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We consider anisotropic cosmologies in a particular shift-symmetric Horndeski theory containing the
Gμν∂μϕ∂νϕ coupling, where Gμν is the Einstein tensor. This theory admits stable in the future self-
accelerating cosmologies whose tensor perturbations propagate with the velocity very close to the speed of
light such that the theory agrees with the gravity wave observations. Surprisingly, we find that the
anisotropies within the Bianchi I homogeneous spacetime model are screened at early time by the scalar
charge, whereas at late times they are damped in the usual way. Therefore, contrary to what one would
normally expect, the early state of the universe in the theory cannot be anisotropic and (locally)
homogeneous in the absence of spatial curvature. The early universe cannot be isotropic either, because it
should then be unstable with respect to inhomogeneous perturbations. As a result, the early universe should
be inhomogeneous. At the same time, we find that in the spatially curved Bianchi IX case the anisotropies
can be strong at early times even in the presence of a scalar charge.
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I. INTRODUCTION

It is usually assumed that the state of the universe close to
the initial singularity should be strongly anisotropic [1,2,3].
This belief is based on the fact that spatial anisotropies
produce in the Einstein equations terms proportional to the
inverse square of the volume, 1=V2, which become
dominant when one goes backwards in time. In other
words, anisotropic perturbations grow to the past. When the
universe expands, the anisotropy terms decrease faster than
the contribution of other forms of energy subject to the
dominant energy condition and the universe rapidly
approaches a locally isotropic state during inflation [4,5]
(without the inflationary stage, this process may require a
longtime or may not happen at all due to the possibility of a
recollapse). Therefore, thinking about the early history of
the universe, one could expect the isotropic phase of
inflation to be generically preceded by an anisotropic

phase. Although this argument seems quite robust, we
shall present in what follows a peculiar cosmology whose
anisotropies are damped at early times, hence the existence
of a primary anisotropic phase is not as universal as one
might think.
The theory we wish to discuss is the particular subset of

the Horndeski theory for a gravitating scalar field [6]
defined by the action (2.1) below. Its homogeneous and
isotropic cosmologies were studied in [7,8], but later it was
discovered that theories of this type should be disfavored
because they predict the speed of gravity waves (GW)
different from the speed of light [9–11], whereas the recent
GW170817 event shows that the GW speed is equal to the
speed of light with very high precision [12]. However, this
constraint applies rather to some solutions of the theory
than to the theory itself. The theory admits stable in the
future self-accelerating cosmologies whose tensor pertur-
bations propagate with the velocity very close to the speed
of light, the relative difference being proportional to 1=V.
Therefore, the theory can perfectly agree with the GW
observation of [12] at late times, and we can extrapolate it
to the early times as well since no observational data about
the GW speed at redshifts z > 0.3 are currently available.
We shall therefore study anisotropic cosmologies

of the simplest Bianchi I homogeneous spacetime type
within this Horndeski model. Surprisingly, we find that the
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anisotropies are screened at early times by the scalar
charge, hence the standard argument in favor of strong
anisotropies at early times does not always apply. However,
the universe cannot be isotropic in this limit either, since it
would then be unstable with respect to inhomogeneous
perturbations. This suggests that the early universe should
be inhomogeneous. At the same time, our numerics suggest
that the universe can be strongly anisotropic close to the
initial singularity within the Bianchi IX class, therefore the
anisotropy screening is not generic for all Bianchi models.

II. ISOTROPIC CASE

To begin with, we summarize the essential properties of
the isotropic solutions, some of which have never been
discussed before. We consider the theory

S ¼ 1

2

Z
ðμR − ðαGμν þ εgμνÞ∇μϕ∇νϕ − 2ΛÞ ffiffiffiffiffiffi

−g
p

d4x

≡ 1

2

Z
Ld4x; ð2:1Þ

where μ ¼ M2
Pl is the Planck mass squared, the parameter α

has the dimension of length squared, ½α� ¼ ½L2� ¼ ½M−2�
(we assume c ¼ ℏ ¼ 1), the parameter ε is dimensionless,
while Λ is related to the cosmological constant Λ via
Λ ¼ μΛ, one has ½Λ� ¼ ½L−4�. We consider the theory (2.1)
as a classical theory of gravity valid for curvatures much
less than the Planck curvature. No lower energy or
curvature cutoff is required for its self-consistency, in
particular for the absence of ghosts. Let us choose the
spacetime metric as

ds2 ¼ −dt2 þ a2ðtÞ½dx21 þ dx22 þ dx23�; ð2:2Þ

the case of more general homogeneous and isotropic
metrics, including also an extra matter, was considered
in [8]. Assuming the scalar field ϕ to depend only on time,
the Friedmann equation for the Hubble parameter H ¼ _a=a
is (see [8] for the explicit form of all equations in the
theory)

3μH2 ¼ 1

2
ðε − 9αH2Þ _ϕ2 þ Λ: ð2:3Þ

The equation for the scalar ϕ can be integrated once to give

ð3αH2 − εÞ _ϕ ¼ C
a3
; ð2:4Þ

where the integration constants C is the scalar charge
associated with the invariance of the action under shifts
ϕ → ϕþ ϕ0. The notion of a scalar charge usually appears
in the case of a complex scalar field, but we shall use it here
to denote the amount of the real scalar field ϕ according to
this definition.

If C ¼ 0 then one has either

H2 ¼ Λ
3μ

; _ϕ ¼ 0; ð2:5Þ

or

H2 ¼ ε

3α
; _ϕ2 ¼ Λ

ε
−
μ

α
; ð2:6Þ

in both cases the metric is pure de Sitter (all exact de Sitter
solutions with _ϕ ≠ 0 in the generic scalar-tensor theory
without a derivative coupling of the scalar field to gravity
can be found in [13]).
If the charge C does not vanish, then its effect should

become negligible for a → ∞, as seen from (2.4), hence the
solutions should approach either (2.5) or (2.6) at late times
(since H2 and _ϕ2 should be positive, this imposes restric-
tions on values of the theory parameters.) If C ≠ 0 then _ϕ
can be algebraically expressed in terms of a, H. Using the
values of the Hubble parameter and scale factor at present,
H0, a0, we introduce dimensionless variables y¼ðH=H0Þ2,
a ¼ a=a0 and ψ ¼ ð3αH2

0a
3
0=CÞ _ϕ, and also dimensionless

parameters

Ω0 ¼
Λ

3μH2
0

; Ω6 ¼
C2

18αa60H
4
0μ

; ζ¼ ε

3αH2
0

ð2:7Þ

(notice that the roman symbol a denotes the dimensionful
scale factor, while a stands for its dimensionless version).
Equations (2.3), (2.4) then assume the form

y ¼ Ω0 þ
Ω6½ζ − 3y�
a6½ζ − y�2 ; ψ ¼ 1

a3ðy − ζÞ ; ð2:8Þ

and since they should hold if y ¼ a ¼ 1, it follows that

Ω6 ¼ ðζ − 1Þ2 ð1 −Ω0Þ
ζ − 3

: ð2:9Þ

These equations determine yðaÞ and ψðaÞ, which determine
aðtÞ and ϕðtÞ.
Before considering solutions of the equations, let us

study conditions for their stability. Considering small
fluctuations gμν → gμν þ δgμν, ϕ → ϕþ δϕ, the metric
perturbation can be decomposed into the scalar, vector,
and tensor parts in the standard way [14], while δϕ can be
gauged away using the residual freedom of infinitesimal
reparametrizations of the time coordinate, hence δϕ ¼ 0.
The second variation of the action then splits into three
independent parts describing the two tensor polarizations
and the scalar mode (the vector sector contains no dynam-
ics). Each of these parts has the structure
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I ¼ M2
Pl

2

Z
K

�
_X2 − c2s

P2

a2
X2

�
a3d4x; ð2:10Þ

where P is the spatial momentum. In the case of tensor
perturbations, X is the tensor mode amplitude, while the
kinetic term and the sound speed squared are

KT ¼ 1þ Ω6ψ
2; c2T ¼ 1 −Ω6ψ

2

1þ Ω6ψ
2
; ð2:11Þ

with ψ given by (2.8). In the scalar sector one has X ¼
δg00 while

KS ¼
½Ω6 þ a6ðy − ζÞ2�½Ω6ð3yþ ζÞ − a6ðy − ζÞ3�

a6yðy − ζÞ2½3Ω6 þ a6ðy − ζÞ2Þ�2 ;

c2S ¼
½3Ω6 þ a6ðy − ζÞ2�f½a6ðy − ζÞ3 þ ðΩ6=3Þð13y − 3ζÞ�2 − ð52=9ÞΩ2

6y
2g

½Ω6 þ a6ðy − ζÞ2�½Ω6ð3yþ ζÞ − a6ðy − ζÞ3�2 : ð2:12Þ

The functions KS, KT , c2S, c
2
T should be positive for the

background solutions to be stable.
We can now analyze solutions of (2.8), and the simplest

way to get them is to transform the first equation in (2.8) to

a6 ¼ Ω6ðζ − 3yÞ
ðy − ζÞ2ðy − Ω0Þ

: ð2:13Þ

Therefore, if a → 0 then y → ζ=3, while if a → ∞ then
either y → Ω0 or y → ζ. In general, this defines three
different solutions yðaÞ, but only one of them extends to the
whole interval a ∈ ½0;∞Þ, the two others being unphysical
[8]. One has to have ζ ∼ ε=α > 0, since otherwise yðaÞ is
not positive definite, yielding solutions with ghost [8].
Therefore, the parameters ε and α should have the
same sign. Let us assume first that α > 0 and ε > 0, hence
Ω6 > 0.
It is natural to assume that 0 < Ω0 < 1. Then the

positivity of Ω6 defined by (2.9) requires that ζ > 3. In
this case there exists only one solution yðaÞ of (2.13),
which fulfills

ζ

3
← y → Ω0 as 0 ← a → ∞: ð2:14Þ

A direct verification reveals that KT > 0 and KS > 0
everywhere for this solution, hence the ghost is absent,
while at large a one has c2T > 0 and c2S > 0, hence the
solution is free in this limit also from gradient instabilities.
The profile of this solution is shown in Fig. 1.
The solution has two inflationary stages: an early

inflation driven by the scalar ϕ, with the Hubble rate
H2 ¼ H2

0y ≈H2
0ζ=3 ¼ ε=ð9αÞ≡H2

e, and a late inflation
driven by the cosmological constant, with H2 ≈H2

0Ω0 ¼
Λ=ð3μÞ ¼ Λ=3≡H2

l . Since Hl is small, to have a hier-
archy between the two inflationary scales, Hl ≪ He, one
should assume that He ∼ ε=α ∼ ζ is large, hence the
coefficient α in (2.1) should be small. At the same time,
one needs H2

e ≪ M2
Pl ¼ μ for the classical theory to apply,

hence α ≫ 1=μ≡ L2
Pl. Therefore, even though α is small, it

should be much larger than the Planck length squared.
Similarly, although ζ is large, there is an upper bound
ζ ¼ ε=ð3αH2

0Þ ≪ μ=H2
0 ≈ 10122.

One should say that, although the early inflationary stage
is regular in terms of geometry, the scalar field is singular
since one has ψ ∝ a−3 ∝ e−3Het for a → 0 and t → −∞. As
a result, this is a kind of a “fast-roll” inflation, which makes
questionable its usage for constructing viable cosmological
models with approximately flat (scalefree) spectra of initial
scalar and tensor perturbations generated by quantum-
gravitational effects. At the same time, as we shall see
shortly, the universe should become inhomogeneous at
early times, and that may change the way the spectra are
derived. However, studying these issues goes beyond the
scope of our purely classical analysis.

-1

 0

 1
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 3

 4

 5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

FIG. 1. Profile of
ffiffiffi
y

p ¼ H=H0 for Ω0 ¼ 0.7 and ζ ¼ 50. The
kinetic terms KS and KT are always positive hence the ghost is
absent. One has KT → 1 while KS ∝ 1=ðζ − Ω0ÞΩ0a6Þ at large a.
The sound speeds c2S and c2T approach unity at late times but
become negative at small a, showing gradient instabilities with
respect to inhomogeneous perturbations. The amplitude χ is the
anisotropy defined by (3.13) (assuming that B ¼ 1).
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As a → ∞ one has KT ¼ 1þOð1=a6Þ hence the GW
speed approaches the speed of light. At the same time, the
present time moment corresponds to finite values
y ¼ a ¼ 1, when

KT − 1 ¼ 1 −Ω0

ζ − 3
: ð2:15Þ

Since ζ and Ω0 determine the Hubble rates of the early and
late inflations, the ratio ζ=Ω0 should be of the order of the
early inflation energy scale divided by the late inflation
energy scale, in which case KT − 1 ∼ Ω0=ζ ∼ ðHl=HeÞ2 ≪
10−15. This agrees with the observed bound on the relative
difference between the GW velocity and the speed of
light [12].
The solution develops gradient instabilities for small a

when c2T and c2S become negative because, as seen from
(2.11) and (2.12), c2T → −1 and c2S → −1=3 as a → 0. If
ζ ≫ 1 then zeroes c2T and c2S are close to the point where
y ¼ ζ=4. Before discussing these instabilities, we shall
consider below another property of the solution—the
screening of anisotropies.
To finish this section, there are solutions with two

inflationary stages also if α < 0, ε < 0 and Ω6 < 0.
However, in this case one has 0 < ζ < 3, and since ζ
cannot be large, the difference KT − 1 is not small, hence
these solutions give a wrong value for the GW speed.

III. BIANCHI I—ANISOTROPY SCREENING

Let us consider the Bianchi I metric

ds2 ¼ −N2dt2 þ a21dx
2
1 þ a22dx

2
2 þ a23dx

2
3; ð3:1Þ

where N; ak and also ϕ are functions of t. Injecting to (2.1),
the Lagrangian is

L¼−3a3
�
2μ

N
þα _ϕ2

N3

�
H2þ

�
ϵ _ϕ2

N
−2NΛ

�
a1a2a3; ð3:2Þ

with

3a3H2 ≡ a1 _a2 _a3 þ a2 _a1 _a3 þ a3 _a1 _a2 ¼ 3a3
�
_a2

a2
− _β2þ − _β2−

�
;

ð3:3Þ

where a1 ¼ aeβþþ
ffiffi
3

p
β− , a2 ¼ aeβþ−

ffiffi
3

p
β− , a3 ¼ ae−2βþ . The

field equations can be obtained by varying Lwith respect to
N; β�;ϕ and then setting N ¼ 1. This yields

3μH2 ¼ 1

2
ðε − 9αH2Þ _ϕ2 þ Λ; ð3:4Þ

ðσa3 _β�Þ: ¼ 0; ð3:5Þ

a3ð3αH2 − εÞ _ϕ ¼ C; ð3:6Þ

with σ ¼ 2μþ α _ϕ2, where C is the scalar charge. If the
anisotropies β� vanish, these equations reduce to (2.3),
(2.4). If anisotropies do not vanish, then one has from (3.5)

_β� ¼ 2μ
B�
σa3

; ð3:7Þ

where B� are integration constants. Let us see what this
implies first in the case when the scalar charge is zero,
C ¼ 0. Then (3.6) can be solved by _ϕ ¼ 0 while (3.4) and
(3.7) yield

_a2

a2
¼ _β2þ þ _β2− þ Λ

3μ
; _β� ¼ B�

a3
: ð3:8Þ

The anisotropy terms on the right in the first equation decay
with time, hence anisotropy contribution becomes irrel-
evant and the universe rapidly approaches the isotropic de
Sitter phase (2.5). However, the anisotropy terms become
dominant at small a, when one can neglect the Λ-term and
the universe is described by the Kasner metric for which
ak ∝ tsk where the exponents pk are expressed in terms of
B� and fulfill p1 þ p2 þ p3 ¼ p2

1 þ p2
2 þ p2

3 ¼ 1. This
supports the standard view according to which anisotropies
should be important close to the initial singularity.
If C ¼ 0 then (3.6) can be solved also by setting

3αH2 − ε ¼ 0, which gives

_a2

a2
¼ _β2þ þ _β2−þ

ε

3α
; _β� ¼ 2 μεB�

ðμεþαΛÞa3 ;
_ϕ2 ¼Λ

ε
−
μ

α
:

ð3:9Þ

The solution approaches the isotropic de Sitter phase (2.6)
at late times, but at early times the anisotropies are again
dominant. However, unless if αΛ ¼ ϵμ, this solution is
unphysical because _ϕ ∼ ψ approaches at late times a
constant nonzero value, therefore, according to (2.11),
the GW velocity is not equal to the speed of light.
Assume now that the scalar charge does not vanish,

C ≠ 0. Then one obtains from (3.6)

_ϕ ¼ C
a3ð3αH2 − εÞ : ð3:10Þ

Injecting this to (3.4), setting H2 ¼ H2
0y and introducing

the same a;ψ ;Ω0;Ω6; ζ as above, one obtains exactly the
same equations as in (2.8). Their solution for yðaÞ and ψðaÞ
is the same as the one described above and shown in Fig. 1.
This time, however, it describes a Bianchi I spacetime with
the anisotropies expressed by (3.7),

_β� ¼ B�
a3ð1þΩ6ψ

2Þ ; ð3:11Þ
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and with the Hubble rate

_a2

a2
¼ _β2þ þ _β2− þH2 ¼

�
_β2þ þ _β2−
H2

þ 1

�
H2 ≡H2

0ðχ þ 1Þy:

ð3:12Þ

Here

χ ¼ B
a6ð1þΩ6ψ

2Þ2y ð3:13Þ

is the relative contribution of the anisotropies to the total
energy balance, its amplitude is B ¼ ðB2þ þ B2

−Þ=ðH0a30Þ2.
Since the universe is highly isotropic at present, when
y ¼ a ¼ 1, one should assume that B ≪ 1, but this does
not mean that isotropies have always been small.
Notice however that, according to (2.14), one has at early

times

y ≈
ζ

3
; ψ ¼ 1

a3ðy − ζÞ ∝ a−3 ⇒ a3ð1þΩ6ψ
2Þ ∝ a−3

ð3:14Þ

and hence

_β� ∝ a3 ⇒ _β2þ þ _β2− ∝ a6: ð3:15Þ

As a result, the anisotropies tend to zero for a → 0 and their
contribution to the total energy balance is ∝ a6 instead of
∝ 1=a6. Therefore, the anisotropy effect is totally negli-
gible at early times. This is true if only the scalar charge C
is nonzero, hence one can say that anisotropies are
“screened by the scalar charge.” Of course, the anisotropy
contribution is suppressed at late time as well by the factor
1=a6 in (3.12) (since ψ → 0 as a → ∞). As seen in Fig. 1,
the anisotropy χ defined by (3.13) approaches zero at early
and late times.
As there is no reason to assume the scalar charge to be

zero, it follows that the anisotropies are screened at early
times in our theory, at least in the Bianchi I case. This
means that, unlike what one would normally expect, the
state of the universe close to the singularity cannot be
anisotropic and homogeneous. The early universe cannot
be homogeneous and isotropic either, because then it would
develop at small a the gradient instability when the sound
speed squared c2 becomes negative, as seen in Fig. 1.
A gradient (not ghost) instability indicates that the universe
has a tendency to evolve to a different state. The instability
is present both in the tensor and scalar sectors and it exists
only for inhomogeneous perturbations, since the corre-
sponding potential term in the effective action (2.10)
contains the factor of P2. In fact, the same condition that
insures the anisotropy damping,Ω6ψ

2 ≫ 1, guarantees that
c2T and c2S in (2.11) and (2.12) be negative. As a result, the

early universe cannot be homogeneous and anisotropic,
neither can it remain homogeneous and isotropic, hence it
should evolve toward an inhomogeneous state.
The latter conclusion applies in fact to the whole stage of

the primary inflation. As discussed above, when moving
backward in time, the variable y grows and the gradient
instability starts at y ≈ ζ=4, while the inflation starts only at
y ≈ ζ=3. Therefore, the primary inflation falls entirely
within the instability region, hence it should be inhomo-
geneous. The consideration of an inhomogeneous inflation
is beyond the scope of the present paper, but one may think
that the spacetime geometry could then perhaps be
described by something similar to the Gowdy metrics
[15]. One might conjecture that the homogeneous compo-
nent of the scalar charge will then be dispersed into its
small-scale inhomogeneous fluctuations, so that the total
spatially averaged value of Ω6ψ

2 does not exceed unity.
However, an additional analysis is needed to study these
issues.
One should also say that Eqs. (2.11), (2.12) describing

the perturbations have been derived for the homogeneous
and isotropic backgrounds. They can be used also in the
anisotropic Bianchi I case at early times, since the anisot-
ropies are then damped. However, at the intermediate times,
when the anisotropies are not necessarily small, one should
separately carry out the analysis of perturbations and
rederive the coefficients KT;KS; c2T; c

2
S by taking the

anisotropies into account. This would probably give a
different value of the GW speed c2T (for example, taking the
background inhomogeneities into account changes the GW
speed [16]). However, the observational constraint on the
GW speed apply only for relatively recent times, when the
anisotropies should be small again, hence one can use in
this case Eqs. (2.11), (2.12).

IV. BIANCHI IX CASE

One may wonder if the anisotropy screening is typical
only for the Bianchi I class or it occurs also for other
Bianchi types. We shall therefore analyse the Bianchi IX
class, in which case the spacetime metric is

ds2¼−N2dt2þ1

4
ða21ω1⊗ω1þ a22ω2 ⊗ω2þ a23ω3 ⊗ω3Þ;

ð4:1Þ

where ωa are the invariant forms on S3 subject to
dωa þ ϵabcωb ∧ ωc ¼ 0, while ak and the scalar ϕ depends
only on time. The Lagrangian in (3.2) generalizes to

8L ¼ 6μa3

N

�
KN2

a2
−H2

�
−
3αa3

N3
_ϕ2

�
H2 þKN2

a2

�

þ
�
ε

N
_ϕ2 − 2NΛ

�
a3; ð4:2Þ
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where H is the same as in (3.3), while the anisotropy potential is

K ¼ −
1

3
e−8βþð4e6βþcosh2ð

ffiffiffi
3

p
β−Þ − 1Þð4e6βþsinh2ð

ffiffiffi
3

p
β−Þ − 1Þ: ð4:3Þ

Varying the Lagrangian and setting N ¼ 1 gives the equations (with σ ¼ 2μþ α _ϕ2)

3μ

�
H2 þ K

a2

�
þ 3

2
α _ϕ2

�
3H2 þ K

a2

�
¼ ε

2
_ϕ2 þ Λ; ð4:4Þ

1

a2
ðσa_aÞ_¼ σ

�
1

2
H2 − _β2þ − _β2−

�
þ
�
α

2
_ϕ2 − μ

�
K
a2

−
ε

2
_ϕ2 þ Λ; ð4:5Þ

ðσa3 _β�Þ_¼ a
�
μ −

α

2
_ϕ2

� ∂K
∂β� ; ð4:6Þ

a3
�
3α

�
H2 þ K

a2

�
− ε

�
_ϕ ¼ C; ð4:7Þ

where the first equation (4.4) is actually the first integral of the remaining (4.5)–(4.7). The effect of anisotropies is encoded
in Eqs. (4.4), (4.7) only through the term K ≥ 1. Therefore, applying the same transformations as before, one obtains
instead of (2.8) the equations

y ¼ Ω0 þ
Ω2

a2
þΩ6½ζ − 3yþ Ω2=a2�

a6½ζ − yþ Ω2=a2�2
; ψ ¼ 1

a½a2ðζ − yÞ þΩ2�
: ð4:8Þ

Although they resemble Eqs. (2.8), they do not form a
closed system since they contain Ω2 ¼ −K=ðH2

0a
2
0Þ where

K is the function of the anisotropies defined by (4.3).
However, the system of equations becomes closed in the
isotropic case, when one can consistently set β� ¼ 0,
which yields K ¼ 1 and Ω2 ¼ −1=ðH2

0a
2
0Þ. The solutions

for yðaÞ then can be obtained from (4.8) by applying the
Cardano formula, and they are such that yðaÞ approaches
Ω0 as a → ∞ but vanishes at a ¼ amin > 0 and becomes
negative for a < amin [8]. These solutions describe bounc-
ing universes which shrink from infinity to the minimal size
amin when the Hubble parameter H ¼ H0

ffiffiffi
y

p
vanishes, and

then expand again [8]. Such a bouncing behavior is due to
the positive spatial curvature. These bounces exist for any
however small value of Ω0 > 0. If C ¼ 0 then Ω6 ¼ 0 and
(2.8) reduce to

y ¼ Ω0 þ
Ω2

a2
; ψ ¼ 1

ðζ −Ω0Þa3
; ð4:9Þ

and using y ¼ ð _a=aÞ2=H2
0 yields

aðtÞ ¼
ffiffiffiffiffiffiffiffi
3μ

Λa20

s
cosh

� ffiffiffiffiffi
Λ
3μ

s
t

�
: ð4:10Þ

This describes the de Sitter metric expressed in coordinates
with compact spatial sections.

These bounces can be generalized to include small
anisotropies, because expanding the equations (4.6) for
β� up to the fist order yields ðσa3 _β�Þ_¼ 0 and hence
_β� ¼ 2μB�=ðσa3Þ. Since the value of σa3 is bounded
below for a bounce, it follows that if the integration
constants B� are small, the anisotropies always remain
small and only produce a small correction to the Hubble
rate. The zero of H shifts slightly due to the anisotropies,
since one has

H2 ¼ _β2þ þ _β2− þH2
0y: ð4:11Þ

Therefore, if β� ¼ 0 then H vanishes at amin where y
vanishes, but if _β� ≠ 0 then the zero of H shifts to the
region a < amin where y < 0.
Now, if C ¼ _ϕ ¼ 0 then the equations also admit the

slightly anisotropic bounces, but they admit as well
strongly anisotropic solutions with initial singularity. In
other words, increasing the amplitude of anisotropies shifts
the bounce position more and more until it reaches a ¼ 0,
after which the solutions are no longer bounces and
show the initial curvature singularity. Equation (4.4) then
reduces to

_a2

a2
¼ _β2− þ _β2þ −

K
a2

þ Λ
3μ

; ð4:12Þ
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where the positive anisotropy terms on the right are large
enough to overcome the negative term, thereby eliminating
the bouncing behavior. The solutions are then characte-
rized by a sequence of “Kasner epochs” during which
∂K=∂β� ≈ 0 and the universe is approximately described
by the Kasner metric with a3 _β� ≡ B� ≈ const. The term
∂K=∂β� becomes important only during short moments
when B� change, after which the next Kasner epoch with
new values of B� starts [1].
One can wonder if a similar evolution near singularity is

possible also when the scalar charge C does not vanish ? It
seems at first that the answer should be negative, since the
Kasner epochs during which the solution is approximately
Bianchi I seem to be forbidden by the anisotropy screening.
To clarify the situation, we solved numerically the

system of second order equations (4.5), (4.6) together with
the equation obtained by differentiating (4.7). The first
order equation (4.4) was used to constraint the initial
values, and we checked that the constraint propagates.
We also checked that the scalar charge defined by (4.7)
remains constant during the evolution, as it should. We
chose the initial data to describe a slightly anisotropic
universe of a finite size and then integrated the equations to
the past. It turns out that if the initial anisotropy is small,
then the scale factor aðtÞ first decreases to the past, then
passes through a minimal nonzero value, and then stars
increasing. The solution is of the bounce type and the
anisotropies always remain small. However, if the initial
anisotropy is large enough, then the scale factor always
decreases to the past while the anisotropies grow. The
singularity is strongly anisotropic.

A typical solution is shown in Fig. 2. Surprisingly, it
demonstrates a sequence of Kasner epochs during which it
must approach the Bianchi I regime. This seems to contra-
dict the fact that the anisotropies should then be screened.
However, the explanation is the following. In the Bianchi I
case the anisotropies are screened because ψ ∝ a−3, which
makes large the denominator in (3.11). In the Bianchi IX
case Eq. (4.8) yields y ¼ Ω2=ð3a2Þ þOð1Þ and ψ ¼
3=ð2Ω2aÞ þOð1Þ for small a. Since Ω2 ∼K one has
ψ ∝ 1=ðKaÞ, and since K ≥ 1, it follows that ψ grows
not faster than a−1. This implies that the denominator in
(3.11) behaves as a=K2 and tends to zero, hence _β�
expressed by (3.11) are large. Therefore, the anisotropies
are not screened in the Bianchi IX case, hence their
screening is not a generic feature for all Bianchi models.
A more detailed analysis is needed to find out if the
solutions can be chaotic [1]. The stability of these solutions
with respect to inhomogeneous perturbations remains an
open issue to study.

V. CONCLUSION

We studied anisotropic cosmologies in the shift-sym-
metric, nonminimally coupled Horndeski model (2.1).
Even though this model is thought to be disfavored by
the GW observations, its homogeneous and isotropic
solution propagates tensor perturbations with the velocity
that can be insensitively close to the speed of light.
Surprisingly, it turns out that the spatial anisotropies in
this theory get damped at early times in the Bianchi I
case, instead of being amplified. Therefore, the standard
argument in favor of strong anisotropies at early times
does not always apply. However, it seems that the
anisotropy screening is not generic for all Bianchi types,
since our numerics suggest that the universe can be
strongly anisotropic close to the initial singularity within
the Bianchi IX class, where positive spatial curvature is
present. The scale factor aðtÞ and the scalar field ϕðtÞ can
also show a regular bouncing behavior in this case,
similarly to the minimally coupled scalar field in the
closed Friedmann-Lemaitre-Robertson-Walker spacetime
[17], but the generic solution contains a curvature
singularity.
Although the anisotropies are screened at early

times in the Bianchi I case, the universe does not
approach an homogeneous and isotropic state, since it
would then be unstable with respect to inhomogeneous
perturbations. This suggests that the early stage of the
universe should be essentially inhomogeneous. To study
such inhomogeneous cosmologies requires a separate
analysis.
To the best of our knowledge, a similar systematic

analysis of anisotropic cosmologies for generic Horndeski
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FIG. 2. Solution of Eqs. (4.4)–(4.7) for μ ¼ Λ ¼ ε ¼ 1, α ¼
0.1 and with the initial values a ¼ 5, _β� ¼ 0, βþ ¼ 0, β− ¼ 0.05,
_ϕ ¼ 0.02 (assuming all parameters to be dimensionless and
expressed in Planck units). The solution shows a sequence of
Kasner epochs during which lnðakÞ=lnðaÞ ≈ const. The scalar _ϕ
oscillates but the charge C is constant.
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models has never been carried out before, although
anisotropic cosmologies with scalars have been studied.
For example, anisotropies in the theory with a conformally
coupled scalar field [18] and also in the Rþ R2 gravity
[19,20] have been discussed, both cases being conformally
dual to the ordinary gravity with a scalar field. But in our
case the theory cannot be conformally transformed to the
Einstein frame. As a result, qualitatively new behavior of
anisotropy takes place.
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