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How to represent a jet is at the core of machine learning on jet physics. Inspired by the notion of point
clouds, we propose a new approach that considers a jet as an unordered set of its constituent particles,
effectively a “particle cloud.” Such a particle cloud representation of jets is efficient in incorporating raw
information of jets and also explicitly respects the permutation symmetry. Based on the particle cloud
representation, we propose ParticleNet, a customized neural network architecture using Dynamic Graph
Convolutional Neural Network for jet tagging problems. The ParticleNet architecture achieves state-of-the-art
performanceon two representative jet taggingbenchmarks and is improved significantlyover existingmethods.
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I. INTRODUCTION

A jet is one of the most ubiquitous objects in proton-
proton collision events at the LHC. In essence, a jet is a
collimated spray of particles. It serves as a handle to probe
the underlying elementary particle produced in the hard
scattering process that initiates the cascade of particles
contained in the jet.
One of the most important questions about a jet is

which type of elementary particle initiates it. Jets
initiated by different particles exhibit different character-
istics. For example, jets initiated by gluons tend to have
a broader energy spread than jets initiated by quarks.
High-momentum heavy particles (e.g., top quarks and
W, Z, and Higgs bosons) that decay hadronically can
lead to jets with distinct multiprong structures.
Therefore, the identity of the source particle can be
inferred from properties of the reconstructed jet. Such
particle identity information provides powerful insights
into the collision events under study and therefore can
help greatly in separating events originating from differ-
ent physics processes and improving the sensitivity of
both searches for new particles and measurements of the
standard model processes.

The study on jet tagging, i.e., the identification of the
elementary particle initiating a jet, has a long history.
Methods based on the QCD theory have been proposed and
continuously improved for discriminating quark and gluon
jets [1–7], tagging jets originating from high-momentum
heavy particles [8–18], etc. See Refs. [19–24] for more in-
depth reviews. Recently, machine learning (ML) has
injected fresh blood in jet tagging. Jets are regarded as
images [25–35] or as sequences [36–48], trees [49,50],
graphs [51], or sets [52] of particles, and ML techniques,
most notably deep neural networks (DNNs), are used to
build new jet tagging algorithms automatically from
(labeled) simulated samples or even (unlabeled) real data
[53–56], leading to new insights and improvements in jet
tagging.
In this paper, we propose a new deep-learning

approach for jet tagging using a novel way to represent
jets. Instead of organizing a jet’s constituent particles
into an ordered structure (e.g., a sequence or a tree), we
treat a jet as an unordered set of particles [57]. This is
very analogous to the point cloud representation of
three-dimensional (3D) shapes used in computer vision,
where each shape is represented by a set of points in
space, and the points themselves are also unordered.
Therefore, a jet can be viewed as a “particle cloud.”
Based on Dynamic Graph Convolutional Neural
Network (DGCNN) [58], we design ParticleNet, a
customized neural network architecture that operates
directly on particle clouds for jet tagging. The
ParticleNet architecture is evaluated on two jet tagging
benchmarks and is found to achieve significant improve-
ments over all existing methods.
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II. JET REPRESENTATIONS

The efficiency and effectiveness of ML techniques on jet
physics relies heavily on how a jet is represented. In this
section, we review the mainstream jet representations and
introduce the particle cloud representation.

A. Image-based representation

The image representation has its root in the recon-
struction of jets with calorimeters. A calorimeter measures
the energy deposition of a jet on fine-grained spatial cells.
Treating the energy deposition on each cell as the pixel
intensity naturally creates an image for a jet. When jets are
formed by particles reconstructed with the full detector
information (e.g., using a particle-flow algorithm [59,60]),
a jet image can be constructed by mapping each particle
onto the corresponding calorimeter cell and sum up the
energy if more than one particle is mapped to the same cell.
The image-based approach has been extensively studied

for various jet tagging tasks, e.g., W boson tagging
[25–29,35], top tagging [32–34], and quark-gluon tagging
[30,31]. Convolutional neural networks (CNNs) with
various architectures were explored in these studies, and
they were found to achieve sizable improvement in per-
formance compared to traditional multivariate methods
using observables motivated by QCD theory. However,
the architectures investigated in these papers are in general
much shallower compared to state-of-the-art CNN archi-
tectures used in image classification tasks (e.g., ResNet
[61] or Inception [62]); therefore, it remains to be seen
that if deeper architectures can further improve the
performance.
Despite the promising performance, the image-based

representation has two main shortcomings. While it can
include all information without loss when a jet is measured
by only the calorimeter, once the jet constituent particles
are reconstructed, how to incorporate additional informa-
tion of the particles is unclear, as it involves combining
nonadditive quantities (e.g., the particle type) of multiple
particles entering the same cell. Moreover, treating jets as
images also leads to a very sparse representation: a typical
jet has Oð10Þ to Oð100Þ particles, while a jet image
typically needs Oð1000Þ pixels (e.g., 32 × 32) in order
to fully contain the jet; therefore, more than 90% of the
pixels are blank. This makes the CNNs highly computa-
tionally inefficient on jet images.

B. Particle-based representation

A more natural way to represent a jet, when particles are
reconstructed, is to simply view the jet as a collection of its
constituent particles. This approach allows for the inclusion
of any kind of features for each particle and therefore is
significantly more flexible than the image representation. It
is also much more compact compared to the image

representation, though at the cost of being variable length,
as each jet may contain a different number of particles.
A collection of particles, though, is a rather general

concept. Before applying any deep-learning algorithm, a
concrete data structure has to be chosen. The prevailing
choice is a sequence, in which particles are sorted in a
specific way (e.g., with decreasing transverse momentum)
and organized into a one-dimensional (1D) list. Using
particle sequences as inputs, jet tagging tasks have been
tackled with recurrent neural networks (RNNs) [36–39,45],
1D CNNs [40–44] and physics-oriented neural networks
[46–48]. Another interesting choice is a binary tree, which
is well motivated from the QCD theory perspective.
Recursive neural networks (RecNNs) are then a natural
fit and have been studied in Refs. [49,50].
One thing to note about the sequence or tree representa-

tion is that they both need the particles to be sorted in some
way, as the order of the particles is used implicitly in the
corresponding RNNs, 1D CNNs, or the RecNNs. However,
the constituent particles in a jet have no intrinsic order;
thus, the manually imposed order may turn out to be
suboptimal and impair the performance.

C. Jet as a particle cloud

An even more natural representation than particle
sequences or trees would be an unordered, permutation-
invariant set of particles. As a special case of the particle-
based representations, it shares all the advantages of
particle-based representations, especially the flexibility to
include arbitrary features for each particle. We refer to such
representation of a jet as a particle cloud, analogous to the
point cloud representation of 3D shapes used in computer
vision. They are actually highly similar, as both are
essentially unordered sets of entities distributed irregularly
in space. In both clouds, the elements are not unrelated
individuals but are rather correlated, as they represent
higher-level objects (i.e., jets or 3D shapes) that have rich
internal structures. Therefore, deep-learning algorithms
developed for point clouds are likely to be helpful for
particle clouds, i.e., jets, as well.
The idea of regarding jets as unordered sets of particles

was also proposed in Ref. [52] and is in parallel to our
work. The Deep Sets framework [63] was adapted to
construct the infrared and collinear safe Energy Flow
Network and the more general Particle Flow Network.
However, different from the DGCNN [58] approach
adopted in this paper, the Deep Sets approach does not
explicitly exploit the local spatial structure of particle
clouds, but only processes the particle clouds in a global
way. Another closely related approach is to represent a jet
as a graph whose vertices are the particles. Message-
passing neural networks (MPNNs) with different variants
of adjacency matrices were explored on such jet graphs and
were found to show better performance than the RecNNs
[51]. However, depending on how the adjacency matrix is
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defined, the MPNNs may not respect the permutation
symmetry of the particles.

III. NETWORK ARCHITECTURE

The permutation symmetry of the particle cloud makes it
a natural and promising representation of jets. However, to
achieve the best possible performance, the architecture of
the neural network has to be carefully designed to fully
exploit the potential of this representation. In this section,
we introduce ParticleNet, a CNN-like deep neural network
for jet tagging with particle cloud data.

A. Edge convolution

CNNs have achieved overwhelming success in all kinds
of machine-learning tasks on visual images. Two key
features of CNNs contribute significantly to their success.
First, the convolution operation exploits translational sym-
metry of images by using shared kernels across the whole
image. This not only greatly reduces the number of
parameters in the network but also allows the parameters
to be learned more effectively, as each set of weights will
use all locations of the image for learning. Second, CNNs
exploit a hierarchical approach [64] for learning image
features. The convolution operations can be effectively
stacked to form a deep network. Different layers in the
CNNs have different receptive fields and therefore can
learn features at different scales, with the shallower layers
exploiting local neighborhood information and the deeper
layers learning more global structures. Such a hierarchical
approach proves an effective way to learn images.
Motivated by the success of CNNs, we would like to

adopt a similar approach for learning on point (particle)
cloud data. However, regular convolution operation cannot
be applied on point clouds, as the points there can be
distributed irregularly, rather than following some uniform
grids as the pixels in an image. Therefore, the basis for a
convolution, i.e., a “local patch” of each point on which the
convolution kernel operates, remains to be defined for point
clouds. Moreover, a regular convolution operation, typi-
cally in the form

P
j Kjxj where K is the kernel and xj

denotes the features of each point, is not invariant under
permutation of the points. Thus, the form of a convolution
also needs to be modified to respect the permutation
symmetry of point clouds.
Recently, the edge convolution (“EdgeConv”) operation

has been proposed in Ref. [58] as a convolutionlike
operation for point clouds. EdgeConv starts by representing
a point cloud as a graph, whose vertices are the points
themselves, and the edges are constructed as connections
between each point to its k nearest neighboring points. In
this way, a local patch needed for convolution is defined for
each point as the k nearest neighboring points connected to
it. The EdgeConv operation for each point xi then has the
form

x0i ¼ □

k

j¼1
hΘðxi; xijÞ; ð1Þ

where xi ∈ RF denotes the feature vector of the point xi and
fi1;…; ikg are the indices of the k nearest neighboring
points of the point xi. The edge function hΘ∶RF ×RF →
RF0

is some function parametrized by a set of learnable
parameters Θ, and □ is a channelwise symmetric aggre-
gation operation, e.g., max, sum, or mean. The parameters
Θ of the edge function are shared for all points in the point
cloud. This, together with the choice of a symmetric
aggregation operation □, makes EdgeConv a permutation-
ally symmetric operation on point clouds [65].
In this paper, we follow the choice in Ref. [58] to use a

specialized form of the edge function,

hΘðxi; xijÞ ¼ h̄Θðxi; xij − xiÞ; ð2Þ

where the feature vectors of the neighbors, xij , are sub-
stituted by their differences from the central point xi and h̄Θ
can be implemented as a multilayer perceptron (MLP)
whose parameters are shared among all edges. For the
aggregation operation □, however, we use mean, i.e., 1k

P
,

throughout this paper, which shows better performance
than the max operation used in the original paper.
One important feature of the EdgeConv operation is that

it can be easily stacked, just as regular convolutions. This is
because EdgeConv can be viewed as a mapping from a
point cloud to another point cloud with the same number of
points, only possibly changing the dimension of the feature
vector for each point. Therefore, another EdgeConv oper-
ation can be applied subsequently. This allows us to build a
deep network using EdgeConv operations, which can learn
features of point clouds hierarchically.
The stackability of EdgeConv operations also brings

another interesting possibility. Basically, the feature vectors
learned by EdgeConv can be viewed as new coordinates of
the original points in a latent space, and then, the distances
between points, used in the determination of the k nearest
neighbors, can be computed in this latent space. In other
words, the proximity of points can be dynamically learned
with EdgeConv operations. This results in the DGCNN
[58], in which the graph describing the point clouds are
dynamically updated to reflect the changes in the edges,
i.e., the neighbors of each point. Reference [58] demon-
strates that this leads to better performance than keeping the
graph static.

B. ParticleNet

The ParticleNet architecture makes extensive use of
EdgeConv operations and also adopts the dynamic graph
update approach. However, a number of different design
choices are made in ParticleNet compared to the original
DGCNN to better suit the jet tagging task, including the
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number of neighbors, the configuration of the MLP in
EdgeConv, the use of shortcut connection, etc.
Figure 1 illustrates the structure of the EdgeConv block

implemented in this paper. The EdgeConv block starts with
finding the k nearest neighboring particles for each particle,
using the “coordinates” input of the EdgeConv block to
compute the distances. Then, inputs to the EdgeConv
operation, the “edge features” are constructed from the
“features” input using the indices of k nearest neighboring
particles. TheEdgeConvoperation is implemented as a three-
layer MLP. Each layer consists of a linear transformation,
followed by a batch normalization [66] and then a rectified
linear unit (ReLU) [67]. Inspired by ResNet [61], a shortcut
connection running parallel to theEdgeConv operation is also
included in each block, allowing the input features to pass
through directly. An EdgeConv block is characterized by two
hyperparameters, the number of neighbors k, and the number
of channels C ¼ ðC1; C2; C3Þ, corresponding to the number
of units in each linear transformation layer.
The ParticleNet architecture used in this paper is shown

in Fig. 2(a). It consists of three EdgeConv blocks. The first
EdgeConv block uses the spatial coordinates of the par-
ticles in the pseudorapidity-azimuth space to compute the
distances, while the subsequent blocks use the learned
feature vectors as coordinates. The number of nearest
neighbors k is 16 for all three blocks, and the number of
channels C for each EdgeConv block is (64, 64, 64), (128,
128, 128), and (256, 256, 256), respectively. After the
EdgeConv blocks, a channelwise global average pooling
operation is applied to aggregate the learned features over
all particles in the cloud. This is followed by a fully
connected layer with 256 units and the ReLU activation. A
dropout layer [68] with a drop probability of 0.1 is included
to prevent overfitting. A fully connected layer with two
units, followed by a softmax function, is used to generate
the output for the binary classification task.

A similar network with reduced complexity is also
investigated. Compared to the baseline ParticleNet architec-
ture, only two EdgeConv blocks are used,with the number of
nearest neighbors k reduced to 7 and the number of channels
C reduced to (32, 32, 32) and (64, 64, 64) for the two blocks,
respectively. The number of units in the fully connected layer
after pooling is also lowered to 128. This simplified
architecture is denoted as “ParticleNet-Lite” and is illustrated
in Fig. 2(b). The number of arithmetic operations is reduced
by almost an order of magnitude in ParticleNet-Lite, making
it more suitable when computational resources are limited.
The networks are implemented with Apache MXNet [69],

and the training is performed on a single Nvidia GTX 1080
Ti graphics card (GPU). A batch size of 384 (1024) is used
for the ParticleNet (ParticleNet-Lite) architecture due to
GPU memory constraint. The AdamW optimizer [70], with a
weight decay of 0.0001, is used to minimize the cross
entropy loss. The one-cycle learning rate (LR) schedule
[71] is adopted in the training, with the LR selected
following the LR range test described in Ref. [71], and
slightly tuned afterward with a few trial trainings. The
training of ParticleNet (ParticleNet-Lite) network uses an
initial LR of 3 × 10−4 (5 × 10−4), rising to the peak LR of
3 × 10−3 (5 × 10−3) linearly in eight epochs and then
decreasing to the initial LR linearly in another eight epochs.
This is followed by a cooldown phase of four epochs,
which gradually reduces the LR to 5 × 10−7 (1 × 10−6) for
better convergence. A snapshot of the model is saved at
the end of each epoch, and the model snapshot showing the
best accuracy on the validation dataset is selected for the
final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU
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Linear

BatchNorm
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FIG. 1. The structure of the EdgeConv block.
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k = 7, C = (32, 32, 32)
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Global Average Pooling
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2
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FIG. 2. The architectures of the (a) ParticleNet and the
(b) ParticleNet-Lite networks.
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tagging and quark-gluon tagging. In this section, we show
the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an extension of
the dataset used in Ref. [46] with some modifications. Jets
in this dataset are generated with PYTHIA8 [73] and passed
through DELPHES [74] for fast detector simulation. No
multiple parton interaction or pileup is included in the
simulation. Jets are clustered from the DELPHES E-Flow
objects with the anti-kT algorithm [75] using a distance
parameter R ¼ 0.8. Only jets with transverse momentum
pT ∈ ½550; 650� and pseudorapidity jηj < 2 are considered.
Each signal jet is required to be matched to a hadronically
decaying top quark within ΔR ¼ 0.8, and all three quarks
from the top decay also withinΔR ¼ 0.8 of the jet axis. The
background jets are obtained from a QCD dijet process.
This dataset consists of 2 × 106 jets in total, half signal
and half background. The official splitting for training
(1.2 × 106 jets), validation (400,000 jets), and testing
(400,000 jets) is used in the development of the
ParticleNet model for this dataset.
In this dataset, up to 200 jet constituent particles are

stored for each jet. Only kinematic information, i.e., the
4-momentum ðpx; py; pz; EÞ, of each particle is available.
The ParticleNet model takes up to 100 constituent particles
with the highest pT for each jet, and uses seven variables
derived from the 4-momentum for each particle as inputs,
which are listed in Table I. The ðΔη;ΔϕÞ variables are used
as coordinates to compute the distances between particles
in the first EdgeConv block. They are also used together
with the other five variables, logpT , logE, log pT

pT ðjetÞ,

log E
EðjetÞ, and ΔR, to form the input feature vector for each

particle.
We compare the performance of ParticleNet with three

alternative models [76]:
(i) ResNeXt-50.—The ResNeXt-50 model is a very

deep two-dimensional (2D) CNN using jet images
as inputs. The ResNeXt architecture [78] was
proposed for generic image classification, and we
modify it slightly for the jet tagging task. The model
is trained on the top tagging dataset starting from
randomly initialized weights. The implementation
details can be found in the Appendix A. Note that
the ResNeXt-50 architecture is much deeper and
therefore has a much larger capacity than most of the
CNN architectures [25,27–35] explored for jet tag-
ging so far, so evaluating its performance on jet
tagging will shed light on whether architectures for
generic image classification are also applicable to jet
images.

(ii) P-CNN.—The P-CNN is a 14-layer 1D CNN using
particle sequences as inputs. The P-CNN architec-
ture was proposed in the CMS particle-based DNN
boosted jet tagger [42] and showed significant
improvement in performance compared to a tradi-
tional tagger using boosted decision trees and jet-
level observables. The model is also trained on the
top tagging dataset from scratch, with the imple-
mentation details in Appendix B.

(iii) PFN: The Particle Flow Network (PFN) [52] is a
recent architecture for jet tagging which also treats a
jet as an unordered set of particles, the same as the
particle cloud approach in this paper. However, the
network is based on the Deep Sets framework [63],
which uses global symmetric functions and does not
exploit local neighborhood information explicitly as
the EdgeConv operation. Since the performance of
PFN on this top tagging dataset has already been

TABLE I. Input variables used in the top tagging task (TOP) and the quark-gluon tagging task (QG) with and without PID information.

Variable Definition TOP QG QG-PID

Δη Difference in pseudorapidity between the particle and the jet axis ⨯ ⨯ ⨯
Δϕ Difference in azimuthal angle between the particle and the jet axis ⨯ ⨯ ⨯
logpT Logarithm of the particle’s pT ⨯ ⨯ ⨯
logE Logarithm of the particle’s energy ⨯ ⨯ ⨯
log pT

pT ðjetÞ Logarithm of the particle’s pT relative to the jet pT ⨯ ⨯ ⨯
log E

EðjetÞ Logarithm of the particle’s energy relative to the jet energy ⨯ ⨯ ⨯
ΔR Angular separation between the particle and the jet axis

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p �
⨯ ⨯ ⨯

q Electric charge of the particle ⨯
isElectron If the particle is an electron ⨯
isMuon If the particle is a muon ⨯
isChargedHadron If the particle is a charged hadron ⨯
isNeutralHadron If the particle is a neutral hadron ⨯
isPhoton If the particle is a photon ⨯
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reported in Ref. [52], we did not reimplement it but
just include the results for comparison.

The results are summarized in Table II and also shown in
Fig. 3 in terms of receiver operating characteristic (ROC)
curves. A number of metrics are used to evaluate the
performance, including the accuracy, the area under the
ROC curve (AUC), and the background rejection (1=εb,
i.e., the reciprocal of the background misidentification
rate) at a certain signal efficiency (εs) of 50% or 30%.
The background rejection metric is particularly relevant to
physics analysis at the LHC, as it is directly related to the
expected contribution of background, and is commonly
used to select the best jet tagging algorithm. The
ParticleNet model achieves state-of-the-art performance
on the top tagging benchmark dataset and improves over
previous methods significantly. Its background rejection
power at 30% signal efficiency is roughly 1.8 (2.1) times as

good as PFN (P-CNN) and about 40% better than
ResNeXt-50. Even the ParticleNet-Lite model, with sig-
nificantly reduced complexity, outperforms all the previous
models, achieving about 10% improvement with respect to
ResNeXt-50. The large performance improvement of the
ParticleNet architecture over the PFN architecture is likely
due to a better exploitation of the local neighborhood
information with the EdgeConv operation.

B. Quark-gluon tagging

Another important jet tagging task is quark-gluon tag-
ging, i.e., discriminating jets initiated by quarks and by
gluons. The quark-gluon tagging dataset from Ref. [52] is
used to evaluate the performance of the ParticleNet
architecture on this task. The signal (quark) and back-
ground (gluon) jets are generated with PYTHIA8 using the
Zð→ ννÞ þ ðu; d; sÞ and Zð→ ννÞ þ g processes, respec-
tively. No detector simulation is performed. The final state
non-neutrino particles are clustered into jets using the anti-
kT algorithm [75] with R ¼ 0.4. Only jets with transverse
momentum pT ∈ ½500; 550� and rapidity jyj < 2 are con-
sidered. This dataset consists of 2 million jets in total, half
signal and half background. We follow the recommended
splitting of 1.6 × 106=200; 000=200; 000 for training, val-
idation, and testing in the development of the ParticleNet
model on this dataset.
One important difference of the quark-gluon tagging

dataset is that it includes not only the four momentum but
also the type of each particle (i.e., electron, photon, pion,
etc.). Such particle identification (PID) information can be
quite helpful for jet tagging. Therefore, we include this
information in the ParticleNet model and compare it with
the baseline version using only the kinematic information.
The PID information is included in an experimentally
realistic way by using only five particle types (electron,
muon, charged hadron, neutral hadron, and photon), as well
as the electric charge, as inputs. These six additional
variables, together with the seven kinematic variables,
form the input feature vector of each particle for models
with PID information, as shown in Table I.

FIG. 3. Performance comparison in terms of ROC curves on the
top tagging benchmark dataset.

TABLE II. Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN, and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for nine times using different randomly initialized weights. The table shows
the result from the median-accuracy training, and the standard deviation of the nine trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the
uncertainty corresponds to the spread in ten trainings.

Accuracy AUC 1=εb at εs ¼ 50% 1=εb at εs ¼ 30%

ResNeXt-50 0.936 0.9837 302� 5 1147� 58
P-CNN 0.930 0.9803 201� 4 759� 24
PFN � � � 0.9819 247� 3 888� 17
ParticleNet-Lite 0.937 0.9844 325� 5 1262� 49
ParticleNet 0.940 0.9858 397� 7 1615� 93

HUILIN QU and LOUKAS GOUSKOS PHYS. REV. D 101, 056019 (2020)

056019-6



Table III compares the performance of the ParticleNet
model with a number of alternative models introduced in
Sec. IVA. Model variants with and without PID inputs are
also compared. Note that for the ResNeXt-50 model only
the version without PID inputs is presented, as it is based on
jet images which cannot incorporate PID information
straightforwardly. The corresponding ROC curves are
shown in Fig. 4. Overall, the addition of PID inputs has a
large impact on the performance, increasing the background
rejection power by 10%–15% compared to the same model
without usingPID information. This clearly demonstrates the
advantage of particle-based jet representations, including the
particle cloud representation, as they can easily integrate any
additional information for each particle. The best perfor-
mance is obtained by the ParticleNet model with PID inputs,
achieving almost 15% improvement on the background
rejection power compared to the PFN-Ex (PFN using
experimentally realistic PID information) and P-CNN mod-
els. The ParticleNet-Lite model achieves the second-best
performance and shows about 7% improvement with respect
to the PFN-Ex and P-CNN models.

FIG. 4. Performance comparison in terms of ROC curves on the
quark-gluon tagging benchmark dataset.

TABLE III. Performance comparison on the quark-gluon tagging benchmark dataset. The ParticleNet, Parti-
cleNet-Lite, P-CNN, and ResNeXt-50 models are trained on the quark-gluon tagging dataset starting from randomly
initialized weights. The training is repeated nine times for the ParticleNet model using different randomly initialized
weights. The table shows the result from the median-accuracy training, and the standard deviation of the nine
trainings is quoted as the uncertainty to assess the stability to random weight initialization. Because of limited
computational resources, the training of other models is performed only once, but the uncertainty due to random
weight initialization is expected to be fairly small. The performance of PFN on this dataset is reported in Ref. [52],
and the uncertainty corresponds to the spread in ten trainings. Note that a number of PFN models with different
levels of PID information are investigated in Ref. [52], and “PFN-Ex,” also using experimentally realistic PID
information, is shown here for comparison.

Accuracy AUC 1=εb at εs ¼ 50% 1=εb at εs ¼ 30%

ResNeXt-50 0.821 0.8960 30.9 80.8
P-CNN 0.818 0.8915 31.0 82.3
PFN � � � 0.8911 30.8� 0.4 � � �
ParticleNet-Lite 0.826 0.8993 32.8 84.6
ParticleNet 0.828 0.9014 33.7 85.4
P-CNN (w/ PID) 0.827 0.9002 34.7 91.0
PFN-Ex (w/ PID) � � � 0.9005 34.7� 0.4 � � �
ParticleNet-Lite (w/ PID) 0.835 0.9079 37.1 94.5
ParticleNet (w/ PID) 0.840 0.9116 39.8� 0.2 98.6� 1.3

TABLE IV. Number of parameters, inference time per object, and background rejection of different models. The
CPU inference time is measured on an Intel Core i7-6850K CPU with a single thread using a batch size of 1. The
GPU inference time is measured on a Nvidia GTX 1080 Ti GPU using a batch size of 100.

Parameters Time (CPU) (ms) Time (GPU) (ms) 1=εb at εs ¼ 30%

ResNeXt-50 1.46 × 106 7.4 0.22 1147� 58

P-CNN 348,000 1.6 0.020 759� 24
PFN 82,000 0.8 0.018 888� 17
ParticleNet-Lite 26;000 2.4 0.084 1262� 49
ParticleNet 366,000 23 0.92 1615� 93
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V. MODEL COMPLEXITY

Another aspect of machine-learning models is the com-
plexity, e.g., the number of parameters and the computa-
tional cost. Table IV compares the number of parameters
and the computational cost of all the models used in the top
tagging task in Sec. IVA. The computational cost is
evaluated using the inference time per object, which is a
more relevant metric than the training time for real-life
applications of machine-learning models. The inference
time of each model is measured on both the CPU and the
GPU, using the implementations with Apache MXNet. For
the CPU, to mimic the event processing workflow typically
used in collider experiments, a batch size of 1 is used, and
the inference is performed in single-thread mode. For the
GPU, a batch size of 100 is used instead, as the full power
of the GPU cannot be revealed with a very small batch size
(e.g., 1) due to the overhead in data transfer between the
CPU and the GPU. The ParticleNet model achieves the best
classification performance at the cost of speed, being more
than an order of magnitude slower than the PFN and the P-
CNN models, but still it is not prohibitively slow even on
the CPU. In addition, the current implementation of the
EdgeConv operation used in the ParticleNet model is not as
optimized as the regular convolution operation; therefore,
further speed-up is expected from an optimized implemen-
tation of EdgeConv. On the other hand, the ParticleNet-Lite
model provides a good balance between speed and per-
formance, showing more than 40% improvement in per-
formance while being only a few times slower than the PFN
and P-CNNmodels. Notably, it is also the most economical
model, outperforming all previous approaches with only
26,000 parameters, thanks to the effective exploitation of
the permutation symmetry of the particle clouds. Overall,
PFN is the fastest model on both the CPU and the GPU,
making it a suitable choice for extremely time-critical tasks.

VI. CONCLUSION

In this paper, we present a new approach for machine
learning on jets. The core of this approach is to treat jets as
particle clouds, i.e., unordered sets of particles. Based on
this particle cloud representation, we introduce ParticleNet,
a network architecture tailored to jet tagging tasks. The
performance of the ParticleNet architecture is compared
with alternative deep-learning architectures, including the
jet image–based ResNeXt-50 model, the particle sequence–
based P-CNNmodel, and the particle set–based PFNmodel.
On both the top tagging and the quark-gluon tagging
benchmarks, ParticleNet achieves state-of-the-art perfor-
mance and improves significantly over existing methods.
Although the very deep image–based ResNeXt-50 model
also shows significant performance improvement over shal-
lower models like P-CNN and PFN on the top-tagging
benchmark, indicating that deeper architectures can gener-
ally lead to better performance, the gain with the ParticleNet

architecture is more substantial. Moreover, the high perfor-
mance is achieved in a very economicalway as the number of
trainable parameters is a factor of 4 (56) lower in ParticleNet
(ParticleNet-Lite) compared to ResNeXt-50. Such light-
weight models are particularly useful for applications in
high-energy physics experiments, especially for online event
processing inwhich low latency andmemory consumption is
critical.
While we only demonstrate the power of the particle

cloud representation in jet tagging tasks, we think that it is a
natural and generic way of representing jets (and even the
whole collision event) and can be applied to a broad range
of particle physics problems. Applications of the particle
cloud approach to, e.g., pileup identification, jet grooming,
jet energy calibration, etc., would be particularly interesting
and worth further investigation.
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APPENDIX A: IMPLEMENTATION
DETAILS OF ResNeXt-50

The ResNeXt-50 model uses jet images as inputs. Each
image is constructed from the constituent particles by
projecting them onto a 2D grid of 64 × 64 pixels in size,
corresponding to a granularity of 0.025 rad in the pseudor-
apidity-azimuth space. The intensity of each pixel is the
sum of pT of all the particles within the pixel rescaled by
the inverse of the jet pT .
The original 50-layer ResNeXt architecture [78] was

developed for images of size 224 × 224 and a classification
task with 1000 classes. To adapt to the smaller size of the jet
images and the significantly fewer number of output
classes, the number of channels in all but the first convolu-
tional layers is reduced by a factor of 4, and a dropout layer
with a drop probability of 0.5 is added after the global
pooling layer.
The network is implemented with Apache MXNet and

trained with the Adam optimizer with a minibatch size of
256. The network is trained for 30 epochs, with a starting
learning rate of 0.01, and subsequently reduced by a factor
of 10 at the 10th and 20th epochs. A snapshot of the model
is saved at the end of each epoch, and the model snapshot
showing the best accuracy on the validation dataset is
selected for the final evaluation.
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APPENDIX B: IMPLEMENTATION
DETAILS OF P-CNN

The particle-level convolutional neural network (P-
CNN) [42] is a deep 1D CNN architecture customized
for boosted jet tagging. Each input jet is represented as
a sequence of particles with a fixed length of 100. The
particles are organized in descending order of pT . The
sequence is padded with zeros if a jet has less than 100
particles and truncated if it has more than 100 particles.
The P-CNN architecture is similar to the ResNet model

[61,79] for image classification but uses 1D convolution
instead. It features a total of 14 convolutional layers, all
with a kernel size of 3. The number of channels for the 1D

convolutions is either 32, 64, or 128. The convolutions are
followed by a global pooling, then by a fully connected
layer of 512 units with ReLU activation and a dropout layer
with a drop rate of 0.5, before producing the classification
output.
The network is implemented with Apache MXNet and

trained with the Adam optimizer with a minibatch size of
1024. The network is trained for 30 epochs, with a starting
learning rate of 0.001, and subsequently reduced by a factor
of 10 at the 10th and 20th epochs. A snapshot of the model
is saved at the end of each epoch, and the model snapshot
showing the best accuracy on the validation dataset is
selected for the final evaluation.
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