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We study quantum effects induced by a pointlike object that imposes Dirichlet boundary conditions
along its worldline, on a real scalar field φ in 1, 2, and 3 spatial dimensions. The boundary conditions result
from the strong coupling limit of a term quadratic in the field and localized on the particle’s trajectory. We
discuss the renormalization issues that appear and evaluate the effective action. Special attention is paid to
the case of two spatial dimensions where the coupling constant is adimensional.
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I. INTRODUCTION

Quantum field theory predicts that an open system is
capable of evolving, from the vacuum, to a state charac-
terized by a nonvanishing number of (real) quanta [1].
That is indeed the case, among other related phenomena, of
the dynamical Casimir effect (DCE), one of the most
studied manifestations of quantum dissipation [2]. The
DCE consists of the emission of real quanta when a field is
subjected to time-dependent boundary conditions, an
example being the presence of one or more moving mirrors,
namely, of objects imposing nontrivial boundary conditions
on the field. In the usual understanding of the term, a
boundary condition acts on a region having codimension
one, i.e., which is determined by a single equation. It is
worth noting that, in the context of the DCE for a real
scalar field, which we consider here, different kinds of
boundary conditions, besides the “perfect” ones (Dirichlet
and Neumann), have also been studied. Those “imperfect”
conditions describe mirrors which have more realistic
responses to the action of the field’s modes. Among that
kind of condition, a relatively simple one amounts to
Dirichlet-like boundary conditions: they result from the
addition to the action of a term localized on the space-time
region which is swept by the mirror during the course of
time. When the strength of that term tends to infinity, one
gets Dirichlet conditions on the region on which the term is
localized. It is our concern in this paper to study the DCE,
for the case of a real scalar field φ in dþ 1 dimensions

(d ¼ 1, 2, 3), coupled to pointlike objects which implement
precisely that kind of Dirichlet-like boundary conditions.
In other words, we shall add to the scalar field Lagrangian a
term proportional to a δ function of the (time-dependent)
position of the particle, and to the square of φ. The strength
of the term is determined by a coupling constant which,
by taking the appropriate limit, will be used to impose
Dirichlet boundary conditions.
We shall follow our previous work for scalar and

spinorial vacuum fields [3,4] in which we used the par-
ticularly convenient functional approach proposed by
Golestanian and Kardar [5]. The approach is based on
the use of auxiliary fields to deal with the role of the
mirrors, on the calculation of the functional integral for the
in-out effective action. An important feature of the systems
that we consider here is the following: except for d ¼ 1 a
curve, like the particle’s worldline, has codimension bigger
than 1; this fact results in qualitatively different UV
properties during the calculation of the effective action.
Indeed, the UV problems which will arise here are rather
similar to the ones corresponding to Dirac δ potentials in 2
and 3 dimensions, a system which has been extensively
studied by following many different approaches and frame-
works (see, for example, [6–9]). Note that the classical,
static Casimir effect for small objects is one of the problems
considered in [10], by using a multipole expansion. What
we have in mind here is the evaluation of the dynamical and
quantum version of that kind of object.
In this paper, we shall first review the d ¼ 1 case, as

a previous step to dealing with d ¼ 2, and d ¼ 3. The
main distinction between d ¼ 2 or d ¼ 3 and d ¼ 1 are, as
we shall see, due to the different UV properties induced by
the coupling between the particle and the field. Indeed, the
usual renormalization which is required to make sense of a
δ-like potential in quantum mechanics in two and three
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spatial dimensions, also manifests itself here; moreover, the
resulting divergences can be cured by applying a similar
procedure.
The d ¼ 2 case will also be relevant for future develop-

ments regarding the quantum properties of center vortices,
and support the construction of phenomenological ensem-
bles for these magnetic defects. They are topological
variables that are believed to capture the infrared behavior
in Yang-Mills (YM) theories. For a given realization, the
calculation of the effective action involves regularity field
conditions on worldlines and world surfaces in three and
four Euclidean dimensions, respectively, which are prob-
lems of codimension 2. The effective action for a single
center vortex without curvature was analyzed in Refs. [11–
15]. This may involve singular spectral problems with
different gyromagnetic ratios and regularity conditions on
the YM off-diagonal sector, which depend on how the
fluctuations are parametrized.
The structure of this paper is as follows: In Sec. II we

introduce the kind of system that we study, as well as some
general expressions for its effective action in the small
departure limit, in the path integral framework. Then, in
Sec. III we evaluate the effective action for the massless
field, by considering a perturbative expansion in powers of
the departure of the worldline from the one of a static
particle, assuming the mirror moves nonrelativistically, for
d ¼ 1 and d ¼ 3. Because of its particularities, related to
scale invariance of the coupling between field and mirror,
the d ¼ 2 case is considered separately in Sec. IV. Finally,
in Sec. V we present our conclusions.

II. THE SYSTEM

The system that we shall deal with throughout this paper
consists of a real scalar field φ in dþ 1 dimensions, with
d ¼ 1, 2 or 3, coupled to pointlike objects which are meant
to implement Dirichlet-like conditions.
For an object imposing Dirichlet conditions, the effective

action will be denoted by ΓðCÞ, since it is a functional of the
worldline C. In a functional integral approach, and using
Euclidean conventions,1

e−ΓðCÞ ¼ ZðCÞ
Z0

; ð1Þ

where ZðCÞ (Z0) denotes the Euclidean vacuum transition
amplitude corresponding to the scalar field in the presence
(absence) of the particle.
ZðCÞ and Z0 are given, explicitly, by

ZðCÞ ¼
Z

DφδCðφÞe−S0ðφÞ; Z0 ¼
Z

Dφe−S0ðφÞ; ð2Þ

where S0 is the action which describes the free propagation
of the field, and a functional δ function has been introduced
to account for the Dirichlet conditions; namely, the vanish-
ing of the field at the position of the particle. The former is
given by

S0ðφÞ ¼
1

2

Z
x
ð∂μφðxÞ∂μφðxÞ þm2φ2ðxÞÞ; ð3Þ

where we have introduced a shorthand notation for the
integration, in this case over all of the spacetime coor-
dinates x ¼ ðx0; x1;…; xdÞ. Namely, in the case above,R
x ≡

R
ddþ1x. Greek indices will be assumed to run over the

values 0; 1;…; d, and space-time is endowed with the
Euclidean metric: gμν ¼ δμν.
The functional δCðφÞ should select, among the configu-

rations appearing in the functional integration measure, just
the φ-field configurations which satisfy Dirichlet boundary
conditions on C. As already advanced, those conditions will
be reached as the limit of a local term, namely: we add to
the free action a term, quadratic in φ and localized on C,
with a strength λ which, when λ → ∞, imposes Dirichlet
boundary conditions:

ΓðCÞ ¼ lim
λ→∞

ΓλðCÞ; e−ΓλðCÞ ¼ ZλðCÞ=Z0 ð4Þ

where

ZλðCÞ ¼
Z

Dφ exp

�
−S0ðφÞ −

λ

2

Z
τ

ffiffiffiffiffiffiffiffi
gðτÞ

p
½φðyðτÞÞ�2

�
ð5Þ

where we have assumed that τ → yμðτÞ (μ ¼ 0; 1;…; d) is a
parametrization of C, and gðτÞ≡ _yμðτÞ_yμðτÞ (we have
ignored, as customary in the functional integral context,
irrelevant factors which in this case are independent of the
curve and the field). The

ffiffiffiffiffiffiffiffi
gðτÞp

factor has been introduced
in order to have reparametrization invariance. In the limit
λ → ∞, the mass of the degrees of freedom of the field
localized in C becomes infinite, and therefore the effect of
this quadratic term in the action becomes equivalent to that
of the δCðφÞ mentioned in Eq. (2)

δCðφÞ ¼
Y
τ

δðφðyðτÞÞÞ: ð6Þ

It is rather convenient to use an auxiliary field ξðτÞ, in
order to have an alternative representation for the functional
above, where φ may be integrated out in a simpler fashion.
Indeed,

ZλðCÞ ¼
Z

DφDξe−
1
2

R
x
ð∂μφ∂μφþm2φ2Þþi

R
x
JCφ− 1

2λ

R
τ

ffiffiffiffiffiffi
gðτÞ

p
½ξðτÞ�2 ;

ð7Þ
1A Wick rotation back to real time will be performed after-

wards when dealing with the calculation of its imaginary part.
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where we have dropped a factor corresponding to the
integration of ξ in the absence of sources, since it gives rise
to a divergence proportional to the mirror’s mass. Also, we
defined

JCðxÞ≡
Z
τ

ffiffiffiffiffiffiffiffi
gðτÞ

p
ξðτÞδðx − yðτÞÞ: ð8Þ

Integrating out φ, we see that

ZλðCÞ ¼ Z0

Z
Dξe−

1
2

R
τ;τ0 ξðτÞKðτ;τ0Þξðτ0Þ: ð9Þ

with a kernel K which may be rendered as follows:

Kðτ; τ0Þ ¼
ffiffiffiffiffiffiffiffi
gðτÞ

p �
δðsðτÞ − sðτ0ÞÞ

λ

þ hyðτÞjð−∂2 þm2Þ−1jyðτ0Þi
� ffiffiffiffiffiffiffiffiffiffi

gðτ0Þ
p

; ð10Þ

where sðτÞ denotes the Euclidean version of the proper
time, namely, the arc length, and we have used a bra-ket
notation for the kernel of an operator.
Then, integration of the auxiliary field yields

ZλðCÞ ¼ Z0ðdet KÞ−1=2; ð11Þ

and finally

ΓλðCÞ ¼
1

2
Tr log K: ð12Þ

We proceed in the next section to perform a perturbative
expansion of the effective action in powers of the departure
of the particle as measured with respect to a static situation.

III. SMALL-DEPARTURE EXPANSION
FOR THE MASSLESS FIELD

We consider a worldline C parametrized with the “Lab”
time τ≡ t≡ x0. Therefore, ðyμÞ ¼ ðyμðtÞÞ ¼ ðt; ηiðtÞÞ
(i ¼ 1;…; d), and we assume that ηiðtÞ, the departure from
a static situation, ðt; 0Þ, is small. By an adequate choice of
the spatial origin, we can always assume that the average
position of the particle is 0; thus:

R
t ηiðtÞ ¼ 0. Besides, we

deal with nonrelativistic motions, so that the
ffiffiffi
g

p
factors will

be replaced by 1.
We proceed to perform an expansion in powers of ηiðtÞ.

Using an index to denote, in a given object, the order in ηi
in that expansion, we shall have

ΓλðCÞ ¼ Γð0Þ
λ ðCÞ þ Γð1Þ

λ ðCÞ þ Γð2Þ
λ ðCÞ þ… ð13Þ

where the explicit form of the first few terms is

Γð0Þ
λ ðCÞ ¼ 1

2
Tr logKð0Þ;

Γð1Þ
λ ðCÞ ¼ 1

2
Tr½ðKð0ÞÞ−1Kð1Þ�;

Γð2Þ
λ ðCÞ ¼ 1

2
Tr½ðKð0ÞÞ−1Kð2Þ�

−
1

4
Tr½ðKð0ÞÞ−1Kð1ÞðKð0ÞÞ−1Kð1Þ�: ð14Þ

It goes without saying that the Γð0Þ
λ ðCÞ, independent of

the particle’s motion, may be safely discarded, and we shall
do so (it only contributes a constant to the static vacuum
energy).
To evaluate the remaining terms, we need to consider the

kernels KðiÞ, i ¼ 0, 1, 2. We see that

Kð0Þ
λ ðt; t0Þ ¼ 1

λ
δðt − t0Þ þ ht; 0jð−∂2Þ−1jt0; 0i

¼
Z

dω
2π

eiωðt−t0ÞK̃ð0Þ
λ ðωÞ ð15Þ

where

K̃ð0Þ
λ ðωÞ ¼ 1

λ
þ IðωÞ; ð16Þ

where

IðωÞ ¼
Z

ddk
ð2πÞd

1

k2 þ ω2
ð17Þ

(we have used ω to denote the k0 component of the
momentum).
It is rather straightforward to see that Kð1Þ

λ vanishes

Kð1Þ
λ ðt; t0Þ ¼ i

Z
dω
2π

eiωðt−t0Þ

×
Z

ddk
ð2πÞd

1

k2 þ ω2
kjðηjðtÞ − ηjðt0ÞÞ ¼ 0:

ð18Þ

Regarding Kð2Þ
λ , we obtain

Kð2Þ
λ ðt; t0Þ ¼ −

1

2

Z
dω
2π

eiωðt−t0Þ
Z

ddk
ð2πÞd

kikj
k2 þ ω2

× ðηiðtÞ − ηiðt0ÞÞðηjðtÞ − ηjðt0ÞÞ: ð19Þ

Or,

Kð2Þ
λ ðt; t0Þ ¼ −

1

2d

Z
dω
2π

eiωðt−t0Þ
Z

ddk
ð2πÞd

k2

k2 þ ω2

× ðηiðtÞ − ηiðt0ÞÞ2: ð20Þ
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We see that

Kð2Þ
λ ðt; t0Þ ¼ 1

2d

Z
dω
2π

eiωðt−t0Þω2IðωÞðηiðtÞ − ηiðt0ÞÞ2

¼ 1

2d
½ðηiðtÞÞ2 þ ðηiðt0ÞÞ2�

Z
dω
2π

eiωðt−t0Þω2IðωÞ

−
1

d
ηiðtÞηiðt0Þ

Z
dω
2π

eiωðt−t0Þω2IðωÞ: ð21Þ

It is evident that the first-order term Γð1Þ
λ vanishes. Let us

then calculate Γð2Þ
λ , the only surviving contribution:

Γð2Þ
λ ¼ 1

2
TrðΔKð2Þ

λ Þ ð22Þ

with Δ≡ ðKð0Þ
λ Þ−1. Then

Γð2Þ
λ ¼ 1

2

Z
t;t0

Δðt; t0ÞKð2Þ
λ ðt0; tÞ

¼
Z

dω
2π

½K̃ð0Þ
λ ðωÞ�−1eiωðt−t0ÞKð2Þ

λ ðt0; tÞ

¼ 1

d

Z
t
ðηiðtÞÞ2

Z
dω
2π

½K̃ð0Þ
λ ðωÞ�−1ω2IðωÞ

þ 1

2

Z
dω
2π

fðωÞjη̃iðωÞj2 ð23Þ

where η̃i is the Fourier transform of ηi, and

fðωÞ ¼ −
1

d

Z
dν
2π

½K̃ð0Þ
λ ðνþ ωÞ�−1ν2IðνÞ: ð24Þ

Note that the first term in the second line of (23) is a
renormalization in the mirror’s mass; we shall focus in what
follows on the properties of the second one. The treatment
of such a term differs depending on the number d of spatial
dimensions. Indeed, we see that f depends on IðωÞ, both
explicitly and also through K̃ð0Þ

λ , and IðωÞ diverges, except
for d ¼ 1. We note that the very same divergence appears
when considering the δ-function potential in d > 1. This
requires one to renormalize the coupling λ, something
which we will implement here as well.
One can also see that, sinceKð1Þ vanishes, the expression

for the fourth-order term simplifies to

Γð4Þ
λ ðCÞ ¼ 1

2
Tr½ðKð0ÞÞ−1Kð4Þ�

−
1

4
Tr½ðKð0ÞÞ−1Kð2ÞðKð0ÞÞ−1Kð2Þ�: ð25Þ

A. d = 1

The d ¼ 1 case has been previously studied [3]. In this
case, no renormalization of λ is required, since the integral
IðωÞ is convergent. Indeed,

½IðωÞ�jd¼1 ¼
1

2jωj : ð26Þ

The ν integral in the expression for f can then be explicitly
evaluated, the result being

fðωÞ ¼ −
λ2

8π

�
2jωj − λ

�
1þ 2

λ
jωj

�
ln

�
1þ 2

λ
jωj

��
:

ð27Þ

To obtain this result, the zero frequency contribution had to
be subtracted. For details, see Sec. II A. of Ref. [3]. A large-
λ expansion of the previous expression yields

fðωÞ ¼ λ

4π
ω2 −

1

6π
jωj3 þOðλ−1Þ; ð28Þ

where one observes the different nature of the terms; the
second one is the well-known Dirichlet result, and the first
one amounts to a renormalization of the kinetic energy of
the particle.

B. d = 3

In three spatial dimensions, we see that

½IðωÞ�d¼3 ¼
Λ
2π2

−
jωj
4π

; ð29Þ

where Λ is a frequency cutoff. Inserting this into K̃ð0Þ
λ , we

now obtain instead

K̃ð0Þ
λ ðωÞ ¼ 1

λr
−
jωj
4π

; ð30Þ

where

1

λr
¼ 1

λ
þ Λ
2π2

: ð31Þ

Let us evaluate the kernel fðωÞ for d ¼ 3, for the case
λr → ∞. We see that, after dropping divergences propor-
tional to the mass and kinetic energy of the mirror,

fDðωÞ≡ ½fðωÞ�λr→∞ ¼ −
1

3

Z
dν
2π

jνj3
jνþ ωj : ð32Þ

The last integral may be obtained as

fDðωÞ ¼ fðω;−3=2; 1=2Þ;

fðω; α1; α2Þ� ¼ −
1

3

Z
dν
2π

1

jν2jα1 ½ðνþ ωÞ2�α2 ; ð33Þ

where, after a standard calculation, we find
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fðω; α1; α2Þ�

¼ −
Γðα1 þ α2 − 1=2Þ½Γð3=2 − α1 − α2Þ�2
3ð4πÞ1=2Γðα1ÞΓðα2ÞΓð3 − 2α1 − 2α2Þ

jωj1−2ðα1þα2Þ:

ð34Þ

Thus,

fDðωÞ ¼ −
1

256
jωj3: ð35Þ

We can also calculate explicitly the subleading terms. We
have found that all the terms involving even powers of the
frequency ω, and therefore not contributing to the dis-
sipative effects (imaginary part of the analytically contin-
ued Γ), are divergent. The terms which are odd in jωj,
including the λr → ∞ one, are finite:

fðωÞ ¼ −
1

256
jωj3 þ π2

λ2r
jωj − 64π4

3λ4r
jωj−1 þO

�
1

λ6r

�
: ð36Þ

Therefore, performing the rotation back to real time,

Im½Γð2Þ
λ � ¼ 1

2

Z
dω
2π

jη̃iðωÞj2

×

�
1

256
jωj3 − π2

λ2r
jωj þ 64π4

3λ4r
jωj−1 −…

�
: ð37Þ

IV. THE d = 2 EFFECTIVE ACTION AND s-SPACE
RENORMALIZATION

A. m = 0

In d ¼ 2, we note that the integral in IðωÞ is logarithmi-
cally divergent. Introducing an UV cutoff Λ, we see that,
for large values of Λ,

½IðωÞ�d¼2 ¼
1

2π
log

				Λω
				: ð38Þ

Following the usual treatment of the δ-function potential,
we introduce a renormalization scale μ, and rewrite

½IðωÞ�d¼2 ¼
1

2π
log

				Λμ
				 − 1

2π
log

				ωμ
				: ð39Þ

Inserting this into K̃ð0Þ
λ , we see that

K̃ð0Þ
λ ðωÞ ¼ 1

λr
þ IμðωÞ; ð40Þ

where we have introduced the renormalized coupling
constant

1

λr
¼ 1

λ
þ 1

2π
log

				Λμ
				; ð41Þ

and the scale-dependent function

IμðωÞ ¼ −
1

2π
log

				ωμ
				: ð42Þ

Note that IðωÞ also appears in the denominator of (24);
using (39), one sees that

fðωÞ ¼ −
1

4π
log

				Λμ
				
�Z

dν
2π

½K̃ð0Þ
λ ðνÞ�−1ν2

þ ω2

Z
dν
2π

½K̃ð0Þ
λ ðνÞ�−1

�
þ fμðωÞ; ð43Þ

where the first two terms amount to renormalizations of the
mass and kinectic energy of the mirror, while

fμðωÞ ¼ −
1

2

Z
dν
2π

�
1

λr
þ Iμðνþ ωÞ

�
−1
ν2IμðνÞ; ð44Þ

which does not involve divergent objects in its integrand.
Let us now evaluate the previous integral, which may be

rendered in the following fashion:

fμðωÞ ¼ −
1

2

Z þ∞

−∞

dν
2π

log j νμ j
log j νþω

μ e−
2π
λr j
ν2; ð45Þ

where we have indicated the range of integration explicitly.
To perform the integral, we first perform a shift in the

integration variable, and symmetrize it explicitly with
respect to ν. Then we obtain the equivalent expression:

fμðωÞ ¼ −
1

4π

Z
∞

0

dν

"
log j νþω

μ j
log j νμ e−

2π
λr j
ðνþ ωÞ2

þ
log j ν−ωμ j
log j νμ e−

2π
λr j
ðν − ωÞ2

#
: ð46Þ

The last integral is UV divergent; to cope with those
divergences, we subtract from the integrand its Taylor
expansion around ω ¼ 0, up to the second order. This
procedure does not erase information related to dissipation,
as the subtracted terms give rise to a renormalization of the
kinetic term and the of the particle. This leads (after some
algebra) to the subtracted integral fs:

fsðωÞ ¼ −
1

4π

Z
∞

0

dν

log j νμ e−
2π
λr j

�
log

				1 −
�
ω

ν

�
2
				ðν2 þ ω2Þ

þ 2 log

				 νþ ω

ν − ω

				νω − 3ω2

�
: ð47Þ

The previous integral is UV convergent. Performing a
rescaling in the integration variable,
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fsðωÞ ¼ jωj3ψ
�				ωμ

				e−2π
λr

�
; ð48Þ

where

ψðyÞ ¼ −
1

4π

Z
∞

0

dx
log jxyj

�
ðx2 þ 1Þ log

				1 − 1

x2

				
þ 2x log

				 xþ 1

x − 1

				 − 3

�
: ð49Þ

ψðyÞ may be evaluated numerically, and it turns out to be
finite and smooth for every y > 0, as can be seen in Figs. 1
and 2, which were generated with Mathematica.
As usual, the choice of the subtraction point is para-

metrized by the arbitrary mass scale μ which has appeared
in the problem. Upon substituting fðωÞ in (23), we see that,
for a given μ and λr, there will be a wide range of
frequencies receiving a negative contribution to the effec-
tive action from this term. More specifically, departures of

the mirror with frequencies ω such that ψðyÞ is negative
will be energetically favored by this term. We have thus
succeeded in renormalizing the codimension 2 case in
d ¼ 2. Since d ¼ 2 exhibits interesting features, let us now
consider, for the sake of completeness, also a massive field
with mass m.
In what follows, we shall consider the arc length (s) of

the curve, and introduce a regularization in s-parameter
space. Our starting point is Eq. (12),

ΓλðCÞ ¼
1

2
Tr log ð1̂þ λHCÞ þ const; ð50Þ

where the kernel of the operator HC, obtained from
Eq. (10) as

HCðs; s0Þ ¼ hyðsÞjð−∂2 þm2Þ−1jyðs0Þi ¼ 1

4π

e−mjyðsÞ−yðs0Þj

jyðsÞ− yðs0Þj ;

ð51Þ

FIG. 1. (a) ψðyÞ as a function of y ∈ ½10−9; 104�; here we considered a logarithmic (linear) scale for the horizontal (vertical) axis.
(b) ψðyÞ as a function of y ∈ ½10−9; 10� (with linear scales).

FIG. 2. (a) Closeup of ψðyÞ in the interval y ∈ ½10−9; 1�. (b) Closeup of ψðyÞ at the first local minimum of ψðyÞ, which shows a regular
slope.
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is singular when s → s0. This object can be treated by
means of a regularization which enables the identification
of the singular part in the sense of distributions. For
example, we could use dimensional regularization
(d ¼ 2 − ϵ) and, of course, introduce a mass parameter

λ → λμϵ so as to keep λ adimensional:

HCðs; s0Þ →
1

ð2πÞ3−ϵ2
�

m
jyðsÞ − yðs0Þj

�1−ϵ
2

× K1−ϵ
2
ðmjyðsÞ − yðs0ÞjÞ: ð52Þ

Another possibility is to consider the regularized quantity

HCðs; s0Þ → Hϵ
Cðs; s0Þ ¼ e−mjyðsÞ−yðs0ÞjI ϵ

Cðs; s0Þ; ð53Þ

Iϵ
Cðs; s0Þ ¼

1

4π

μϵ

jyðsÞ − yðs0Þj1−ϵ : ð54Þ

In order to simplify the (s-independent) finite part, which
will be absorbed in the renormalized coupling constant, we
shall adopt the second procedure. It is easy to see that in the
limit m → 0 this coincides with the usual dimensional
regularization.

1. Regularization in s-space

We can initially rewrite

Hϵ
C ¼ Dϵ þHϵ

l ; Dϵðs; s0Þ ¼ Hϵ
C −Hϵ

l ð55Þ

whereHϵ
l is the contribution of a line. In fact, the regulator

can be removed in Dϵ, as D ¼ HC −Hl is regular when
s → s0. To see this, we can expand yðs0Þ around s:

yðs0Þ − yðsÞ ¼ y0ðsÞðs0 − sÞ þ y00ðsÞ
2

ðs0 − sÞ2

þ y000ðsÞ
3!

ðs0 − sÞ3 þ…; ð56Þ

and use that for the arc-length parameter it is verified
½eðsÞ ¼ y0ðsÞ�

jeðsÞj2 ¼ 1; eðsÞ · e0ðsÞ ¼ 0; eðsÞ · e00ðsÞ ¼ −je0ðsÞj2:
ð57Þ

In other words,

jyðsÞ − yðs0Þj ¼ js − s0jð1þ hðs; s0ÞÞ;

hðs; s0Þ ¼ −
_e2ðsÞ
24

ðs − s0Þ2 þ… ð58Þ

where the dots represent orders higher than ðs − s0Þ2.
Therefore,

Dðs; s0Þ ¼ 1

4π

�
e−mjyðsÞ−yðs0Þj

jyðsÞ − yðs0Þj −
e−mjs−s0j

js − s0j
�

ð59Þ

is manifestly regular when s approaches s0. In particular

Dðs; sÞ ¼ lim
s→s0

Dðs; s0Þ ¼ 0: ð60Þ

Now, let us analyze

Hϵ
l ðs; s0Þ ¼ e−mjs−s0jIϵ

l ðs; s0Þ; I ϵ
l ðs; s0Þ ¼

1

4π

μϵ

js − s0j1−ϵ ;

ð61Þ

which is the product of a regular factor times a distribution
with singularities. It is well known that the distribution jxjα
has a simple pole at α ¼ −1 whose residue is 2δðxÞ [16].
Then, defining the dimensionless variable x≡ μðs − s0Þ,
subtracting and adding the polar part of Iϵ

l ðs; s0Þ, and then
multiplying by the regular factor e−mjs−s0j, we get

Hϵ
l ðs; s0Þ ¼ Rϵðs; s0Þ þ 1

2πϵ
δðs − s0Þ;

Rϵðs; s0Þ ¼ Hϵ
l ðs; s0Þ −

1

2πϵ
δðs − s0Þ: ð62Þ

We can check that Rϵðs; s0Þ is regular when ϵ → 0 by acting
on a test functionZ þ∞

−∞
ds0Rϵðs; s0Þfðs0Þ

¼
Z
js−s0j≤1

μ

ds0
1

4π

μϵ

js − s0j1−ϵ ðe
−mjs−s0jfðs0Þ − fðsÞÞ

þ
Z
js−s0j≥1

μ

ds0
1

4π

μϵ

js − s0j1−ϵ e
−mjs−s0jfðs0Þ: ð63Þ

Indeed, this is well defined in the limit ϵ → 0. Then,
introducing the renormalized coupling constant λr,

1

λr
¼ 1

λ
þ 1

2πϵ
; ð64Þ

the contribution to the effective action is obtained from the
ϵ → 0 limit of

ΓλðCÞ ¼
1

2
Tr log

�
1

λr
þDþ Rϵ

�
; ð65Þ

up to an irrelevant constant.

2. The weak λr limit

We may perform an expansion for small λr:

ΓλðCÞ ¼ δΓð1Þ
λ ðCÞ þ δΓð2Þ

λ ðCÞ þ…: ð66Þ
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The first and second order contributions read, respectively,

δΓð1Þ
λ ðCÞ ¼ λr

2

Z
dsDðs; sÞ þ λr

2

Z
dsRϵðs; sÞ; ð67Þ

δΓð2Þ
λ ðCÞ ¼ −

λ2r
4

Z
dsds0ðD2ðs; s0Þ

þ 2Dðs; s0ÞRϵðs0; sÞ þ Rϵ2ðs; s0ÞÞ: ð68Þ
Because of Eq. (60), the first term in Eq. (67) vanishes,
while the second term, in spite of the regularization, is still
an ill-defined divergent quantity. The same happens with
the R2 contribution in Eq. (68). However, any improved
regularization that keeps the natural dependence of R in
s − s0, which represents the translation symmetry of the
contribution along the line, will give a divergence propor-
tional to the length of the curve

R
ds ¼ L → ∞. This is

associated with a renormalization of the string tension.
In the ϵ → 0 limit, the cross term in Eq. (68), integrated
over s0, gives [cf. Eq. (63)]

−
λ2r
2

Z
dsds0Rðs; s0ÞDðs; s0Þ

¼ −
λ2r
2

Z
∞

−∞
ds

Z
js−s0j≥1

μ

ds0
1

4π

e−mjs−s0j

js − s0j Dðs0; sÞ

−
λ2r
2

Z
∞

−∞
ds

Z
js−s0j≤1

μ

ds0
1

4π

1

js − s0j
× ðe−mjs−s0jDðs0; sÞ −Dðs; sÞÞ: ð69Þ

This expression is, by construction, regular. Since
Dðs; sÞ ¼ 0, this can be written in a simpler form:

−
λ2r
2

Z
dsds0

1

4π

e−mjs−s0jDðs; s0Þ
js − s0j : ð70Þ

Note thatDðs; s0Þ ≥ 0, so that this is a negative contribution
to the effective action, as well as that originated from the
D2 term.

3. The small curvature limit

An interesting physical situation to analyze is when the
acceleration of the particle is small, so that, due to the mass
gap, it does not radiate. To obtain the lowest order contri-
bution of acceleration, it will be useful to perform an
expansion of ΓλðCÞ in powers of D, which tends to zero
when C → l. For this objective, we can rewrite

ΓλðCÞ ¼
1

2
Tr log ðλ−1r þRϵÞ þ 1

2
Tr log ð1þ ðλ−1r þRϵÞ−1DÞ;

ΓλðCÞ ¼ ΓλðlÞ þ
1

2
Trððλ−1r þRϵÞ−1DÞ

−
1

4
Trððλ−1r þRϵÞ−1Dðλ−1r þRϵÞ−1DÞ þ…:

Let us analyze the second term,

1

2
Tr

��
1

λr
þ Rϵ

�
−1
D

�
¼ 1

2

Z
ds

Z
ds0Qðs − s0ÞDðs; s0Þ

ð71Þ

where Qðs − s0Þ is the kernel of the operator ðλ−1r þ RϵÞ−1.
The term proportional to _e2ðsÞ can be obtained by using
Eq. (58)

e−mjyðsÞ−yðs0Þj

jyðsÞ − yðs0Þj ¼
e−mjs−s0j

js − s0j
e

m
24
_e2js−s0j3

ð1 − 1
24
_e2js − s0j2Þ þ…

¼ e−mjs−s0j

js − s0j þ _e2ðsÞPðs − s0Þ þ…;

Pðs − s0Þ ¼ 1

24
ðjs − s0j þmjs − s0j2Þe−mjs−s0j;

Dðs; s0Þ ¼ _e2ðsÞ
4π

Pðs − s0Þ; ð72Þ

Trððλ−1r þ RϵÞ−1DÞ ¼
Z

ds
_e2ðsÞ
4π

Z
ds0Qðs − s0ÞPðs − s0Þ

¼
Z

ds
_e2ðsÞ
4π

Z
duQðuÞPðuÞ: ð73Þ

Now, if the kernel of the operator Rϵ is Rϵðs − s0Þ, then, in
terms of the Fourier transforms

PðuÞ ¼
Z

dω
2π

P̃ðζÞeiζu; RϵðuÞ ¼
Z

dζ
2π

R̃ϵðζÞeiζu; ð74Þ

we have

Z
duQðuÞPðuÞ ¼

Z
dζ
2π

P̃ðζÞ
1
λr
þ R̃ϵðζÞ : ð75Þ

PðωÞ is found to be

Z þ∞

−∞
du

1

24
ðjuj þmjuj2Þe−mjuje−iζu ¼ 3m4 − 6m2ζ2 − ζ4

12ðm2 þ ζ2Þ3 :

ð76Þ

The explicit form of Rϵðs − s0Þ is obtained from
Eqs. (61), (62)

Rϵðs − s0Þ ¼ μϵ

4π

e−mjs−s0j

js − s0j1−ϵ −
1

2πϵ
δðs − s0Þ: ð77Þ

Performing the Fourier transform, using that for ϵ > 0 [16]

F ðe−mjxjjxjϵ−1Þ ¼ F ðe−mxxϵ−1þ Þ þ F ðemxxϵ−1− Þ
¼ ieiðϵ−1Þπ2ΓðϵÞð−ζ þ imÞ−ϵ þ c:c:; ð78Þ

we arrive at
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R̃ϵðζÞ ¼ F ðRϵÞðζÞ ¼ −
γ

2π
−

1

4π
log

ðζ2 þm2Þ
μ2

þOðϵÞ:

ð79Þ

Here, we can safely take the limit ϵ → 0 to conclude

lim
ϵ→0þ

R̃ϵðζÞ ¼ −
γ

2π
−

1

4π
log

ðζ2 þm2Þ
μ2

: ð80Þ

Finally, to get rid of γ, we redefine μ → μe−γ , which
implies

Z
duQðuÞPðuÞ ¼ 1

6

Z þ∞

−∞
dζ

6m2ζ2 þ ζ4 − 3m4

ðm2 þ ζ2Þ3ð− 4π
λr
þ log ζ2þm2

μ2
Þ
:

ð81Þ

Then, to lowest order, we find

ΓλðCÞ − ΓλðlÞ ¼ χðm; μÞ
Z

ds_e2ðsÞ; ð82Þ

χðm; μÞ ¼ 1

96π

Z þ∞

−∞
dζ

6m2ζ2 þ ζ4 − 3m4

ðm2 þ ζ2Þ3 log

 ffiffiffiffiffiffiffiffiffiffi

ζ2þm2
p

μ e−
2π
λr

� ;

ð83Þ

where ΓλðlÞ is the effective action of a straight line, and
χðm; μÞ is a constant that depends on the mass and the

arbitrary scale μ. For m ≫ μe
2π
λr , χ is finite and negative. In

Fig. 3, we show the dependence of the χ coefficient with m
in this regime.

V. CONCLUSIONS

In this work we have defined and studied quantum
dissipation in a moving DCE setting involving δ inter-
actions with codimension larger than one. Specifically,
we studied a real scalar field in dþ 1 dimensions (d ¼ 2,
3) coupled to an imperfect one dimensional mirror. We
found that the singular nature of the problem requires a
renormalization of the coupling (λ) between the field and
the mirror. In particular, for d ¼ 3, there is a finite scale-
independent imaginary part for the effective action. In the
Dirichlet limit, similarly to the well-known d ¼ 1 result,
this imaginary part contains a jωj3 dependence, which is
what one expects on dimensional grounds, assuming no
renormalization scale dependence is generated.
The case d ¼ 2, where λ is dimensionless, is special, for

the coupling not only gets renormalized but also acquires a
dependence on a mass scale μ. This phenomenon parallels
that observed when dealing with the δ potential in quantum
mechanics for a planar system [8]. In this case, we have
shown how the mass scale μ is generated for the massless
field, and how it intervenes in the construction of the
renormalized effective action, in the small-departure
approximation. We have also found that, for a massive
field in d ¼ 2, apart from inducing renormalizations for the
kinetic energy and the mass of the mirror, the Euclidean
effective action is finite and negative for small λr. Finally,
we considered a massive field coupled to an imperfect
mirror with small acceleration, where no imaginary part is
expected, and found that the effective action is lower than
that of a static mirror.
It would be very interesting to extend this analysis to

other cases with codimension 2 that arise when considering
quantum fluctuations around vortexlike defects in three
and four Euclidean dimensions. In particular, it would be
important to study the singular problem associated with
curved thin center vortices in Yang-Mills theories, and
obtain quantum properties such as stiffness from a funda-
mental point of view.
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FIG. 3. χ as a function of m, for μ ¼ 1 and λr → ∞.
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