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Magnetohydrodynamics (MHD) turbulence is likely to play an important role in several astrophysical
scenarios, where the magnetic Reynolds is very large. Numerically, these cases can be studied efficiently by
means of large-eddy simulations, in which the computational resources are used to evolve the system only
up to a finite grid size. The resolution is not fine enough to capture all the relevant small-scale physics at
play, which is instead effectively modeled by a set of additional terms in the evolution equations, dubbed as
subgrid-scale model. Here we extend such approach, commonly used in nonrelativistic/nonmagnetic/
incompressible fluid dynamics, to any general set of equation written in conservative form. We apply the
so-called gradient model, giving recipes for these general balance-law systems, including the relevant case
in which a nontrivial inversion of conserved to primitive fields is needed. In particular, we focus on the
relativistic compressible ideal MHD scenario, by providing for the first time and for any equation of state,
all the additional nontrivial subgrid-scale terms. As an application, we consider box simulations of the
relativistic Kelvin-Helmholtz instability, which is also the first mechanism responsible for the magnetic
field amplification in binary neutron star mergers and cannot be captured by the finest grid and longest
simulations available (currently and in the near future). We numerically assess the performance of our
model, by comparing it to the residuals coming from the filtering of high-resolution simulations. We find
that the model can fit very well the residuals coming from filtering simulations with a resolution a few times
higher. The application shown here explicitly considers the Minkovski metric, but it can be directly
extended to general relativity, thus settling the basis to implement for the first time the gradient subgrid
model in a general relativistic magnetohydrodynamics (GRMHD) binary merger large-eddy simulations.
Our results suggest that this approach will be potentially able to unveil much better the small-scale
dynamics achievable of full GRMHD simulations, or equivalently, to obtain the same results but saving a
considerable amount of computational time.
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I. INTRODUCTION

The first long-awaited simultaneous detection of gravi-
tational waves (GW) and electromagnetic radiation from a
binary neutron star (BNS) merger [1] contains a wealth of
data, including multiwavelength electromagnetic radiation
ranging from radio to gamma [2]. The existing models of
BNS mergers allow to compare the observed GW signal
with the theoretical waveform, thus inferring the chirp
mass, and, secondarily, constraining the mass ratio and the
deformability of nuclear matter. This analysis, together
with the associated short gamma-ray burst and the kilonova

emission [3], served to constrain some unanswered ques-
tions, regarding, for instance, the equation of state of
nuclear matter [4], the maximum mass supported by a
neutron star [5,6] and its radius [7], the amount of ejecta
[8,9], and the contribution of BNS mergers to heavy
elements production via r-processes [10].
Given the intrinsic difficulties of numerical general

relativistic magnetohydrodynamics (GRMHD) simula-
tions, a few works have consistently included the full set
of combined Einstein equations and magnetohydrodynam-
ics (MHD) equations to solve such scenarios. Although the
main features of the dynamics are quite clear from these
simulations, some interesting and more subtle questions
regarding the role of magnetic fields and the process they
undergo after the merger are still unclear. In particular,
during the merger, the Kevin-Helmholtz instability (KHI) is
triggered at the shear layer between the colliding stars and
induces a fast growth of any seed magnetic field [11–14].
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The instability develops faster for small-scale perturbation,
with a cutoff wavelength of the order of the shear layer
thickness (likely being ∼ meter or less). Additionally, other
two mechanisms related to the remnant’s rotation are
supposed to play an important role at longer timescales:
the magnetic winding, which creates and amplifies toroidal
magnetic field starting from a radial component, and the
magnetorotational instability [15].
A fundamental component of most theoretical models

of binary NS mergers involved the formation of a jet
perpendicular to the orbital plane, which is expected to be
produced due to the accretion of the disk onto a central
black hole. This jet is supposed to power the short gamma
ray burst [16,17], and it is often thought to require or be
favored by the presence of a strong, large-scale (dipolar)
magnetic field. The creation of the jet is not trivial, with
some simulations succeeding in generating it when start-
ing with a strong magnetic field [18], but most of them not
yet able to see it (see, for instance, [19]). In any case, the
growth and creation of a large-scale magnetic field have
not yet been observed, not even in simulations with the
highest numerical resolutions of O(10m) [14]. Even in
that case, they are not yet able to fully capture the KHI,
whose smallest and fastest-growing scales are of the order
of the discontinuity layer (probably a few meters or
smaller).
Limitations are being slowly overcome thanks to the

growing computational resources. However, the full cap-
ture of all scales by means of direct numerical simulation
(DNS) is still relatively far out of reach even for the most
advanced codes and infrastructures. Thus, it is well worth
to study alternative approaches that try to simulate the
physical processes at play with a much lower computa-
tional cost. There have been several attempts to effectively
model the dynamics occurring in the small scales. For
instance, Refs. [20,21] employ the viscous hydrodynamic
equations to model the differentially rotating remnants of
binary neutron stars mergers. Other works concern dynamo
mechanisms, in which the magnetic field growth can be
modeled by a simple algebraic modification of the induc-
tion equation [13,22].
An alternative approach to the problem comes from

computational fluid dynamics and it can be summarized in
the following statements. First, any numerical simulation
can be seen as a filtered version of the evolution equations.
Second, the filtering of any nonlinear combination of the
evolved fields (e.g., in the fluxes of the MHD equations)
implies the appearance of residual terms in the evolution
equations, corresponding to the unresolved dynamics in
the small scales. This approach, commonly known as
explicit large-eddy simulations (LES), relies first on this
separation of the scales of the solution (i.e., resolved and
unresolved), combined with an explicit subgrid scale
(SGS) model to account for the dynamics occurring at
the unresolved small scales [23–26]. Although LES are

commonly used in many engineering applications, includ-
ing combustion, acoustics, and simulations of the atmos-
pheric boundary layer and other fluids, its extension to
astrophysical magnetized plasmas is less spread [27]. Its
application to strongly self-gravitating fluids is even more
limited. To our knowledge, only Ref. [28] has so far
explicitly developed explicit LES for the relativistic
hydrodynamic equations with a covariant form of the
viscous SGS model, proposed by Smagorinsky in the 60s
[29] and commonly used in other contexts. Since the
Smagorinsky model is by definition purely dissipative, it
easily allows numerical stability, but it cannot capture any
possible backscatter toward larger scales. This is one of
the reasons why more elaborated models have been
considered in the nonrelativistic case.
In this paper, we propose a more general formulation of

the so-called gradient model [30,31], that we already
assessed and implemented in the nonrelativistic case
[32]. It allows to capture part of the unresolved small-
scale dynamics, regardless of the specificity of the problem.
The main advantage of this model is that it does not rely on
any physical assumption in the functional form of these
residual terms. First, we have to extend the LES formalism
to generic conservative evolution equations like the rela-
tivistic MHD ones. This system has some particularities;
first, the evolution equations of the evolved fields depend
on some other quantities, usually called primitive fields.
Second, the relation between the conserved and the
primitive fields is explicit and analytical, but the inverse
is usually not. After writing the LES for generalized
conservation equations, we will extend the gradient model
to this system.
Let us emphasize again our aim: assuming that the

relativistic MHD equations can be written as an evolution
system by using the 3þ 1 decomposition, how can we
efficiently mimic the effect of the small-scale dynamics,
which are missed due to the finite numerical resolution? The
goal of this work is, hence, to extend the use of a well-
established numerical technique (i.e., LES and a particular
SGS model) to relativistic MHD. It is worth to discuss here
some possible limitations of our approach. First, our
proposed SGS model for relativistic MHD is not gauge
invariant. The construction of the SGS model (and, more
generally, any LES) begins from the filtering operation,
which is to be associated in our context with the discretiza-
tion of the equations at the 3þ 1 level. Thus, the filtering
operator is not invariant but depends on the foliation, and
therefore, the SGS tensors arising from such filtering are not
gauge invariant neither. That means that different gauges
will have different averages and, as a consequence, different
subfilter scale (SFS) tensors. Since the SGS terms are
intended to effectively capture part of the missing small-
scale dynamics (contained in the SFS tensors), it is quite
natural to expect a gauge dependent SGS model, adapted
instead to the particular discretization of the system at the
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3þ 1 level. It is worth to reiterate that the gradient model
does not modify the continuous limit, nor the principal part
of the evolution system. In this sense, the inclusion of the
SGS terms is analogous to the numerical reconstruction
methods commonly used in the high-resolution shock-
capturing (HRSC) schemes, with the important difference
that a careful analysis of the equations needs to be done
in order to derive the functional forms of the SGS terms.
Once the latter is done, it can be applied to any system of
hyperbolic partial differential equations after the 3þ 1
decomposition. Another important point that we want to
stress is that the LES nonrelativistic MHD model has the
mathematical properties (conservation of total energy, mag-
netic helicity, approximate conservation of the cross hel-
icity) expected of a model derived from the MHD equations
by an averaging operation [33]. Similar extensions would be
expected to hold in the relativistic case. Finally, probably the
strongest limitation which could affect the effectiveness of
SGS model is the presence of strong shock in the simu-
lations. The SGS terms create unphysical oscillations near
the shocks which must be damped by the explicit intro-
duction of an additional artificial dissipation. Although the
HRSCmethods that we use can deal with these oscillations,
the order of accuracy degrades and the dissipation might
overcome the effects of the SGSmodel, as it is discussed for
instance in [34].
In Sec. II, we summarize the formalism of the filtering

process in LES, very common in a plethora of hydro-
dynamical simulations related to different fields, but less
known in relativistic hydrodynamics. Section III summa-
rizes the basics of the gradient SGS model. In Sec. IV,
we extend the LES formalism and the SGS gradient model
to a general system of conservation laws, applied to
nonrelativistic and relativistic compressible ideal MHD
in Sec. V. We validate the proposed model in a set of box
simulations of the relativistic KHI in Sec. VI, by comparing
the SGS model to the residuals coming from filtering high-
resolution simulations in Sec. VII. Finally, we summarize
our results in Sec. VIII.

II. LARGE-EDDY SIMULATIONS AND
SUBFILTER-SCALE RESIDUALS

From a formal point of view, the effect of finite
resolution in a numerical simulation is equivalent to a
low-pass spatial filter, with a filter size of the order of the
grid cell. Applied to a field fðx; tÞ, the filtering operation
separates the resolved part from the SFS residuals,

fðx; tÞ ¼ f̄ðx; tÞ þ f0ðx; tÞ: ð1Þ
Indicating the filter kernel with G, the filtering operator
over a field f can be written generically as

f̄ðx; tÞ ¼
Z

∞

−∞
Gðx − x0Þfðx0; tÞd3x0: ð2Þ

Large-eddy simulations consist of applying the filter to the
evolution equations under consideration and write them
down as a function only of the resolved fields.
Let us consider a generic evolution system written as

∂tUa þ ∂kFkaðUÞ ¼ 0; ð3Þ

where Ua is a set of evolved fields and FkaðUÞ is the
flux along the direction k of the field Ua. The equation
for the filtered fields can be obtained by applying the
filtering operator to the equations. Since the filtering
operator commutes with both spatial and time derivatives,
we have

∂tŪa þ ∂kFkaðŪÞ ¼ ∂kτ̄
ka; ð4Þ

where we have defined the SFS tensors related to the
fluxes as

τ̄kaF ≔ FkaðŪÞ − FkaðUÞ: ð5Þ

In order to see the effect of this scale separation in a
simple application, let us consider the well-known Burgers
equation, a long-standing field of research in LES [35]. In
the one-dimensional case, given the velocity field u, the
equation reads

∂tuþ 1

2
∂xu2 ¼ 0: ð6Þ

The equation for the filtered fields can be obtained by
applying the filtering operator to the equations, namely

∂tūþ 1

2
∂xū2 ¼ ∂xτ̄; τ̄≡ ū2 − u2: ð7Þ

Notice that the filtered equation is equivalent to the original
one except by a term proportional to τ̄ which represents the
SFS residuals, that is, the loss of small-scale information
due to the filtering process related to the nonlinear terms. If
in the region over which we average u has a definite sign
(which is usually the case except close to the shock), then
ū2 < u2 and τ̄ is negative definite, so that −τ̄ represents the
kinetic energy hidden in the SFS.
Regardless of the specific system considered, these new

terms always appear due to the noncommutativity of the
filtering operator with the nonlinear terms of the equations.
In an LES, which effectively only evolves ū and cannot
simulate the unresolved scales, the explicit expression of τ̄
is a priori unknown, and needs to be written as a function
of the filtered fields in order to close the system. This
implies in practice to approximate the SFS tensors with an
SGS model.
There are several ways of doing that, based mostly either

on physical arguments or on an expected self-similarity of
the solution. For instance, a popular, historical approach to
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fluid dynamics [29] is the setup of an artificial viscosity ν,
namely

τ̄ ¼ ū2 − u2 ≈ ν∂xū: ð8Þ

The viscosity parameter is often taken to be proportional to
Δ2j∂xūj, due to dimensional reasons [29] and in order to
ensure that this term vanishes in the continuum limit
Δ → 0, thus guaranteeing numerical convergence to the
continuum (or DNS) solution. The numerical value of the
proportionality coefficient can be fixed by hand or esti-
mated by means of dynamical procedures which assume
self-similarity (thus similar to a multiscale/multivariational
approach) [36]. Regardless of the value of ν, this functional
form of τ is equivalent to the viscous Burger’s equation.
However, in many cases, the physics involved does not

consist only in dissipation, but can involve, for instance,
inverse cascade and scale-dependent transfers of energy
between the fluid kinetic energy and the magnetic one.
Therefore, in those cases, any result coming from the LES
might be biased by the a priori choice of a given SGS
model. Hereafter, we will focus on the so-called gradient
model, which has already been shown to capture the main
features of the turbulent dynamics in our previous study for
nonrelativistic MHD turbulence box simulations [32].

III. THE SGS GRADIENT MODEL

Although many of the SFS terms are modeled based on
some physical properties, it is possible to compute them
relying only on mathematical arguments by considering the
analytical Taylor expansion of the SFS terms [30,31],
which rely on the properties of the filtering operator G.
A homogeneous isotropic low-pass filter is independent

on the direction (i.e., Gðx − x0Þ ¼ Gðjx − x0jÞ) and only
smooths out fluctuations on length scales smaller than the
filter size, leaving unchanged the variations of the solution
at larger length scales. In addition, the filter operator is
linear and commutes with spatial derivatives. Generically, it
can be written for any dimension D as

Gðjx − x0jÞ ¼
YD
i¼1

Giðjxi − x0ijÞ; ð9Þ

where Giðjxi − x0ijÞ is just the one-dimensional kernel
function.
The simplest low-pass filter is the mean value in a cubic

domain with size Δf in each Cartesian direction fxig,
described by the normalized kernel,

Giðjxi − x0ijÞ ¼
�
1=Δf if jxi − x0ij ≤ Δf=2

0 otherwise:
ð10Þ

Despite the appealing simplicity of the box filter, which
makes it very useful to perform numerical calculations,

we will see below that it is not suitable for analytical
calculations involving its derivatives, since they are not
continuous. Therefore, at a formal level, it is more practical
to introduce the normalized Gaussian kernel, which in the
space domain can be written as

Giðjxi − x0ijÞ ¼
�

1

4πξ

�
1=2

exp

�
−jxi − x0ij2

4ξ

�
; ð11Þ

where ξ defines the effective filtering width. Besides having
the same zeroth and first moments, Gaussian and box filters
have the same secondmoment ifwe set ξ ¼ Δ2

f=24. The filter
is a useful mathematical tool to analyze not only the different
scales on the solution, but also the structure of the evolution
equations, allowing us to distinguish between the resolved or
filtered fields and the unresolved ones on the SFS.
The main hypothesis is that the discretization of the

equations over a finite-size grid is approximated by a
filtering operator acting on the equations, with a Gaussian
kernel equivalent to a box filter with width Δf, Eq. (11). Its
D-dimensional Fourier transformed function is

ĜðkÞ ¼ expð−ξk2Þ; ð12Þ

where k is the wave number. The main idea is to compute
an approximation of the inverse filtering operator based on
gradient expansion of the filter kernel G, that is, an
approximation of the inverse Fourier transform of 1=Ĝ.
The first step is to perform a Taylor expansion of the
transformed function and its inverse in terms of the filter
scale, that is,

ĜðkÞ ¼
X∞
n¼0

ð−1Þn
n!

ðξk2Þn; ð13Þ

1

ĜðkÞ ¼
X∞
n¼0

1

n!
ðξk2Þn: ð14Þ

Considering the expansions to the fields f̂ and ˆ̄f, the
application of the inverse Fourier transformation yields to
an infinite series representation of the filter operator and its
inverse in terms of gradient operators acting on the fields,
namely [37]

f̄ ≡ G � f ¼
X∞
n¼0

1

n!
ðξ∇2Þnf; ð15Þ

f ≡ G−1 � f̄ ¼
X∞
n¼0

ð−1Þn
n!

ðξ∇2Þnf̄: ð16Þ

These expressions are absolutely convergent and formally
accurate at all orders, since the Gaussian kernel is infinitely
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differentiable and with unbound support. In fact, it was
found that these series converge for all canonical filters.
The main idea is to filter the evolution system by means

of a spatial filtering with Gaussian kernel (e.g., [38,39]).
Then, there appear unknown SFS tensors, which can be
computed explicitly by using the Taylor expansion
[Eq. (16)]. Therefore, we have obtained the following
useful relations to first order in ξ:

fg ⋍ f̄ ḡþ2ξ∇f̄ ·∇ḡ;

fgh ⋍ f̄ ḡ h̄þ2ξðh̄∇f̄ · ∇ḡþ ḡ∇f̄ ·∇h̄þ f̄∇ḡ · ∇h̄Þ;
fðgÞ ⋍ fðḡÞ þ ξ

�
∇2fðḡÞ − df

dḡ
∇2ḡ

�

⋍ fðḡÞ þ ξ∇ df
dḡ

·∇ḡ;

where “⋍” means (here and thereafter) “accurate up to
Oðξ2Þ terms” and ∇ðÞ ·∇ðÞ denotes contractions of spatial
derivatives. Also, note that by df

dḡ we really mean df
dg ðḡÞ.

Going back to our previous Burger’s equation example,
it is easy to model the SFS terms appearing in Eq. (7) using
the gradient expansion above, namely

τ̄≡ ū2 − u2 ⋍ −2ξ∂xū∂xū: ð17Þ

In principle, corrections to these expression are expected
due to the form factor (due to the kernel shape) and the
contribution from higher orders. In other words, this
approximated expression can help as long as we can
capture most of the dynamics with our LES, leaving to
the SGS the task of mimicking the small-scale contribu-
tions. Notice that the SGS terms scale with ξ ∝ Δ2

f, thus
ensuring the numerical convergence (i.e., it vanishes in the
continuous limit Δf → 0).
Regardless on these quite obvious caveats, notice that

this prescription is very different from the viscous one
given by Eq. (8): one arises from physical considerations,
while the other just frommathematical ones. The first one is
very useful in scenarios where the physics involved is well
known and present universal behavior, like in pure hydro-
dynamical, nonrelativistic cases. However, in the case of
MHD, the nonlinear interplay between kinetic and mag-
netic energy is rich of different physical mechanisms
(dynamo effect, dissipation, helicity transfer…) at different
scales. In these cases, it is more useful to have an SGS
model which relies only on the mathematical features
(basically, the gradients) of the involved field.

IV. GRADIENT MODEL FOR GENERAL
SYSTEM OF CONSERVATION LAWS

The gradient model described before has been applied
mainly to the nonrelativistic hydrodynamics or MHD
equations, often in their incompressible version. In order

to generalize it to the relativistic case, we tackle the
problem from a broader perspective by considering a
general system of conservation laws,

∂tCa þ ∂kFkaðPÞ ¼ 0; ð18Þ

where Ca is a set of conserved evolved variables and
FkaðPÞ is the flux along the direction k of the field Ca,
which can be expressed in terms of the primitive fields Pa.
The transformations between conserved and primitive
fields can be expressed formally as

Ca ¼ faðPÞ; Pa ≔ ðf−1ÞaðCÞ≡ gaðCÞ:

Notice that, although the relation fa between conserved
and primitive fields is always known explicitly, the inverse
function ga is not analytical in the relativistic case, where it
usually needs to be solved numerically.
Conservative-scheme simulations are then equivalent to

a filtered version of the evolution equations, such that the
values of the filtered conserved variables C̄a are numeri-
cally known. The filtering operation, implicitly contained
in an LES, allows us to evaluate P̃a ≔ gaðC̄Þ but not
P̄a ≡ gaðCÞ, which is what really appears in the filtered
version of the equations. This distinction suggests a differ-
ent definition of the SFS tensor in the filtered equations,
which can be obtained again by applying the filter to
Eq. (18), namely

∂tC̄a þ ∂kFkaðP̃Þ ¼ ∂kτ̄
ka; ð19Þ

where hereafter the indexes “a, b, e” represent the different
fields of the set of primitive and conserved quantities, while
“i, j, k” represent the spatial directions. Here we have
defined the SFS tensors related to the fluxes as

τ̄kaF ≔ FkaðP̃Þ − FkaðPÞ; ð20Þ

that is, in terms of P̃a instead of P̄a, which are the fields that
we can compute from the evolved C̄a. Notice that these SFS
tensors for the fluxes are not special, and similar ones can
be calculated for any function. In particular, such residuals
can be computed for the primitive fields Pa (or for any other
nonconserved field), namely

τ̄aP ≔ gaðC̄Þ − gaðCÞ; ð21Þ

where the labels on τ̄ indicates to which field (and specific
component of the field) the SFS residuals are referred.
In general, neither the SFS tensors associated to the

primitive fields nor to the fluxes are known, and they can be
important whenever a non-negligible part of the dynamics
occurs in the small scales. This is the typical scenario in
turbulence, where the fluctuations are relevant. The task is
now to exploit the above gradient expansion of the filter
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kernel to provide a closed expression for τ̄kaF (20) in terms
only of the filtered variables and its derivatives. As we will
see, this process essentially involves the filtering of
composed functions, the Taylor expansion, and the inverse
function theorem.
Let us start by expanding the expression

FkaðPÞ ⋍ FkaðP̄Þ þ ξ

�
∇2FkaðP̄Þ − dFka

dP̄b ∇2P̄b

�
; ð22Þ

where repeated index “a; b; ::” denotes summation over the
space of fields. Then, we can Taylor expand FkaðP̄Þ around
P̃, to first order in ξ, as

FkaðP̄Þ ⋍ FkaðP̃Þ þ ξ
dFka

dP̃b

�
∇2P̃b −

dP̃b

dC̄e ∇2C̄e

�
; ð23Þ

and by the inverse function theorem we can express
(locally) the Jacobian of the inverse variable transformation
as the inverse of the Jacobian. That is,

dP̃
dC̄

≡
�
dC
dP

�
−1
����
P̃;C̄

; ð24Þ

meaning the matrix inversion of the Jacobian dCa

dPb, evaluated
at the filtered variables (namely, either C̄a or P̃a).
Finally, by noticing that we can interchange P̄ ⇄ P̃ (at

first order in ξ) in the last term of (22), and then combining
it with (23), we finally get the functional form of the SGS
tensor τkaF , namely

τkaF ¼ ξ

�
dFka

dP̃b

dP̃b

dC̄e ∇2C̄e −∇2FkaðP̃Þ
�
; ð25Þ

which approximates the SFS residuals of the fluxes (i.e.,
τkaF ⋍ τ̄kaF ). In most of the cases, it is useful to reexpress the
SGS tensor τka above in the following equivalent form:

τkaF ¼ −ξ∇ dFka

dC̄b ·∇C̄b: ð26Þ

Due to its simplicity we will use this relation in the
following, although in some specific evolution systems
other equivalent forms can be preferred.1

V. APPLICATIONS TO COMPRESSIBLE
IDEAL MHD

We will check the validity of our approach by applying
first to the nonrelativistic MHD equations, for which the

LES equations with the gradient model have been studied
for decades and were derived in the compressible case for a
generic equation of state [32]. After that, we will consider
the unexplored MHD relativistic case.

A. Nonrelativistic case

The set of primitive fields for the nonrelativistic MHD
is given by Pa ¼ fρ; vi; ϵ; Big (density, velocity, specific
internal energy, and magnetic field, respectively). The con-
served ones are Ca ¼ fρ; Ni; U; Big (density, momentum
density, energy density, and magnetic field), which can be
written explicitly as a function of the primitive ones as

Ca ¼ faðPÞ ¼
�
ρ; ρvi; ρϵþ ρ

v2

2
þ B2

2
; Bi

�
: ð27Þ

The evolution system is thus written as

∂tρþ ∂kNk ¼ 0;

∂tNi þ ∂kTki ¼ 0;

∂tU þ ∂kSk ¼ 0;

∂tBi þ ∂kMki ¼ 0;

where the fluxes read

Nk ¼ ρvk;

Tki ¼ ρvivk − BiBk þ δki½pðρ; ϵÞ þ B2=2�;
Sk ¼ ½U þ pðρ; ϵÞ þ B2=2�vk − ðv · BÞBk;

Mki ¼ 2v½iBk�;

with 2v½iBk� ≔ viBk − Bivk denoting the usual antisym-
metrization operation. Notice that these evolution equations
involve also the pressure pðρ; ϵÞ, so an equation of state is
required in order to close the system. The filtered version of
the system, including the SFS terms in the right-hand
sides, is

∂tρ̄þ ∂kNkðP̃Þ ¼ ∂kτ̄
k
N

∂tN̄i þ ∂kTkiðP̃Þ ¼ ∂kτ̄
ki
T

∂tŪ þ ∂kSkðP̃Þ ¼ ∂kτ̄
k
S

∂tB̄i þ ∂kMkiðP̃Þ ¼ ∂kτ̄
ki
M:

In this problem, the relation between conserved and
primitives is easily invertible, allowing to express all the
fluxes as explicit functions of the conserved quantities.
Thus, it is possible to compute dFka

dC̄b ≡ fdNk

dC̄b ; dT
ki

dC̄b ; dS
k

dC̄b ; dM
ki

dC̄b g,
and then use Eq. (26) to solve for the SGS tensors τkaF . The
former can be written explicitly as

1For instance, another interesting equivalent expression is
given by τka ¼ −ξ d2Fka

dC̄bdC̄c ∇C̄b ·∇C̄c, which may be useful in
situations where the fluxes can be expressed in terms of
conserved quantities in a close form.
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dNk

dC̄b ≡
�
dNk

dρ̄
;
dNk

dN̄j ;
dNk

dŪ
;
dNk

dB̄j

�
¼ f0; δkj ; 0; 0g

dTki

dC̄b ¼ f−ṽiṽk; 2δðij ṽkÞ; 0;−2δðij B̄kÞ þ δkiB̄jg þ δki
dp̃
dC̄b

dSk

dC̄b ¼
�
−
S̃k

ρ̄
;
Θ̃
ρ̄
δkj −

B̄jB̄k

ρ̄
; ṽk; B̄jṽk − ṽjB̄k − ðṽ · B̄Þδkj

�

þ ṽk
dp̃
dC̄a

dMki

dC̄b ¼
�
2

ρ̄
B̄½iṽk�;

2

ρ̄
δ½kj B̄

i�; 0; 2ṽ½kδi�j

�
;

where p̃≡ pðρ̄; ϵ̃Þ, S̃k ≡ SkðP̃Þ ¼ Θ̃ṽk − ðṽ · B̄ÞB̄k, and
Θ̃ ≔ Ū þ p̃þ B̄2

2
. Also, we will need the following deriva-

tive:

dp̃
dC̄b ¼

�
dp̃
dρ̄

−
ðϵ̃ − ṽ2=2Þ

ρ̄

dp̃
dẽ

;−
ṽj
ρ̄

dp̃
dϵ̃

;
1

ρ̄

dp̃
dϵ̃

;−
B̄j

ρ̄

dp̃
dϵ̃

�
:

Finally, we obtain

τkN ¼ −ξ∇ dN̄k

dC̄b ·∇C̄b ¼ 0; ð28Þ

τkiT ¼ −ξ∇ dTki

dC̄b · ∇C̄b ¼ τkikin − τkimag þ δkiτpres; ð29Þ

τkS ¼ −ξ∇ dSk

dC̄b ·∇C̄b ¼ τkener þ ṽkτpres; ð30Þ

τkiM ¼ −ξ∇ dMki

dC̄b ·∇C̄b ¼ τkiind; ð31Þ

where the SGS tensors have been splatted conveniently in
order to connect with previous works, being

τkikin ¼ −2ξρ̄∇ṽi ·∇ṽk; ð32Þ
τkimag ¼ −2ξ∇B̄i ·∇B̄k; ð33Þ

τpres ¼ −ξ∇ dp̃
dC̄b · ∇C̄b þ 1

2
δlsτ

ls
mag

¼ −ξ
�
∇ dp̃
dρ̃

· ∇ρ̄þ∇ dp̃
dϵ̃

·∇ϵ̃ − 2

ρ̃

dp̃
dϵ̃

∇ρ̃ ·∇ϵ̃

þ∇B̄j ·∇B̄j −
1

ρ̃

dp̃
dϵ̃

ðρ̄∇ṽj ·∇ṽj þ∇B̄j ·∇B̄jÞ
�
;

ð34Þ
τkener ¼ −2ξ½∇Θ̃ · ∇ṽk þ ðB̄kB̄j∇ṽj − Θ̃∇ṽkÞ ·∇ðln ρ̃Þ

− B̄k∇B̄j ·∇ṽj −∇ðṽ · B̄Þ · ∇B̄k� ð35Þ
τkiind ¼ −4ξ½∇ṽ½k ·∇B̄i� þ B̄½i∇ṽk� ·∇ðln ρ̄Þ�: ð36Þ

Notice that these results, obtained starting from a general
formulation and applying it to the nonrelativistic MHD

case, agree with previous derivations calculated for this
specific case [32]. The results here were derived for a
general equation of state, which is reflected on the
expression for τpres. In particular, the form of τpres is greatly
simplified for an ideal gas equation of state.

B. Relativistic case

Let us now consider the special relativistic MHD, for
which a gradient SGS model has not been calculated so far.
In this case, the set of primitive variables is given by
Pa ¼ fρ; vi; ϵ; Big, the conserved ones are Ca ¼ fD; Si;
U; Big, and the relations among them are given by

D ¼ ρW;

Si ¼ ðhW2 þ B2Þvi − ðv · BÞBi;

U ¼ hW2 − pþ B2 −
1

2

�
ðv · BÞ2 þ B2

W2

�
;

Bi ¼ Bi;

where W ¼ ð1 − v2Þ−1=2 is the Lorentz factor, the pressure
p is defined through an equation of state, and the enthalpy
is defined by h ≔ ρð1þ ϵÞ þ p. The evolution system is
written as

∂tDþ ∂kNk ¼ 0; Nk ¼ Dvk; ð37Þ

∂tSi þ ∂kTki ¼ 0; ð38Þ

∂tU þ ∂kSk ¼ 0; ð39Þ

∂tBi þ ∂kMki ¼ 0; Mki ¼ 2B½ivk�; ð40Þ

where

Tki ¼ hW2vkvi − EkEi − BkBi þ δki
�
pþ 1

2
ðE2 þ B2Þ

�
:

Since the electric field can be obtained from the ideal MHD
condition Ei ¼ −ϵijkvjBk, all the previous fluxes can be
easily written in terms of the primitive fields. Finally, we
shall define E ≔ hW2 and Θ ≔ E þ B2 in order to simplify
our following calculations.
The filtered version of the system can be written as

∂tD̄þ ∂kNkðP̃Þ ¼ ∂kτ̄
k
N; ð41Þ

∂tS̄i þ ∂kTkiðP̃Þ ¼ ∂kτ̄
ki
T ; ð42Þ

∂tŪ þ ∂kSkðP̃Þ ¼ ∂kτ̄
k
S; ð43Þ

∂tB̄i þ ∂kMkiðP̃Þ ¼ ∂kτ̄
ki
M; ð44Þ
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where on the right-hand side we have introduced the SFS
tensors associated to each flux, as defined above.
As in the nonrelativistic case, we propose to model the

filtered SFS terms appearing in Eqs. (41)–(44) by means of
a compact application of the gradient model. First of all, we
define the double gradient operator H, acting on any given
field X, as

HX ¼ HðXÞ ≔ ∇ dX
dC̄b ·∇C̄b; ð45Þ

which satisfies a sort of generalized Leibniz’s rule,

HðXYÞ ¼ XHðYÞ þ YHðXÞ þ 2∇X ·∇Y: ð46Þ

Notice that, when acting on any conserved field, it vanishes
by its definition (i.e., HD ¼ Hi

S ¼ HU ¼ Hi
B ¼ 0). On the

other hand, when the operator applies to a nonconserved
variable, the quantity is nonzero. This holds in particular for
fp̃; Θ̃; ṽkg as we shall see below.
By applying these rules and using Eq. (26), the

SGS gradient tensors approximating the SFS terms of
Eqs. (41)–(44) read

τkN ¼ −ξHk
N; τkiT ¼ −ξHki

T

τkS ¼ 0; τkiM ¼ −ξHki
M; ð47Þ

where the set of the H tensors, after some algebraic
manipulations, can be written as2

Hk
N ¼ 2∇D̄ · ∇ṽk þ D̄Hk

v; ð48Þ

Hki
T ¼ 2½∇Ẽ · ∇ðṽiṽkÞ þ ẼðṽðiHkÞ

v þ∇ṽi ·∇ṽkÞ�
þ ṽiṽkHE − 2½∇B̄i ·∇B̄k þ∇Ẽi · ∇Ẽk þ ẼðiHkÞ

E �
þ δki½Hp þ∇B̄j ·∇B̄j þ∇Ẽj · ∇Ẽj þ ẼjH

j
E�;

ð49Þ

Hki
M ¼ 4∇B̄½i · ∇ṽk� þ 2B̄½iHk�

v ; ð50Þ

where Hi
E is just the Hodge dual of Hij

M, i.e.,
Hi

E ¼ 1
2
ϵijkH

jk
M. Notice the values of the double gradient

appearing above, fHp;HΘ; Hk
v;Hk

E;HEg, are meant to
approximate the SFS residuals related to the nonconserved
fields, fτ̄p; τ̄Θ; τ̄kv; τ̄kE; τ̄Eg, defined according to Eq. (21) as
τ̄X ⋍ −ξHX (exactly like for the conserved field SFS
residuals). Their explicit expressions are obtained by
computing the following set of equations in the order in
which they appear, where the quantities Ψ̃ denote the
auxiliary fields which are used to simplify the presentation
(and also to facilitate their implementation):

Ψ̃k
v ¼

2

Θ̃

�
∇ðṽ · B̄Þ · ∇B̄k −∇Θ̃ ·∇ṽk þ B̄k

Ẽ
½Θ̃∇B̄j ·∇ṽj þ B̄j∇B̄j ·∇ðṽ · B̄Þ − B̄j∇ṽj ·∇Θ̃�

�
;

Ψ̃ki
M ¼ 4

Θ̃
½Θ̃∇B̄½i ·∇ṽk� þ B̄½i∇B̄k� · ∇ðṽ · B̄Þ − B̄½i∇ṽk� ·∇Θ̃�;

Ψ̃Θ ¼ Θ̃
Θ̃ − Ẽ2

f∇B̄j ·∇B̄j −∇Ẽj ·∇Ẽj − B̄½iṽk�Ψ̃ki
Mg;

Ψ̃A ¼ W̃2

�
p̃
dp̃
dϵ̃

þ ρ̃2
dp̃
dρ̃

�
;

Hp

Θ̃ − Ẽ2
¼ ẼW̃2

ðρ̃ Ẽ −Ψ̃AÞðΘ̃ − Ẽ2ÞW̃2 þ Ψ̃AΘ̃

�
ρ̃

�
∇ dp̃
dρ̃

·∇ρ̃þ∇ dp̃
dϵ̃

· ∇ϵ̃
�
− 2

dp̃
dϵ̃

∇ρ̃ · ∇ϵ̃

−
�
Ẽ
dp̃
dϵ̃

− Ψ̃A

��
W̃2

4
∇W̃−2 ·∇W̃−2 þ∇W̃−2 · ∇ðln ρ̃Þ

�
−

2

W̃2

dp̃
dϵ̃

½∇B̄j · ∇B̄j þ∇W̃2 ·∇h̃�

−
�
Ẽ
dp̃
dϵ̃

þ Ψ̃A

�
½ṽkΨ̃k

v þ∇ṽj · ∇ṽj þ W̃2∇W̃−2 · ∇W̃−2� þ 1

Ẽ

��
Ẽ
dp̃
dϵ̃

þ Ψ̃A

�
ðΘ̃ − Ẽ2Þ − Ψ̃AΘ̃

W̃2

�
Ψ̃Θ

Θ̃

�
; ð51Þ

2We use a mixed notation for scalar products when it comes about the gradients, i.e., ∇X ·∇Y instead of ∇iX∇iY, in order to make
well visible the gradient terms, which are the core of the SGS model and always appear contracted to each other.
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HE ¼ Hp −∇B̄j ·∇B̄j −∇Ẽj ·∇Ẽj − ẼkHk
E; ð52Þ

HΘ ¼ Ψ̃Θ þ Θ̃
Θ̃ − Ẽ2

Hp; ð53Þ

Hk
v ≔ Ψ̃k

v −
�
ṽk þ ṽ · B̄

Ẽ
B̄k

�
HΘ

Θ̃
: ð54Þ

Note that these equations are remarkably much more
involved than in the well-known nonrelativistic case
[32]. The main difference being, of course, the more
complicate relationship between the conserved and primi-
tive variables in the relativistic setting. Notice that the
continuity equation now acquires an SFS term, while the
energy equation does not contain any SFS residual. Such
“exchanged roles” of the continuity and energy equations
come from the nonrelativistic limit and can be seen already
at the level of the equations.
Notice also that, depending on the equation of state,

some terms can be considerably simplified. For instance,
Ψ̃A ¼ W2Γpρ for an ideal gas equation-of-state with
coefficient Γ.

VI. APPLICATION TO MAGNETIC
RELATIVISTIC SIMULATIONS

One way to check the validity of the relativistic SGS
gradient model is by performing a detailed analysis of
numerical simulations displaying turbulence. Therefore, we
will consider a decaying (i.e., nonforced) turbulent dynam-
ics in relativistic MHD, triggered by the KHI, a scenario
already studied especially in the nonrelativistic case
[40,41]. Notice that the KHI provides different stages of
the turbulent flow: the initial development at small scales,
the transfer of kinetic to magnetic energy, the saturation and
mixing, and the final slow decay [32,40]. Moreover, the
KHI is thought to take place in binary neutron star mergers
and will be the natural mechanism to be studied in the
forthcoming general relativistic simulations.

A. Setup

The initial setup is just an extension from the non-
relativistic [32,41] to the special relativistic case. We evolve
Eqs. (37)–(40) by using the SAMRAI infrastructure [42,43]
with a code generated by the platform Simflowny [44,45].
The numerical schemes are the same used in Ref. [32],
which were described in detailed in [46,47]. The discre-
tization of the continuum equations is performed by using
the Method of Lines, which allows to address separately the
time and the space discretization. We employ HRSC
methods [48] to deal with the possible appearance of
shocks and to take advantage of the existence of weak
solutions in the equations. The fluxes at the cell interfaces
are calculated by combining the Lax-Friedrichs splitting
[49] with the WENO5Z [50] high-order nonoscillatory

reconstruction scheme. The time integration of the resulting
semidiscrete equations is performed by using a fourth-order
Runge-Kutta scheme, which ensures the stability and
convergence of the solution for a small enough time
step Δt ≤ 0.4Δ.
We set our problem in Cartesian coordinates, considering

a periodic box ½−L=2; L=2�3. We shall consider different
resolutions between 1283 and 10243, and evolve the system
up to t ¼ 20. The primitive fields read initially,

ρ ¼ ρ0 þ ρ1sgnðyÞ tanh
�jyj − yl

al

�
; ð55Þ

vx ¼ vx0sgnðyÞ tanh
�jyj − yl

al

�
þ δvx; ð56Þ

vy ¼ δvysgnðyÞ exp
�
−
ðjyj − ylÞ2

σ2y

�
; ð57Þ

vz ¼ vz0sgnðyÞ exp
�
−
ðjyj − ylÞ2

σ2z

�
þ δvz; ð58Þ

Bx ¼ Bx0; Bx ¼ By0; Bz ¼ Bz0; p ¼ p0;

ð59Þ
where al is the mixing layer scale, yl is the distance of the
shear layers to the plane y ¼ 0, σy and σz are the extension
scale of the initial perturbation in the y direction and the
profile of vz, respectively. The main flow is initially given
by vx0. The standard values that we consider are L ¼ 1,
yl ¼ 1=4, ρ0 ¼ 1.5, ρ1 ¼ 0.5, al ¼ 0.01, vx0 ¼ 0.5,
Bx0 ¼ 0.001, By0 ¼ Bz0 ¼ 0, p0 ¼ 1, and σ2z ¼ 0.1. We
consider an ideal gas equation of state, p ¼ ðγ − 1Þρϵ, with
γ ¼ 4=3. The purpose of this paper is not to explore the
dynamics for different parameters (see, for instance, [40]
for a discussion about the role of the initial values of Mach
number and magnetic field).
The initial perturbation, δvi, is a superposition of single-

mode perturbation with a number of nodes ni ∈ ½1; N=2�,
periodic in the boundary box,

δvi ¼ δv0 sinð2πxini=LÞ: ð60Þ

We underline that the specific form of the initial perturba-
tion has no influence on the asymptotic turbulent behavior,
as long as we excite the entire spectrum of modes, which
can be achieved easily if the modes are not the same (or
multiple) to each other, ni ≫ 1 and δvi ≪ v0x. Hereafter,
we use nx ¼ 11, ny ¼ 7, nz ¼ 5, δvx ¼ δvz ¼ 0.01,
δvy ¼ 0.1, σ2y ¼ 0.01. Since the KHI is known to grow
faster for smaller scales, and due to the absence of physical
viscosity in this test, we do not expect a numerical
convergence, at least in the growth phase, since the more
we refine the grid, the more fast-growing excited mode will
be included. This actually reproduces the scenario of the
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binary neutron star mergers, where the finest available
resolutions are likely still very far from being able to capture
all the relevant modes, and the simulations do not show
numerical convergence, in terms of total magnetic energy
and its spectra. See also our previous work [32] for more
details and for the general, similar behavior in the non-
relativistic case.

B. General behavior

The following qualitative behavior is similar for all the
resolutions considered. The development of the turbulent
dynamics is illustrated in Fig. 1, where the density
distribution over the slice z ¼ 0 is displayed at times t ¼
f2; 10; 20g for the highest resolution case with N ¼ 10243.
At the beginning, the instability develops as small-scale
structures with modes given by the initial perturbation. The
development starts at the shear layer, where the transfer of
kinetic to magnetic energy (dynamo effect) is fast up to
t ∼ 2 for all the resolutions (left panel), extending up to
t ∼ 4 for the highest one. Then, a larger scale mixing takes
place (middle and right panels), during which the effective-
ness of the dynamo mechanism reduces. After that period,
the mixing is completed and the fluid looks isotropic and
homogeneous.
In Fig. 2, we compare the evolution of the integrated

kinetic and magnetic energy for different resolutions. In our
initially kinetic-dominated setup, both the internal and
magnetic energies grow during the evolution at the expense
of the kinetic energy. For this particular setup, the internal
energy is quantitatively the dominant one (due to the
chosen values of the initial pressure), while the magnetic
energy is always quite smaller than the kinetic energy.
As it has been observed already by several works, the

transfer from kinetic to magnetic energy is more prominent
at small scales. Therefore, since the initial perturbation
spans all the scales and we have no viscosity included,
when we consider higher resolution we capture more

unstable modes, which in turn enhance further the magnetic
growth. For the explored resolutions, we do not observe yet
a saturation of the magnetic field in the homogeneous
phase. Actually, in all cases, the dynamo mechanism slowly
goes on, allowing in time to reduce the difference between
the total kinetic and magnetic energy (possibly showing a
slow approach to equipartition at the end of our N ¼ 10243

simulation). Similar behaviors are observed in the non-
relativistic case for this problem. The saturation level will
arguably be set by the strong feedback of large magnetic
scales, but longer, and possible even more accurate sim-
ulations are needed to have a definitive answer.

FIG. 1. Evolution of the rest-mass density ρ for the N ¼ 10243 case, in the z ¼ 0 plane, at t ¼ 2, 10, 20 (from left to right). The initial
perturbations seed the initial eddies typical of the KHI, which quickly develops a turbulent nonforced dynamics.

FIG. 2. Evolution of the integrated energies, kinetic in solid lines
and magnetic with dashed lines, for different resolutions. As the
resolution increases, the turbulent regime develops faster and the
transference from kinetic tomagnetic energy ismore predominant.
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C. Spectra

In addition to volume-integrated quantities, whenever
there is turbulence it is illustrative to compute also the
radially averaged spectrum [32,51]. For a given field f
defined in a periodic box of sideL, we use commonpython
functions to calculate its discrete fast Fourier transform

f̂ðk⃗Þ ¼ Σx⃗fðx⃗Þe−ik⃗·x⃗, where the sum is performed over the
N3 spatial points equally spaced in each direction, with
kj ¼ nΔk, where Δk ¼ 2π

L and n ∈ ½0; N=2� is an integer.
We consider the radial coordinates of the Fourier space,

describing it with Δk-wide radial bins also centered on
kr ¼ fnΔkg. Then, we calculate the spectra EðkÞ as
averages h·ikr over the annular bins of the power density
per unit of radial wave number in three dimensional,

EkðkrÞ ¼
L34π

ð2πÞ3N6
hk2jdffiffiffiρp

v⃗j2ðk⃗Þikr

EmðkrÞ ¼
L34π

ð2πÞ3N6
hk2j ˆB⃗j2ðk⃗Þikr ; ð61Þ

where k2 ¼ k2x þ k2y þ k2z and the normalization arises from
the Parseval identity. For further technical considerations
about normalizations, caveats (e.g., the systematic noise
introduced by the conversion to radial coordinates in the
Fourier space) and possible corrective factors, we refer to a
recent dedicated paper [51]. The analysis of our simulations
with a large number of points has been parallelized by
using the python package [52] due to the large memory
required.
The obtained spectra for t ¼ f2; 10; 20g are displayed in

Fig. 3. First of all, note that all spectra show a change of
slope at k ∼ few times 2π=Δ, due to numerical dissipation.
This depends on the scheme, and it is a feature that already
appeared in other relativistic hydrodynamical turbulence
works employing finite differences [53]. A possible cure

could be to use spectral methods, which are suitable for
bounding box simulations, but not for a complex astro-
physical scenario. The change of slope means that the
dynamics of the smallest resolvable scale is partially
numerically damped. In the literature, this is actually a
known issue that goes under the name of implicit LES,
meaning that the numerical dissipation effectively acts as
an (uncontrollable) SGS Smagorinsky-like model within
the simulation.
With this caveat in mind, we can analyze the spectra,

focusingmostly on the large and intermediate scales. As time
goes on, there is a direct cascade transferring kinetic energy
from large to small scales (i.e., low to high wave numbers).
Therefore, the kinetic energy spectra extend to larger wave
numbers (i.e., smaller scales) with a Kolmogorov’s slope
∝ k−5=3, as the resolution is increased.
When one looks at the magnetic spectra, one can see that

most energy tends to be stored at small scales, because
these are where they are injected via dynamo process. The
magnetic energy is spread also at larger scales (what is
known as inverse cascade), so that we obtain a similar
shape for the magnetic energy (roughly compatible with the
analytical Kazantsev dependence ∝ k3=2 [54]). The more
we rise the resolution, the more effective is this dynamo
mechanism. Since the physical limit to the small scale is set
by the viscosity (which in turns sets the thickness of the
shear layer), which is neglected here, we can understand the
lack of numerical convergence, at least in the growth phase.
This explains the evolution of the total magnetic energy
seen above.
Ideally, the implementation of an effective SGS model

should properly include the feedback of the small-scale
dynamics on the magnetic energy distribution and its
growth. That should provide a magnetic spectrum which,
at the intermediate and large scales, should be similar to a
case with a much higher resolution (see our nonrelativistic
results in [32]).

FIG. 3. Spectra of the kinetic (solid) and magnetic (dashed) energies, for different resolutions, at three representative times; very early,
when the turbulence is just quickly developing, an intermediate state when it is growing but at a slower pace and a late state when it
saturated already (for the high-resolution cases). As the resolution increases, the turbulent regime develops faster and the transference
from kinetic to magnetic energy is more predominant.
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VII. A PRIORI FITTING

A. Methodology

The most important analysis of our simulations is the
a priori test of the gradient SGS model. We run simulations
with a certain grid step Δ ¼ L=N. Then, we consider a
snapshot at a given time and spatially filter all the evolved
fields. The simplest recipe is to use a simple average group
of S3f cells, where we define Sf as the filter factor. This
corresponds to apply a filter in the real space, with a box
kernel of size Δf ¼ SfΔ, obtaining filtered fields evaluated
over N3

f ¼ ðN=SfÞ3 points. The information lost in the
filtering process is the field variation contained between the
scales represented by Nf and N. The solution in these SFS
can be quantitatively evaluated by the explicit formal
definitions of τ̄ as defined above in Eq. (20). Let us
consider a simple case as an illustrative example, with a
SFS tensor defined as τ̄ðx⃗fÞ ¼ f̄ðx⃗fÞḡðx⃗fÞ − fgðx⃗fÞ. We
can evaluate it at each of the N3

f positions of the filtered
mesh fx⃗fg as

τ̄ðx⃗fÞ ¼
1

S3f
½Σifiðx⃗iÞΣigiðx⃗iÞ − Σifiðx⃗iÞgiðx⃗iÞ�; ð62Þ

where i indicates each of the S3f discrete positions con-
sidered inside the cell centered in x⃗f. Note that this
estimation is not an exact evaluation of the loss informa-
tion, since, by construction, it can only include the range
of scales ½Δ; SfΔ�. The information for scales < Δ cannot
be evaluated.
Once built each component of each SFS tensor, one can

consider a given SGS model τ. A measurement of the linear
correlation between the numerical data and the different
models can be estimated with the Pearson correlation
coefficient between the SFS and SGS quantities,

P ¼ Corrfτ̄ðx⃗Þ; τðx⃗Þg: ð63Þ

While the Pearson coefficient tests the functional form, one
can also consider each SGS component with a pre-coef-
ficient C to be adjusted. Its best-fit value can be calculated
by the minimizing the L2 norm, Σ½τ̄ðx⃗fÞ − Cτðx⃗fÞ�2, where
the sum is performed over all the positions fx⃗fg. The
minimization gives simply

Cbest ¼
Στ̄ðx⃗fÞτðx⃗fÞ
Στðx⃗fÞ2

: ð64Þ

This procedure can be repeated independently for each SGS
component, for each tensor τ. As we showed in our previous
work [32], when one compares the performance of the
gradient model with other SGS models available for the
nonrelativistic case, the Pearson correlation of the gradient

model stands out, being always much closer to one than the
others, and degrading to≲0.5 only for quite large filter sizes.
Due to these previous findings and the absence of

consistent models to compare with in the relativistic case,
we assess the gradient model by a priori fits for different
times, resolutions, and filter size. Below, we report our
main findings, usually represented by averaging the differ-
ent independent components of a given tensor. Differences
between different components are statistically negligible
and can arise only temporarily during the initial phase of
the development when fields are not homogeneous (see
[32] for more details).

B. Results

As a representative example, we consider the different
resolutions filtered with Sf ¼ 2 (thus, averaging to
Nf ¼ 5123). In Fig. 4, we show the correlation Pearson
values and the best-fit coefficients between the main SFS

FIG. 4. Evolution of the Pearson coefficients (left) and the best-
fit coefficients (right) for the gradient SGS tensors τN (top), τT
(middle), and τM (bottom), for all resolutions and with a filter
factor Sf ¼ 2.
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tensors, Eqs. (41)–(44), and the corresponding SGS com-
ponents tensors, Eq. (47), as a function of time. The
Pearson coefficients are very close to one for all tensor
components (P ≳ 0.8) at all times, indicating a very good
correlation between the SFS and the SGS tensors even
during the transitional development of the instability
(where we have the minimum value of the correlation).
Moreover, the best-fit coefficients are fairly constant in
time and ∼Oð1Þ. This is the most important result, which
confirms that the proposed model actually fits well for a
variety of time (i.e., MHD configurations) and resolutions.
As a comparison, other SGS models in the nonrelativistic
cases studied in [32] showed little correlation, or even not at
all. In particular, the Smagorinsky model, the only one
tested so far in GRMHD [28], showed a nonzero correlation
(P ≲ 0.3 at its best, for Sf ¼ 2, with a largely varying best
precoefficient) due to the ability to catch the transfer
from resolved to SFS scales. Notice however that this is
only a part of the nonlinear dynamics involved in MHD
turbulence.

The overall great performance of the gradient model is
well known [32,38,39,55–58], due to the strong math-
ematical basis on which it relies. Let us stress that we have
explored different initial conditions, finding mainly the
same results. Another interesting result can be obtained by
studying the simulation with N ¼ 10243 points with differ-
ent filter size Δf, as displayed in Fig. 5. As the filter size
increases, there is more information lost by averaging in the
cells. This leads to a degradation of the Pearson coefficient,
although it is still above P ≳ 0.5 even for Δf ≥ 16,
indicating that the LES gradient terms are able to fit the
functional form of the nonlinear terms corresponding to a
quite higher resolution. The variation over time of the best-
fit coefficients is limited, which legitimates one to consider
a constant precoefficient in the LES implementation,
without any dynamical procedure (like in other nonrela-
tivistic models [36]) for its estimation.
One can also assess the correlations between the

auxiliary double gradient terms given by Eqs. (51)–(54)
and the corresponding SFS terms. In Fig. 6, we show as an
illustrative example the good agreement obtained by
comparing the SGS term ð−ξHvÞ with ðṽ − v̄Þ (left panel)
and ð−ξHΘÞ with ðΘ̃ − Θ̄Þ (right). This is an important
check, since the contribution to the overall SGS tensors of
Fig. 4 could be given by a dominant component, thus
“hiding” the others. Our results show that, taken one by
one, each testable term (i.e., the ∝ H terms) correlates well
with the corresponding SFS value.

VIII. CONCLUSIONS

In this paper, we have presented a formalism to study
LES for a generic system of conservation equations, in
which the evolved fields appear through nonlinear (and
possibly not analytical) relations in the fluxes. We have also
extended the gradient SGS model for this generic system of
conservation laws.
We have verified that, by applying this formalism to the

nonrelativistic MHD equations, one recovers known results

FIG. 5. Evolution of the Pearson coefficients (left) and the best-
fit coefficients (right) for the gradient SGS tensors τN (top), τT
(middle), and τM (bottom), for the N ¼ 10243 case with filter
factors Sf ¼ 2, 4, 8, 16.

FIG. 6. Evolution of the Pearson value for the correlation
between the SGS term ð−ξHk

vÞ and the SFS term ðṽk − v̄kÞ (left;
as usual, we average the Pearson value over the three components
k), and the SGS term ð−ξHΘÞ and the SFS term ðΘ̃ − Θ̄Þ (right),
for all resolutions, with Sf ¼ 2.
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available in the literature. Furthermore, we have applied
the formalism to the relativistic MHD system, extending for
the very first time the gradient SGS model to the relativ-
istic case.
We have performed 3D numerical simulations of the

KHI in a bounding box at different resolutions with high-
order numerical schemes. Within these simulations we have
been able to compare the residual SFS tensors with the
gradient SGS tensors (i.e., a priori tests), showing a high
correlation between these two quantities, as indicated by a
Pearson number close to 1. Notably, the resulting best-fit
parameters are also close to the expected value Cbest ≈ 1.
Finally, we have seen that the Pearson value of these tensors
is still significant (i.e., larger than 0.5) with a filter size up
to Δf ¼ 16Δ, indicating that this approach can effectively
account for a resolution between a factor of 4 and 1 order of
magnitude times larger.
Reproducing small-scale dynamics by means of a

validated LES can be seen as a computationally efficient
way to solve the equations, equivalent to consider an
effective higher resolution. When implemented in an
LES, this approach can guarantee a considerable saving

of computational time, by using a relatively low resolution,
or if combined with high resolution, a feasible way to
capture previously inaccessible small-scale dynamics.
Quantifying the gain is not trivial, since it depends on
the numerical scheme used (see [32] for considerations
about the intrinsic dissipation in commonly used finite-
difference schemes). Our previous results in the nonrela-
tivistic case and the a priori assessment here presented
allow us to estimate a gain in the effective resolution of at
least a factor of 4 and possibly up to a factor of 8.
Finally, let us mention that although the LES and gradient

SGS model presented here are valid only for the special
relativistic case since we have used the Minkowski metric;
the extension to general relativity should be straightforward.
As a matter of fact, although Einstein equations are highly
nonlinear, they do not show a “turbulent” regime: the metric
tends to be smooth and slowly varying, compared to the
matter fields. Therefore, the metric functions entering in the
filtered MHD equations vary much more smoothly than
the fields involved in the turbulent dynamics. Such exten-
sion, together with its application to binary neutron star
simulations, will be presented in a forthcoming paper.
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