
 

Nature of the phase transition for finite temperature Nf = 3 QCD with
nonperturbatively OðaÞ improved Wilson fermions at Nt = 12

Yoshinobu Kuramashi,1 Yoshifumi Nakamura,2 Hiroshi Ohno ,1 and Shinji Takeda 3,*

1Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
2RIKEN Center for Computational Science, Kobe 650-0047, Japan

3Institute of Physics, Kanazawa University, Kanazawa 920-1192, Japan

(Received 14 January 2020; accepted 4 March 2020; published 18 March 2020)

We study the nature of the finite temperature phase transition for three-flavor QCD. In particular we
investigate the location of the critical endpoint along the three flavor symmetric line in the light quark mass
region of the Columbia plot. In the study, the Iwasaki gauge action and the nonperturvatively O(a)
improvedWilson-Clover fermion action are employed. We newly generate data atNt ¼ 12 and set an upper
bound of the critical pseudoscalar meson mass in the continuum limit mPS;E ≲ 110 MeV.
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I. INTRODUCTION

The finite temperature transition in QCD is an important
subject in elementary particle physics and cosmology. The
nature of the finite temperature phase transition has been
studied over a number of years. So far there are some
analytic attempts to investigate the nature of the phase
transition; effective theories based on the universality
argument [1–4] were systematically studied and recently
an anomaly matching argument [5,6] has been developed.
Although these approaches can capture qualitative aspects,
it is hard to provide its quantitative information on the
nature of the phase transition without fully taking the
nonperturbative effects of QCD. Lattice QCD simulations
play central roles in revealing the quantitative aspects, and
in fact many efforts have been devoted for this aim. See
reviews [7–10] for a current status of the QCD phase
structure with the finite temperature and quark number
density. In such studies, the so-called Columbia plot [11] is
often used to express the nature of the phase transition in
various parameter space. A whole structure of the plot is
basically dictated by a critical point, line or surface, which
separates the first order and crossover region, depending on
the dimensionality of the parameter space. It is therefore
crucial to figure out the shape of such critical boundaries.
The standard Columbia plot in the case of zero density has
two axes: the up-down and strange quark masses (See
Fig. 1). In the heavy mass region of the plot, especially the

static limit is well established as the first order phase
transition [12,13] and the heavy region apart from the static
limit is also studied [14,15]. On the other hand, the light
quark mass region is still under debate and we will closely
investigate such region in the following. Although there are
interesting issues for two-flavor QCD, for example resto-
ration of the UAð1Þ symmetry and so on (see Refs. [7–10]
for recent progress), in this paper we restrict ourselves to
the three-flavor symmetric case where all three quark
masses are degenerated. In particular, our goal is to locate
the critical endpoint along the flavor-symmetric line on the
standard Columbia plot.
Let us look back on a historical background of the

location of the critical endpoint for the three-flavor QCD. A
rough but first estimate of the critical endpoint was
provided by Iwasaki et al., [16] using the Wilson-type
fermions and their critical quark mass is relatively heavy
mq;E ≳ 140 MeV, equivalentlymPS;E ≳Oð1Þ GeV in terms
of the pseudoscalar meson mass. Subsequently a study with
the standard staggered fermion action was carried out by

FIG. 1. Columbia plot for Nf ¼ 2þ 1 QCD at zero density.
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JLQCD collaboration [17] and they estimated amq;E ≈ 0.03
using screening mass analysis. A similar study was done by
Liao [18] and similar conclusion was drawn. Then Karsch
et al., [19] reported mPS;E ≈ 290 MeV using the Binder
intersection method with the combination of the standard
staggered fermions and the Wilson plaquette gauge action,
and in addition they also estimatedmPS;E ≈ 190 MeV using
an improved staggered-type fermion action, i.e., p4-action.
In Ref. [20], they updatedmPS;E ¼ 67ð18Þ MeV for the p4-
action with replacing the gauge action to the Symanzik-
improved one, then a large cutoff effect on the critical
endpoint was indicated. Although the R-algorithm [21] was
used in the staggered fermion studies mentioned above, de
Forcrand and Philipsen [22] performed rational hybird
Monte Carlo (RHMC) simulation [23,24] and found
amq;E ¼ 0.0260ð5Þ which is significantly smaller than
the previous value with the R-algorithm. Smith and
Schmidt [25] examined the RHMC results using larger
spatial volumes and it was confirmed that the critical point
belongs to the three-dimensional Z2 universality class. In
the above staggered studies, a single lattice spacing was
exclusively used (the temporal lattice size was fixed to be
Nt ¼ 4), however, de Forcrand et al., [26] extended
their study to see the lattice cutoff dependence and found
that mPS;E=TE, TE is temperature at the critical endpoint,
decreases from 1.680(4) to 0.954(12) as increasing Nt from
4 to 6. This explicitly shows that it is important to control
the cutoff effects on the critical point and also suggests that
the critical mass in the continuum limit may be quite small.
Further studies were continued using the improved stag-
gered fermions with smearing techniques [27–30], but they
could not even detect a critical point. Instead, for example,
Ding et al., [30] quoted an upper bound of the critical
mass mPS;E ≲ 50 MeV.
In the above situation, we embarked a study of the nature

of the phase transition using the OðaÞ improved Wilson
fermions instead of the staggered-type fermions. Such a
study is important to check the universality when taking the
continuum limit and our formulation is completely free of
the rooting issue [31,32]. In the early stage of our study [33]
with coarse lattice spacings Nt ¼ 4, 6 and a part of Nt ¼ 8,
we observed a quite large scaling violation in the con-
tinuum extrapolation of the critical endpoint. Therefore we
extended our study to Nt ¼ 8 and 10 [34] together with the
multiensemble reweighting technique. Then we confirmed
the universality class of the critical endpoint to be Z2

universality class for Nt ¼ 4 and 6, while it is assumed for
Nt ¼ 8 and 10 and we used a modified fitting form of the
Binder (kurtosis) intersection analysis. And then we set an
upper bound mPS;E < 170 MeV. In the current paper, we
further extend our study and generate the new data set of
Nt ¼ 12 in order to take the continuum limit smoothly and
make sharpe the prediction of the critical point if exists.
The rest of the paper is organized as follows. We describe

the simulation setup and the analysis methods in Sec. II. In

Sec. III, we locate the critical point by applying two
analysis methods for a cross check. Then we discuss the
continuum limit of the critical pseudoscalar mass and the
critical temperature. Our conclusions are summarized in
Sec. IV. Results of zero temperature simulations for scale
setting are summarized in Appendix.

II. SETUP AND METHODS

Our finite temperature Nf ¼ 3 QCD simulations are
performed with the Iwasaki gauge action [35] and non-
perturvatively O(a) improved Wilson-Clover fermion
action [36]. In this paper we report our newly generated
data with the temporal lattice size of Nt ¼ 12. To carry out
the finite size scaling analysis 5 different spatial lattice sizes
with Ns ¼ 16, 20, 24, 28, and 32 are used. As we will see
soon, the smaller spatial lattices 16 and 20 are used only
when estimating the transition point in the thermodynamic
limit and the critical points will be determined using the
larger volumes 24, 28, and 32, which satisfy mPSL≳ 4.

TABLE I. Simulation parameters and the number of
configurations.

β κ Ns ¼ 16 Ns ¼ 20 Ns ¼ 24 Ns ¼ 28 Ns ¼ 32

1.80 0.139150 1040 � � � � � � � � � � � �
0.139200 1040 650 � � � � � � � � �
0.139220 830 900 300 � � � � � �
0.139240 − 700 � � � � � � � � �
0.139250 1150 � � � � � � � � � � � �

1.81 0.138950 730 � � � � � � � � � � � �
0.139000 660 � � � � � � � � � � � �
0.139020 � � � 1310 � � � � � � � � �
0.139040 � � � � � � 3850 2660 910
0.139050 700 1540 1200 � � � 1330

1.82 0.138800 700 � � � � � � � � � � � �
0.138810 � � � 560 � � � � � � � � �
0.138820 � � � � � � � � � 960 1400
0.138830 � � � 600 4210 2510 1550
0.138850 � � � 910 � � � � � � � � �
0.138880 740 � � � � � � � � � � � �

FIG. 2. An illustration of the kurtosis intersection analysis. Kt
denotes the kurtosis value for the phase transition and E indicates
the critical endpoint, where Kt is independent of the volume.
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Gauge configurations are generated with the RHMC
algorithm [24] implemented with the Berlin QCD code
[37], where the acceptance rate is tuned to be around 70%–
80%. Observables are measured at every 10th molecular
dynamics trajectory whose length is set to unity. There is a
single hopping parameter κ for three degenerate dynamical
flavors in our simulations, which is adjusted to search for a
transition point at each β, where β values are chosen in a
range between 1.80 and 1.82. See Table I for the parameter
sets and their statistics.
We follow the same analysis methods as our previous

studies [33,34,38], which are summarized in the following:
(1) The chiral condensate and its higher order moments

up to the fourth are measured. The definition of the
moments is given in our previous paper [38].

(2) The multiensemble reweighting [39] in only κ but
not β is used, which enables us to smoothly
interpolate the moments. The reweighting factor,
which is given by the ratio of fermion determinants
at different κ values, is calculated with an expansion
of the logarithm of the determinant [38]. Adopting
an expansion form for the moments in the reweight-
ing method, we can evaluate the moments at con-
tinuously many points at a relatively low cost.

(3) From these moments the susceptibility, the skewness,
and the kurtosis, which is equivalent to the Binder
cumulant up to an additional constant, are calculated.

(4) The κ value at the transition point is estimated from
the peak position of the susceptibility at each β.

(5) After repeating the procedure 1–4 for a few spatial
lattice sizes, the location of the critical point is
estimated by the kurtosis intersection analysis [19],

where we search for a point at which the kurtosis
value for the phase transition is independent of the
volume as schematically illustrated in Fig. 2. In the
determination of the critical point we use a fit ansatz
with the inclusion of the energylike observable
contribution [34].

III. RESULTS

A. Moments and location of the transition point

As an illustration of the data, we show the susceptibility
and the kurtosis of the chiral condensate for β ¼ 1.80 and
1.81 in Fig. 3 together with the κ-reweighting results. From
the peak position of the susceptibility, we extract the value
of κ at transition points denoted as κtðβ; NsÞ, whose values
are summarized in Table II for various Ns and β. The peak
height of the susceptibility and the minimum of the kurtosis
are also shown in the table. For each value of β, the infinite
volume limit of the transition point κtðβ; Ns ¼ ∞Þ is carried
out by using a fitting form with an inverse spatial volume
correction term,1

κtðβ; NsÞ ¼ κtðβ; Ns ¼ ∞Þ þ cðβÞ=N3
s ; ð1Þ
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FIG. 3. The susceptibility (upper half) and kurtosis (lower half) of the chiral condensate as a function κ for several spatial sizes,
Ns ¼ 16–32. The left (right) panel is for β ¼ 1.80 (β ¼ 1.81). The raw data points (as symbols) as well as the multiensemble
reweighting results (1-σ band) are plotted.

1There is no specific meaning in using 1=N3
s correction form.

As seen in Table II, we do not observe a significant Ns-
dependence on κt, thus a choice of extrapolation form seems
irrelevant. In fact, we performed a fit with expð−mPSLÞ correc-
tion term with fixed mPS ¼ 0.2 whose value is estimated from
Table VI with the corresponding β and κ value. As a result, the
thermodynamic value of κt is consistent with that obtained with
1=N3

s correction form.
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where κtðβ; Ns ¼ ∞Þ and cðβÞ are fitting parameters. For
β ¼ 1.80, three smaller volumes Ns ¼ 16, 20, and 24 are
used while all five volumes are used for β ¼ 1.81 and 1.82.
The quality of the fitting is reasonable with χ2=d:o:f: < 1.7
for all cases. The resulting phase diagram in the bare
parameter space is summarized in Fig. 4. The phase
transition line in the thermodynamic limit (we denote
κtðβÞ ¼ κtðβ;∞Þ) at Nt ¼ 12 is determined by the linear
interpolation,

κtðβÞ ¼ 0.139238ð4Þ − ðβ − 1.8Þ × 0.0203ð4Þ: ð2Þ

B. Kurtosis intersection analysis

The minimum of kurtosis is plotted in Fig. 5 to perform
kurtosis intersection analysis at Nt ¼ 12. The left panel of
Fig. 5 includes all Ns data points. At β ¼ 1.80, a typical
behavior of the first order phase transition is clearly seen;
the kurtosis tends to be smaller with increasing the volume.
On the other hands the results at β ¼ 1.81 show volume
independent behavior. For β ¼ 1.82, apart from Ns ¼ 32
data point which has a relatively larger error bar, the
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FIG. 4. Phase diagram for the bare parameter space ðβ; κÞ at
Nt ¼ 12 together with Nt ¼ 6, 8, and 10 results in Ref. [34]. The
open symbols represent a transition point (TP) while the filled
symbols are the critical endpoints (CEP) determined by the
kurtosis intersection with a correction term. On the transition line,
the left (right) hand side of an critical endpoint is the first order
phase transition (crossover) side. The phase transition line for
each Nt is a polynomial interpolation. For Nt ¼ 12 the inter-
polation formula is given in Eq. (2). In the plot, κc is the
pseudoscalar massless point with Nf ¼ 3 which is determined by
zero temperature simulations as shown in Table VII in Appendix.

TABLE II. Summary of the value of κt: the value of κ at the
transition point, χmax: the maximum of susceptibility and Kmin:
the minimum of kurtosis for each Ns and β. The thermodynamics
limit of κt is taken with the fitting form in Eq. (1). The errors of
χmax and Kmin are estimated by the jackknife analysis.

β Ns κtðβ; NsÞ χmax Kmin

1.80 16 0.1392177(39) 21.3(1.3) −0.931ð68Þ
20 0.1392265(33) 45.8(2.3) −1.373ð51Þ
24 0.1392270(65) 95.5(7.8) −1.595ð14Þ
∞ 0.1392348(54)

1.81 16 0.1390307(94) 13.12(95) −0.78ð10Þ
20 0.1390343(40) 20.3(1.1) −0.761ð58Þ
24 0.1390358(16) 27.1(1.4) −0.850ð71Þ
28 0.1390357(16) 36.9(2.9) −0.79ð12Þ
32 0.1390356(16) 62.5(7.8) −1.01ð16Þ
∞ 0.1390364(19)

1.82 16 0.138832(15) 9.35(58) −0.68ð10Þ
20 0.1388217(57) 12.02(72) −0.61ð14Þ
24 0.1388370(44) 15.07(78) −0.42ð18Þ
28 0.1388273(41) 16.1(1.1) −0.30ð10Þ
32 0.1388285(46) 16.8(1.0) −0.50ð16Þ
∞ 0.1388305(43)
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FIG. 5. Kurtosis intersection for the chiral condensate at Nt ¼ 12. The left panel contains all data points of Ns ¼ 16–32. The right
panel includes larger volumes Ns ≥ 24 together with the fitting function in Eq. (3) which assumes the 3D Z2 universality class and
contains a correction term. The black pentagon represents the resulting critical value of β.
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crossover behavior is seen in the volume dependence; for
larger volume the kurtosis tends to be larger. Therefore it is
likely that there is a crossing point between β ¼ 1.80 and
1.82. To keep away from the finite size effects we use Ns ≥
24 data points (mPSL ≥ 4) for the kurtosis intersection
fitting. We employ the following fitting form [34] which
incorporates the correction term associated with the con-
tribution of the energylike observable,

K ¼ ½KE þ AN1=ν
s ðβ − βEÞ�ð1þ BNyt−yh

s Þ; ð3Þ

where KE, βE, A, ν, B, and yt − yh are basically fitting
parameters. Following Ref. [34], we assume the three-
dimensional Z2 universality class for KE ¼ −1.369,
ν ¼ 0.630, and yt − yh ¼ −0.894, namely the actual fitting
parameters are now βE, A and B. The fitting results are
shown in Table III together with the previous smaller
Nt ≤ 10 results. The quality of the fitting for Nt ¼ 12 is
reasonable. In the table, κE is estimated by an interpolated
transition line in Eq. (2) together with the corresponding βE
as an input.

C. Analysis for exponent of susceptibility peak height

As seen above, the kurtosis intersection analysis is not
fully satisfactory since we have heavily relied on the
assumption of the universality class of the critical point.
Therefore we should cross check the location and the
universality class of the critical point. For that purpose, we
investigate the scaling of the susceptibility peak height for
the chiral condensate,

χmax ∝ ðNsÞb: ð4Þ

TABLE III. Fit results for kurtosis intersection with the fitting
form in Eq. (3) for Nt ¼ 4–12. In the fitting we assume the 3D Z2

universality class, namely KE ¼ −1.396, ν ¼ 0.630, and yt −
yh ¼ −0.894 are fixed in the fitting procedure. Using the central
value of βE as an input, κE is obtained from the interpolation
formula of the transition line in Eq. (2). The error of κE contains
that from only the interpolation procedure but not the error of βE.

Nt βE κE A B χ2=d:o:f:

4 1.6099(17) 0.1430048(13) 0.311(14) 0.10(21) 3.77
6 1.72462(40) 0.1406334(14) 0.422(12) −0.052ð52Þ 0.70
8 1.74953(33) 0.1402512(10) 0.414(13) −1.33ð15Þ 0.73
10 1.77545(53) 0.1397274(17) 0.559(29) −2.97ð25Þ 0.43
12 1.8105(40) 0.1390230(16) 0.41(13) −7.4ð2.3Þ 1.20

 10

 100

 16  24  32

χ m
ax

Ns

β=1.80
β=1.81
β=1.82

FIG. 6. The volume scaling of susceptibility peak height for
Nt ¼ 12. Both axes are scaled logarithmically. The filled symbols
are included in the fit but open ones are not.
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At a critical point, the exponent should be b ¼ γ=ν, where γ
and ν are critical exponents. As discussed in Ref. [34], in
general there are correction terms in the above formula but
here we neglect them just for a simplicity. The data in
Table II is fitted with the above functional form as seen in
Fig. 6. The resulting exponent b is plotted in Fig. 7 along
the transition line projected on β. Assuming the Z2

universality class (γ ¼ 1.237 and ν ¼ 0.630) provides an
estimation of the critical point of β, we confirm that it is
consistent with that of the kurtosis intersection for Nt ¼ 12
as well. This cross check assures that our analysis is
working well.

D. Estimate of critical mass in continuum limit

For scale setting, we perform the zero temperature
simulations, which roughly cover the parameter range of
the critical endpoints, and their results are summarized in
Appendix. For example, in Fig. 8, the pseudoscalar meson

massmPS and the Wilson flow scale
ffiffiffiffi
t0

p
[40] in lattice units

are plotted as a function of κ at β ¼ 1.80 and 1.81. The blue
vertical line represents the location of the transition point
κtðβ;∞Þ in Table II for corresponding β. From this figure,
we obtain the hadronic quantity at the transition point.

FIG. 8. The hadronic quantities in lattice units ðamPSÞ2,
ffiffiffiffi
t0

p
=a as a function of κ at β ¼ 1.80 (left) and 1.81 (right). The vertical blue

line shows the location of the transition point for κ at the corresponding β with Nt ¼ 12.

FIG. 9.
ffiffiffiffi
t0

p
T,mPS=T, and

ffiffiffiffi
t0

p
mPS along the transition line projected on β for Nt ¼ 10 (left) and 12 (right). The vertical red line shows

the location of the critical value of β determined by the kurtosis intersection analysis.

TABLE IV. The hadronic dimensionless quantities at the
critical endpoint for Nt ¼ 4, 6, 8, 10, and 12. Note that Nt ¼
10 results are updated compared with the previous work [34]
since the hadronic quantities at β ¼ 1.78 are updated as shown in
Table VII.

Nt
ffiffiffiffi
t0

p
mPS;E

ffiffiffiffi
t0

p
TE mPS;E=TE

4 0.6545(24) 0.16409(13) 3.987(12)
6 0.5282(12) 0.13328(23) 3.9630(63)
8 0.3977(19) 0.11845(20) 3.357(16)
10 0.3023(17) 0.11154(26) 2.711(17)
12 0.2287(57) 0.1090(10) 2.099(66)
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Although the transition point is slightly out of the inter-
polation range, the monotonic behavior of data points
suggests that such a short extrapolation should be harmless.
The dimensionless combination of the hadronic quan-

tities
ffiffiffiffi
t0

p
T, mPS=T, and

ffiffiffiffi
t0

p
mPS along the transition line

projected on β are plotted in Fig. 9 for Nt ¼ 10 and 12.
The vertical red line represents the location of the critical
point determined by the kurtosis intersection method, and
the plot allows us to obtain the hadronic quantities at the
critical point. From an interpolation, one can obtain the
critical value of the dimensionless quantities for each
temporal size Nt. The actual numbers are summarized in
Table IV.
Figure 10 shows the continuum extrapolation offfiffiffiffi
t0

p
mPS;E, mPS;E=TE, and

ffiffiffiffi
t0

p
TE. As for

ffiffiffiffi
t0

p
TE (lower

right panel of Fig. 10), even though the new data point
at Nt ¼ 12 is included, a stable continuum extrapolation
is observed and we obtain

ffiffiffiffi
t0

p
TE ¼ 0.09943ð34Þ which

has no significant difference compared with the previous
one

ffiffiffiffi
t0

p
TE ¼ 0.09970ð37Þ in Ref. [34]. In terms of the

physical units the critical temperature is given by TE ¼
134ð3Þ MeV, where we have used the Wilson flow scale

FIG. 10. Continuum extrapolation of the critical endpoint. In upper panels, the left one is for
ffiffiffiffi
t0

p
mPS;E vs 1=N2

t while the right one is
for

ffiffiffiffi
t0

p
mPS;E vs 1=Nt. In the lower panel mPS;E=TE (left) and

ffiffiffiffi
t0

p
TE (right) are plotted as a function of 1=N2

t .

FIG. 11. Columbia-like plot with axes m2
π and m2

ηs in physical
units. The blue symbol denotes the upper bound obtained in this
work Nt ≤ 12 while the red one is given in our previous study
Nt ≤ 10 [34]. The physical point is also shown just for a reference.
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1=
ffiffiffiffi
t0

p ¼ 1.347ð30Þ GeV in Ref. [41] as an input. On the
other hand, in Fig. 10,

ffiffiffiffi
t0

p
mPS;E and mPS;E=TE show

significantly large scaling violation. In the extrapolation
procedure, we try some functional forms including up to
quadratic correction term and examine the fitting range
dependence. As a result, their dependence turns out to be
quite large as shown in Fig. 10 (upper left for

ffiffiffiffi
t0

p
mPS;E and

lower left for mPS;E=TE) and Table V. The fitting named as
(A) is not acceptable since the χ2=d:o:f: is very large. For
other cases, χ2=d:o:f: is reasonable but in some cases, the
extrapolated mass is negative. Furthermore we plotffiffiffiffi
t0

p
mPS;E as a function of 1=Nt in Fig. 10 (upper right),

which shows a linear scaling behavior thus the leading
scaling violation seems OðaÞ for this quantity. Since our
value of csw around β ∼ 1.81 is out of the interpolation
range2 (β ≥ 1.90), it is likely that the OðaÞ improvement
program does not work well in our parameter range. Thus
to avoid such an extrapolation, in the future we should do a
large β > 1.90 simulation, that is, a very large Nt simu-
lation where the OðaÞ improvement works well. In such a
simulation, O(a2) scaling may be seen and an extrapolation
to the negative value could be avoided. In any case, here we
conservatively quote an upper bound of the critical valueffiffiffiffi
t0

p
mPS;E ≲ 0.08, which is taken from the maximum

continuum value among all the fits except for (A). In
physical units, this bound is mPS;E ≲ 110 MeV, which is
smaller than our previous estimate (mPS;E ≲ 170 MeV)
[34]. A Columbia-like plot, whose axes are given by
hadron masses, is shown in Fig. 11 to display the current
situation of our study. For future references, we mention the
continuum extrapolation ofmPS;E=TE in Fig. 10 (lower left)
where large cut off dependence is seen as well. Thus we
quote an upper bound mPS;E=TE ≲ 0.93 obtained with the
same criteria as that of

ffiffiffiffi
t0

p
mPS;E.

IV. SUMMARY AND OUTLOOK

In this study, we performed the large scale simulations
for Nt ¼ 12 by using the Wilson-type fermions. This is an
extension of our previous works at the smaller temporal
size simulations Nt ≤ 10 [33,34]. By using the modified
formula of the kurtosis intersection analysis, the critical
endpoint is determined with assuming 3D Z2 universality
class. The continuum limit for the critical temperature is
smoothly taken and we obtain TE ¼ 134ð3Þ MeV which is
essentially the same as before. On the other hand, for the
critical mass, the continuum extrapolation significantly
dominates the systematic error, thus here we conservatively
quote upper bounds

mPS;E ≲ 110 MeV; mPS;E=TE ≲ 0.93; ð5Þ

where we have made the upper bound about 40% smaller
than before.
In fact, the studies using the staggered-type fermions

suggested much lower boundmPS;E ≲ 50 MeV in Ref. [30].
Thus it is likely that the critical mass is so small that
modern computers cannot access it directly, or it could be
zero. Moreover an insightful result for Nf ¼ 4 QCD was
reported by de Forcrand and D’Elia [42] where the standard
staggered fermions are used to study the critical point. They
found large cutoff effects compared with Nf ¼ 3 case and
the critical mass tends to be zero with decreasing the lattice
spacing. A similar tendency is observed even in the Wilson-
type fermions by our group [43]. Since there is no rooting
issue when the number of flavor is a multiple of 4, the
feature that the critical mass is extremely small for
multiple-flavor QCD seems to be robust.
Of course, in order to make a quantitative conclusion,

one has to carry out large Nt simulations or use the
improved lattice actions. Another possibility is to invent
a new analysis method which is useful to study such a near-
zero critical mass.
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TABLE V. The continuum extrapolation of the hadronic dimensionless quantities at the critical endpoint with various functional forms
and fitting ranges.

Name Functional form Fitting range
ffiffiffiffi
t0

p
mPS;E χ2=d:o:f:

ffiffiffiffi
t0

p
TE χ2=d:o:f: mPS;E=TE χ2=d:o:f:

A (fit) a0 þ a1=N2
t Nt ¼ 8–12 0.1243(52) 12.07 0.09943(34) 0.63 1.491(50) 13.64

B (fit) a0 þ a1=Nt þ a2=N2
t Nt ¼ 6–12 −0.215ð30Þ 0.18 � � � � � � −2.12ð29Þ 0.72

C (solve) a0 þ a1=N2
t Nt ¼ 10–12 0.061(19) � � � � � � � � � 0.71(22) � � �

D (solve) a0 þ a1=Nt þ a2=N2
t Nt ¼ 8–12 −0.26ð12Þ � � � � � � � � � −3.2ð1.3Þ � � �

2In ref. [36], the constant physics condition is used to
determine csw. Actually this condition makes the determination
of csw at low β very hard, since one needs extremely small lattice
size Ns ≪ 6 for such a low β case in order to keep the physical
length scale constant. Of course one can change the constant
physics condition such that a low β simulation is feasible with a
reasonable lattice size say Ns ¼ 6, but in that case the physical
lattice size is larger and then a high β simulation requires quite
large lattice size Ns ≫ 6 and moreover infrared cutoff thanks to
the boundary condition gets weaker.
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APPENDIX: WILSON FLOW SCALE AND PSEUDOSCALAR
MESON MASS AT ZERO TEMPERATURE

Simulation parameters, results for the pseudoscalar meson mass amPS, and Wilson flow scale parameter
ffiffiffiffi
t0

p
=a are

summarized in Table VI. Result of following combined fit is given in Table VII,

ðamPSÞ2 ¼ a1

�
1

κ
−

1

κc

�
þ a2

�
1

κ
−

1

κc

�
2

; ðA1Þ

ffiffiffiffi
t0

p
a

¼ b0 þ b1

�
1

κ
−

1

κc

�
þ b2

�
1

κ
−

1

κc

�
2

: ðA2Þ

TABLE VI. Simulation parameters κ,Ns, andNt and measured
ffiffiffiffi
t0

p
=a and amPS at β ¼ 1.77, 1.78, 1.80, and 1.81.

Note that the data at β ¼ 1.78 is updated compared with the previous work [34].

β κ Ns Nt
ffiffiffiffi
t0

p
=a amPS

1.77 0.137100 12 24 0.77014(39) 1.0040(12)
0.137670 12 24 0.79076(35) 0.91999(86)
0.138500 12 24 0.83773(53) 0.7675(12)
0.138700 12 24 0.85652(79) 0.7172(18)
0.138903 16 32 0.87524(52) 0.66902(80)
0.139000 16 32 0.88795(57) 0.63966(81)
0.139653 16 32 1.0096(13) 0.4063(14)
0.139750 16 32 1.0447(17) 0.3528(20)
0.139850 16 32 1.0903(34) 0.2851(36)
0.139900 16 32 1.1163(52) 0.2433(49)

1.78 0.139356 16 32 1.0299(67) 0.4057(18)
0.139500 24 48 1.08443(70) 0.33595(69)
0.139600 24 48 1.12526(92) 0.27661(79)
0.139650 24 48 1.1505(12) 0.2399(14)
0.139700 24 48 1.1808(14) 0.1922(12)

1.80 0.138200 32 64 0.98521(21) 0.58267(65)
0.138600 32 64 1.05792(35) 0.46505(96)
0.139000 32 64 1.1662(11) 0.3162(13)
0.139100 32 64 1.19878(98) 0.2711(19)
0.139200 32 64 1.2487(11) 0.2118(36)

1.81 0.138000 32 64 1.02589(23) 0.55788(58)
0.138500 32 64 1.12419(37) 0.41466(78)
0.138800 32 64 1.21006(60) 0.3042(17)
0.138900 32 64 1.2462(15) 0.2572(15)
0.139000 32 64 1.2917(14) 0.2006(21)

TABLE VII. Fit results to Eqs. (A1) and (A2) for the critical hopping parameter κc and coefficients for the pseudoscalar meson mass
amPS and the Wilson flow parameter

ffiffiffiffi
t0

p
=a for β ¼ 1.77, 1.78, 1.80, and 1.81. Note that the data at β ¼ 1.78 is updated compared with

the previous work [34].

β κc a1 a2 b0 b1 b2 χ2=d:o:f: Fit range κ >

1.77 0.1400313(72) 9.00(27) −24.2ð4.2Þ 1.1814(69) −10.85ð46Þ 100.3(6.5) 0.34 0.1390
1.78 0.1397915(29) 8.12(23) −36ð11Þ 1.2380(43) −13.51ð76Þ 214(35) 2.51 0.1390
1.80 0.139374(14) 5.02(34) 9.6(6.0) 1.3353(82) −10.74ð33Þ 95.2(5.6) 13.88 0.1384
1.81 0.1391557(99) 4.98(29) 2.3(6.4) 1.3673(62) −10.21ð33Þ 90.0(6.4) 1.02 0.1382
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