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Motivated by the study of conserved Aretakis charges for a scalar field on the horizon of an extremal
black hole, we construct the metrics for certain classes of four-dimensional and five-dimensional extremal
rotating black holes in Gaussian null coordinates. We obtain these as expansions in powers of the radial
coordinate, up to sufficient order to be able to compute the Aretakis charges. The metrics we consider are for
4-charge black holes in four-dimensional STU supergravity (N ¼ 2 supergravity coupled to three vector
multiplets) (including the Kerr-Newman black hole in the equal-charge case) and the general 3-charge black
holes in five-dimensional STU supergravity.We also investigate the circumstances under which the Aretakis
charges of an extremal black hole can be mapped by conformal inversion of the metric into Newman-
Penrose charges at null infinity. We show that while this works for four-dimensional static black holes, a
simple radial inversion fails in rotating cases because a necessary conformal symmetry of the massless
scalar equation breaks down.We also discuss that a massless scalar field in dimensions higher than four does
not have any conserved Newman-Penrose charge, even in a static asymptotically flat spacetime.
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I. INTRODUCTION

In the last few years there have been many studies that
have revealed that the horizon of an extremal black hole
is unstable to small perturbations. These may be pertur-
bations of the black hole metric itself, or perturbations of
matter fields propagating in the black hole background.
The simplest such examples arise by considering the
perturbations of a scalar field [1–4]. Perturbations of
other fields, including linearized gravity, were considered
in [5]. The instabilities stem from the existence of
conserved charges on the future horizon of the extremal
black hole, which imply that physical perturbations do
not decay at large values of the advanced time v. These
conserved charges are known as Aretakis charges. They
exist quite generally for any black hole with an extremal

horizon, but not for a nonextremal black hole with a
bifurcate horizon.
General arguments for the existence of Aretakis charges

in a black hole with an extremal horizon can be given,
making use of the general near-horizon form of the metric
for such black holes [6]. [The near-horizon metric is given
in Eq. (2.1) below.] The metric in this form is written using
Gaussian null coordinates (GNC). The Aretakis charges
can be calculated explicitly for a given extremal black hole
solution by casting the metric into the Gaussian null form.
This is straightforward for a simple static example such as
the extremal Reissner-Nordström solution, but it is rather
less simple for a stationary metric such as the extremal Kerr
solution. In such a case one cannot construct an exact
expression for the metric in Gaussian null form, but
fortunately it is sufficient to determine just the first few
orders in a GNC expansion of the metric in powers of the
radial coordinate measuring distance away from the hori-
zon. This procedure was carried out for the Kerr metric
in [7,8]. Essentially, the method used was to solve the
equations for null geodesics, in an expansion in powers of
the radial distance from the horizon.
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One of themain purposes of the present paper is to cast the
metrics for certain classes of rotating extremal supergravity
black holes into theGaussian null form, thus allowing one to
compute the conserved Aretakis charges in these space-
times. Specifically, we carry out this procedure for the
rotating extremal black holes in four-dimensional STU
supergravity (N ¼ 2 supergravity coupled to three vector
multiplets) that carry four independent electric charges, and
also for the general 3-charge rotating extremal black holes in
five-dimensional STU supergravity. Specializations of these
results encompass the previously derived expressions for the
extremalKerrmetric in four dimensions [7] and the extremal
Myers-Perrymetric in five dimensions [8]. The intermediate
stages in the calculations necessary for casting the super-
gravity black hole solutions into Gaussian null form are
quite involved, but the final results that we obtain, at the
order that is sufficient for calculating the Aretakis charges,
are remarkably simple.
An intriguing observation, in the case of the extremal

Reissner-Nordström (ERN) metric [9,10], is that by per-
forming an inversion of the radial coordinate so that the
horizon is mapped into future null infinity Iþ, and then
extracting an overall conformal factor, the Aretakis charges
on the null horizon of the ERN metric can be mapped into
conserved Newman-Penrose charges at null infinity in the
conformally inverted metric. In fact, this conformal inver-
sion of the ERN metric actually maps it into the ERN
metric again, a result that had been obtained many years
previously by Couch and Torrence [11].
The mapping of Aretakis charges on an extremal horizon

into Newman-Penrose charges on Iþ was investigated in a
more general setting in [12]. It was shown that the conformal
inversion of a general extremal black hole, written in
Gaussian null coordinates, gives rise to a metric that was
called weakly asymptotically flat (WAF) in [12]. This metric
approaches Minkowski spacetime at infinity, but with rather
weaker falloff conditions than those of an asymptotically flat
spacetime written in Bondi-Sachs coordinates. It was shown
in [12] that Newman-Penrose charges can be computed in
the WAF spacetime obtained by conformal inversion of the
original extremal black hole, and in various static examples
the mapping between Aretakis and Newman-Penrose
charges was exhibited. These generalized the mapping for
extremal Reissner-Nordström that was found in [9,10]. In
particular, in the more general examples, such as multicharge
static extremal black holes in STU supergravity, the con-
formal inversion of the original metric does not give back the
same metric again, unlike the ERN case.
The discussion in [12] in principle applied also to sta-

tionary extremal black holes that are not static. One can
certainly again compute Newman-Penrose charges in the
WAF metric obtained by conformal inversion. As we shall
discuss in the present paper, however, in the stationary case
there is a lacuna in the argument thatwould beneeded in order
to link the Newman-Penrose charges to the original Aretakis

charges. Namely, in order to map the one into the other, it is
necessary to be able to argue that the solutions of themassless
scalar wave equation in the original black hole metric and in
the conformally inverted WAF metric can be related by the
necessary conformal transformation. This is fine as long as
the Ricci scalar, which enters in the conformally invariant
scalar equation ð□ − 1

6
RÞψ ¼ 0, either is zero or else it goes

to zero sufficiently rapidly in the asymptotic region. This is
certainly true in the case of the extremal Reissner-Nordström
solution, whereR vanishes, and also in the more complicated
four-dimensional static supergravity black holes, where R
vanishes sufficiently rapidly asymptotically. But, as we show
later, in the weakened falloff of the WAF metrics in the
stationary case, theRicci scalar does not fall off fast enough at
infinity, and this provides an obstruction to being able to relate
the Aretakis charges to the Newman-Penrose charges of the
conformally inverted WAF metric, at least if we assume a
simple inversion of the radial coordinate. In fact a manifes-
tation of this problemwas foreshadowed in the results in [13],
where the Aretakis and Newman-Penrose charges were
calculated in the case of the extremal Kerr black hole and
its conformal inversion.
The focus in [12], concerning the relation between

Aretakis charges and Newman-Penrose charges, was four-
dimensional spacetimes. We also address in this paper the
possible extension of these considerations to more than four
dimensions. We show that conserved Aretakis charges for
massless scalar fields exist in higher-dimensional extremal
black holes also. However, as we show, Newman-Penrose
charges for a massless scalar field no longer exist when one
goes beyond four dimensions. This happens simply
because there is a term in the large-r expansion for the
scalar equation written in Bondi-Sachs coordinates that
presents an obstruction to the existence of conserved
charges, and this term occurs with a dimension-dependent
coefficient ðn − 2Þðn − 4Þ that is absent in n ¼ 4 dimen-
sions but not when n ≥ 5.

II. GENERAL FORMALISM

The metric near the horizon of an extremal black hole in
any dimension n can always be written in Gaussian null
coordinates, where it takes the form [6]

ds2 ¼ LðxÞ2½−ρ2Fdv2 þ 2dvdρ�
þ γIJðdxI − ρhIdvÞðdxJ − ρhJdvÞ; ð2:1Þ

where F, γIJ, and hI depend on the radial coordinate ρ and
on the coordinates xI on the (spherical) horizon, which is
located at ρ ¼ 0. Near the horizon we may assume1

1In principle it would suffice to assume weaker asymptotic
conditions on the metric functions as ρ approaches zero (as
discussed, for example, in [12]), but in practice these are the ones
that arise in the black holes we shall be considering.
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Fðρ; xÞ ¼ 1þ ρF1ðxÞ þ ρ2F2ðxÞ þ � � � ;
γIJðρ; xÞ ¼ γ̄IJðxÞ þ ργð1ÞIJ ðxÞ þ ρ2γð2ÞIJ ðxÞ þ � � � ;
hIðρ; xÞ ¼ hI0ðxÞ þ ρhI1ðxÞ þ ρ2hI2ðxÞ þ � � � : ð2:2Þ

We shall consider the Aretakis charges for a scalar field
ψ obeying the massless Klein-Gordon equation □ψ ¼ 0.
The solutions can be taken to have the small-ρ expansion

ψðρ; v; xÞ ¼ ψ0ðv; xÞ þ ρψ1ðv; xÞ þ ρ2ψ2ðv; xÞ þ � � � :
ð2:3Þ

From this, and the form of the metric expansion, it follows
that on the horizon one has [12]

∂
∂v

�
2
∂ψ
∂ρ þ 1

2
ψ
∂ log γ
∂ρ

�
þ hI0∂Iψ

þ 1ffiffiffī
γ

p ∂Ið
ffiffiffī
γ

p
L2γ̄IJ∂JψÞ ¼ 0: ð2:4Þ

If this is integrated over the horizon, with measureffiffiffī
γ

p
dn−2x, the final term gives zero since it is a total

derivative. The coordinates xI on the (n − 2)-sphere hori-
zon divide into azimuthal angular coordinates (like φ on
the 2-sphere), and latitude type coordinates (like θ on the
2-sphere). The azimuthal coordinates are associated with
Killing vectors. Crucially, for the extremal black hole
metrics we shall be considering and as we shall see in
detail later, Gaussian null coordinates can be chosen so that
hI0 is zero for the index values I corresponding to the
latitude type coordinates. It follows that hI0∂Iψ can be
written as ð ffiffiffī

γ
p Þ−1∂Ið

ffiffiffī
γ

p
hI0ψÞ, and thus this term is also a

total derivative that integrates to zero. The upshot is that the
quantity

QA ¼
Z ffiffiffī

γ
p

dn−2x
�
2
∂ψ
∂ρ þ 1

2
ψ
∂ log γ
∂ρ

�
; ð2:5Þ

known as the Aretakis charge, is conserved on the horizon,
in the sense that ∂vQA ¼ 0.
In the subsequent sections we shall calculate the Aretakis

charge for the case of certain rotating charged extremal
black holes in four-dimensional STU supergravity, and for
the general 3-charge extremal rotating black holes in five-
dimensional STU supergravity. The key part of the calcu-
lations involves constructing the expressions for the black
hole solutions in Gaussian null coordinates, up to the
necessary order in the expansion in powers of ρ.
A technique for constructing Gaussian null coordinates

for an extremal black hole metric has been described
in [7,8]. Essentially, one writes down the equations for
null geodesics in the extremal metric, for which first
integrals exist for the time and the azimuthal coordinate(s).
The equations for the remaining coordinates cannot be

integrated explicitly, so one then expands these in power
series in the affine parameter λ along the geodesics. The
geodesic equations are then integrated order by order in λ,
imposing certain transversality conditions in the process.
Finally, a change of variable from λ to ρ brings themetric into
the desired form (2.1).

III. EXTREMAL ROTATING STU BLACK
HOLES IN FOUR DIMENSIONS

A. 4-charge STU black holes

The 4-charge four-dimensional STU supergravity black
holes that we shall be considering here were constructed
in [14]. A convenient presentation for our purposes can be
found in [15]. The metric can be written as

ds2 ¼ −
ρ̄2 − 2mr

W
ðdtþ Bð1ÞÞ2

þW

�
dr2

Δ
þ dθ2 þ Δsin2θdϕ̃2

ρ̄2 − 2mr

�
;

Bð1Þ ¼
2masin2θðrΠc − ðr − 2mÞΠsÞ

ρ̄2 − 2mr
dϕ̃;

ρ̄2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2mrþ a2;

W2 ¼ R1R2R3R4 þ a4cos4θ

þ
�
2r2 þ 2mr

X
i

s2i þ 8m2ðΠc − ΠsÞΠs

− 4m2ðs21s22s23 þ s21s
2
2s

2
4 þ s21s

2
3s

2
4 þ s22s

2
3s

2
4Þ
�

× a2cos2θ;

Ri ¼ rþ 2ms2i ; Πc ¼
Y
i

ci; Πs ¼
Y
i

si; ð3:1Þ

where si ¼ sinh δi and ci ¼ cosh δi. The physical mass M
and the four physical charges Qi are given by2

M ¼ mþ 1

2
m
X
i

s2i ; Qi ¼ 2msici ¼ m sinh 2δi: ð3:2Þ

The metric is extremal when m ¼ a, which we assume
from now on. This implies Δ ¼ ðr − aÞ2. Defining a new
azimuthal coordinate

ϕ ¼ ϕ̃ −
1

2aðΠc þ ΠsÞ
t ð3:3Þ

so that ∂=∂t is the Killing vector that becomes null on the
horizon, we may write the extremal metric in the form

2In the case where the charges are set equal, with δi ¼ δ, the
solution reduces to the Kerr-Newman black hole, with r̄ ¼ rþ
2m sinh2 δ being the standard Kerr-Newman radial coordinate.
We shall discuss the extremal Kerr-Newman metric in Gaussian
null coordinates in the next subsection.
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ds2 ¼ W−1ðAdt2 þ 2Bdtdϕþ Cdϕ2Þ

þW

�
dr2

ðr − aÞ2 þ
du2

1 − u2

�
; ð3:4Þ

where u ¼ cos θ.
In algebraic computations the parametrization of the

charges in terms of the four parameters si is not ideal,
since the relation to the ci involves square roots, namely
ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2i

p
. We have found it more convenient here to

work instead with the five parameters ðα; β; γ;Πc;ΠsÞ,
where

α ¼ s21 þ s22 þ s23 þ s24;

β ¼ s21s
2
2 þ s21s

2
3 þ s21s

2
4 þ s22s

2
3 þ s22s

2
4 þ s23s

2
4;

γ ¼ s21s
2
2s

2
3 þ s21s

2
2s

2
4 þ s21s

2
3s

2
4 þ s22s

2
3s

2
4;

Πc ¼ c1c2c3c4; Πs ¼ s1s2s3s4: ð3:5Þ
These are related by the identity

γ ¼ Π2
c − Π2

s − 1 − α − β; ð3:6Þ
and in practice we find it most convenient to use
ðα; β;Πc;ΠsÞ as the four independent quantities that para-
metrize the four charges. In terms of ðα; β; γ;Πc;ΠsÞ the
charge-dependent quantitiesW and Bð1Þ in the metric (3.1),
subject to the extremality condition m ¼ a, are given by

W2 ¼ r4 þ 2aαr3 þ 2a2ð2β þ x2Þr2 þ 2a3ð4γ þ x2Þr
þ a4½16Π2

s þ 4ð2ΠcΠs − 2Π2
s − γÞu2 þ u4�;

Bð1Þ ¼
2a2sin2θðrΠc − ðr − 2aÞΠsÞ

ρ̄2 − 2ar
dϕ̃: ð3:7Þ

Solving now for the null geodesics in this geometry, the
first integrals for the ignorable coordinates t and ϕ are taken
to be

_t ¼ −
C

Wðr − aÞ2ð1 − u2Þ ;
_ϕ ¼ B

Wðr − aÞ2ð1 − u2Þ ;

ð3:8Þ

where a dot denotes a derivative with respect to the affine
parameter λ. We now expand the r and u coordinates as
power series in λ, with

r ¼ aþ
X
n≥1

RnðyÞλn; u ¼ yþ
X
n≥2

XnðyÞλn; ð3:9Þ

where the affine parameter λ vanishes on the horizon.
Substituting these expansions in to null geodesic constraint
gμν _xμ _xν ¼ 0 and the Euler-Lagrange equation for u allows
us to solve iteratively for the RnðyÞ and XnðyÞ coefficients
in (3.9). We find

R1ðyÞ ¼
2ðΠc þ ΠsÞ

sðyÞ ; X2ðyÞ ¼
yð1 − y2Þ
2a2sðyÞ2 ;

R2ðyÞ ¼
2ðΠc þ ΠsÞð1 − y2Þ½4ðΠc − ΠsÞ3 þ ð9þ 7αþ 4βÞΠs − ð5þ 5αþ 4βÞΠc − ðΠc − ΠsÞy2�

asðyÞ4 ; ð3:10Þ

where

sðyÞ2 ¼ 1þ 2αþ 4β þ 8γ þ 16Π2
s þ 2ð1þ α − 2γ þ 4ΠcΠs − 4Π2

sÞy2 þ y4;

¼
Y
i

ð1þ 2s2i Þ þ 2

�
1þ

X
i

s2i − 2
X
i<j<k

s2i s
2
js

2
k þ 4ΠcΠs − 4Π2

s

�
y2 þ y4: ð3:11Þ

To the order in λ we are working, the coefficient R3ðyÞ is
needed also. We shall not present this here, since it is rather
complicated.
The expansions (3.9) can now be used in (3.8) yielding,

after integration with respect to λ,

t ¼ vþ Tðy; λÞ þ ftðyÞ; ϕ ¼ χ þΦðy; λÞ þ fϕðyÞ:
ð3:12Þ

Here Tðy; λÞ and Φðy; λÞ are the “naive” integrals of (3.8)
with respect to λ. The functions of integration ftðyÞ and
fϕðyÞ are determined by requiring V · ∂y ¼ 0, and

ð∂y · ∂χÞλ¼0 ¼ 0. Substituting (3.9) and (3.12) into the
metric (3.4), and working up to and including linear order
in λ, we obtain the extremal 4-charge metrics in Gaussian
null coordinates ðv; λ; y; χÞ.3

3Knowing just the expansion coefficients R1, R2, R3, and X2 in
(3.9) is sufficient to calculate all the metric components up to and
including linear order in λ, except a term involving λdλ2. Showing
that this term is actually zero would require knowing also the
coefficients R4 and X3, in the procedure we have just described.
However, a simple argument shows that this term is actually
absent, since gλλ ¼ _xμ _xνgμν, which vanishes by the null geodesic
constraint.
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Finally, we make a further coordinate transformation
from λ to ρ, of the form

λ ¼ wðyÞρ: ð3:13Þ

The functionwðyÞ is determined by the requirement that the
metric be expressible in the form (2.1) with, in particular,
the function Fðρ; xIÞ being equal to 1 at ρ ¼ 0. This gives a
first-order nonlinear differential equation for w. If we define
a new function uðyÞ such that wðyÞ ¼ a2sðyÞ½1

2
− uðyÞ� then

we find that u must satisfy

ð1 − y2Þu02 þ u2 −
1

4
¼ 0; ð3:14Þ

and so in terms of a new angular coordinate ϑ such that
y ¼ cosϑ, the solutions for u are

u ¼ 1

2
; or u ¼ −

1

2
; or u ¼ 1

2
sinðϑþ kÞ; ð3:15Þ

where k is an arbitrary constant of integration. The metric
functions LðxÞ and hI0 in the metric (2.1) are then given by

L2 ¼ wðyÞ; hy0 ¼ ð1 − y2Þu0ðyÞ;

hχ0 ¼ −
ðΠc − ΠsÞ
ðΠc þ ΠsÞ

�
1

2
− uðyÞ

�
: ð3:16Þ

In order for the metric (2.1) to be nondegenerate LðxÞ2,
and hence wðyÞ, should be positive everywhere on the
sphere. The first solution in (3.15) is trivial, implying
wðyÞ ¼ 0 and hence L ¼ 0, so this is excluded. The second
solution gives

wðyÞ ¼ a2sðyÞ; hy0 ¼ 0; hχ0 ¼ −
ðΠc − ΠsÞ
ðΠc þ ΠsÞ

;

ð3:17Þ

and so wðyÞ is indeed positive everywhere on the sphere.
Note that hy0 ¼ 0 for this solution. As we noted previously
when discussing the derivation of the Aretakis charge, it is
necessary that hy0 vanish in order for the charge to be
conserved on the horizon. The third solution in (3.15) gives

wðyÞ ¼ 1

2
a2sðyÞ½1 − sinðϑþ kÞ�;

hy0 ¼ − sinϑ cosðϑþ kÞ;

hχ0 ¼ −
ðΠc − ΠsÞ
2ðΠc þ ΠsÞ

½1 − sinðϑþ kÞ�: ð3:18Þ

The function wðyÞ will be positive everywhere on the
sphere provided that k is chosen appropriately. However, hy0

is nonzero, and so there will be no conserved Aretakis
charge in this case. Thus we are led to choose the second
solution in (3.15), implying that

λ ¼ a2sðyÞρ; ð3:19Þ

where sðyÞ is given in (3.11). The metric then takes the
form (2.1) with

LðyÞ2 ¼ a2sðyÞ; F ¼ 1 − 2aðΠc − ΠsÞρþ � � � ;
ð3:20Þ

and

hy0 ¼ 0; hχ0 ¼ −
ðΠc −ΠsÞ
Πc þΠs

;

γ̄yy ¼
a2sðyÞ
1− y2

; γ̄χχ ¼
4a2ðΠc þΠsÞ2ð1− y2Þ

sðyÞ ; γ̄yχ ¼ 0;

γð1Þyy ¼ 2a3ðΠc þΠsÞ½4Π2
c − 4Π2

s − ð2þ αÞð1− y2Þ�
ð1− y2ÞsðyÞ ;

γð1Þyχ ¼ 4a3ðΠc þΠsÞyð1− y2Þ
sðyÞ ;

γð1Þχχ ¼ 8a3ðΠc þΠsÞ2ð1− y2Þ
sðyÞ4 ½ðΠc þΠsÞðð2þ αÞð1− y2Þ

− 4Π2
c þ 4Π2

sÞ þ 2ðΠc −ΠsÞsðyÞ�; ð3:21Þ

We have calculated hy1 and hχ1 but they are rather compli-
cated, and we shall not present them here since they are not
required for our subsequent purposes.
It is now a straightforward matter to calculate the

Aretakis charge (2.5) for the scalar field in this extremal
black hole. From (3.21) the evaluation of ∂ log γ=∂ρ on the
horizon gives

∂ log γ
∂ρ

����
ρ¼0

¼ 4aðΠc − ΠsÞ; ð3:22Þ

and hence the Aretakis charge (2.5) is given by

QA ¼ 2a2ðΠc þ ΠsÞ
Z

dydχ

�
2
∂ψ
∂ρ þ 2aðΠc − ΠsÞψ

�
;

ð3:23Þ

evaluated at ρ ¼ 0, i.e.,

QA ¼ 2a2ðΠc þ ΠsÞ
Z

dydχ½2ψ1 þ 2aðΠc − ΠsÞψ0�:

ð3:24Þ
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B. Kerr-Newman black holes

In the case where the four electric charges in the STU
black hole are set equal, by taking δi ¼ δ, and hence si ¼ s,
ci ¼ c, one obtains the Kerr-Newman black hole. From
(3.2) the physical mass M and electric charge Q ¼ Qi
become

M ¼ mð1þ 2s2Þ; Q ¼ 2msc; ð3:25Þ

and so the extremality condition a ¼ m can be written as

M2 ¼ a2 þQ2: ð3:26Þ

The function sðyÞ in (3.11) is now polynomial in y,
given by

a2sðyÞ ¼ M2 þ a2y2; ð3:27Þ

and the metric coefficients in (3.20) and (3.21) become

LðyÞ2 ¼ M2 þ a2y2; F ¼ 1 − 2Mρþ � � � ; ð3:28Þ

and

hy0 ¼ 0; hy1 ¼ −
2a2Mða2 þM2Þyð1 − y2Þ

ðM2 þ a2y2Þ2 ;

hχ0 ¼ −
2aM

a2 þM2
; hχ1 ¼

a½2M4 þ a2M2ð1 − y2Þ − a4y2ð1þ y2Þ�
ða2 þM2ÞðM2 þ a2y2Þ ;

γð0Þyy ¼ M2 þ a2y2

1 − y2
; γð0Þχχ ¼ ða2 þM2Þ2ð1 − y2Þ

M2 þ a2y2
; γð0Þyχ ¼ 0;

γð1Þyy ¼ 2Mða2 þM2Þ
ð1 − y2Þ ; γð1Þχχ ¼ 2Mða2 þM2Þ2ð1 − y2Þ½M2 − a2ð1 − 2y2Þ�

ðM2 þ a2y2Þ2 ; ð3:29Þ

γð1Þyχ ¼ 2a3ða2 þM2Þyð1 − y2Þ
ðM2 þ a2y2Þ : ð3:30Þ

The Aretakis charge (3.24) becomes

QA ¼ ða2 þM2Þ
Z

dydχð2ψ1 þMψ0Þ: ð3:31Þ

It is worth remarking that in the case of pairwise-equal
charges, where we take, for example, δ3 ¼ δ1 and δ4 ¼ δ2,

the function sðyÞ given in (3.11) again becomes purely
polynomial in y, with

sðyÞ ¼ ð1þ 2s21Þð1þ 2s22Þ þ y2; ð3:32Þ

and, as can straightforwardly be seen, the expressions for
the metric coefficients in (3.20) and (3.21) again simplify
considerably. The extremality condition a ¼ m, expressed
in terms of the physical mass and charges, is now

a2 ¼ ð2M −Q1 −Q2Þð2M −Q1 þQ2Þð2M þQ1 −Q2Þð2M þQ1 þQ2Þ
16M2

: ð3:33Þ

IV. EXTREMAL ROTATING STU BLACK HOLES
IN FIVE DIMENSIONS

The metric for the general 3-charge rotating black holes
of five-dimensional STU supergravity was constructed in
[16]. It is convenient to introduce the quantities α, β, Πs,
and Πc, defined in terms of the boost parameters δi for
i ¼ 1, 2, and 3 by

α ¼ s21 þ s22 þ s23; β ¼ s21s
2
2 þ s21s

2
3 þ s22s

2
3;

Πs ¼ s1s2s3; Πc ¼ c1c2c3; ð4:1Þ
where si ¼ sinh δi and ci ¼ cosh δi. They obey the relation

Π2
c ¼ 1þ αþ β þ Π2

s ; ð4:2Þ

which we employ in order to eliminate β. We use the
coordinates t, r, θ, ϕ̃, and ψ̃ of [16], with the redefinition
u ¼ cos θ. (We have put tildes on the two azimuthal
angles because we will shortly redefine untilded
versions with respect to which null vector on the horizon
is simply ∂=∂t.) Extremality of the metric is achieved by
taking mass parameter μ ¼ ðaþ bÞ2, where a and b are
the two rotation parameters (called l1 and l2 in [16]); the
double horizon is then at r ¼ ffiffiffiffiffiffi

ab
p

. The metric can be
written as
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ds2 ¼ Δ−2=3ðAdt2 þ 2B1dtdϕþ 2B2dtdψ

þ C1dϕ2 þ C2dψ2 þ 2C12dϕdψÞ

þ Δ1=3

�
dr2

ðr2 − abÞ2 þ
du2

1 − u2

�
; ð4:3Þ

where

Δ ¼ ðaþ bÞ6Π2
s þ ðaþ bÞ4βρ2 þ ðaþ bÞ2αρ4 þ ρ6;

ð4:4Þ
and ρ2 ¼ r2 þ a2u2 þ b2ð1 − u2Þ. The coordinate redefi-
nitions for the untilded azimuthal coordinates are

ϕ ¼ ϕ̃ −
1

ðaþ bÞðΠc þ ΠsÞ
t;

ψ ¼ ψ̃ −
1

ðaþ bÞðΠc þ ΠsÞ
t: ð4:5Þ

The functions A, B1, B2, C1, C2, and C12 can be read off
by starting from the metric given in Eq. (18) of [16] and
applying the steps detailed above.
We proceed along the same lines as in the previous four-

dimensional examples, with the appropriate generalizations

to five dimensions. The case of the uncharged five-dimen-
sional Myers-Perry black hole is discussed in detail in [8].
The first integrals for the geodesics in the t, ϕ, and ψ
directions are chosen so that

A_tþ B1
_ϕþ B2 _ψ ¼ Δ2=3;

B1_tþ C1
_ϕþ C12 _ψ ¼ 0;

B2_tþ C2 _ψ þ C12
_ϕ ¼ 0: ð4:6Þ

We then make the expansions

r2 ¼ abþ
X
n≥1

RnðyÞλn; u ¼ yþ
X
n≥2

XnðyÞλn; ð4:7Þ

where λ is the affine parameter along the null geodesic.
Plugging these into the null constraint equation L≡
1
2
gμν _xμ _xν ¼ 0 and the second-order Euler-Lagrange equa-

tion for u allows us to solve iteratively for the RnðyÞ and
XnðyÞ coefficient functions. We find

R1ðyÞ ¼
2

ffiffiffiffiffiffi
ab

p ðaþ bÞðΠc þ ΠsÞ
sðyÞ ; X2ðyÞ ¼

ða − bÞyð1 − y2Þ
2ðaþ bÞsðyÞ2 ;

R2ðyÞ ¼
ðaþ bÞðΠc þ ΠsÞ

3sðyÞ5 ½3ðaþ bÞðΠc − ΠsÞsðyÞ3 − 2abðΠc þ ΠsÞF1�; ð4:8Þ

where sðyÞ is given by

sðyÞ ¼
Y3
i¼1

½ay2 þ bð1 − y2Þ þ ðaþ bÞs2i �1=3; ð4:9Þ

and F1 is given in (4.15) below. To the order in λ that we are
working, we also need R3ðyÞ. We have calculated this but it
is too complicated to present explicitly here. Substituting
these results into Eq. (4.6) enables us to solve for _t, _ϕ,
and _ψ . After integration, we have

t ¼ vþ Tðy; λÞ þ ftðyÞ; ϕ ¼ χ þΦðy; λÞ þ fϕðyÞ;
ψ ¼ σ þΨðy; λÞ þ fψ ðyÞ; ð4:10Þ

where T, Φ, and Ψ are the “naive” λ integrals, as discussed
in the four-dimensional examples previously. The functions
of integration ftðyÞ, fϕðyÞ, and fψ ðyÞ are determined
by requiring V · ∂y ¼ 0, where V ¼ _xμ∂μ, along with
ð∂y · ∂χÞλ¼0 ¼ 0 and ð∂y · ∂σÞλ¼0 ¼ 0.
With these preliminaries, we now have the necessary

coordinate redefinitions to re-express the metric in terms of

the Gaussian null coordinates ðv; λ; y; χ; σÞ. A coordinate
transformation

λ ¼ ðaþ bÞsðyÞ
�
1

8
− uðyÞ

�
ρ ð4:11Þ

then casts it into the form (2.1), with Fðρ; xIÞ ¼ 1 at ρ ¼ 0,
provided that uðyÞ obeys

yð1 − yÞu02 þ u2 −
1

64
¼ 0: ð4:12Þ

Letting y ¼ 1
2
ð1þ cosϑÞ, this implies

u ¼ 1

8
; or u ¼ −

1

8
; or u ¼ 1

8
sinðϑþ kÞ; ð4:13Þ

where k is an arbitrary constant. The metric function h0y is
given by h0y ¼ 4yð1 − yÞdu=dy, and thus we have just the
one solution u ¼ − 1

8
that gives both a nonsingular coor-

dinate transformation (4.11) and a vanishing h0y (as is
required for obtaining an Aretakis charge). The final form
of the five-dimensional 3-charge extremal STU black holes
in Gaussian null coordinates is then given by (2.1) with
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LðyÞ2 ¼ 1

4
ðaþ bÞsðyÞ F ¼ 1 −

ðaþ bÞ2ðΠc − ΠsÞ
4

ffiffiffiffiffiffi
ab

p ρþ � � � ;

hy0 ¼ 0; hχ0 ¼ −
ðbΠc − aΠsÞ

2
ffiffiffiffiffiffi
ab

p ðΠc þ ΠsÞ
; hσ0 ¼ −

ðaΠc − bΠsÞ
2

ffiffiffiffiffiffi
ab

p ðΠc þ ΠsÞ
;

γ̄yy ¼
ðaþ bÞsðyÞ

1 − y2
; γ̄χχ ¼

ðaþ bÞH2ð1 − y2Þ
sðyÞ2 ; γ̄σσ ¼

ðaþ bÞH̃2y2

sðyÞ2 ;

γ̄χσ ¼
ðaþ bÞH0y2ð1 − y2Þ

sðyÞ2 ; γð1Þyy ¼
ffiffiffiffiffiffi
ab

p ðaþ bÞ2ðΠc þ ΠsÞH1

6ð1 − y2ÞsðyÞ2 ;

γð1Þyχ ¼ ða − bÞðaþ bÞ2yð1 − y2ÞH4

2sðyÞ2 ; γð1Þyσ ¼ ða − bÞðaþ bÞ2y2H̃4

2sðyÞ2 ;

γð1Þχχ ¼ −
ffiffiffiffiffiffi
ab

p ðaþ bÞ2ðΠc þ ΠsÞ½2H1H2 − 3H3sðyÞ3�ð1 − y2Þ
6sðyÞ5 ;

γð1Þσσ ¼ −
ffiffiffiffiffiffi
ab

p ðaþ bÞ2ðΠc þ ΠsÞ½2H1H̃2 − 3H̃3sðyÞ3�y2
6sðyÞ5 ;

γð1Þχσ ¼ −
ffiffiffiffiffiffi
ab

p ðaþ bÞ2ðΠc þ ΠsÞ½2H0H1 − 3absðyÞ3�y2ð1 − y2Þ
6sðyÞ5 : ð4:14Þ

Here, the functions Ha and H̃a are given by

H0 ¼ ðaþ bÞ3ΠcΠs þ ab2½1þ α − ðΠc þ ΠsÞ2 þ ð1 − y2Þ� þ a2b½1þ α − ðΠc þ ΠsÞ2 þ y2�;
H1 ¼ ðaþ bÞ2ð1 − Π2

c þ Π2
sÞ − 3ða − bÞ2y2ð1 − y2Þ þ ½a2ð3þ αÞ − αb2�y2 þ ½b2ð3þ αÞ − αa2�ð1 − y2Þ;

H2 ¼ abðaþ bÞðΠc þ ΠsÞ2 þ ða3Π2
c þ b3Π2

sÞy2
− ab½að1þ α − Π2

c þ 2ΠcΠsÞ þ bð2þ α − Π2
s þ 2ΠcΠsÞ�y2 − abða − bÞy4;

H3 ¼ ðaþ bÞ2ðΠ2
c − Π2

sÞ þ ½a2ð1þ αÞ − b2ð2þ αÞ�y2 þ ða − bÞy4;
H4 ¼ abðΠc þ ΠsÞ þ ða − bÞðaΠc − bΠsÞy2;
H5 ¼ ðaþ bÞðΠc þ ΠsÞðbΠc − aΠsÞ þ ða − bÞ½að1þ αÞ þ bð2þ αÞ�y2 þ ða − bÞ2y4; ð4:15Þ

with ðH̃2; H̃3; H̃4; H̃5Þbeingobtained from ðH2;H3;H4;H5Þ
by making the replacements

H̃a ¼ Hajðy→ ffiffiffiffiffiffiffiffi
1−y2

p
;a→b;b→aÞ: ð4:16Þ

(H0 and H1 are invariant, or “self-dual,” under this trans-
formation.) Note that, as in the analogous discussion in the
case of the 4-charge black holes in four dimensions, our
choice of coordinate redefinition in (4.11) with u ¼ − 1

8

has ensured that hy0 ¼ 0, which is essential for the existence
of a conserved Aretakis charge.
From the expressions in (4.14), we find that

∂ log γ
∂ρ

����
ρ¼0

¼ ðaþ bÞ2ðΠc − ΠsÞ
2

ffiffiffiffiffiffi
ab

p ð4:17Þ

for the five-dimensional 3-charge rotating extremal black
holes, and

ffiffiffī
γ

p ¼ ffiffiffiffiffiffi
ab

p ðaþ bÞ2ðΠc þ ΠsÞy, so the Aretakis
charge (2.5) is given by

QA ¼
ffiffiffiffiffiffi
ab

p
ðaþ bÞ2ðΠc þ ΠsÞ

Z
ydydχdσ

×

�
2ψ1 þ

ðaþ bÞ2ðΠc − ΠsÞ
4

ffiffiffiffiffiffi
ab

p ψ0

�
: ð4:18Þ

V. INVERSION AND NEWMAN-PENROSE
CHARGES

A. Inversion and weakly asymptotically flat
spacetimes in four dimensions

Conserved Aretakis charges are defined on the horizon
of an extremal black hole. A different kind of conserved
charge, known as a Newman-Penrose (NP) charge, is
defined at null infinity in an asymptotically flat spacetime.
It was shown in [11] that in the case of an extremal
Reissner-Nordström black hole, there exists an inversion
symmetry, which takes the form ρ → 1=r, where ρ is the
radial coordinate of the ERN black hole written in Gaussian
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null coordinates, under which the inverted metric is con-
formally related to the ERN metric again. This symmetry
was employed in [9,10] in order to show that the Aretakis
charge for a massless scalar field in the ERN background
was related to the Newman-Penrose charge for the massless
scalar, calculated at future null infinity in the same ERN
metric.
The fact that the conformal inversion of the extremal

Reissner-Nordström black hole gives back precisely the
same ERN metric is of itself inessential for the purpose of
mapping the Aretakis charge into a Newman-Penrose
charge in the conformally inverted metric. In [12], a general
discussion was given in which an extremal black hole
metric, written in Gaussian null coordinates as in (2.1), was
conformally inverted to give a metric that was weakly
asymptotically flat. Under appropriate conditions, the
Aretakis charge in the original extremal black hole metric
can be mapped into a Newman-Penrose charge in the
weakly asymptotically flat metric. The conformal inversion
is effected by starting from (2.1) and then taking

ρ ¼ 1

r
; v ¼ u; ds2 ¼ LðxÞ2

r2
ds̃2; ð5:1Þ

and the weakly asymptotically flat metric is thus given
by [12]

ds̃2 ¼ −Fe2βdu2 − 2e2βdudr

þ r2hIJðdxI − CIduÞðdxJ − CJduÞ; ð5:2Þ

with

β ¼ 0; CI ¼ hI

r
¼ hI0r

−1 þ hI1r
−2 þ � � � ;

hIJ ¼ LðxÞ−2γIJ ¼ LðxÞ−2ðγ̄IJ þ γð1ÞIJ r
−1 þ � � �Þ: ð5:3Þ

The appellation “weakly asymptotically flat” signifies the
fact that the usual definition of asymptotic flatness has been
weakened in two respects. First, the vector CI is allowed to
have terms at order 1=r in its asymptotic expansion, in
contrast to the usual requirement of leading 1=r2 falloff for
asymptotic flatness. Second, the leading-order metric on
the r ¼ constant spatial sections is not restricted to being
that of a round sphere.
In the case of static spherically symmetric extremal

black hole metrics in four dimensions, the distinction
between weakly asymptotically flat and asymptotically flat
in the conformally inverted metric is irrelevant, since
hI ¼ 0 and hence CI ¼ 0, and in addition LðxÞ ¼
constant and LðxÞ−2γ̄IJ is just the metric on the unit round
sphere, implying that hIJ at leading order is also the round
sphere metric. In [12] the conformal inversion for static
spherically symmetric extremal black holes was employed
in order to relate the Aretakis and Newman-Penrose

charges in some more general examples, such as the
4-charge extremal static black holes of four-dimensional
STU supergravity.
A crucial point about the conformal inversion in the

static four-dimensional extremal black holes considered in
[12] is that the Ricci scalar is either zero (as in the extremal
Reissner-Nordström example) or else it goes to zero
sufficiently rapidly (as in the general 4-charge STU
examples) that in both the Aretakis and the Newman-
Penrose calculations, one can as well replace the massless
scalar operator □ by the conformally invariant operator
□ − 1

6
R. This means that one can invoke the consequent

conformal relation between the solutions of the scalar
operator in the original and the conformally inverted
metrics, in order to establish a mapping between the
Aretakis and the Newman-Penrose charges.
If the extremal black hole is stationary but not static, the

mapping between the Aretakis charge in the black hole
metric and the Newman-Penrose charge in the conformally
inverted metric with ρ → 1=r will break down. Even if we
consider the simplest example, namely the extremal Kerr
metric, the conformal mapping between the solutions of the
scalar wave equation will fail. There is no problem with the
calculation for the Aretakis charge in the extremal Kerr
metric, since the Ricci scalar vanishes and there is no
difference between the massless scalar operator □ and the
conformally invariant operator □ − 1

6
R. However, in the

weakly asymptotically flat metric ds̃2 obtained by con-
formal inversion, the Ricci scalar is nonvanishing and it has
a 1=r2 falloff at large r. Thus one can straightforwardly see
from the form of the four-dimensional extremal rotating
4-charge metrics in Gaussian null coordinates obtained in
Sec. III that after turning off the charges to give the Kerr
metric, and making the inversion and conformal scaling

ρ ¼ 1

r
; ds̃2 ¼ r2

LðxÞ2 ds
2; ð5:4Þ

the Ricci scalar R̃ calculated in the conformally rescaled
metric has the leading-order form

R̃ ¼ 6ð1 − 5y2Þ
ð1þ y2Þ2

1

r2
þO

�
1

r3

�
: ð5:5Þ

When one looks at the calculation of the Newman-Penrose
charge (which we shall discuss in detail below), one
finds that while there does exist a Newman-Penrose charge
for a massless scalar obeying □̃ ψ̃ ¼ 0 in the WAF metric,
there does not exist a Newman-Penrose charge for a scalar
obeying the conformally invariant equation ð□̃− 1

6
R̃Þψ̃¼0.

The problem is that the Ricci scalar with its 1=r2 falloff
gives an obstruction to the existence of a conserved charge.
There is therefore no conformal mapping that allows one to
relate the Aretakis charge for a scalar obeying □ψ ¼ 0 in
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the extremal Kerr metric to the Newman-Penrose charge for
a scalar obeying □̃ ψ̃ ¼ 0 in the related WAF metric. This
difficulty can be seen in a calculation of the Aretakis and
the Newman-Penrose charges for this example that was
carried out in [13].
It is useful nevertheless to examine in detail the con-

struction of the Newman-Penrose charge for a massless
scalar field in a general weakly asymptotically flat space-
time, and we shall now present the calculation in a general
spacetime dimension n.

B. Inversion and WAF spacetimes in
higher dimensions

In dimensions greater than four, further complications
can arise. If we consider even a static extremal black hole,
such as a higher-dimensional extremal Reissner-Nordström
metric, the Ricci scalar no longer vanishes (since only in
four dimensions is the electromagnetic energy-momentum
tensor trace-free), and in fact it approaches a constant on the
horizon. For example, writing the five-dimensional ERN
metric in the Gaussian null form (2.1), it is given by

LðxÞ2 ¼ Q
4
; F ¼ ρ2

�
1þ

ffiffiffiffi
Q

p
8

ρ

�
2
�
1þ

ffiffiffiffi
Q

p
4

ρ

�−4
;

γIJ ¼ Q

�
1þ

ffiffiffiffi
Q

p
4

ρ

�
2

ωIJ; ð5:6Þ

where Q is the electric charge and ωIJ is the metric on the
unit 3-sphere. The Ricci scalar is given by

R ¼ −
2

Q

�
1þ

ffiffiffiffi
Q

p
4

ρ

�−6
; ð5:7Þ

which approaches the constant −2=Q on the horizon at
ρ ¼ 0. This implies that although there exists an Aretakis
charge for a scalar field obeying the massless wave
equation □ψ ¼ 0, there will be no conserved charge for
a scalar obeying the conformally invariant wave equation,
which is ð□ − 3

16
RÞψ ¼ 0 in five dimensions.

Furthermore, after the inversion with ρ → 1=r and v→u,
and the conformal scaling to ds̃25¼ðr2=LðxÞ2Þds25, we
obtain the WAF metric

ds̃25 ¼ −
ð1þ

ffiffiffi
Q

p
8r Þ2

ð1þ
ffiffiffi
Q

p
4r Þ4

du2 − 2dudrþ 4r2
�
1þ

ffiffiffiffi
Q

p
4r

�
2

dΩ2
3;

ð5:8Þ

where dΩ2
3 is the metric on the unit 3-sphere. This has a

Ricci scalar that falls off only as r−2 at infinity, and in fact

R̃ ¼ −
9

2r2
þO

�
1

r3

�
: ð5:9Þ

The reason why this happens in higher dimensions but not
in four is that now, in the conformally inverted WAFmetric,
the metric on the r ¼ constant surfaces is not simply
approaching r2dΩ2, but instead a nonunit constant times
r2dΩ2. [The constant is 4 in the five-dimensional example
in (5.8).] This means the spatial metric is not locally
approaching the Euclidean metric at large r, and this is
responsible for the slower falloff of the Ricci scalar.
As discussed previously, a Ricci scalar with this falloff

contributes in the calculation of Newman-Penrose charges
if one considers the conformally invariant scalar wave
operator.
As we shall see in the next section, there is actually a

further complication in dimensions greater than four, when
one attempts to construct conserved Newman-Penrose
charges at null infinity.

C. Newman-Penrose charges in four
and higher dimensions

In this section, which is concerned exclusively with the
calculation of Newman-Penrose charges, we shall drop the
tildes that we were previously using to denote the weakly
asymptotically flat metric. The general solution of□Ψ ¼ 0
in the weakly asymptotically flat metric (5.2) in n dimen-
sions has a large-r expansion of the form

Ψðr; u; xÞ ¼ Ψ0ðu; xÞr−γ þ Ψ1ðu; xÞr−γ−1 þ � � � ;

γ ¼ n − 2

2
: ð5:10Þ

If the (n − 2)-dimensional metric hIJ in the WAF metric
(5.2) is expanded as

hIJðr; u; xÞ ¼ ωIJ þ hð1ÞIJ r
−1 þ � � � ; ð5:11Þ

we may choose a coordinate gauge where
ffiffiffi
h

p ¼ ζðrÞ ffiffiffiffi
ω

p
,

with

ζðrÞ ¼ 1þ ζ0r−1 þ ζ1r−2 þ � � � : ð5:12Þ

Substituting (5.10) into □Ψ ¼ 0, evaluated in the WAF
metric background, we find that at the leading order in the
large-r expansion,

∂
∂u ½2Ψ1 þ ζ0Ψ0� −

ðn − 2Þðn − 4Þ
4

Ψ0 −
n − 4

2
CI
0∂IΨ0

þ n − 2

2
DIðCI

0Ψ0Þ þDIDIΨ0 ¼ 0; ð5:13Þ

where CI has an expansion of the form CI ¼ CI
0r

−1þ
CI
1r

−2 þ � � �, and where DI denotes the covariant derivative
in the ωIJ metric.
In n ¼ 4 dimensions, we can obtain a conserved charge

by integrating (5.13) over the 2-sphere with metric ωIJ:
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QNP ¼
Z ffiffiffiffi

ω
p

d2x½2Ψ1 þ ζ0Ψ0�: ð5:14Þ

In a general dimension n ≠ 4 there are two obstructions to
obtaining a conserved charge. First, the term n−4

2
CI
0∂IΨ0 is

not a total derivative in general. Note, however, that if CI
0

vanishes when I lies in the direction(s) associated with
latitude type coordinates on the sphere (i.e., directions that
are not associated with Killing vectors), then this term can
be rewritten as the total derivative n−4

2
DIðCI

0Ψ0Þ, since the
remaining, azimuthal, sphere coordinates are associated
with Killing directions. As we saw earlier, CI

0 will indeed
vanish in the nonazimuthal directions in the case of the
WAF metrics obtained by conformal inversion of extremal
black hole metrics, since hI0 ¼ 0 in those directions in the
black hole metrics. This still leaves the problem of the term
− ðn−2Þðn−4Þ

4
Ψ0 in (5.13). This term implies that there can be

no Newman-Penrose charge for a massless scalar obeying
□Ψ ¼ 0 in any dimension higher than n ¼ 4.
It is perhaps worth remarking that in the case of a WAF

metric obtained by conformal inversion of a static spheri-
cally symmetric extremal black hole in n ≥ 5 dimensions,
the Ricci scalar goes like 1=r2 at large distance and thus it
would make a contribution in the NP charge calculation at
the leading order in a large-r expansion if one were to add
an RΨ term to the massless wave equation □Ψ ¼ 0. If the
coefficient of this term were chosen appropriately, it could
be arranged to cancel the term − ðn−2Þðn−4Þ

4
Ψ0 in (5.13), thus

allowing the existence of a conserved NP charge. [See
Eq. (5.9) for the calculation of the Ricci scalar term for the
conformal inversion of the five-dimensional extremal
Reissner-Nordström metric.] However, as may be readily
checked, the coefficient of RΨ that would be needed to
achieve this cancellation appears to have no other related
significance. In particular, it is not equal to the coefficient
that would be needed for the conformally invariant scalar
operator.

VI. CONCLUSIONS

In this paper, we have constructed the metrics in
Gaussian null coordinates for certain classes of extremal
rotating black holes in supergravity theories, as expansions
in the radial coordinate at a sufficient order to be able to
calculate the conserved Aretakis charges on the horizon.
Specifically, we did this for the extremal rotating black
holes in four-dimensional STU supergravity that carry four
independent electric charges (with the special case of the
Kerr-Newman black hole when the four charges are equal),
and also for the general extremal rotating 3-charge black
holes in five-dimensional STU supergravity. We then
obtained the explicit expressions for the simplest of the
Aretakis charges for a massless scalar field in each case.

We also investigated the possibility of relating the
Aretakis charge on the horizon of the extremal black hole
to the Newman-Penrose charge at Iþ in the metric obtained
by performing an inversion of the radial coordinate, after
the extraction of an appropriate conformal factor. This
relation was studied for four-dimensional spacetimes in
[12], where various examples of the mapping were obtained
for classes of static extremal black holes. In the present
paper we showed that such a mapping becomes problem-
atical for extremal rotating black holes, because after
conformal inversion the resulting weakly asymptotically
flat metric has a Ricci scalar whose falloff at large r is
sufficiently slow that one cannot treat the massless scalar
equation □ψ ¼ 0 as being equivalent to the conformally
invariant equation ð□ − 1

6
RÞψ ¼ 0 for the purpose of

calculating the Newman-Penrose charge. This means that
the ability to relate the solutions for the scalar field in the
original extremal metric and in the conformally inverted
metric is lost in the case of rotating black holes, at least if
we consider just a simple ρ → 1=r inversion. In turn, one
cannot by this means relate the Aretakis and Newman-
Penrose charges for extremal rotating four-dimensional
black holes.
As we then discussed, the situation becomes worse in

dimensions n > 4. The extremal black holes (static or
rotating) still admit conserved Aretakis charges for a
massless scalar field, but there are no Newman-Penrose
charges for a massless scalar in any asymptotically flat
spacetime of dimension n > 4. Thus it appears that the
mapping between Aretakis and Newman-Penrose charges
is exclusively a four-dimensional phenomenon.
There remain a number of directions for further study.

First, it would be of interest to generalize the construction
of the extremal rotating four-dimensional STU black holes
in Gaussian null coordinates to the general case of eight
charge parameters (independent electric and magnetic
charges carried by each of the four gauge fields; the
solution for the 8-charge rotating black holes is given in
[17]). It would also be of interest to study the analogous
conserved Aretakis and Newman-Penrose charges for
higher-spin fields in the charged supergravity black hole
backgrounds. Examples would include Maxwell fields, and
also perturbations of the background metrics themselves.
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