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We propose a mechanism borrowed from string theory which yields a nonsingular transition from a
phase of ekpyrotic contraction to the expanding phase of standard big bang cosmology. The same
mechanism converts the initial vacuum spectrum of cosmological fluctuations before the bounce into a
scale-invariant one, and also changes the spectrum of gravitational waves into an almost scale-invariant
one. The scalar and tensor tilts are predicted to be the same, in contrast to the predictions from the “string
gas cosmology” scenario. The amplitude of the gravitational wave spectrum depends on the ratio of the
string scale to the Planck scale and may be in reach of upcoming experiments.
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I. INTRODUCTION

The inflationary universe scenario [1] has become the
standard paradigm of early universe cosmology. It is based
on the assumption that there was a period of almost
exponential expansion during a time period in the very
early universe. Inflation provides a solution of the horizon
and flatness problems of standard big bang cosmology, and
provides a causal mechanism for producing cosmological
perturbations and microwave background anisotropies
based on the assumption that all fluctuation modes start
our in their vacuum state inside the Hubble radius at early
times [2]. The spectrum of curvature perturbations is
predicted to be almost scale-invariant, with a slight red tilt.
Inflation also produces [3] an approximately scale-invariant
spectrum of gravitational waves, again with a slight red tilt.
Inflation is usually obtained by working in the context of

Einstein gravity and assuming that there is a new scalar
field, the inflaton field φ, whose stress-energy tensor has an
equation of state

w≡ p
ρ
≃ −1 ð1Þ

(where p and ρ are pressure and energy density, respec-
tively) which leads to accelerated expansion.
Recently, however, inflationary cosmology has come

under some pressure. First of all, recall that in order for a

scalar field φ to serve as an inflaton, its potential energy
VðφÞ has to be very flat in order that the potential energy
dominates over the kinetic energy.1 However, general
arguments from string theory lead to the swampland
constraint [5] (see [6] for reviews)

V 0

V
>

c
mpl

ð2Þ

for slowly rolling scalar fields whose energy density
dominates the universe, where c is a constant of the order
1, mpl is the four space-time dimensional Planck mass, and
a prime indicates the derivative with respect to the field φ.
Effective field theory models which violate this constraint
are said to lie in the swampland and are not consistent with
string theory.2 Single scalar field models of slow-roll
inflation are thus [8] in the swampland.3

A second constraint on inflationary cosmology comes
from the recently proposed trans-Planckian censorship
conjecture (TCC) [10] which states that during cosmologi-
cal evolution no scales whose wavelengths were smaller
than the Planck length ever exit the Hubble horizon. This
conjecture can be viewed as analogous to Penrose’s cosmic
censorship hypothesis [11] which states that timelike
singularities must be hidden by horizons. If the TCC is
satisfied, then trans-Planckian modes are hidden from the
classical region.4 The TCC also shields the classical region
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1Warm inflation [4]provides anavenueof relaxing this constraint.
2These considerations also have implications for scalar field

models of dark energy [7].
3Once again, models of warm inflation avoid this constraint [9].
4Fluctuation modes oscillate on sub-Hubble scales, but

become squeezed states and classicalize on super-Hubble
scales [12] (see [13] for reviews of the theory of cosmological
perturbations).
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of cosmology from nonunitarities associated with setting
up quantum field theory in an expanding background [14].
Since during inflation the physical wavelength of fluc-
tuation modes increases almost exponentially, while the
Hubble radius remains almost constant, the TCC clearly
provides severe constraints on inflationary cosmology. In
[15] it was shown that, assuming that the post-inflationary
cosmology is like in standard big bang cosmology, and that
the potential energy during inflation is approximately
constant, the potential energy is constrained to obey the
upper bound

V1=4 < 3 × 109 Gev; ð3Þ

which leads to an upper bound on the tensor-to-scalar ratio
r of

r < 10−30: ð4Þ

Even if these constraints are enforced, an initial condition
problem remains [15].
In light of these constraints on inflationary cosmology it is

interesting to reconsider some alternative early universe
scenarios. Any viable alternative to inflation should produce
an approximately scale-invariant spectrum of almost adia-
batic cosmological fluctuations on scales which are being
observed today. In this case, as shown in the pioneering
papers [16,17], acoustic oscillations in the angular power
spectrum of the cosmic microwave background (CMB) and
baryon acoustic oscillations in the matter power spectrum
will be generated. Two promising classes of alternative
scenario (see, e.g., [18] for a review and comparison of these
alternatives) are bouncing and emergent cosmologies. In
bouncing cosmologies (see, e.g., [19] for reviews) it is
assumed that the universe begins in a contracting phase, and
new physics produces a bounce which leads to the current
expanding phase of big bang cosmology. Fluctuations are
taken to be in their vacuum state in the far past. In the
emergent scenario, it is assumed that the current phase of
cosmological expansion starts after a phase transition from a
novel state of space-time-matter. One example is string gas
cosmology [20] where it is assumed that the early phase is
a hot gas of fundamental superstrings near the critical
temperature of string theory, and thermal fluctuations with
holographic scaling in this hot gas lead to an almost scale-
invariant spectrum of curvature fluctuations [21] with a
slight red tilt and an almost scale-invariant spectrum
of gravitational waves [22] with a slight blue tilt.
Provided that the energy scale of the bounce or of the
emergent phase is lower than the Planck scale, there are no
constraints on the scenarios resulting from the TCC. Note
that in bouncing and emergent scenarios the horizon
problem is trivially solved—the causal horizon is infinite,
and there is hence in principle no problem in explaining the
near isotropy of the CMB.

Among bouncing scenarios, the ekpyrotic scenario [23]
(see also [24] for a cyclic version) has a number of
attractive features. The ekpyrotic scenario assumes that
the contracting phase has an equation of state parameter

w ≫ 1: ð5Þ

This can be realized if matter is given by a scalar field φ
with negative exponential potential

VðφÞ ¼ −V0e
−

ffiffiffiffiffiffi
2=p

p
φ=mpl ð6Þ

with V0 > 0 and 0 < p ≪ 1, and assuming that φ begins at
positive values with positive total energy density. In this
case, the scale factor evolves as

aðtÞ ∼ ð−tÞp ð7Þ

(note that t is negative in the contracting phase) and

w ≃
4

3p
: ð8Þ

Note that negative exponential potentials arise rather
generically in string compactifications (see, e.g., [25] for
a review). The initial ekpyrotic model was in fact based on
heterotic M-theory [26] (see also [27]).5

A nice feature of the ekpyrotic scenario is that
anisotropies are diluted in the phase of contraction [30],
unlike what happens in a symmetric bounce where the
anisotropies blow up [31]. A further nice feature is that the
homogeneous contracting trajectory is a local attractor in
initial condition space. This feature is shared by models of
large field inflation [32], but not models of small field
inflation [33]. As in inflationary cosmology, spatial curva-
ture is diluted. Hence, the ekpyrotic scenario also solves the
flatness problem of big bang cosmology.6

The ekpyrotic scenario faces two main challenges. The
first is how to obtain a nonsingular bounce from the early
contracting phase to the late time expanding phase of
standard big bang cosmology. The second is how to obtain
a roughly scale-invariant spectrum of curvature fluctua-
tions. It can be shown that the adiabatic curvature fluctua-
tions in a phase of ekpyrotic contraction retain a nearly
vacuum spectrum [35] in spite of the fact that the spectrum
of fluctuations of the scalar field φ obtains a scale-invariant
spectrum [36]. It is possible to obtain a scale-invariant
spectrum of curvature fluctuations making use of en
entropy field which acquires a scale-invariant spectrum

5For newer versions of the ekpyrotic scenario see, e.g., [28,29].
Our discussion, however, will be based on the original scenario.

6Note that some of these features are shared by the pre-big-
bang scenario [34] which is based on a phase of contraction with
w ¼ 1.
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[37], and converting the entropy fluctuations to curvature
perturbations.7 It has also been shown in [39] that nontrivial
matching conditions of fluctuations on the spacelike sur-
face separating the contracting phase from the expanding
one can convert the scale-invariant spectrum of φ to that of
curvature perturbations.8 The spectrum of gravitational
waves, on the other hand, remains close to vacuum, and
hence a negligible amplitude of such waves on cosmo-
logical scales is predicted.
In this paper we suggest a way of simultaneously

obtaining a cosmological bounce and obtaining a scale-
invariant spectrum of both curvature fluctuations and
gravitational waves.9 Our mechanism is based on the fact
that (in the context of string theory), at the string scale,
enhanced symmetries in the low energy effective action are
expected to appear (see, e.g., [43]): a tower of string states
which has string scale mass in a Minkowski space-time
background becomes massless and has to be included in the
low energy effective action.10 In the low energy effective
action, there is thus an extra term which appears at the time
t ¼ tB when the density reaches the string scale density. It
is a delta function term localized on the spacelike hyper-
surface t ¼ tB (as will be discussed in Sec. III we are
working in the uniform density gauge), and we hence call
this term an S brane. In the same way that a D-brane has
negative pressure (equals positive tension) in the spatial
directions along the brane and vanishing pressure in the
normal direction, an S-brane has vanishing energy density
and negative pressure. This is discussed in detail in [45] in
the context of a specific string model with thermal duality
in the Euclidean temporal direction. The S-brane hence
yields a contribution to the effective energy-momentum
tensor which violates the null energy condition and hence,
as shown in [45] can meditate a transition from contraction
to expansion. As we show here, the effect of the S-brane on
the cosmological perturbations and gravitational waves
converts initial vacuum fluctuations before the bounce to
scale-invariant ones after the bounce.
In the following section we discuss the origin of the

S-brane and how this object mediates the transition
between contraction and expansion. Then, in Sec. III we
study the coupling of cosmological perturbations and
gravitational waves to the S-brane and show that the slope
of the power spectrum of curvature perturbations changes
by a factor of k−2, k being comoving momentum. Thus, the

vacuum power spectrum with a small red tilt δn produced
during the ekpyrotic phase of contraction is converted into a
scale-invariant one with the same small red tilt δn. The
spectrum of gravitational is enhanced by the same mecha-
nism when passing through the bounce. Thus, unlike in the
other approaches to ekpyrotic cosmology [37], we obtain a
roughly scale-invariant spectrum of gravitational waves.11

Our discussion is at the level of an effective field theory,
but we have in mind a setting coming from string theory.
We will work in units where the speed of light and the
Planck and Boltzmann constants are set to 1. Space-time
indices are denoted by Greek symbols, spatial indices by
lower case Latin ones. The cosmological scale factor is
denoted by aðtÞ, and HðtÞ is the Hubble expansion rate. G
is Newton’s gravitational constant, related to the reduced
Planck mass mpl via 8πG ¼ m−2

pl . Since spatial curvature is
not important in the early universe we will set it to zero.

II. S-BRANE AND NONSINGULAR BOUNCE

We are working with a four-dimensional effective action
S of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 1

2
∂μφ∂μφ − VðφÞ

�

−
Z

d4xκδðτ − τBÞ
ffiffiffi
γ

p
; ð9Þ

where R is the Ricci scalar of the four-dimensional space-
time metric gμν with determinant g, φ is the scalar field with
negative exponential potential VðφÞ (6), γij is the induced
metric on the hypersurface t ¼ tB with determinant γ, and κ
is the tension of the S-brane. One of the conditions on our
coordinates (this will be important when studying fluctua-
tions in the next section) is that the constant t surfaces
correspond to constant density. The time tB is the time
when the density reaches the critical value when the extra
tower of string states becomes massless and when hence the
S-brane appears.
As discussed in detail in [45], the S-brane induces a

localized stress-energy tensor with energy density ρB and
pressure pB given by

ρB ¼ 0; ð10Þ

pB ¼ −κδðt − tBÞ: ð11Þ

Integrating the Friedmann equations across the bounce
time tB yields the following change of the Hubble constant:

δH ≡ lim
ϵ→0

HðtB þ ϵÞ −HðtB − ϵÞ ¼ 4πGκ: ð12Þ

7An almost scale-invariant spectrum can also be obtained [38]
by making use of a rapidly changing equation of state before the
phase of ekpyrotic contraction.

8In the case of a singular bounce between an ekpyrotic
contracting phase and an expanding phase the transfer of fluctua-
tions was studied in [40] (see also [41] for a study of the transfer in
a holographic cosmology setup.)

9See [42] for attempts at obtaining a nonsingular ekpyrotic
bounce using a cubic Galileon Lagrangian.

10This is the same physics discussed under the name distance
conjecture in the recent superstring literature [44].

11Note that the anamorphic scenario of [29] also produces an
approximately scale-invariant spectrum of gravitational waves.
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Hence, provided that the energy density just before the
bounce obeys the constraint

ρðtBÞ1=2 <
ffiffiffi
3

p

2
m−1

pl κ; ð13Þ

then the S-brane will induce a cosmological bounce. We
expect the S-brane to appear at the string energy scale ηs,
and hence ρðtBÞ ∼ η4s . We expect κ to be given by

κ ∼ Nη3s ; ð14Þ

where N is an integer given by the number of string states
which become massless at the enhanced symmetry point
(where the brane appears). Hence, provided that the Nηs is
larger than the Planck mass, the S-brane will induce a
cosmological bounce.
We will assume that small-scale interactions between the

enhanced symmetry states and the degrees of freedom of
the Standard Model lead to a bath of radiation after the
bounce. This is the analog of the reheating process at the
end of inflation. With this assumption, the bounce will
induce a transition between an ekpyrotic phase of con-
traction and a radiation phase of expansion after the
bounce.

III. FLUCTUATIONS PASSING THROUGH
THE S-BRANE BOUNCE

Let us now consider how metric fluctuations couple to
the S-brane. In this section it is convenient to use conformal
time τ in terms of which the homogeneous and isotropic
background metric takes the form

ds2 ¼ a2ðτÞðdτ2 − dx2Þ: ð15Þ

We will consider scalar metric fluctuations and gravita-
tional waves separately.12 The metric for scalar fluctuations
takes the form (see, e.g., [13] for reviews of the theory of
cosmological perturbations)

gμν ¼ a2ðτÞ
�
1þ 2Φ −B;i

−B;i ð1þ 2ΨÞδij þ E;ij

�
; ð16Þ

where the fluctuation variablesΦ,Ψ, B, and E are functions
of space and time. The scalar field is

φðτ;xÞ ¼ φ0ðτÞ þ δφðx; τÞ; ð17Þ

where φ0 is the background scalar field and δφ is the field
fluctuation.
Not all of the fluctuation variables are independent. We

will work in comoving gauge δφ ¼ 0 in which the scalar

field energy density is constant on constant time surfaces
(on large scales where the spatial gradient energy is
negligible). We can impose a second gauge condition
and choose it to be E ¼ 0 for computational ease.
We wish to obtain the effects of the S-brane on the

equation of motion for the fluctuations. To this end, we
insert the above ansatz for the perturbated metric and
perturbed matter into the full action (9) and expand to
second order in the fluctuation variables. Note that the
terms linear in the fluctuations vanish if the background
satisfies the background equations of motion. The contri-
bution of the bulk term in the action to the second order
action for scalar fluctuations is

Sð2Þ ¼ 1

2

Z
d4x

�
v02 − v;iv;i þ

z00

z
v2
�
; ð18Þ

where v is the Mukhanov-Sasaki variable [46] which is
given by

v ¼ zζ; ð19Þ

where ζ is the curvature fluctuation in comoving gauge, and

zðτÞ ∝ aðτÞ ð20Þ

if the equation of state of the background is time-inde-
pendent. A prime in the above equations denotes a
derivative with respect to conformal time.
During the phase of ekpyrotic contraction we have

[see (7)]

τðtÞ ¼ −
1

1 − p
ð−tÞ1−p; ð21Þ

and hence

zðτÞ ∼ τp=ð1−pÞ; ð22Þ

from which it follows that

z00

z
¼ pð2p − 1Þ

ð1 − pÞ2 τ−2; ð23Þ

which implies that an initial vacuum spectrum remains
almost vacuum on super-Hubble scales, acquiring only a
small red tilt proportional to p. After the bounce in the
radiation phase of expansion we have

z00

z
¼ 0; ð24Þ

as is well known.12We postpone the discussion of vector modes to a later study.
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In the gauge we are using the induced metric γij is

γij ¼ a2ð1þ 2ΨÞδij; ð25Þ

and hence the contribution Sð2ÞB of the brane term in the
action to quadratic order in Ψ is

Sð2ÞB ¼
Z

d4xκa3
�
1þ 3Ψþ 3

2
Ψ2

�
δðτ − tτBÞ: ð26Þ

Note that the sum of the terms linear in the fluctuations
cancel since we are expanding about a solution of the
background equations.
In the gauge we are usingΨ is proportional to the Sasaki-

Mukhanov variable v:

Ψ ¼ z−1v; ð27Þ

where z is a function of the background cosmology which
depends both on the geometry and on the matter (its form
will be discussed below), and hence the brane contribution
to the second order action can be rewritten as

Sð2ÞB ¼ 1

2

Z
d4x

a3

z2
3κδðτ − τBÞv2; ð28Þ

and thus the full second order action for v is

Sð2Þ ¼ 1

2

Z
d4x

�
v02 − v;iv;i þ

�
z00

z
þ 3

a3

z2
κδðτ − τBÞ

�
v2
�
;

ð29Þ

and the resulting equation of motion for v is

v00 þ
�
k2 −

z00

z
− 3

a3

z2
κδðτ − τBÞ

�
v ¼ 0: ð30Þ

Since z00 ¼ 0 after the bounce and z00=z is proportional to p
and hence very small before the bounce, we can to first
approximation neglect this term.
As shown in the Appendix, the δ function contribution to

the mass in the equation of motion (30) leads to an
enhancement of the mode functions by a factor

βk ¼
m
k
; ð31Þ

wherem is the coefficient of the delta function. From (30) it
follows that

βk ¼ 3κa

�
a
z

�
2

ðτBÞk−1: ð32Þ

This factor leads to a conversion of the vacuum power
spectrum of v before the bounce to a scale-invariant one

after the bounce. This is the main result of our analysis. If
the spectrum before the bounce is a vacuum spectrum
modulated by a slight red tilt (as it is in the case of ekpyrotic
contraction), the power spectrum after the bounce will be a
scale-invariant one modulated by the same red tilt.
Let us now study the coupling of gravitational waves to

the S-brane. If we consider a gravitational wave traveling in
the x direction, then the induced metric γij is

γij ¼ a2ðτÞ
�
1 0

0 1þ hϵab

�
; ð33Þ

where ϵab is the polarization tensor of gravitational waves
in the y=z plane. Hence, to leading order in the amplitude h2

ffiffiffi
γ

p ¼ a3
�
1 −

1

2
h2
�
: ð34Þ

The canonical variable for gravitational waves is

u≡ ahmpl; ð35Þ

where the factor of mpl is important to have the right
dimensions. The bulk action for u is

Sð2Þ ¼ 1

2

Z
d4x

�
u02 − u;iu;i þ

a00

a
u2
�
; ð36Þ

and the brane contribution is

Sð2ÞB ¼ 1

2

Z
d4xκaδðτ − τBÞu2m−2

pl ; ð37Þ

Hence, the equation of motion for uk becomes

u00 þ
�
k2 −

a00

a
− κam−2

pl δðτ − τBÞ
�
u ¼ 0: ð38Þ

This equation is analogous to the equation for scalar modes,
except that the coefficient of the delta function term is
different. In analogy with what was shown above for the
scalar modes, we find that the tensor modes are enhanced
by the factor

βk ¼ κam−2
pl k

−1: ð39Þ

Our results (32) and (39) show that the passage through
the S-brane leads to the conversion of an initial vacuum
spectrum for the scalars and tensors to a scale-invariant one
for both scalars and tensors. This is very different from
what is obtained in previous realizations of ekpyrotic
cosmology where the tensors retain their vacuum form.
The tensor to scalar ratio r can be read off of the

amplitude ratio of the Bogoliubov coefficients βk. To
evaluate this ratio, recall [13] that
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zðtÞ ¼ aðtÞ _φ0

H
; ð40Þ

where φ0ðtÞ is the background scalar field. For the
ekpyrotic potential of (6), this background is given by

φ0ðtÞ ¼
ffiffiffiffiffiffi
2p

p
mpl log

�
−

ffiffiffiffiffiffi
V0

p

mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞp t

�
; ð41Þ

and hence

_φ0

H
¼

ffiffiffiffiffiffiffiffi
2=p

p
mpl: ð42Þ

Hence, comparing (39) and (32) and making use of (42) we
find that the tensor to scalar ratio r becomes

r ¼ 16π

�
72

p3

�
∼
103

p3
: ð43Þ

The factor of 16π stems from the different normalizations
of the scalar and tensor power spectrum, the other term is
the square of the ratio of the Bogoliubov coefficients (39)
to (32).
We find that the amplitude of the tensor spectrum is larger

than the amplitude of the scalar spectrum, a result which is
obviously inconsistent with observations. This is related to
the fact that the analog of the inflationary slow-roll param-
eter ϵ is proportional to 1=p ≫ 1 in the case of ekpyrotic
contraction. Hence, in our model we need to invoke a
separatemechanism to boost the scalarmodes, as considered
in previous work on the ekpyrotic scenario [37,39].
Let us now consider the corrections to the spectrum due

to the z00=z term in the mode equation. Since

z00

z
¼ −

pð1 − 2pÞ
ð1 − pÞ2

1

τ2
≡ −αðpÞ 1

τ2
; ð44Þ

the dominant mode in for the v and u modes on super-
Hubble wavelengths scales as

vðτÞ ∼ τþα ð45Þ

and similarly for u. Hence we find for the Fourier modes of
v and u on super-Hubble lengths

vkðτÞ ≃ vk;0

�
τHðkÞ
τ

�−α
; ð46Þ

where τHðkÞ is the time of Hubble radius crossing of the kth
mode and is given by

τHðkÞ ¼
p

ð1 − pÞ k
−1: ð47Þ

If we use vacuum initial conditions then

vk;0 ¼
1ffiffiffiffiffi
2k

p : ð48Þ

The dimensionless power spectrum is given by

PvðkÞ ¼ k3jvkj2: ð49Þ

According to the definition of the scalar tilt ns we have

PðkÞ ∼ kns−1: ð50Þ

Combining (46), (47), (48), (49) and (50) we find that the
tilt of the scalar modes before the bounce is given by

ns ¼ 3þ 2α ≃ 3þ 2p: ð51Þ

Since the passage through the S-brane changes the spectral
tilt by -2, the tilt after the bounce is

1 − ns ¼ −2α ≃ −2p: ð52Þ

Thus, we predict a blue tilt of the scalar spectrum with the
deviation of the tilt from that of scale-invariance whose
magnitude is 2p. The tensor spectrum has the same tilt.
Note that the tensor index nt is defined via

PðkÞ ∼ knt : ð53Þ

Our new ekpyrotic scenario hence predicts roughly scale
invariant scalar and tensor spectra with tilts which obey the
consistency relation

nt ¼ ns − 1: ð54Þ

The amplitude of the spectrum of gravitational waves
after the bounce can be found from (39). The power
spectrum of the canonical variable u is

Puðk; τÞ ≃ a2κ2m−4
pl ðkτBÞ2p; ð55Þ

and hence the power spectrum of gravitational waves
becomes

Phðk; τÞ ≃ κ2m−6
pl ðkτBÞ2p; ð56Þ

Recall from Sec. II that the tension κ is expected to be given
by the string scale ηs, and thus the amplitude A of the
power spectrum (dropping the last factor above which
represents the small blue tilt) will be

A ≃ N2

�
ηs
mpl

�
6 1

ð2π2Þ : ð57Þ

If the string scale is the one preferred by particle physics
considerations in the early textbook [47] on string theory,
namely ηs ∼ 1017 GeV, then the amplitude is
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A ∼ 10−12; ð58Þ

which, using the observed amplitude of the scalar spectrum,
corresponds to

r ∼ 10−3: ð59Þ

Note, however, that this value depends sensitively on the
ratio between the string scale and the Planck scale.

IV. CONCLUSIONS AND DISCUSSION

It is generally expected that at string energy density
scales a new tower of string states becomes massless. If this
is the case, this tower of states has to be included in the low
energy effective action for cosmological evolution. It will
appear as a term in the effective action localized at a
particular time, i.e., as an S-brane. This object has zero
energy density and negative pressure, and can hence induce
the transition from contraction to expansion.
We have used this S-brane construction to provide a new

realization of the ekpyrotic scenario. We have shown that
the coupling of the S-brane to cosmological fluctuations
and in particular to gravitational waves leads to a change in
the spectral index of super-Hubble cosmological perturba-
tions of δns ¼ −2. This converts a vacuum spectrum into a
scale-invariant one. Our minimal construction leads to a
larger amplitude for the tensor modes than the scalar
modes, and hence has to be supplemented by a separate
source of cosmological perturbations.
The amplitude of the power spectrum of gravitational

waves depends on the ratio of the string scale ηs and Planck
scale mpl [see (57)]. The tilt of the gravitational wave
spectrum is predicted to be the same as the tilt of the scalar
spectrum.
It is interesting to compare these predictions with

those obtained in string gas cosmology [20], an emergent
universe scenario motivated by string theory. String gas
cosmology (SGC) also yields a roughly scale-invariant
spectrum of scalar and tensor modes, and the amplitude of
the power spectrum of cosmological perturbations is given
by a combination of the string scale and the Planck
scale, but in this case the fourth power and not the sixth
power as here (see, e.g., [48] for detailed discussions). SGC
yields two consistency relations between the four basic
cosmological observables. In particular, the tensor tilt is

nt ¼ 1 − ns. The predicted tensor tilt is blue, but the scalar
tilt is red, unlike in the scenario studied here.
In this paper we have assumed that the state after the

bounce is that of radiation, in a similar way that the state
after reheating in inflation is that of radiation. The explicit
model of ultraviolet physics that yields the production of
radiation across the bounce remains to be explored. In
future work we plan to study the amplitude of non-
Gaussianities generated in our scenario.
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APPENDIX

Let us consider the equation of motion

X00
kðτÞ þ ½k2 þmδðτ − τBÞ�XkðτÞ ¼ 0: ðA1Þ

The solutions are plane waves for τ < τB and for τ > τB.
If we denote the positive frequency solutions as fk and the
negative frequency ones as f�k, where the � indicates
complex conjugation, then the solution which is pure
positive frequency before τB can be written for τ > τB as

Xk ¼ αkfk þ βkf�k; ðA2Þ

where αk and βk are the Bogoliubov mode matching
coefficients which obey the relationship

jαkj2 − jβkj2 ¼ 1: ðA3Þ

By integrating the equation (A1) over time τ against a
test function (a smooth function which decays exponen-
tially at τ → �∞) fðτÞ it can be easily shown that

βk ¼
m
k
: ðA4Þ

This result implies that the power spectrum of Xk is boosted
by a factor of ðm=kÞ2. This turns a vacuum spectrum into a
scale-invariant one.
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