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In this work, we use the equation of state (EOS) of the (2þ 1)-flavor Nambu-Jona-Lasinio (NJL) model
to study the structure of the strange quark star. With a new free parameter α, the Lagrangian is constructed
by two parts, the original NJL Lagrangian and the Fierz transformation of it, as L ¼ ð1 − αÞLNJL þ αLFierz.
To determine the range of α, we compare the binding energies in the two-flavor and (2þ 1)-flavor cases.
We also consider the constraints of chemical equilibrium and electric charge neutrality in the strange quark
star and choose six representative EOSs with different α and B (bag constant) to study their influence on the
structure of the strange quark star. As a result, we find that a larger α and a smaller B correspond to a heavier
star with a stiffer EOS. Furthermore, the heaviest strange quark star is in agreement with not only the recent
mass observation of PSR J0740þ 6620 and the x-ray observations on radius measurements, but also the
constraint on the tidal deformability of GW170817.
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I. INTRODUCTION

The equation of state (EOS) plays a critical role in the
study of the neutron star. Substituting an EOS into the
Tolman-Oppenheimer-Volkoff (TOV) equation, we can get
the corresponding mass-radius relation of the star. In
general, the EOS should meet many constraints, such as
the mass from pulsar observations, the radius measurement
from x-ray observations, and the tidal deformability from
gravitational wave (GW) observations. On one hand, the
pulsar mass measured in the recent astronomical observa-
tion PSR J0740þ 6620 [1], 2.14þ0.10

−0.09 M⊙ (solar mass), has
become the most massive one till now, even larger than that
of PSR J0348þ 0432 [2] with 2.01� 0.04 M⊙, excluding

many soft EOSs that cannot produce so massive a star. And
the x-ray observations, especially the Neutron Star Interior
Composition Explorer (NICER) x-ray timing observations,
are supplying more and more precise measurements
recently [3–5]; for example, in Ref. [4], the radius is
limited to 11.0þ0.9

−0.6 km for the neutron star with 1.4 M⊙. On
the other hand, the GWobservation GW170817 during the
binary neutron star (BNS) merger gives a constraint on the
tidal deformability of the star for the low-spin priors,
estimated to be Λð1.4 M⊙Þ ≤ 800 and Λ̃ ≤ 800 in the
early work [6] and revised to be Λ̃ ∼ 340þ580

−240 for the case of
symmetric 90% credible interval and Λ̃ ∼ 340þ490

−290 for the
case of highest posterior density (HPD) 90% credible
interval based on the waveform model TaylorF2 in the
recent study [7] and, thus, will exclude many stiff EOSs
with large tidal deformabilities.
Considering that the neutron star is composed of strong

interacted dense matter in a relatively low temperature, it is
imperative to study the EOS and the structure of the neutron
star in the framework of quantum chromodynamics (QCD).
It is known that QCD has two important properties, color
confinement and dynamical chiral symmetry breaking. At a
low chemical potential and a low temperature, the quarks
are confined in hadrons. However, at a high chemical
potential, the quarks are deconfined; thus, the observed
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pulsar in this case could be a quark star rather than the
traditional neutron star. Then a question arises: Which kind
of quark stars should actually exist, the nonstrange quark
star containing only u and d quarks or the strange quark star
containing u, d, and s quarks? Different models and
perspectives give different answers. In Refs. [8,9], the
three-flavor system is demonstrated to be more stable than
the two-flavor one, but in Refs. [10,11], the opposite is
right. Recently, a study [12] indicates that nonstrange quark
matter can be the ground state of baryonic matter only for a
baryon number larger than a certain value. In light of this
conclusion, some studies [13–15] investigate the possibility
of the nonstrange quark star and calculate the structure of it.
But it should be pointed out that this conclusion of Ref. [12]
is actually made by the comparison of the energy per
baryon (i.e., the binding energy) between the strange and
nonstrange quark matter with an effective model. In this
work, we will revisit this question and study the possibility
that the quark star is a strange one with the strange quark
system being more stable.
Theoretically, the matter in the quark star is very dense

and interacted so strong that the perturbative QCD is invalid
here, and the “sign problem” in lattice QCD makes it
difficult to perform calculations at a finite chemical
potential. However, some effective models including the
Dyson-Schwinger equations (DSEs) [16–21], the quantum
electrodynamics in 2þ 1 dimensions (QED3) [16,22–24],
and the Nambu-Jona-Lasinio (NJL) model [25–30] are very
useful in this scheme. In Refs. [31–36] and Refs. [37–43],
the structure of the hybrid star is investigated with the DSEs
and NJL model, respectively. Unfortunately, the quark
EOSs in these studies are still very soft and cannot support
a quark star with two solar mass. In a recent study [44], the
authors propose a modified NJL model containing both the
original model Lagrangian and the Fierz transformation of
it with the parameter (1 − α) and α adjusting the weight of
these two parts, respectively, thus producing stiffer EOSs
than before. In this scheme, the nonstrange quark star has
been studied for the two-flavor case [13,14], and the results
satisfy both the two solar mass constraint from PSR
J0348þ 0432 [2] and the tidal deformability constraint
Λð1.4 M⊙Þ ≤ 800 from GW170817 in the previous study
[6]. In this work, we will extend the modified NJL model
mentioned above to the (2þ 1)-flavor case and give the
EOS with the mean-field approximation and proper time
regularization (PTR). The mass-radius relation and the tidal
deformability of the strange quark star with the correspond-
ing EOS are also studied.
The paper is organized as follows. In Sec. II, we

introduce the EOS of the strange quark star with the
modified (2þ 1)-flavor NJL model. To determine whether
the quark matter is more stable for the (2þ 1)-flavor case
than for the two-flavor case, we compare the binding
energies in these two cases for different α and B. In
Sec. III, we use the new (2þ 1)-flavor EOS to study the

structure of the strange quark star, and the corresponding
tidal deformability is also studied with different α and B.
In conclusion, we give a brief summary and discussion
in Sec. IV.

II. EOS OF THE STRANGE QUARK MATTER
WITH THE NJL MODEL

In this section, we give a brief introduction of the
modified (2þ 1)-flavor NJL model, and the EOS is also
deduced with PTR and the mean-field approximation. In
general, the Lagrangian of (2þ 1)-flavor NJL model has
the following form:

LNJL ¼ ψ̄ði∂ −mÞψ þ
X8
i¼0

G½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�

− Kðdet½ψ̄ð1þ γ5Þψ � þ det½ψ̄ð1 − γ5Þψ �Þ; ð1Þ

where G and K are the four-fermion and six-fermion
interaction coupling constant, respectively, λi (i ¼ 1 → 8)

is the Gell-Mann matrix in flavor space, and λ0 ¼
ffiffi
2
3

q
I (I is

the identity matrix).
As a purely technical device to examine the effect of a

rearrangement of fermion field operators, the Fierz trans-
formation of the Lagrangian LNJL is

LF ¼ ψ̄ði∂ −mÞψ −
1

2

X8
a¼0

G½ðψ̄γμλCa ψÞ2 − ðψ̄γμγ5λCa ψÞ2�

− Kðdet½ψ̄ð1þ γ5Þψ � þ det½ψ̄ð1 − γ5Þψ �Þ; ð2Þ

where λCa (a ¼ 0 → 8) also has a same definition as λi
(a ¼ 0 → 8) in the above but in color space. Actually, the
Fierz transformation of the six-fermion term −Kðdet½ψ̄ð1þ
γ5Þψ � þ det½ψ̄ð1 − γ5Þψ �Þwill introduce the terms including
pairs of color octet quark bilinears as a part [45,46]. And in
Ref. [25], it is demonstrated that a Fierz transformation of
the six-fermion interaction can be defined as that trans-
formation that leaves the interaction invariant under all
possible permutations of the quark spinors ψ occurring in it;
thus, the six-fermion term does not change in Eq. (2). On the
other hand, even if one introduces other four-fermion terms
that contains the color octet quark bilinears and are invariant
under SUð3ÞV ⊗ SUð3ÞA ⊗ Uð1ÞV ⊗ Uð1ÞA in the original
Lagrangian [45], the results are qualitatively similar to those
obtained neglecting them [47]. Therefore, in the following
calculation, we will just consider the contribution of color
singlet terms for simplicity.
According to Ref. [48], the general mean-field approxi-

mation approach without a Fierz transformation is dem-
onstrated to be not self-consistent. Thus, in this work, we
employ a new self-consistent way to deal with it, intro-
ducing the weighting factor (1 − α) and α to combine the
Lagrangian LNJL and its Fierz transformation LF linearly:
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L ¼ ð1 − αÞLNJL þ αLF

¼ ψ̄ði∂ −mÞψ þ ð1 − αÞG
X8
i¼0

½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�

− α
G
2
½ðψ̄γμλC0 ψÞ2 − ðψ̄γμγ5λC0 ψÞ2�

− Kðdet½ψ̄ð1þ γ5Þψ � þ det½ψ̄ð1 − γ5Þψ �Þ: ð3Þ

Then we take the mean-field approximation to obtain the
dynamical quark mass Mi and the renormalized chemical
potential μ0i of flavor i, respectively:

Mi ¼ mi − 4Ghψ̄ψii þ 2Khψ̄ψijhψ̄ψik; ð4Þ

μ0i ¼ μi −
2α

Ncð1 − αÞGhψ
þψii: ð5Þ

The hψ̄ψii and hψþψii in Eqs. (4) and (5) are the quark
condensate and quark number density of flavor i, respec-
tively. At zero temperature, they are defined as

hψ̄ψii ¼ −
Z

d4p
ð2πÞ4 Tr½iSiðp

2Þ�

¼ −Nc

Z þ∞

−∞

d4p
ð2πÞ4

4iMi

p2 −M2
i

; ð6Þ

hψþψii ¼ −
Z

d4p
ð2πÞ4 Tr½iSiðp

2Þγ0�

¼ 2Nc

Z
d3p
ð2πÞ3 θðμ

0
i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q
Þ; ð7Þ

where the trace “Tr” is taken in Dirac and color spaces and
Siðp2Þ ¼ 1

p−Mi
is the quark propagator of flavor i.

Now we can see that the construction of the Lagrangian
L is equivalent to adding the vector-scalar channel in the
four-fermion interaction term of the original Lagrangian
LNJL. In addition, from Eq. (5), via the introduction of LF
especially when α is taken as large values (α → 1), the
contribution of the Fierz-transformed part cannot be
neglected but is usually ignored in the mean-field approxi-
mation when just counting in LNJL. Therefore, from this
viewpoint, our approach is different from the original one.
To perform the following calculations, a Wick rotation

from Minkowski space to Euclidean space and the PTR are
employed. According to the definition, the PTR equals
replacing the ultraviolet divergent integrand 1

An as an
integral of its exponential function, that is,

1

An ¼
1

ðn − 1Þ!
Z

∞

0

dττn−1e−τA

⟶
UV cutoff 1

ðn − 1Þ!
Z

∞

τUV

dττn−1e−τA; ð8Þ

where the integral limit τUV is related to the ultraviolet
cutoff ΛUV as τUV ¼ Λ−2

UV. In addition, when we extend the
calculation from zero chemical potential to the finite case, it
is equivalent to introducing a transformation [49] that

p4 → p4 þ iμ0i: ð9Þ

Then we can derive the quark condensate and quark
number density in the following:

(i) For T ¼ 0, μ0i ¼ 0,

hψ̄ψii ¼ −Nc

Z þ∞

−∞

d4pE

ð2πÞ4
4iMi

ðpEÞ2 þM2
i
¼ −

Nc

ð2πÞ4
Z þ∞

−∞

Z þ∞

−∞
d3p⃗dp4

4Mi

p2
4 þ p⃗2 þM2

i

¼ −
3Mi

π2

Z þ∞

0

dp
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2
i

p ¼ −
3Mi

π
2
5

Z
∞

τUV

Z þ∞

0

dτdpτ−1=2p2e−τðM2
iþp2Þ

¼ −
3Mi

4π2

Z
∞

τUV

dτ
e−τM

2
i

τ2
; ð10Þ

(ii) For T ¼ 0, μ0i ≠ 0,

hψ̄ψii¼−Nc

Z þ∞

−∞

d4pE

ð2πÞ4
4iMi

ðpEÞ2þM2
i
¼−Nc

Z þ∞

−∞

d4p
ð2πÞ4

4Mi

ðp4þiμ0iÞ2þM2
i þp⃗2

¼−
3Mi

π3

Z þ∞

0

dp
Z þ∞

−∞
dp4

p2

ðp4þiμ0iÞ2þM2
i þp2

¼

8>><
>>:
−3Mi

π2

Rþ∞ffiffiffiffiffiffiffiffiffiffiffi
μ0i

2−M2
i

p dp
½1−Erfð

ffiffiffiffiffiffiffiffiffiffiffi
M2

i þp2
p ffiffiffiffiffiffi

τUV
p Þ�p2ffiffiffiffiffiffiffiffiffiffiffi

M2
i þp2

p ; Mi<μ0i

3Mi
4π2

h
−M2

i Eið−M2
i τUVÞ−e

−M2
i
τUV

τUV

i
; Mi>μ0i

ð11Þ
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hψþψii ¼ 2Nc

Z
d3p
ð2πÞ3 θ

�
μ0i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q �

¼
� 1

π2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0i
2 −M2

i

p Þ3; μ0i > Mi;

0; μ0i < Mi;
ð12Þ

where the superscript E represents the Euclidean
space. EiðxÞ¼−

Rþ∞
−x dye

−y

t and ErfðxÞ¼ 2ffiffi
π

p
R
x
0 e

−η2dη

are the exponential integral function and error
function, respectively.

From Eqs. (4) and (5), it is noted that the introduction of
LF contributes only to the renormalized chemical potential
but not the gap equation and the dynamical quark mass.
Thus, at a zero temperature and chemical potential, apart
from α, the parameter fixing work is still same with the
original case for LNJL. Similar to the process in Ref. [43],
we also fit the parameters (Mu;ΛUV, Ms, G, K) to
reproduce the experimental data (fπ ¼ 92 MeV, Mπ ¼
135 MeV, MK0 ¼ 495 MeV, Mη ¼ 548 MeV, Mη0 ¼
958 MeV), with a free parameter mu prefixed before the
fitting. According to the recent Review of Particle Physics
[50], the current quark mass mu and ms are predicted to be
m̄ ¼ ðmu þmdÞ=2 ¼ 3.5þ0.5

−0.2 MeV and ms ¼ 95þ9
−3 MeV,

respectively.1 Our parameter sets satisfying these con-
straints on the current quark masses are shown in
Table I. The two parameter sets in Table I do not have a
significant difference, and their corresponding EOSs also
turn out to be very similar from Ref. [43]. Therefore, we
will choose the parameter set with mu ¼ 3.4 MeV as a
representative one to perform the following calculation.
By solving Eqs. (4) and (5) at a zero temperature and

finite chemical potential, we can obtain the relation
between the quark number density hψþψii (also denoted
as ρi in many studies) and its chemical potential μi, which is
shown in Fig. 1. In this figure, we can see that for a
particular kind of quark, as α is changing from 0 to 0.97, the
slope of the curve gradually decreases. Specifically, for
α∶0 → 0.5, the decrease of the slope is very small; but for
α∶0.94 → 0.97, it seems to be larger. And for the u and d
quarks, the critical chemical potential where the quark
number density begins to be nonzero is about 200 MeV;

for the s quark, the critical chemical potential is about
320 MeV.
Considering the electroweak reactions in the quark star,

we have to take the chemical equilibrium and the electric
charge neutrality into account:

μd ¼ μu þ μe;

μs ¼ μu þ μe;

2

3
ρu −

1

3
ρd −

1

3
ρs − ρe ¼ 0; ð13Þ

where the electron density at zero temperature reads
ρe ¼ μ3e=ð3π2Þ. Then the relation of baryon number density
ρB ¼ ðρu þ ρd þ ρsÞ=3 and baryon chemical potential
μB ¼ μu þ μd þ μs can be obtained, and the result is shown
in Fig. 2. We can find that the slope of the curves in this
figure is also decreasing as α increases.

TABLE I. Parameter sets satisfying the constraints on the
current quark masses mu and ms from the recent Review of
Particle Physics [50]. The unit of the coupling constants G and K
are MeV−2 and MeV−5, respectively, and the other parameters in
this table have the unit of MeV.

mu ms ΛUV G K Mu Ms

3.3 102 1350 1.46 × 10−6 2.55 × 10−14 195 361
3.4 104 1330 1.51 × 10−6 2.75 × 10−14 197 364

FIG. 1. Quark number density of u, d, and s quarks as a
function of μ at T ¼ 0 with α ¼ 0, 0.5, 0.94, 0.95, and 0.97,
respectively (shown with a black, gray, green, red, and blue line in
correspondence). The densities ρu;d and ρs are distinguished by
the solid line and dashed line, respectively.

FIG. 2. Baryon density as a function of the baryon chemical
potential at T ¼ 0 with α ¼ 0, 0.5, 0.94, 0.95, and 0.97, respec-
tively. The corresponding curves are black solid, gray dashed,
green solid, red dot-dashed, and blue dashed, respectively.

1The exact isospin symmetry between u and d quarks is
employed in this work; thus, mu ¼ md ¼ m̄.
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At zero temperature, the EOS of quark matter can be
strictly proved with the functional path integrals [51,52]:

PðμÞ ¼ Pðμ ¼ 0Þ þ
Z

μ

0

dμ0ρðμ0Þ; ð14Þ

and the result is model independent. From Eq. (14), we can
find that the pressure of the system can be divided in two
parts: One part is a density-independent quantity, i.e., the so-
called vacuum pressure, and the other part is density
dependent. Actually, the vacuum pressure Pðμ ¼ 0Þ cannot
be measured. The only one that can be measured is the
vacuum pressure difference, and the typical example is the
Casimir effect [53,54]. To do this, we need to choose a
reference ground. This reference ground state should, in
principle, be a trivial vacuum of the interaction system we
are studying [55]. In the previous studies [13,14,33],
Pðμ ¼ 0Þ is always taken as a model-dependent phenom-
enological parameter and associated with −B (vacuum bag
constant), just like that in the MIT bag model. However, the
value ofB should be neither too small nor too large. Because
a smaller B corresponds to a stiffer EOS, this might not
meet with the constraint on the tidal deformability from
GW170817; and a larger B corresponds to a softer EOS,
which might not satisfy the pulsar’s mass observation (for
example, the PSR J0348þ 0432 possesses a mass of 2.01�
0.04 M⊙ [2], and the recent astronomical observation PSR
J0740þ 6620 provides the most massive neutron star of
2.14þ0.10

−0.09 M⊙ [1]).
In general, the bag constant B has an empirical range of

ð100 MeVÞ4 − ð200 MeVÞ4 [56,57]. And in some recent
studies [43,58], it has been constrained to a narrow range.
For example, in Ref. [58], the bag constant is constrained to
(134.1, 141.4) MeV based on the study of the quark star
with the MIT bag model, and in Ref. [43], it has a parameter
space of (166.16, 171.06) MeV in the study of the hybrid
star with the NJL model. However, it should be noted that
the results above are model dependent, and the experi-
mental and astronomical observations are still the keys to
check whether the value of B we choose is correct at
present. In this work, the bag constant is taken as
ð117 MeVÞ4, and for comparison, we will also do the
calculation for B ¼ ð130 MeVÞ4. The result is presented in
Fig. 3.2 In this figure, we can see that the slope of the curves
for the same B have the same trend as that in Figs. 1 and 2.
For the same α but different B, a larger B will let the curve
move downward along the y axis.
The energy density and pressure of the system have a

relation of [59,60]

ϵ ¼ −Pþ
X
i

μiρi: ð15Þ

Now let us discuss in the most general sense whether the
two-flavor or the (2þ 1)-flavor quark matter is more stable.
If we apply Eq. (14) to the two-flavor and the (2þ 1)-flavor
quark matter system, respectively, we can get the following
equations:

PNSðμÞ ¼ PNSðμ ¼ 0Þ þ
Z

μ

0

dμ0ρNSðμ0Þ; ð16Þ

PSðμÞ ¼ PSðμ ¼ 0Þ þ
Z

μ

0

dμ0ρSðμ0Þ; ð17Þ

where the subscript ”NS” and “S” means the nonstrange
two-flavor and the strange (2þ 1)-flavor system, respec-
tively. Subtracting Eq. (17) from Eq. (16), we can obtain the
pressure difference of these two systems:

PNSðμÞ − PSðμÞ ¼ ½PNSðμ ¼ 0Þ − PSðμ ¼ 0Þ�

þ
�Z

μ

0

dμ0ρNSðμ0Þ −
Z

μ

0

dμ0ρSðμ0Þ
�
:

ð18Þ

It is obvious that, at the same chemical potential, the system
with a higher pressure is more stable than the other one.
From Eq. (18), we can see that the second term on the right
side of the equation is density dependent and can be
calculated with a certain effective model. However, the
first term on the right side of Eq. (18) is related to the
vacuum pressure difference between the two-flavor and
(2þ 1)-flavor quark matter and, thus, impossible to be
calculated from the first principle of QCD, and this is where
we cannot judge whether the two-flavor or the (2þ 1)-
flavor quark matter is more stable. Therefore, we cannot
give a theoretically definitive answer to this question at
present, and this is also the fundamental reason why
Witten’s strange quark matter hypothesis [8] has not yet
been proved or falsified. Actually, it might be useful to

FIG. 3. The quark EOSs for α ¼ 0, 0.5, 0.94, 0.95, and 0.97 and
B1=4 ¼ 117 and 130 MeV, respectively. The curves in this figure
are plotted in the same type as in Fig. 1.

2To make the captions simple and clear, we omit the units of
the parameters captioned in the following figures.
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resort to more and more astronomical observations
nowadays to study this question. In some previous studies
[13–15], the possibility of the quark star constructed by the
two-flavor quark matter has been discussed, and in this
work, we focus on the possibility of the (2þ 1)-flavor
quark matter composing the strange quark star. In addition,
we also hope to give evidence to Witten’s strange
quark matter hypothesis [8] in this paper with some recent
astronomical observations.
In Witten’s strange quark matter hypothesis [8], the

(2þ 1)-flavor quark system is approbated to be more stable
with a lower energy per baryon than the two-flavor case.
Actually, in statistical physics, at the same temperature, a
system with a smaller Helmholtz free energy F should be
more stable, and the F is just proportional to the energy per
baryon, which is demonstrated in the following:

F ¼ GE − PV ¼
X
i

ðμiNi − piVÞ

¼ V
X
i

ðμiρi − piÞ ¼ V · ϵ

¼ NB · ϵ=ρB; ð19Þ

where GE represents the Gibbs free energy of the system
and NB ¼ 1

3

P
i Ni is the particle number of baryons. V and

P ¼ P
i pi are the volume and total pressure of the system,

respectively. In principle, P and ϵ should contain the
contributions of all constituents of the system, but in the
following calculation we ignored the contribution of
the electron, as its value is very small compared with
the contributions from the deconfined u, d, and s quarks
in the quark star.
It is noted that NB should be the same for the (2þ 1)-

flavor and two-flavor systems if we take the law of
conservation of the baryon number into account. Thus,
from Eq. (19), we can see that a smaller F just corresponds
to a smaller energy per baryon ϵ=ρB (i.e., the binding
energy), and the comparison of the binding energy of these
two schemes is shown in Fig. 4.3 It can be found that, at the
same baryon number density, a larger B will produce a
higher binding energy. However, at the same B, there are
three types of results as α changes: (i) For a small α, the
binding energy of the (2þ 1)-flavor system is lower than
that of the two-flavor system; (ii) for a large α, the binding
energy of the (2þ 1)-flavor system is higher than that of

the two-flavor system; (iii) for a middle α except for the
above two situations, the binding energy of the (2þ 1)-
flavor system and that of the two-flavor system intersect,
and, at the left side of the intersection, that is, at small
baryon number densities, the (2þ 1)-flavor system has a
smaller binding energy, but at the right side, the opposite is
true. And the results are concluded in Table II, actually
giving a constraint on the parameter α in this work for the
study of the strange quark star. Thus, in the following
calculation, we will choose some representative values of α,

(a)

(b)

FIG. 4. The comparison of the binding energy of the (2þ 1)-
flavor and two-flavor system for (a) B1=4 ¼ 117 MeV and
(b) B1=4 ¼ 130 MeV.

TABLE II. Comparison of the binding energy of (2þ 1)-flavor
system and two-flavor system with different α, and the system
with a lower binding energy is listed in the second and fourth
rows of the table. The (2þ 1)-flavor and two-flavor systems are
denoted as “3f” and “2f”, respectively.

B1=4 [MeV] α ≤ 0.94 0.94 < α < 0.96 α ≥ 0.96
117 3f 2f → 3f 2f

B1=4 [MeV] α < 0.95 0.95 ≤ α < 0.96 α ≥ 0.96
130 3f 2f → 3f 2f

3For the sake of consistency, we also use the two-flavor
NJL model with PTR and introduce the Fierz transformation to
obtain the binding energy of the two-flavor system, just as what
we do to the three-flavor system in this work, and for simplicity,
the bag constant B is assumed to be the same for these two
systems. In addition, the parameter set of the two-flavor system,
ðΛUV;GÞ¼ð1330MeV; 2.028×10−6MeV−2Þ, is also fixed under
mu ¼ 3.4 MeV to fit the experimental data ðfπ;MπÞ ¼ð92; 135Þ MeV. The specific derivation and calculation process
can be referred to in Ref. [14].
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i.e., α ¼ 0, 0.5, 0.94, to study the structure of the strange
quark star.
Now let us investigate the rationality of the strange quark

EOS and calculate the sound velocity of it. According to the
definition, the sound velocity is

νs ¼
ffiffiffiffiffiffi
dp
dϵ

r
; ð20Þ

which can reflect the stiffness of the system. Theoretically,
a stiffer EOS leads to a larger maximum mass of the
compact star, but it might also cause the sound velocity
of it to exceed the speed of light, which is unreasonable and
should be forbidden. In Fig. 5, we show the sound
velocities of our six representative strange quark EOSs.
In fact, all of them are smaller than 0.7 times the speed of
light, and a larger α corresponds to a larger sound velocity,
demonstrating that the introduction of the Fierz trans-
formation with the mean-field approximation can make
the EOS stiffer compared with the original scheme.

III. STRUCTURE OF THE STRANGE
QUARK STAR

To get the mass-radius relation of the quark star, one has
to substitute the EOS into the TOVequation and integrate it:

dPðrÞ
dr

¼ −
Gðϵþ PÞðM þ 4πr3PÞ

rðr − 2GMÞ ;

dMðrÞ
dr

¼ 4πr2ϵ: ð21Þ

The result is shown in Fig. 6. As a comparison, we also show
themass and radius constraints in this figure based onvarious
observations including the latest pulsarmass [1,2], x-ray, and
GWobservations [3–5]. We can see that only the EOS with
α ¼ 0.94 and B1=4 ¼ 117 MeVmeets all five constraints on
the mass and radius above, producing a maximum mass of
2.057 M⊙, and its corresponding radius is about 11.20 km.

However, the maximummasses produced by the other EOSs
are all smaller than 1.9 M⊙. In addition, for the same B, a
larger α will make the EOS stiffer, generating a larger
maximum mass, and for the same α, a smaller B also
produces a larger maximum mass with a stiffer EOS.
Then to calculate the tidal deformability, we have to solve

the following differential equations along with the solving of
the TOV equation, just like what is done in Ref. [61]:

dH
dr

¼ β;

dβ
dr

¼ 2

�
1− 2

mr

r

	
−1
H

�
−2π½5ϵþ 9pþ fðϵþpÞ�

þ 3

r2
þ 2

�
1− 2

mr

r

	−1�mr

r2
þ 4πrp

	
2



þ 2β

r

�
1− 2

mr

r

	
−1
�
mr

r
þ 2πr2ðϵ−pÞ− 1



; ð22Þ

where HðrÞ and p are the metric function and pressure,
respectively, and f is defined as dϵ=dp. From this equation,
we can see that H and its differential equation are also
related to the EOS. By defining the quantity y ¼
RβðRÞ=HðRÞ − 4πR3ϵ0=M, where ϵ0 represents the energy
density at the surface of the quark star, the dimensionless
tidal Love number for l ¼ 2 can be expressed as

k2 ¼
8C5

5
ð1−2CÞ2½2þ2Cðy−1Þ−y�

×f2C½6−3yþ3Cð5y−8Þ�
þ4C3½13−11yþCð3y−2Þþ2C2ð1þyÞ�
þ3ð1−2CÞ2½2þ2Cðy−1Þ−y�lnð1−2CÞg−1; ð23Þ

FIG. 5. The sound velocities of the six representative strange
quark EOSs.

FIG. 6. The M − R relations of the strange quark star based on
the six representative EOSs. Two mass constraints from PSR
J0348þ 0432 and PSR J0740þ 6620 and three radius con-
straints in the light of gravitational wave and electromagnetic
observations, especially the NICER x-ray timing observations
(1, R1.44 M⊙

> 10.7 km [3]; 2, R1.4 M⊙
¼ 11.0þ0.9

−0.6 km [4]; 3,M ¼
1.34þ0.15

−0.16 M⊙, R ¼ 12.71þ1.14
−1.19 km from PSR J0030þ 0451 [5]),

are also depicted in this figure.
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where C ¼ M=R refers to the compactness of the quark
star. It is noted that the formula of y includes a deduction
term −4πR3ϵ0=M, because the quark matter in the strange
quark star is already deconfined, leading to a non-negative
pressure at the surface, while the vacuum pressure
Pðμ ¼ 0Þ ¼ −B in Eq. (14) is negative; then the quark
number density and energy density should be nonzero at
the surface. According to Ref. [61], the relation of the tidal
deformability Λ and the tidal Love number k2 is

Λ ¼ 2

3
k2R5: ð24Þ

Now we can get the result of the tidal deformability of the
strange quark star based on the six representative EOSs,
which is presented in Fig. 7. We can find that for the quark
star mass M > 1 M⊙, as the mass increases, the tidal
deformability decreases, and at the same mass, a smaller B
or a larger α corresponds to a larger Λ. And for the EOS
producing the maximum mass larger than 1.4 M⊙, they
all satisfy the constraint for the low-spin priors that
Λð1.4 M⊙Þ ≤ 800 in the early work [6].
Actually, there are some other quantities related to the

EOS that are constrained by GW170817, such as the
relation of two tidal deformabilities of the BNS, generally
presented graphically, and the dimensionless combined
tidal deformability Λ̃, which is defined as

Λ̃¼ 16

13

ðM1þ12M2ÞM4
1Λ1þðM2þ12M1ÞM4

2Λ2

ðM1þM2Þ5
; ð25Þ

where M1 and M2 are the primary and secondary mass
of the BNS, respectively, and their corresponding tidal
deformabilities are Λ1 and Λ2, respectively. For the low-
spin priors, in the previous work [6], the tidal deformability
is estimated to be Λ̃ ≤ 800 (revised as Λ̃ ≤ 900 in Ref. [7]),

and in the recent work [7], it is restricted to be more
accurate; for example, for the waveform model TaylorF2, Λ̃
is constrained to be 340þ580

−240 for the case of symmetric 90%
credible interval and 340þ490

−290 for the case of HPD 90%
credible interval. In Fig. 8, we show the combined tidal
deformabilities of the six representative EOSs, and the
constraint from GW170817 based on the waveform
model TaylorF2 is also shown in this figure. We can see
that the EOSs with ðB1=4;αÞ ¼ ð130; 0.5Þ and 130; 1 do not
satisfy the constraint of HPD, because the maximum
masses produced by these two EOSs are smaller than
1.6 M⊙ (the maximum mass of the primary star of the
BNS), not matching for the requirement of GW170817 in
the case of HPD. Among the remaining four EOSs, the one
with (B1=4, α)=(117, 0.94) satisfies not only the mass and
radius constraints in Fig. 6, but also the constraint of
combined tidal deformability here. In addition, the Λ̃ of the
EOSs in this figure changes only a little as the mass of the
primary star M1 changes, and a smaller B or a larger α
corresponds to a larger Λ̃.
As for the relation of two tidal deformabilities of the

BNS, Λ1 − Λ2, the result is shown in Fig. 9. In this figure,
we can find that, even though the constraint on the Λ1 − Λ2

is improved by the recent study [7] compared with the
previous one [6], every representative EOS satisfies the new
constraint. Specifically, the Λ1 − Λ2 relation for the EOS
with ðB1=4; αÞ ¼ ð117; 0.94Þ is just near the edge of the
new constraint.
Finally, for the sake of completeness, we present the

properties of the six strange quark stars based on the
representative EOSs in Table III, including the maximum
mass and the corresponding radius and central density as
well as the surface density; the radius and tidal deform-
ability of the star with 1.4 M⊙ and 1.6 M⊙, respectively;

FIG. 7. The tidal deformability of the strange quark star based
on the six representative EOSs, and the constraint on Λð1.4 M⊙Þ
from GW170817 in the early work [6] is also denoted in this
figure.

FIG. 8. The combined tidal deformabilities Λ̃ versus the primary
star massM1 of the BNS for the six representative EOSs, and the
constraint on Λ̃ by GW170817 based on the waveform model
TaylorF2, i.e., Λ̃ ∼ 340þ580

−240 for the case of symmetric 90%credible
interval and Λ̃ ∼ 340þ490

−290 for the case of highest posterior density
(HPD) 90% credible interval.
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and the combined tidal deformabilities for the symmetric
and HPD case. We can see that, among these strange quark
EOSs, only the third one with ðB1=4; αÞ ¼ ð117; 0.94Þ can
satisfy the two constraints on the star mass from PSR
J0740þ 6620 and the tidal deformability from GW17017,
respectively. Although a larger α can lead to a larger
maximummass, to maintain the (2þ 1)-flavor quark matter
more stable than the two-flavor case, from Table II, the α
cannot be larger than 0.94 for B1=4 ¼ 117 MeV; on the
other hand, a smaller α might let the star mass produced by
the EOS fail to meet with the mass constraint of
2.14þ0.10

−0.09 M⊙. Then how about changing the value of
B1=4? In Table III, we can see that the increase of B1=4

can only reduce the maximum mass, but the decrease of
B1=4 will make the EOS stiffer, possible to cause the tidal
deformability exceeding the constraint from GW170817.
For example, in Fig. 9, the Λ1 − Λ2 relation curve for
ðB1=4; αÞ ¼ ð117; 0.94Þ is already located near the inner
edge of the constraining line of TaylorF2, and we can infer
that the replacement to a smaller B1=4 is possible to push
this curve out. Thus, we can conclude that, through the
introduction of a Fierz-transformed Lagrangian to the
original NJL Lagrangian, we obtain the suitable strange

quark EOS to construct the strange quark star satisfying
both the mass and tidal deformability constraint on it, but,
according to our analysis, the parameter space is still very
small, not mentioning the original quark EOS. In a word,
these facts suggest that it is reasonable and necessary to
introduce a Fierz-transformed Lagrangian into the origi-
nal one.

IV. SUMMARY AND DISCUSSION

In this paper, to study the EOS and the structure of the
strange quark star, we introduce the Fierz-transformed
Lagrangian into the original (2þ 1)-flavor NJL model
Lagrangian with the parameter (1 − α) and α to combine
them linearly. With the mean-field approximation and PTR,
we fix the parameter set and get the quark number density
of the u, d, and s quarks. Considering the chemical
equilibrium and electric charge neutrality in the star, we
get the EOSs with different α and bag constant B. To
investigate the stableness of the system and make sure that
the (2þ 1)-flavor quark matter is more stable than the two-
flavor case, we compare the binding energies in these two
schemes and find that when B1=4 ¼ 117 MeV, α ≤ 0.94 or
B1=4 ¼ 130 MeV, α < 0.95, the (2þ 1)-flavor quark sys-
tem has a smaller binding energy than the two-flavor one,
thus being more stable. Then we calculate six representa-
tive strange quark EOSs with B1=4 ¼ 117 and 130MeVand
α ¼ 0, 0.5, and 0.94, respectively. And the sound velocities
are also calculated to investigate the rationality of them. As
a result, none of them exceeds the speed of light and can be
adopted for the following calculation.
Thenwe solve the TOVEq. (21) to get theM − R relation

of the strange quark star, and the differential Eq. (22) is also
solved during this process to obtain the tidal Love number k2
of the star. Via Eqs. (24) and (25), the dimensionless tidal
deformability Λ and combined tidal deformability Λ̃ during
the BNS merger can also be obtained. Considering the
astronomical observation of the neutron star mass and tidal
deformability from PSR J0740þ 6620 and GW170817,
respectively, the maximum mass and combined tidal
deformability are constrained to be Mmax > 2.05 M⊙ and
ðΛ̃symmetric; Λ̃HPDÞ ∼ ð340þ580

−240 ; 340
þ490
−290Þ, respectively. And

FIG. 9. The relation of two tidal deformabilities of the BNS,
Λ1 − Λ2 for the representative EOSs. The previous and the recent
constraint on Λ1 − Λ2 via the waveform model TaylorF2 are also
denoted in this figure.

TABLE III. Some properties of strange quark stars corresponding to the six representative EOSs: maximum gravitational massMmax,
radius Rm, central baryon density ϵc, surface baryon density ϵ0, radius of 1.4 M⊙ star Rð1.4Þ, tidal deformability of 1.4 M⊙ star Λð1.4Þ,
radius of 1.6 M⊙ star Rð1.6Þ, tidal deformability of 1.6 M⊙ star Λð1.6Þ, and the combined tidal deformability Λ̃ with a flat prior
(symmetric or HPD).

B1=4 [MeV] α Mmax [M⊙] Rm [km] ϵc [MeV=fm3] ϵ0 [MeV=fm3] Rð1.4Þ [km] Λð1.4Þ Rð1.6Þ [km] Λð1.6Þ Λ̃ (symmetric/HPD)

117 0 1.672 10.10 1328 208 10.69 336 10.61 108 405/380
0.50 1.705 10.18 1315 195 10.78 359 10.76 123 430/405
0.94 2.057 11.20 1120 182 11.58 634 11.83 285 738/698

130 0 1.491 8.83 1732 286 9.28 116 � � � � � � 149= � � �
0.50 1.523 8.91 1706 273 9.40 130 � � � � � � 164= � � �
0.94 1.866 9.88 1419 247 10.29 285 10.46 116 336=318
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based on the x-ray observations, especially the recent
NICER results, the radius of the star is constrained as
R1.44 M⊙

> 10.7 km [3], R1.4 M⊙
¼ 11.0þ0.9

−0.6 km [4], and
R ¼ 12.71þ1.14

−1.19 km with M ¼ 1.34þ0.15
−0.16M⊙ [5]. Over the

six representative EOSs, only the one with parameter
ðB1=4; αÞ ¼ ð117; 0.94Þ can satisfy all the above constraints
on mass, radius, and tidal deformabilities, reaching to the
maximum mass of 2.057 M⊙, and the combined tidal
deformability is ðΛ̃symmetric; Λ̃HPDÞ ¼ ð770; 724Þ. By analy-
sis, we know that the parameter space is actually very small
for our improved EOS model, not mentioning the original
onewithout the introduction of a Fierz transformationwhich
cannot even yield a star with 2 M⊙. Therefore, it is
reasonable and necessary to introduce a Fierz-transformed
Lagrangian into the original (2þ 1)-flavor NJL model. On
the other hand, our improved EOS model also gives an

explanation to the recent neutron star mass and tidal
deformability observation from the viewpoint of the strange
quark star.
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