. Now we investigate the chiral apparent phase
transition at a high temperature and/or baryon density with
changing of the finite size. For an infinite volume system, the
NJL model predicts a critical end point for the chiral phase
transition in the ðT; μBÞ plane located at ðTE ¼ 48 MeV;
μEB ¼ 994 MeVÞwith μB ¼ 3μq the baryon chemical poten-
tial. When the size decreases from L ¼ ∞ to L ¼ 5 fm,
which is much larger than the pion wavelength λπ , there is
almost no changing for the properties of the system.
When the size further decreases, it is found that the

properties of the system start to change dramatically. As
shown in Fig. 4, in a certain region of the chemical
potential, there are two branches of first-order apparent
phase transition (APT) showing up and two apparent
critical end points (CEPs) appear on the ðT; μBÞ plane
for different sizes L ¼ 5, 4, 3, 2.5, 2 fm, with the dashed
lines corresponding to the branch of apparent phase
transition at a lower chemical potential marked as APT1
and the solid lines corresponding to the branch of apparent
phase transition at a larger chemical potential marked as
APT2, respectively. The apparent CEPs corresponding to
APT1 and APT2 are marked as “CEP1” and “CEP2”
correspondingly. From Fig. 4, it is observed that, when the
size decreases, CEP1 and CEP2 of these two branches have
opposite behaviors: CEP2 moves to a higher chemical
potential and lower temperature, and CEP1 moves to a
lower chemical potential and higher temperature. When the
size further decreases, APT2 and CEP2 disappear, and only
APT1 and CEP1 show up. These results were also observed
in Ref. [13].

The showing up of two branches of first-order apparent
phase transition can be clearly explained through Fig. 5,
which shows the constituent quark mass as a function of
the baryon chemical potential μB ¼ 3μ with different sizes
of the system at zero temperature. In the region of
2 fm < L < 5 fm, the constituent quark mass jumps twice
with the increase of the chemical potential. This multijump
structure is caused by the zero-mode contribution. With the
decrease of the system size, the zero-momentum contribu-
tion becomes more and more important. The first jump of
the quark mass happens at a lower critical chemical
potential and the magnitude of the jump becomes bigger
and bigger, and the second jump of the quark mass appears
at a higher chemical potential and its magnitude becomes
smaller and smaller. Eventually, at a small enough size
when the zero-mode contribution dominates, only the first
jump shows up. Correspondingly, the location of the first
CEP, i.e., CEP1, shifts to a lower critical chemical potential
but a higher critical temperature, and the location of the
second CEP, i.e., CEP2, moves to a higher and higher
critical chemical potential but a lower critical temperature.
We call this multijump first-order apparent phase tran-

sition the quantized first-order apparent phase transition,
where each first-order apparent phase transition is finished in
several steps. We want to emphasize that such a quantized
first-order apparent phase transition induced by quantized
momentum is a brand-new quantum phenomena.
To show more clearly how these two branches of

apparent phase transitions evolve with the system size.
In Fig. 6, we show the 3-dimensional (3D) plot of the
kurtosis of baryon number fluctuations κσ2 in the ðT; μBÞ
plane. The ratio of the fourth- to the second-order cumulant
of quark number fluctuations κσ2 ¼ c4

c2
with cn ¼

VT3 ∂n
∂ðμ=TÞn ð pT4Þ is used as a measurement to locate the

apparent CEP in a beam-energy scan at the RHIC experi-
ment [22]. At L ¼ ∞, there is only one typical first-order
phase boundary. It is observed clearly that, when the system

FIG. 4. Two branches of first-order apparent phase transitions
and two sets of apparent critical end points in the ðT; μBÞ plane
for different sizes L ¼ 5, 4, 3, 2.5, 2 fm. The dashed lines and
solid lines correspond to APT1 and APT2, respectively.

FIG. 5. The constituent quark mass as a function of the baryon
chemical potential μB ¼ 3μ with different sizes of the system at
zero temperature.
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size decreases, two branches of first-order apparent phase
transition show up on the ðT; μBÞ plane; one branch moves
to a higher chemical potential and eventually disappears,
and another branch shifts to a lower chemical potential
region and then becomes dominant.

IV. ANALYZING THE APPEARANCE OF A
QUANTIZED FIRST-ORDER APPARENT

PHASE TRANSITION

In the following, we analyze why the multijump structure
of the first-order apparent phase transition can show up
in certain small size systems, which was shown in our
proceeding paper Ref. [23]. For this purpose, it can be
much more transparent and simpler if we use the NJL
model in the hard-cutoff regularization scheme, in which
we can have the same qualitative results as that in the Pauli-
Villars regularization scheme. By taking the hard-cutoff
regularization for the momentum summation, the thermo-
dynamical potential has the form of

ΩΛ ¼ ðM −m0Þ2
4G

−
2NcNf

V

X
p⃗

× fEþ T lnð1þ e−½ðEþμÞ=T�Þ þ T lnð1þ e−½ðE−μÞ=T�Þg:
ð3Þ

Here the momentum should be smaller than the hard-cutoff
Λ: Λ2 > p2 ¼ nð2πL Þ2.
In the following, we consider only the system at zero

temperature T ¼ 0, and now the gap equation

M −m
2G

¼ 2NcNf

V

X
p⃗

M
E
½1 − θðμ − EÞ�; ð4Þ

where θðxÞ is the step function. In the case of a small enough
size so that 2π=L > Λ with only the zero-momentum mode
n ¼ 0 contributing to the momentum summation, the gap
equation takes the form of

M −m
2G

¼ 2NcNf

V
½1 − θðμ − E0Þ�; ð5Þ

and nowM ¼ E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 0ð2π=LÞ2

p
. The solution to this

equation is simple and given below:

M −m ¼
� 4GNcNf

V ; μ < μc;

0; μ > μc
ð6Þ

with μc the critical quark chemical potential for the chiral
apparent phase transition at zero temperature. Obviously,
the above analysis is consistent with the line L ¼ 2 fm in
Fig. 5.
Then we consider a little bit bigger size so that both

the n ¼ 0 mode and n ¼ 1 mode can contribute to the
momentum summation, and the gap equation takes the
form of

M −m
2G

¼ 2NcNf

V
½1 − θðμ − E0Þ�

þ 6
2NcNf

V
M
E1

½1 − θðμ − E1Þ�; ð7Þ

where E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ð2π=LÞ2

p
. The second term on the

right-hand side is from the contribution of the first mode,
and 6 is the degeneracy number of the first mode. The
solution to this equation is not as straightforward as Eq. (5)
but can be calculated numerically.
We consider the chiral limit case with m ¼ 0. To show

how the zero mode influences the constituent quark mass,
in Fig. 7, we plot the constituent quark mass as a function of
size L at zero temperature and zero chemical potential,
whereM0 andM1 are obtained by solving gap equation (4)
with and without a zero-mode contribution, respectively. It
can be seen clearly that (i) at a large size when L > 5 fm,
M0 and M1 are almost equivalent, which indicates that the
contribution from the zero mode can be ignored when the
size is large enough; (ii) when the size decreases and
becomes smaller than 5 fm, M0 and M1 show completely
opposite behaviors: M0 rises quickly and goes to diver-
gence with the decrease of the size, while M1 decreases
smoothly to zero at a very small size. In general, more step
functions can appear in larger sizes; therefore, more jumps
are expected. However, higher modes would not contribute
a lot. For example, the second term on the right-hand side
of Eq. (7) is quite small compared with the first term. It can

FIG. 6. The 3D plot of κσ2 in the ðT; μBÞ plane with different
sizes of the system.

ZERO-MODE CONTRIBUTION AND QUANTIZED FIRST-ORDER … PHYS. REV. D 101, 074001 (2020)

074001-5



be also verified from Fig. 5 that the magnitude of the
second jump PT2 at L ¼ 2.5 fm is smaller than that
at L ¼ 3 fm.
With the help ofM0 andM1, we can now understand the

quantized first-order apparent phase transition in the size
region of 2 fm < L < 5 fm. There are two apparent phase
transitions, APT1 and APT2, as shown in Figs. 4 and 5,
where APT1 can be understood as the jump between the
chiral symmetry breaking phase with quark mass M0 and
the chiral partially “restoring” phase with quark mass M1

and APT2 can be understood as the jump between the
phase with quark mass M1 and the chiral symmetry full
restoration phase with M ¼ 0. At a large size when
L > 5 fm, we can see that M0 ¼ M1, which indicates that
the first branch phase transition PT1 vanishes. At a small
size when L < 2 fm where M1 ¼ 0, the second branch
apparent phase transition APT2 vanishes. Therefore, there
is only one jump of the first-order apparent phase transition
at both cases with large size L > 5 fm and small size
L < 2 fm, but there appear two jumps for the first-order
apparent phase transition in the region of 2 fm < L < 5 fm.
This is exactly what we have obtained in Figs. 4 and 5.
From the above analysis, we can expect that the

quantized first-order apparent phase transitions are
common features for fermionic systems with a quantized
momentum spectrum with a zero-mode contribution.

V. CATALYSIS OF CHIRAL CONDENSATE AND
QUANTIZED FIRST-ORDER PHASE TRANSITION

UNDER A STRONG MAGNETIC FIELD

Now consider a right-circular cylinder system with an
infinite size along the z axis but finite radius r in the base
plane perpendicular to the z axis as shown in Fig. 8; then
the momentum integral in the thermodynamic potential
calculation is replaced by the momentum integral in the
z axis and momentum summation along the radius direction
in the base plane:

Ω ¼ ðM −m0Þ2
4G

−
2NcNf

S

X
p⃗⊥

Z
∞

−∞

dpz

2π

× fEþ T lnð1þ e−½ðEþμÞ=T�Þ þ T lnð1þ e−½ðE−μÞT�Þg;
ð8Þ

where S is the area of the cylinder and p⊥ the discrete
momentum along the radius direction in the base plane. p⊥
can be obtained by applying boundary conditions on the
surface in the radius direction, for example, a boundary
condition that requires a wave function to vanish on the
surface. By applying different boundary conditions, differ-
ent discrete momenta can be obtained and determine
whether a zero-momentum mode is included. And, in
the above equations, we sum all momenta in the base
plane starting from p⊥ ¼ 0.
As we mentioned in the introduction, the catalysis of

chiral symmetry breaking in a small system with a PBC
including the zero-momentum-mode contribution is similar
to the system of quark matter under strong magnetic field
B. It is not difficult to understand the similarity between the
two systems, if we recognize that, for a particle with charge
q, the magnetic length l is proportional to the inverse of the
square root of the magnetic field, i.e., l ∼ 1ffiffiffiffiffiffi

jqjB
p [19], which

is similar to a right-circular cylinder system as shown in
Fig. 8, and the stronger the magnetic field, the smaller the
magnetic length will be. In the presence of a magnetic field,
the momentum integral is replaced by a discrete momentum
summation in the plane perpendicular to the magnetic field
as shown in Fig. 8. Therefore, we expect that the quantized
first-order phase transition can also show up in cold quark
matter under a magnetic field.
The thermodynamic potential of quark matter in the

presence of a magnetic field takes the form as given in
Ref. [24]:

M0

M1

0 2 4 6 8
0

200

400

600

800

1000

L [fm]

M
[M

eV
]

FIG. 7. The constituent quark mass M0 with a zero-mode
contribution and M1 without zero-mode contributions as a
function of the size L at zero temperature and zero chemical
potential. Here we take the chiral limit m ¼ 0.

FIG. 8. The cylinder with a finite size at the x-y plane and the
discrete-energy levels.
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Ω ¼ σ2

4G
− Nc

X
f¼u;d

jqfBj
2π

X
s;k

αs;k

Z
∞

−∞

dpz

2π
ωkðpÞ

− TNc

X
f¼u;d

jqfBj
2π

X
s;k

αs;k

Z
∞

−∞

dpz

2π

½lnð1þ e−βðωkþμÞÞ þ lnð1þ e−βðωk−μÞÞ�: ð9Þ

Here ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ þm0Þ2 þ p2

z þ 2jqfBjk
q

is the dispersion

relationship and k ¼ 0; 1; 2;… a non-negative integer
number labeling the Landau levels, and the spin degeneracy
factor αs;k is given below:

αs;k ¼
8<
:

δs;þ1 for k ¼ 0; qB > 0;

δs;−1 for k ¼ 0; qB < 0;

1 for k ≠ 0;

ð10Þ

with s ¼ � the spin factor. Here we take the magnetic field
B along the z axis and consider only u and d quarks.
Similar to the case without a magnetic field, the ground
state of the system can be determined by solving the gap
equation ∂Ω=∂σ ¼ 0.
The quark mass as a function of the temperature under

different magnitudes of a strong magnetic field is shown in

the upper figure in Fig. 9. It is observed that both the quark
mass and the corresponding critical temperature increase as
the magnetic field increases, which is known as magnetic
catalysis [17,18]. Similarly, the catalysis of the chiral
condensate is also shown in the cylinder system as the
size decreases shown in the lower figure in Fig. 9. The
small size plays a similar role as the strong magnetic field,
and they both enhance chiral symmetry breaking. The
stronger the magnetic field and the smaller the size is, the
more contribution from the zero mode.
Now we consider cold dense quark matter under a strong

magnetic field. Because the u quark and d quark carry
different electric charges, the Fermi surfaces for u and d
quarks are splitting, and their critical chemical potentials
for chiral phase transitions are also different. The chiral
condensate at zero temperature for u, d quarks at different
magnitudes of the magnetic field are shown in Fig. 10. As
we expected, there are also quantized first-order chiral
phase transitions showing up for the u quark and d quark.
To our knowledge, the quantized first-order chiral phase
transition phenomena under a strong magnetic field has not
yet been observed in other literature except Ref. [25]. It is
worth mentioning that, in the case of a strong magnetic
field, the thermodynamic limit of infinite volume can be
taken. Hence, the phase transition under a strong magnetic
field in this section is an actual phase transition which is

FIG. 9. Quark mass as a function of the temperature with only
the lowest energy level taken into account under different
magnitudes of the magnetic field (top) as well as for different
radius L for the cylinder (bottom).

FIG. 10. Chiral condensates for the u quark (upper figure) and
d quark (lower figure) as a function of the chemical potential
for different magnitudes of the magnetic field.
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different from the apparent phase transition that happens in
a finite size system.

VI. SUMMARY AND DISCUSSION

Even though the finite size effect in QCD physics has
attracted lots of interest for more than three decades,
normally, both the periodic and the antiperiodic spatial
boundary condition are applied for fermions. In this work,
we find that, if there is no other physical constraint, the
ground state of quark matter favors the periodic spatial
boundary condition, in which the zero-momentum mode is
taken into account. In this stable small system, the catalysis
of chiral symmetry breaking is observed with the decrease
of the system size, while the pions excited from the droplet
vacuum remain as pseudo–Nambu-Goldstone bosons. The
catalysis of chiral symmetry breaking and pseudo–Nambu-
Goldstone pions in a small system are similar to those in
quark matter under strong magnetic fields. The similarity
between these two systems is understandable, because the
stronger the magnetic field, the smaller the magnetic length
of the charged particle will be.
For the periodic boundary condition, one can obtain

the catalysis of chiral symmetry breaking in the vacuum
at a small size, which indicates that the constituent quark
becomes heavier and its wavelength becomes much
smaller. We can imagine that the droplet-quark matter with
a periodic condition is a bag with dynamical massive
quarks inside the bag surrounded by a light pseudo–
Nambu-Goldstone pions’ cloud.
Furthermore, it is found that the zero-momentum-mode

contribution brings significant change of the chiral apparent
phase transition in a droplet of cold dense quark matter:
The first-order chiral apparent phase transition becomes
quantized, which is a brand-new quantized phenomena.
We want to emphasize that this is the first time to observe

the quantized first-order apparent phase transition in the
literature. As we analyzed in this work, the quantized
first-order phase transition is induced by the quantized
momentum, and in this case the zero-momentum-mode
contribution becomes non-negligible. It is expected that
such a quantized first-order apparent phase transition is a
common feature for a system with quantized momentum.
Therefore, we also observe such quantized first-order phase
transition phenomena in quark matter under a strong
magnetic field, and we expect such phenomena will also
show up in some small systems in condensed matter.
Last, we expect that this new phenomena will largely

affect the equation of state with small droplet quark matter
inside a neutron star and, thus, affect the radius-mass
relation of the neutron star. When considering the mixed
phase of quark matter and nuclear matter, one has to solve
the Wigner-Seitz cell structure, e.g., drop (bubble), rod
(tube), and slab structure, and the size of the Wigner-Seitz
cell can be as small as several femtometers as shown in
Ref. [16]. For the small size of the Wigner-Seitz cell in
neutron stars, the work of investigating how the zero-mode
contribution will affect the equation of state and, thus, the
neutron star properties is in progress [26]. Also, it is noticed
that, in the future, it is worthy to perform calculations
beyond the mean-field approximation.
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