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We propose that the Higgs phase of a gauge Higgs theory is the phase of spontaneously broken custodial
symmetry, and we present a new gauge invariant order parameter for custodial symmetry breaking which is
very closely analogous to the Edwards-Anderson order parameter for spin glasses. Custodial symmetry is a
global symmetry acting on theHiggs field alone, andwe showhere that the spin glass transition in gaugeHiggs
theories, from aQCD-like phase to a Higgs phase of broken custodial symmetry, coincides with the transition
between two distinct types of confinement. These are color confinement in the Higgs phase and a stronger
version of confinement, which we have termed “separation of charge” confinement, in the QCD-like phase.
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I. INTRODUCTION

In a gauge Higgs theory, with the scalar field in the
fundamental representation of the gauge group, there is no
thermodynamic transition which entirely separates the
phase diagram into a confining and a Higgs phase [1,2].
There is nonetheless a confining region which is qualita-
tively much like QCD, in the sense that there are metastable
color electric flux tubes which break by pair creation, and,
as a consequence, linear Regge trajectories whose reso-
nances correspond to such metastable states. There is also a
Higgs region, in which all forces mediated by bosons are
Yukawa in character, as in the weak interaction sector of the
Standard Model, and there is no flux tube formation at any
length scale. The physics of these two regions, like the
physics of QCD and the weak interactions, is qualitatively
so different that one may ask whether the distinction may
be formulated precisely, despite the absence of a thermo-
dynamic separation. And, if there is such a physical
distinction, one may also ask whether it is associated with
the symmetric or broken realization of some symmetry.
In previous work [3] we have suggested that the Higgs

and confining regions are distinguished by different vari-
eties of confinement, namely color (C) confinement in the
Higgs region and a stronger type of confinement, which we
call “separation of charge” (Sc) confinement, in the QCD-
like region, and we have shown that there must be a sharp
transition between these types of confinement [4]. We have

also suggested that this transition might coincide with
custodial symmetry breaking and put forward a gauge
invariant criterion for such breaking. Custodial symmetry is
a group whose elements transform the Higgs field but not
the gauge field, and for a Higgs in the fundamental color
representation this group contains, at a minimum, the center
elements of the gauge group. As an example, we consider
the lattice SU(2) gauge Higgs theory with a unimodular
Higgs field in the fundamental representation of the gauge
group. The action is

S ¼ SW ½U� þ SH½ϕ; U�

¼ −β
X
plaq

1

2
Tr½UμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞ�

− γ
X
x;μ

1

2
Tr½ϕ†ðxÞUμðxÞϕðxþ μ̂Þ�; ð1Þ

where ϕ is an SU(2) group-valued field. This theory has the
following invariances:

UμðxÞ → LðxÞUμðxÞL†ðxþ μ̂Þ;
ϕðxÞ → LðxÞϕðxÞR; ð2Þ

where LðxÞ ∈ SUð2Þgauge is a local gauge transformation,
while R∈SUð2Þglobal is a global transformation. SUð2Þglobal
is the custodial symmetry group.1 Likewise, in the
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1The term “custodial symmetry” is drawn from the electro-
weak theory [5,6] and has been applied to other beyond-the-
standard-model theories; see e.g., [7]. The term is actually
defined in different ways (see Sec. VI A), but for our purposes
(following [7,8]) it refers, in a gauge-Higgs theory, to a group of
transformations of the scalar field alone which leaves the action
invariant.
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Abelian-Higgs model or the SU(3) gauge-Higgs model,
where ϕ has one or three color components, respectively,
the custodial group consists of the global U(1) trans-
formations ϕðxÞ ¼ eiθϕðxÞ.
The purpose of this article is to introduce a new criterion

for custodial symmetry breaking which is very closely
analogous to the Edwards-Anderson order parameter for
spin glass transitions [9], and to show that custodial
symmetry breaking according to the new criterion coin-
cides physically with the transition from Sc to C confine-
ment. This implies that the Higgs regime of a gauge Higgs
theory can be regarded as a spin glass phase.

II. THE SPIN GLASS ORDER PARAMETER

Many textbook discussions of the Brout-Englert-Higgs
mechanism begin with unitary gauge, which for the action
(1) above is just the gaugewhich setsϕ ¼ 1. Then a standard
perturbative analysis suggests that the theory is in a Higgs
phase everywhere in the β − γ phase plane apart from γ ¼ 0.
This conclusion is demonstrably false in both the lattice
Abelian-Higgs model in D ¼ 3þ 1 dimensions and the
lattice SU(2) gauge Higgs theory inD ¼ 4þ 1 dimensions,
since both of these theories are known to have a massless
phase in some region of the phase diagram [10–12]. There
are other gauges in which hϕi vanishes in part of the phase
plane and is nonzero elsewhere, but the transition lines
which separate these regions are gauge dependent [13]. In
this section we will introduce a different kind of order
parameter, essentially a spin glass order parameter, whose
relation to physical gauges will be clarified in Sec. IV. There
it will be shown that custodial symmetry breaking is a
necessary condition for hϕi to be nonzero in any physical
gauge defined by a gauge condition imposed solely on link
variables, and a sufficient condition for hϕi to be nonzero in
at least one physical gauge of this type. A “physical” gauge
choice means that there exists a ghost-free Hamiltonian, and
gauges of this kind exclude conditions which couple link
variables on different time slices. Amore detailed discussion
regarding the drawbacks of unitary and covariant gauges, as
they concern order parameters, is reserved for Sec. VI E.
Just as hϕi vanishes in a gauge Higgs theory in the

absence of gauge fixing, so the expectation value of Ising
spins vanishes in a spin glass. The reasons are similar. The
Edwards-Anderson spin glass model [9] is described by the
Hamiltonian

Hspin ¼ −
X
ij

Jijsisj − h
X
i

si; ð3Þ

where si ¼ �1 is an Ising spin at site i, Jij are random
couplings between spins at sites i, j (which may or may not
be nearest neighbors) drawn from some probability dis-
tribution PðJÞ, and h represents an external magnetic field.
At h ¼ 0 the model is obviously symmetric under the
global Z2 symmetry si → zsi; z ¼ �1. But because of the

random nature of the couplings Jij, the spatial average of
spins vanishes in the h ¼ 0 limit, as does the expectation
value of any individual spin, upon averaging over the
random couplings. Despite this fact there is a way to detect
the spontaneous breaking of the global Z2 symmetry.
Define

ZspinðJÞ ¼
X
fsg

e−Hspin=kT; ð4Þ

s̄iðJÞ ¼
1

ZspinðJÞ
X
fsg

sie−Hspin=kT; ð5Þ

qðJÞ ¼ 1

V

X
i

s̄2i ðJÞ; ð6Þ

hqi ¼
Z Y

ij

dJijqðJÞPðJÞ; ð7Þ

where qðJÞ is the Edwards-Anderson order parameter.
When the expectation value hqi is nonzero in the infinite
volume V → ∞ and h → 0 limits, the system is in the spin
glass phase, and the Z2 global symmetry is spontaneously
broken. Note that because qðJÞ is a sum of squares it is
actually invariant under Z2 transformations at h → 0.
Nevertheless, qðJÞ detects whether the spins si, which
do transform under this symmetry, will tend to have a
particular orientation at each site i at fixed couplings Jij.
While the spatial average of spins will in general vanish in
the infinite volume limit at h → 0, the average of a spin at
any given site might not, and this is the symmetry breaking
which is detected by a nonzero qðJÞ.
In the analogous construction in lattice gauge Higgs

theory, ϕðxÞ has the role of the spin variables, with link
variables UiðxÞ as the random couplings. As in the case of
the spin glass, the spatial average of ϕðxÞ averages to zero
on a large volume, in the absence of gauge fixing, in any
typical configuration. Also as in a spin glass, the scalar field
at any particular point x averages to zero in a large set of
sample configurations fϕ; Uig. However, once again as in
the spin glass situation, there is a meaningful sense in
which a certain global symmetry, in this case custodial
symmetry, can be said to have broken spontaneously.
We will continue to use SU(2) gauge Higgs theory as an

illustration, and this is the theory which we numerically
simulate, but the reasoning can be readily extended to the
U(1) and other SU(N) gauge groups. For the present wewill
restrict our considerations to simple U(1) and SU(N) gauge
groups, with a single Higgs field in the fundamental (or, for
U(1), the single charged) representation of the gauge group.
The unimodular restriction jϕj ¼ 1 is only a convenience
which allows us to plot phase diagrams in a two-dimensional
β − γ plane; it is equivalent to a Higgs potential VðϕÞ ¼
λðϕ�ϕ − γÞ2 with λ → ∞. Fixing the modulus of the Higgs
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field in thisway allows us to explore a two- rather than three-
dimensional phase diagram, but it is doubtful that anything
in our presentation changes qualitatively if we take λ finite.2

Let H be the Hamiltonian operator of gauge Higgs
theory in temporal gauge, a gauge chosen so that all
physical states are gauge invariant. We begin from

exp½−Hðϕ; UÞ=kT� ¼ hϕ; Uje−H=kT jϕ; Ui
¼

X
n

jΨnðϕ; UÞj2e−En=kT; ð8Þ

where the Ψn are energy eigenstates. It is straightforward,
from a Euclidean path integral representation, to derive the
invariance ofHðϕ; UÞ under gauge and custodial symmetry
transformations from the corresponding symmetries of the
action; see (35) below. In analogy to spin models, we insert
a small custodial symmetry breaking term

Hspinðϕ; U; ηÞ ¼ Hðϕ; UÞ − h
X
x

Tr½η†ðxÞϕðxÞ� ð9Þ

with ηðxÞ an SU(2)-valued field. We then define

ZspinðU; ηÞ ¼
Z

DϕðxÞe−Hspinðϕ;U;ηÞ=kT; ð10Þ

ϕ̄ðx;U; ηÞ ¼ 1

ZspinðU; ηÞ
Z

DϕϕðxÞe−Hspinðϕ;U;ηÞ=kT; ð11Þ

ΦðUÞ ¼ 1

V

�X
x
jϕ̄ðx;U; ηÞj

�
η∈N ðUÞ

; ð12Þ

hΦi ¼
Z

DUiðxÞΦðUÞPðUÞ; ð13Þ

which should be compared to Eqs. (4)–(7). Here jϕ̄ðxÞj
denotes the gauge invariant modulus, e.g.,

jϕ̄ðxÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Trϕ̄†ðxÞϕ̄ðxÞ

r
SUð2Þgauge-Higgstheory;

jϕ̄ðxÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̄†ðxÞ · ϕ̄ðxÞ

q
SUðNÞgauge-Higgstheory; ð14Þ

and PðUÞ is a gauge invariant probability distribution for
the link variables, described below, which is obtained
from the partition function after integrating out the scalar
field. The expression N ðUÞ represents a set ηðxÞ fields
defined by

N ðUÞ ¼ argmax
η

X
x

����
Z

DϕϕðxÞe−Hspinðϕ;U;ηÞ=kT
����; ð15Þ

and the elements of this set are related by custodial
transformations, as shown below.
We now prove that the order parameter ΦðUÞ is gauge

invariant, and independent of the choice of η in the set
N ðUÞ. We begin by showing that ZspinðU; ηÞ is invariant
under η → ηR, where R is an element of the custodial
symmetry group. Denote ϕ0ðxÞ ¼ ϕðxÞR, and using the
invariance of the measure and H under custodial trans-
formations,

ZspinðU;ηRÞ

¼
Z
Dϕ0exp

�
−
�
Hðϕ0;UÞ−h

X
x

Tr½R†ðxÞη†ðxÞϕ0ðxÞ�
��

kT

�

¼
Z

Dϕexp

�
−
�
Hðϕ;UÞ−h

X
x

Tr½η†ðxÞϕðxÞ�
��

kT

�

¼ZspinðU;ηÞ: ð16Þ

Likewise, denoting

η0ðxÞ≡ gðxÞηðxÞ; ϕ0ðxÞ≡ gðxÞϕðxÞ; ð17Þ

where gðxÞ is a local gauge transformation, we have

Zspinðg ∘ U; g ∘ ηÞ
¼

Z
Dϕ0e−ðH½ϕ0;g∘U�−h

P
x
Tr½η0†ðxÞϕ0ðxÞ�Þ=kT ð18Þ

¼
Z

Dϕ0e−ðH½g∘ϕ;g∘U�−h
P

x
Tr½η0†ðxÞgðxÞϕðxÞ�Þ=kT ð19Þ

¼
Z

Dϕe−ðH½ϕ;U�−h
P

x
Tr½η†ðxÞϕðxÞ�Þ=kT ð20Þ

¼ ZspinðU; ηÞ: ð21Þ

By the same reasoning, we see that ϕ̄ transforms cova-
riantly under transformations in the gauge and custodial
symmetry groups. Again denoting ϕ0ðxÞ ¼ ϕðxÞR,

ϕ̄ðx;U;ηRÞ

¼ 1

ZspinðU;ηRÞ
Z

Dϕ0ϕ0ðxÞe−ðH½ϕ0;U�−h
P

x
Tr½R†η†ðxÞϕ0ðxÞ�Þ=kT

¼ 1

ZspinðU;ηÞ
Z

DϕϕðxÞRe−ðH½ϕ;U�−h
P

x
Tr½η†ðxÞϕðxÞ�Þ=kT

¼ ϕ̄ðx;U;ηÞR; ð22Þ

which establishes covariance under custodial symmetry.
Again applying the change of variables (17) we have also

2Still, the three-dimensional β, γ, λ phase diagram should be
explored, and the boundary of the spin wave phase (as defined
below) should be mapped out. Indeed, exploring e.g., symmetry
restoration in the electroweak theory at finite temperature will
require simulations at finite λ.
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ϕ̄ðx; g ∘ U; g ∘ ηÞ ¼ 1

Zspinðg ∘ U; g ∘ ηÞ
Z

Dϕ0ϕ0ðxÞe−H½ϕ0;g∘U�=kTeh
P

x
Tr½η†ðxÞg†ðxÞϕ0ðxÞ�Þ=kT

¼ 1

ZspinðU; ηÞ
Z

DϕgðxÞϕðxÞe−H½ϕ;U�=kTeh
P

x
Tr½η†ðxÞϕðxÞ�Þ=kT

¼ gðxÞ 1

ZspinðU; ηÞ
Z

DϕϕðxÞe−ðH½ϕ;U�=kTeh
P

x
Tr½η†ðxÞϕðxÞ�Þ=kT

¼ gðxÞϕ̄ðx;U; ηÞ: ð23Þ

The same changes of variables show that
Z

DϕϕðxÞe−Hspinðϕ;U;ηRÞ=kT

¼
	Z

DϕϕðxÞe−Hspinðϕ;U;ηÞ=kT


R ð24Þ

and Z
DϕϕðxÞe−Hspinðϕ;g∘U;g∘ηÞ=kT

¼ gðxÞ
	Z

DϕϕðxÞe−Hspinðϕ;U;ηÞ=kT


: ð25Þ

These two relations, applied to (15), imply that if ηðxÞ ∈
N ðUÞ then
(1) ηðxÞR ∈ N ðUÞ,
(2) gðxÞηðxÞ ∈ N ðg ∘ UÞ.
From point 1, and from (22), we see that ΦðUÞ is

independent of the choice of η in the set N ðUÞ, since these
elements are related by transformations in the custodial
group. Then it follows from point 2, and from (23), that

Φðg ∘ UÞ ¼ 1

V

�X
x
jϕ̄ðx; g ∘ U; η0Þj

�
η0∈N ðg∘UÞ

¼ 1

V

�X
x
jϕ̄ðx; g ∘ U; g ∘ ηÞj

�
η∈N ðUÞ

¼ 1

V

�X
x
jgðxÞϕ̄ðx;U; ηÞj

�
η∈N ðUÞ

¼ ΦðUÞ; ð26Þ
which establishes the gauge invariance of the spin glass
order parameter. The term proportional to h serves exactly
the same function as in any spin model with a global
symmetry; i.e., it breaks the global symmetry explicitly.
Without this term, ϕ̄ðx;U; ηÞ (which is evaluated at fixed
U) would vanish in a finite volume, due to the custodial
symmetry ofHðϕ; UÞ, as would a spin sx in the Ising model
in the absence of an external field, due to the global Z2

symmetry. But this breaking term does not also break gauge
invariance. The order parameter, as we have just seen, is
gauge invariant, even at finite h. As in any spin model, the
h → 0 limit follows the infinite volume limit.

In the Edwards-Anderson model (3) at h → 0 there are a
vast number of configurations which are nearly degenerate
in energy, and there will be an analogous phenomenon in
the spin glass phase of the gauge Higgs theory. We defer a
discussion of this point to Sec. III A.
From (16) and point 1 above, we see that

ZspinðUÞ≡ ZspinðU; ηÞjη∈N ðUÞ ð27Þ

is independent of which element η is chosen in the set
N ðUÞ, and is also gauge invariant,

Zspinðg ∘ UÞ ¼ Zspinðg ∘ U; η0Þjη0∈N ðg∘UÞ
¼ Zspinðg ∘ U; g ∘ ηÞjη∈N ðUÞ
¼ ZspinðU; ηÞjη∈N ðUÞ

¼ ZspinðUÞ; ð28Þ

where we have used (21) and point 2. We then define

Z ¼
Z

DUiðxÞZspinðUÞ

¼
Z

DUiðxÞDϕðxÞe−Hspinðϕ;U;η∈N ðUÞÞ=kT: ð29Þ

In a spin glass, PðJÞ can be taken as the product of
probability distributions for each Jij, which are typically
taken to be Gaussian distributions expð−J2ij=2J2Þ, or else
Jij ¼ �J with equal probability for each sign, and the pairs
of sites i, j are sometimes chosen to be nearest neighbors.
In gauge Higgs theory, however, PðUÞ is determined from
the condition that the expectation value of a gauge invariant
operator QðUÞ that depends only on U is given by

hQi ¼ TrQe−Hspin=kT

Tre−Hspin=kT

¼ 1

Z

Z
DUiðxÞQðUÞ

Z
DϕðxÞe−Hspinðϕ;U;η∈N ðUÞÞ=kT

¼ 1

Z

Z
DUiðxÞQðUÞZspinðUÞ

¼
Z

DUiðxÞQðUÞPðUÞ: ð30Þ
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Therefore PðUÞ is the gauge invariant probability density3

PðUÞ ¼ ZspinðUÞ
Z

: ð31Þ

With this probability density, hQi is the standard expect-
ation value of QðUÞ in a gauge Higgs theory in the h ¼ 0
limit. This completes the definition of ΦðUÞ and hΦi, and
the proof of gauge invariance.
We now have a gauge invariant criterion for the sponta-

neous breaking of custodial symmetry,

lim
h→0

lim
V→0

hΦi
	¼0 unbroken symmetry

>0 broken symmetry
; ð32Þ

which is entirely analogous to the Edwards-Anderson spin
glass criterion

lim
h→0

lim
V→0

hqi
	¼0 nonspin glass phase

>0 spin glass phase
: ð33Þ

There has always been a question, in SU(2) and other gauge
Higgs theories with the Higgs field in the fundamental
representation, of how to distinguish the Higgs phase from
the region with QCD-like physics in the absence of a
thermodynamic transition. Our suggestion is that the Higgs
phase is the phase of broken custodial symmetry, as defined
by the criterion stated above. As such, the Higgs phase is
the spin glass phase of the gauge Higgs theory. Our task is
to show that the distinction in terms of symmetry corre-
sponds to a physical distinction between the spin glass
phase and the QCD-like phase of a gauge Higgs theory, in

terms of the type of confinement present in each phase.
This will be deferred to Sec. VI.

III. NUMERICAL EVALUATION

The Edwards-Anderson Hamiltonian Hspinðfsxg; fJijgÞ
for the Ising spin glass system is a simple expression, easily
calculated for any given spin configuration. The same
cannot be said for Hðϕ; UÞ of the gauge Higgs theory,
defined in Eq. (8), for which we do not have an explicit
form. Fortunately, by the usual arguments, Hðϕ; UÞ can be
expressed in terms of a Euclidean time path integral,
which makes the computation of hΦi amenable to lattice
Monte Carlo methods. Identifying the arguments of H,
i.e., ϕðxÞ; UiðxÞ, as the Euclidean time dependent fields
ϕðx; 0Þ; Uiðx:0Þ on the t ¼ 0 time slice, we have

exp½−HðϕðxÞ;UiðxÞÞ=kT�

¼
Z

DU0½DUiDϕ�t≠0 exp½−SEðϕðx; tÞ;Uμðx; tÞÞ�; ð34Þ

where SE is the Euclidean action. The notation ½DUiDϕ��t≠0
means that only fields at times t ≠ 0 are integrated
over.4 Periodic boundary conditions, and a lattice time
interval − 1

2
Nt ≤ t < 1

2
Nt, where Nt ¼ 1=ðkTaÞ with a

the lattice spacing, are understood. The invariance of H
under custodial transformations HðϕðxÞR;UiðxÞÞ ¼
HðϕðxÞ; UiðxÞÞ and gauge transformations is derived from
the invariance of SE under these transformations, e.g.,
defining, at t ≠ 0, ϕ0ðx; tÞ ¼ ϕðx; tÞR,

exp½−HðϕðxÞR;UiðxÞÞ=kT� ¼
Z

DU0½DUiDϕ0�t≠0 exp½−SEðϕðx; 0ÞR;ϕ0ðx; t ≠ 0Þ; Uμðx; tÞÞ�

¼
Z

DU0½DUiDϕ�t≠0 exp½−SEðϕðx; 0ÞR;ϕðx; t ≠ 0ÞR;Uμðx; tÞÞ�

¼
Z

DU0½DUiDϕ�t≠0 exp½−SEðϕðx; 0Þ;ϕðx; t ≠ 0Þ; Uμðx; tÞÞ�

¼ exp½−HðϕðxÞ; UiðxÞÞ=kT�; ð35Þ

which demonstrates the invariance of H under custodial
transformations. Similar manipulations show that H is
gauge invariant.

In the numerical computation of ϕ̄ðx;U; ηÞ it is permis-
sible to go immediately to the h ¼ 0 limit.5 We will need
h ≠ 0 to prove formal identities in the next section, but it is
of no importance in the Monte Carlo simulation. For those
simulations we drop η and denote our observable as just
ϕ̄ðx; UÞ. The computational procedure is to (i) generate a
set of uncorrelated UiðxÞ configurations drawn from the

3In 1978 Hertz [14] put forward a spin glass version of an
Abelian gauge theory with matter. It differs from ours precisely in
the choice of PðUÞ, which in [14] was taken to be the usual
Boltzmann factor of a pure gauge theory in D ¼ 4 Euclidean
dimensions. This means that expectation values of gauge invari-
ant quantities, in such a spin glass version of gauge theory, differ
from that of gauge Higgs theory; these are different theories. In
our formulation, with PðUÞ given by (31), the point is that the
standard theory is already a spin glass theory.

4The restriction does not apply to U0 which can, if desired, be
fixed to U0 ¼ 1 everywhere except on a single time slice on the
periodic lattice.

5Where h should not be confused with Planck’s constant.
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probability distribution PðUÞ; and (ii) evaluate ΦðUÞ in
each configuration, finally averaging the resulting set of
ΦðUÞ to estimate hΦi. This amounts to a Monte Carlo
within a Monte Carlo simulation. The set of UiðxÞ
configurations are obtained by running the usual
Monte Carlo simulation of the Euclidean lattice, updating
both the link variables and the scalar field together on the
full lattice volume. After a sufficient number of update
sweeps of this kind (“sufficient” means that the final
configuration is uncorrelated with the initial configuration),
the Uiðx; 0Þ configuration on a t ¼ 0 time slice (or, for that
matter, on any time slice) is obviously drawn from the
probability distribution PðUÞ, since a set of gauge field
configurations generated in this way would give the correct
expectation value hQi of any gauge invariant observable
that depends only on the spatial link variables on a time
slice. With a configuration Uiðx; 0Þ in hand, and taking the
existing Uðx; tÞ;ϕðx; tÞ configuration on the Euclidean
time lattice as the initial configuration, we then compute
ϕ̄ðx; UÞ from a Monte Carlo simulation of the Euclidean
action SE, with Uiðx; 0Þ on the t ¼ 0 time slice fixed, i.e.,

ϕ̄ðx; UÞ

¼ 1

ZspinðUÞ
Z

DU0½DUi�t≠0Dϕϕðx; t ¼ 0Þe−SE: ð36Þ

So custodial symmetry breaking, or equivalently the spin
glass transition in gauge Higgs theory, is determined as
follows: The SU(2) gauge and scalar fields are updated in
the usual way, but each data-taking sweep actually consists
of a set of nsym sweeps in which the spacelike linksUiðx; 0Þ
are held fixed on the t ¼ 0 time slice. Let ϕðx; t ¼ 0; nÞ be
the scalar field at site x on the t ¼ 0 time slice at the nth
sweep. Then we compute ϕ̄ðx; UÞ from the average over
nsym sweeps

ϕ̄ðx; UÞ ¼ 1

nsym

Xnsym
n¼1

ϕðx; 0; nÞ; ð37Þ

and the order parameter Φðnsym; UÞ from (12). Here it is
important to indicate the dependence on nsym. Then the
procedure is repeated, updating links and the scalar field
together, followed by another computation of Φðnsym; UÞ
from a simulation with spatial links at t ¼ 0 held fixed, and
so on. Averaging the Φðnsym; UÞ obtained by these means
results in an estimate for hΦðnsymÞi. Since Φðnsym; UÞ is a
sum of moduli, it cannot be zero. Instead, on general
statistical grounds, we expect6

hΦðnsymÞi ¼ hΦi þ κffiffiffiffiffiffiffiffiffinsym
p ; ð38Þ

where κ is some constant. By computing hΦðnsymÞi in
independent runs at a range of nsym values, and fitting the
results to (38), we obtain an estimate for hΦi at any point in
the β, γ plane of lattice couplings, and temperature T.
We will mainly be interested in the phase diagram in the

plane of lattice couplings at zero temperature, which means
using a lattice with a sufficiently large extension in the
Euclidean time direction to approximate T ¼ 0. This is, of
course, a departure from the Edwards-Anderson spin glass,
where one is instead interested in the transition at finite
temperature. The transition points at (approximately) zero
temperature in the SU(2) gauge Higgs model are deter-
mined by varying γ at fixed lattice coupling β. At values of
γ below the spin glass/custodial symmetry breaking tran-
sition, the data for hΦðnsymÞi extrapolate to hΦi ¼ 0 as
nsym → ∞. Above the transition, these data extrapolate to a
finite value. Transition points are estimates of where the
extrapolated hΦi value begins to move away from zero, as γ
increases. An example of the data below and above the
transition, at fixed β ¼ 1.2, is displayed in Fig. 1(a). The
custodial symmetry breaking transition line, joining tran-
sition points determined as just described, is shown in
Fig. 1(b).
It is useful to compare the spin glass/custodial symmetry

breaking transition line with the line associated with the
transition to a nonzero expectation value jhϕiCj of the scalar
field in Coulomb gauge. This transition is located as
follows: At each data taking sweep we fix to Coulomb
gauge and define

jϕavðtÞj ¼
���� 1V

X
x

ϕðx; tÞ
����; ð39Þ

where V is still the three-volume of a time slice, with
susceptibility

χ ¼ 1

Nt

XNt

t¼1

VðhjϕavðtÞj2iC − hjϕavðtÞji2CÞ; ð40Þ

and where the subscript C means that the observable is
evaluated in Coulomb gauge. The transition points shown
in Fig. 1(b) are estimated from peaks in the susceptibility.
Note that these points lie above the custodial symmetry
breaking/spin glass transition line, which is also shown in
Fig. 1(b). The reason for this will be explained in Sec. IV.
Some numerical details: All results were obtained on 164

lattices. There were 4000 standard update (gaugeþ Higgs)
sweeps, with the data taking procedure carried out every
100 sweeps. Since both the link and the scalar field
variables are SU(2)-valued, both types of fields can be
updated by the standard Creutz heat bath method. For

6One must keep in mind that at finite V, hΦi would actually
vanish at nsym → ∞, since a symmetry cannot break in a finite
volume. The proper order of limits is first V → ∞, then
nsym → ∞. Nevertheless, for nsym not too large, Eq. (38) is a
good fit to the data, and the extrapolation should be reliable.
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updating the UμðxÞ link variable, one adds to the usual sum
of staples a product of ϕ fields, i.e.,

F ¼
X

staplesþ γ

β

X
μ

ϕðxþ μ̂Þϕ†ðxÞ; ð41Þ

so the part of the action which contains UμðxÞ is

SUpart ¼ βTr½FUμðxÞ� ð42Þ

and UμðxÞ is updated by a heat bath. Similarly, for an
update of ϕðxÞ, one constructs

F ¼
X
μ

fϕ†ðx − μ̂ÞUμðx − μ̂Þ þ ϕ†ðxþ μ̂ÞU†
μðxÞg: ð43Þ

Then the part of the action containing ϕðxÞ is

Sϕpart ¼ γTr½FϕðxÞ�; ð44Þ

and ϕðxÞ is likewise updated via heat bath. Coulomb gauge
was implemented by a straightforward over-relaxation
procedure; see e.g., [15]. Error bars on all measured
observables were obtained via the jackknife algorithm.
Independent runs were used, for each value of β; γ; nsym, to
determine ΦðnsymÞ, and the set of nsym values ranged from
500 to 2500 in steps of 500. The error bars in the transition
points in Fig. 1(b) reflect the fact that measurements are
made at only a finite number of points, so the true peak
would not lie exactly at the point where, e.g., the Coulomb
gauge susceptibility was maximum, or exactly midway
between the last γ value where the extrapolated Φ∞ yielded
a result consistent with zero, and the first point where the
extrapolated value deviates from zero. Moreover, there

could be some volume dependence in these values, which
we have not yet systematically investigated. We should
stress that the numerical results shown in Fig. 1(b), while
sufficient for our present purposes, should be regarded as
only a start toward a more accurate determination of the
phase diagram.

A. Gribov copies and the spin glass phase

The gauge fixing sweeps that are used to fix to a gauge in
lattice Monte Carlo, and the sweeps at fixed Uiðx; 0Þ used
to compute ΦðUÞ in the gauge Higgs theory, have some-
thing in common. Gauge fixing sweeps in, e.g., Coulomb
gauge seek to maximize the quantity

R ¼
X
x

X3
i¼1

Re½TrUiðxÞ�: ð45Þ

But in practice no gauge fixing algorithm exists which can
fix to an absolute maximum of R. The problem is analogous
to finding the spin configuration for which the spin glass
Hamiltonian is an absolute minimum in the h → 0 limit.
The Hamiltonian Hspin in (3) has a very large number of
near-degenerate minima, and the global minimum is
impossible to determine in practice. In the gauge fixing
case, the best that can be done is to fix to one of a vast
number of local maxima, which are the Gribov copies.
Computer algorithms are deterministic, and reach a unique
local maximum on the gauge orbit, but which maximum is
obtained depends on the starting configuration on the
gauge orbit.
In the Edwards-Anderson model in the spin glass phase,

the spins fluctuate around one of the near-degenerate
minima, which is in general not the global minimum of
the energy. This same phenomenon is also seen in gauge
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FIG. 1. (a) Extrapolation of hΦi to nsym → ∞ above (γ ¼ 1.5) and below (γ ¼ 1.1, 1.25) the custodial symmetry breaking transition at
β ¼ 1.2, γ ¼ 1.4, in SU(2) gauge Higgs theory. The lattice volume is 164; error bars are smaller than the symbol sizes. (b) The custodial
symmetry breaking/spin glass transition line joins filled circles; the Coulomb gauge transition line, derived from jhϕiCj, is the line
joining triangular data points. Note that the region where jhϕiCj > 0 lies entirely within the broken custodial symmetry phase, as it must
from the bound in (47).
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Higgs theory, when calculating the order parameter ΦðUÞ
from the Monte Carlo within a Monte Carlo procedure. In
the spin glass phase of gauge Higgs theory, in the data
taking part of the simulation, the scalar field on the t ¼ 0
time slice fluctuates around some configuration, dependent
on the starting configuration, with nonvanishing ΦðUÞ. As
in the Edwards-Anderson model there are a vast number of
such metastable configurations in the spin glass phase, for
fixed Uiðx; 0Þ, which give rise to nonzero but slightly
differentΦ. In practice we find that the statistical error inΦ
is on the order of 1% or 2%, so clearly these stable (or, in a
finite volume, metastable) configurations have very nearly
the same value for the order parameter. In spin glass theory
the degenerate configurations are believed to be thermo-
dynamically equivalent. Which particular configuration, in
the data taking sweeps of a gauge Higgs theory in the spin
glass phase, happens to be singled out by the starting
configuration is likely to be of little physical importance.

IV. CUSTODIAL AND GAUGE
SYMMETRY BREAKING

We know from the Elitzur theorem that a local gauge
symmetry cannot break spontaneously. Nevertheless, if we
impose a physical (e.g., Coulomb or axial) gauge which
leaves a global remnant symmetry on a time slice, then it is
possible that the remnant gauge symmetry can break on that
time slice. We will now show that custodial symmetry
breaking is a necessary condition for remnant gauge
symmetry breaking in any physical gauge, and a sufficient
condition for the existence of remnant symmetry breaking
in some physical gauge. This is a prerequisite to our
following discussion of Sc and C confinement.

A physical gauge refers to a gauge in which there exists a
ghost free Hamiltonian; this excludes gauge conditions
which couple link variables on different time slices (as in
lattice Landau gauge). We will consider physical gauges
specified by conditions of the form FðUÞ ¼ 0, where the
condition is imposed on spacelike link variables on each
time slice, as in lattice Coulomb and axial gauge, removing
all local gauge symmetry (but leaving some remnant global
symmetry) on a given time slice. We will refer to gauges of
this type as “F gauges.” Since ΦðUÞ is gauge invariant, it
can of course be evaluated in any particular gauge, i.e.,

hΦi ¼
Z

DUδ½FðUÞ�ΔF½U�ΦðUÞPðUÞ

¼ 1

Z

Z
DUδ½FðUÞ�ΔF½U� 1

V

× max
η

X
x

����
Z

DϕϕðxÞe−ðHðϕ;UÞ−h
P

x
Trη†ðxÞϕðxÞÞ=kT

����;
ð46Þ

where ΔFðUÞ is the Faddeev-Popov determinant. It should
be noted that in lattice gauge-fixing algorithms, every given
lattice configuration is transformed deterministically to a
single gauge-fixed configuration with ΔðUÞ > 0. This is
how lattice simulations evade Neuberger’s theorem [16]. In
lattice Monte Carlo simulations the gauge-fixing algorithm
makes a choice among gauge copies and should probably
be regarded as part of the specification of the gauge choice.
The modulus of the scalar field expectation value in an

F-gauge is

jhϕiFj ¼ lim
h→0

lim
V→∞

���� 1Z
Z

DUδ½FðUÞ�ΔF½U� 1
V

X
x

Z
DϕϕðxÞe−ðHðϕ;UÞ−h

P
x
TrϕðxÞÞ=kT

����
≤ lim

h→0
lim
V→∞

1

Z

Z
DUδ½FðUÞ�ΔF½U� 1

V

X
x

����
Z

DϕϕðxÞe−ðHðϕ;UÞ−h
P

x
TrϕðxÞÞ=kT

����
≤ lim

h→0
lim
V→∞

1

Z

Z
DUδ½FðUÞ�ΔF½U� 1

V
max
η

X
x

����
Z

DϕϕðxÞe−ðHðϕ;UÞ−h
P

x
Trη†ðxÞϕðxÞÞ=kT

����
≤ lim

h→0
lim
V→∞

Z
DUδ½FðUÞ�ΔF½U�ZspinðUÞ

Z
ΦðUÞ

≤ hΦi: ð47Þ

Equation (47) means that spontaneous breaking of custo-
dial symmetry, hΦi > 0 in the thermodynamic limit, is a
necessary condition for the spontaneous breaking of a
remnant gauge symmetry in any physical F-gauge.7

Since custodial symmetry is a continuous symmetry, one
might expect Goldstone modes in the broken phase of
custodial symmetry, resulting in long range correlations
among the ϕ fields in certain Green’s functions at fixed U.
Such long range correlations are, however, gauge depen-
dent and vanish when integrating over U. Moreover, one of
the assumptions of the Goldstone theorem is that there are
only short range couplings in the Hamiltonian. In general

7Note that we have not distinguished in (47) between partition
functions Z with different symmetry breaking terms proportional
to h, since their ratios equal unity in the limits shown.
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this assumption is violated in a physical gauge that removes
all local gauge symmetry, as pointed out long ago by
Guralnik et al. [17]. For these reasons, spontaneous break-
ing of custodial symmetry and/or remnant gauge symmetry
in a physical gauge are not associated with massless
Goldstone particles.
The inequality (47) raises the question of whether there

exists an F-gauge which saturates the bound, i.e.,
hΦi ¼ hϕiF. A glance at (12) shows that this would be
possible if the absolute value could be taken outside the
sum over lattice sites. This is accomplished via a kind of
unitary gauge applied to ϕ̄, rather than ϕ. Let η̃ðx;UÞ ∈
N ðUÞ be a choice of one member from each set N ðUÞ,

with η̃ðx; g ∘ UÞ ¼ gðxÞη̃ðx;UÞ; this choice is possible for
reasons noted below (25). Then, from (23), ϕ̄ðx;U; η̃ðUÞÞ
is a gauge covariant functional of U. We define the gauge
F̂ðUÞ ¼ 0 as the condition

F̂ðUÞ≡ ϕ̄ðx;U; η̃Þ
jϕ̄ðx;U; η̃Þj − 1 ¼ 0 ð48Þ

at all x on the time slice. Then in this gauge ϕ̄ðx;U; η̃Þ is
equal to a positive number times the unit matrix, and the
significance of this choice lies in the fact that hΦi ¼ jhϕiF̂j
as we see from

hΦi ¼ lim
h→0

lim
V→∞

Z
DUδ½F̂ðUÞ�ΔF̂½U�

	
1

V

X
x

jϕ̄ðx;U; η̃Þj


ZspinðUÞ

Z
ð49Þ

¼ lim
h→0

lim
V→∞

Z
DUδ½F̂ðUÞ�ΔF̂½U�

	
1

V
j
X
x

ϕ̄ðx;U; η̃Þj


ZspinðUÞ

Z
ð50Þ

¼ lim
h→0

lim
V→∞

���� 1V
X
x

1

Z

Z
DUδ½F̂ðUÞ�ΔF̂½U�

Z
DϕϕðxÞe−ðHðϕ;UÞ−h

P
x
Trη̃†ðx;UÞϕðxÞÞ=kT

���� ð51Þ

¼jhϕiF̂j; ð52Þ

where in passing from (49) to (50) we make use of (48). We
note that in the h → 0; V → ∞ limits the details of the
symmetry breaking term in the computation of hϕiF̂ should
not be important, and for hϕiF̂ ∝ 1 any term which biases ϕ
slightly toward the identity matrix should suffice. In
particular η̃ could be replaced by 1 in (51) without affecting
hϕiF̂ in the appropriate limits.
Broken custodial symmetry is therefore not only a

necessary condition for jhϕijF > 0 in any F-gauge, but
is also a sufficient condition for the existence of some F-
gauge in which jhϕiFj is nonzero. These facts are essential
to the exposition in Sec. VI below.

V. C AND Sc CONFINEMENT

In a gauge Higgs theory with the matter field in the
fundamental representation of the gauge group, as in QCD,
large Wilson loops have a perimeter-law falloff and
Polyakov loops have a finite expectation value, so in what
sense are these theories confining? The usual answer is that
confinement simply means that the asymptotic particle
spectrum is color neutral, which in turn means that such
particles are not the sources of a gauge field that could be
detected far from the source. This property is often called
“color confinement”; we will refer to it as “C confinement”
for short. Note that in a gauge Higgs theory, where there is
no thermodynamic separation between the QCD-like and

Higgs regions of the phase diagram, the property of C
confinement holds (in D ≤ 4 dimensions) throughout the
phase diagram, including deep in the Higgs regime. In the
Abelian-Higgs model inD ¼ 4 dimensions with a compact
U(1) gauge group and a single charged scalar field, C
confinement holds everywhere outside the massless
Coulomb phase.
In a pure gauge theory, however, there exists a variety of

confinement which is stronger than color confinement,
which we will call “separation of charge confinement” or
“Sc confinement.” Certainly C confinement holds true in a
pure gauge theory, whose particle spectrum consists of
color neutral glueballs. What distinguishes the pure gauge
theory from a gauge theory with matter in the fundamental
representation is the existence of a confining static quark
potential. Let q, q̄ be static quark-antiquark operators, and
define

QðRÞ ¼ q̄aðxÞVabðx; y;UÞqbðyÞ; ð53Þ

where V is an operator which is a functional of the
spacelike link variables Ui and which transforms, under
a gauge transformation, as a Wilson line running between
points x1 and x2, and R ¼ jy − xj. Contraction of the Dirac
indices is implicit. We consider gauge invariant states
containing these static quark-antiquark sources by letting
QðRÞ operate on the vacuum, i.e.,
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ΨVðRÞ ¼ q̄aðxÞVabðx; y;UÞqbðyÞΨ0; ð54Þ

and it is convenient to normalize V to agree with the
normalization of a Wilson line, i.e.,

hΨ0jTr½V†ðx; y;UÞVðx; y;UÞ�jΨ0i ¼ N; ð55Þ

whereN is the number of colors. It is not hard to see that the
energy expectation value of this state above the vacuum
energy is obtained from the logarithmic time derivative

EVðRÞ ¼ −lim
ε→0

d
dε

log ½h½Q†ðRÞ�t¼þ1
2
ε½QðR�t¼−1

2
εi�

¼ 1

N
hΨV jðH − E0ÞjΨVi; ð56Þ

where E0 is the vacuum energy, and in the first line the
expectation value is evaluated in a Euclidean path integral
with a large extension in the Euclidean time direction. The
notation ½� � ��t means that the operator is applied at time t.
The minimum possible energy EminðRÞ is the static quark
potential, as determined from the behavior of large Wilson
loops. Since, in a pure gauge theory, EminðRÞ ∼ σR at large
R and EVðRÞ is bounded from below by EminðRÞ, it follows
that

lim
R→∞

EVðRÞ ¼ ∞ for all Vðx; y;UÞ operators: ð57Þ

We will refer to this property as separation of charge (Sc)
confinement. It is a stronger condition than C confinement,
and the question is whether this definition can be extended to
gauge theorieswithmatter in the fundamental representation.
Our proposal in [3] is simple: Eq. (57) is also the

definition of Sc confinement in gauge Higgs theories, and
other gauge plus matter theories. The crucial condition is
that the operator Vðx; y;UÞ depends only on the spacelike
link variables, and not on the matter fields. If we imagine
taking the y → ∞ limit in (53), then the physical state ΨV
represents an isolated quark at point x, together with a
surrounding color electric field so as to satisfy the Gauss
law, and the question is whether such states, in a gauge
Higgs theory, can ever be of finite energy for some choice
of V depending only on U. In contrast, if V is allowed to
involve matter fields, we could construct operators such as

Vabðx; y;ϕÞ ¼ ϕaðxÞϕ†bðyÞ;
QðRÞ ¼ q̄aðxÞϕaðxÞϕ†bðyÞqbðyÞ; ð58Þ

which create two color singlet quark-scalar systems, local-
ized at points x, y, with a negligibleR-dependent interaction
energy. States of that type would be obtained after string
breaking, and we therefore exclude such operators from the
Sc criterion. That is not to say that states created by the
operators (58) are completely orthogonal to ΨVðRÞ states,
but they may become orthogonal in the R → ∞ limit; that is

also a question of interest which we address in the next
section.
Note that it is always possible to find Vðx; y;UÞ

operators for which EVðRÞ diverges with R. A simple
Wilson line running between the quark-antiquark sources is
an example, and in fact such a state has an energy which
rises linearly with R even in an Abelian, nonconfining
theory. The Sc criterion is that EVðRÞ diverges at R → ∞
for all V, regardless of whether ΨVðRÞ evolves, in
Euclidean time, toward a “broken string” state. But if there
is any V operator which violates the Sc criterion, then,
assuming the absence of a massless phase, the system is in a
C, rather than an Sc, confining phase.
Let us also note in passing that Sc confinement requires

that the gauge group has a nontrivial center. If the center is
trivial, then it is always possible to construct local operators
ξðx;UÞ which depend only on the gauge field, and which
transform in the fundamental representation of the gauge
group. In that case one could construct operators as in (58)
by replacing ϕ with ξ. These operators again create two
color neutral objects, invariant under all transformations in
the gauge group, whose interaction energy is negligible at
large separation.
To investigate these matters in a regulated, nonperturba-

tive formulation, amenable to numerical simulation, we
must go to the Euclidian lattice formulation and replace the
continuous time derivative by its discretized version. After
integrating out the static quark-antiquark fields and drop-
ping an R-independent mass term, the result is

EVðRÞ ¼ − log

�
1

N
hTr½U†

0ðx; tÞVðx; y; t;UÞ

×U0ðy; tÞV†ðx; y; tþ 1; UÞ�i
�
; ð59Þ

where it is understood that Vðx; y; t; UÞ depends only on the
spacelike link variables Uiðx; tÞ on time slice t and the Sc
criterion applies to this lattice version of EVðRÞ.8
The first question is whether a gauge Higgs theory is Sc

confining anywhere in the β, γ coupling plane, apart from
the pure gauge theory at γ ¼ 0, and the answer is yes. We
have shown that the Sc condition is satisfied at least in the
strong coupling region, using the lattice strong coupling
expansion [4]. Then the second question is whether the Sc
criterion is obeyed everywhere in the phase diagram, and
the answer is no. In [3] we showed that in some region of
the lattice SU(2) gauge Higgs phase diagram there are V
operators that can be inserted in (59) which violate the Sc

8In making the lattice approximation (59) to the logarithmic
time derivative (56) in the Sc phase, the lattice spacing in the time
direction must be taken small compared to the Eucidean time
required for ΨVðRÞ to evolve to a state containing two isolated
quark-scalar singlets, with an R-independent energy expectation
value.
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condition, and in that region the theory is C but not Sc
confining. This means that there must exist a transition of
some kind between the Sc and C confinement regions. The
questions are where that transition occurs and whether it
coincides with the custodial symmetry/spin glass transition.

VI. COINCIDENCE OF THE SPIN GLASS
AND CONFINEMENT TRANSITIONS

We now show that the spin glass phase is a Higgs phase;
i.e., it is a phase in which a global subgroup of the gauge
group is broken spontaneously, and as such it is a C
confining phase. To justify this statement we will consider
quantizing a gauge Higgs theory in the F-gauges, in which
the field operators ϕ; q; q̄, acting on the vacuum, create
physical states. The unitary, covariant, and temporal gauges
will be discussed shortly.
Any physical F-gauge leaves unfixed a global subgroup

G of the gauge group which preserves the gauge condition.
At a minimum this includes the center of the gauge group,
so the remnant gauge symmetry includes at least the
transformations

ϕðx; tÞ → zðtÞϕðx; tÞ;
U0ðx; tÞ → zðtÞU0ðx; tÞz†ðtþ 1Þ: ð60Þ

Some gauges, e.g., Coulomb gauge, preserve a larger
remnant symmetry under gauge transformations gðx; tÞ ¼
gðtÞ ∈ SUðNÞ. Other gauges, e.g., some versions of axial
gauge, which preserve only those transformations gðtÞ
which are diagonal matrices, are more restrictive. But
any F-gauge preserves at least the symmetry under the
transformations (60), and there are examples which pre-
serve only that global symmetry, as discussed below.
The field operators ϕ; q; q̄ transform under the remnant

gauge symmetry in an F-gauge and, acting on the vacuum,
create physical states. These operators do not only excite the
vacuum state at one pointx, butmust also, in accordancewith
the Gauss law, create a color electric field. While this
associated color electric field may carry only a finite amount
of energy, it may also be of infinite energy.
Let gFðx;UÞ be the gauge transformation which takes the

gauge field U into the F-gauge.9 Denoting field operators
in an F-gauge by the subscript F, they have the form

ϕFðxÞ ¼ gFðx; UÞϕðxÞ;
qFðxÞ ¼ gFðx; UÞqðxÞ;
q̄FðxÞ ¼ q̄ðxÞg†Fðx; UÞ;

Ui;FðxÞ ¼ gFðx; UÞUiðxÞg†Fðxþ {̂; UÞ: ð61Þ

The ϕF; qF; q̄F field operators are invariant under local
gauge transformations, but still transform under global
transformations in the remnant gauge group G. At a
minimum, these operators transform under global gauge
transformations gðxÞ ¼ z ∈ ZN . A well known example, in
continuum Abelian gauge theory, is the Coulomb gauge
operator

ϕCðxÞ ¼ gCðx;AÞϕðxÞ; ð62Þ

where

gCðx;AÞ ¼ exp

�
i
e
4π

Z
d3zAiðzÞ

∂
∂zi

1

jx − zj
�
: ð63Þ

One can check that gCðx;AÞ is the gauge transformation to
Coulombgauge, and also that it creates the Coulomb electric
field associated with a static charge at point x. In an Abelian
theory in anyF-gauge, such as Coulomb gauge, the remnant
gauge symmetry is gðxÞ ¼ eiθ. Under an arbitrary gauge
transformation gðxÞ ¼ eiθðxÞ, the Coulomb gauge operator
ϕCðxÞ transforms as ϕCðxÞ → e{θ0ϕCðxÞ, where θ0 is the
k ¼ 0mode of the Fourier transformed θðkÞ. In other words,
ϕC transforms under the remnant global symmetry in
Coulomb gauge.
The Abelian example illustrates an important point with

respect to charged states in a gauge theory. Any physical
state must respect Gauss’s law, which amounts to invari-
ance of the state under infinitesimal gauge transformations.
But one should not conclude from this that all physical
states in an infinite volume are entirely gauge invariant and
therefore uncharged. If that were true, then there could be
no isolated electric charges in an infinite volume in an
Abelian theory, even in the massless phase. Gauss’s law
allows a physical state to transform under some global
subgroup of the gauge group, and we have seen that a state
representing an isolated charge in an Abelian theory, i.e.,
Ψ ¼ ϕCðxÞΨ0, transforms, under an arbitrary gauge trans-
formation, under the remnant global symmetry of the gauge
group, providing that Ψ0 is invariant under that remnant
symmetry. A remnant global symmetry could be the full
group, e.g., global U(1) or SU(N), or it could be a subgroup
of those groups. If a physical state transforms under any of
those global symmetries, it is a charged state. For example,
a state in the Abelian theory containing n units of electric
charge transforms under global Uð1Þ=Zn. At a minimum, a
charged state in the non-Abelian theory must transform
covariantly under the center subgroup of the global gauge
group, i.e., under ZN or a nontrivial subgroup of ZN in the
case of SU(N).

A. The diagonal subgroup

If custodial symmetry is unbroken in SU(2) gauge Higgs
theory, then the full unbroken symmetry is G × SUð2Þ,
where G is the remnant global gauge symmetry, and the

9It is assumed that gFðx;UÞ is uniquely determined from U by
the gauge-fixing algorithm (cf. Sec. III A), although different
configurations on a gauge orbit may be transformed into different
Gribov copies.

HIGGS PHASE AS A SPIN GLASS AND THE TRANSITION … PHYS. REV. D 101, 054508 (2020)

054508-11



second factor group is custodial symmetry. Then if hϕi ≠ 0,
which presupposes some gauge choice, both G and
custodial SU(2) are spontaneously broken down to the
diagonal subgroup, consisting of transformations

ϕ0ðxÞ ¼ gϕðxÞg†; U0
iðxÞ ¼ gUiðxÞg† ð64Þ

with g ∈ G. It is this subgroup of transformations, for
G ¼ SUð2Þ, which is often referred to in the literature as
custodial symmetry, as opposed to our terminology (and
that of [7,8]), where custodial symmetry refers to the group
of global transformations acting on ϕ alone. The diagonal
subgroup (64) with g ∈ SUð2Þ plays an important role in
analyzing the electroweak vector boson mass spectrum;
cf. [5,6]. What is relevant for us is that this unbroken
diagonal subgroup, in an F-gauge, does not contain the
transformation ϕ0 ¼ zϕ, where z is a center element
belonging to either the custodial group or the remnant
symmetry group, and the vacuum in the broken phase
cannot be invariant under field transformations of this kind.

B. The spin glass phase and C confinement

In the spin glass phase there are always one or more
F-gauges in which hϕiF ≠ 0. This means that: (i) remnant
gauge symmetry is broken spontaneously, and in conse-
quence (ii) the vacuum is not a state of definite (zero) color
charge; (iii) the color electric field created by a charged
field operator is finite; and (iv) the theory is in a Higgs
phase. Points (i) and (ii) should be obvious, although there
may still exist an unbroken diagonal subgroup of combined
remnant gauge and custodial transformations, as mentioned
above. In regard to point (iii), if the energy of the color
electric field created by the field operator in the F-gauge
were infinite, then that state would be orthogonal to the
vacuum, and hϕiF would vanish. Another way to see this is
to observe that in an F-gauge for which hϕiF ≠ 0 on every
time slice, the ZN remnant symmetry is broken on every
time slice, and this in turn means that hU0ðx; tÞiF, which
transforms under the product ZN × ZN group of remnant
symmetry on time slices t and tþ 1, is also nonzero. One
way to think of this is to imagine a Monte Carlo simulation
in the broken phase of remnant symmetry, where ϕðx; tÞ
and ϕðx; tþ 1Þ fluctuate around fixed backgrounds. These
fixed backgrounds amount to an explicit symmetry break-
ing background for the U0ðx; tÞ fluctuations, and in
consequence hU0iF ≠ 0. Now define

VFðx; y; t;UÞ ¼ g†Fðx; t;UÞgFðy; t;UÞ; ð65Þ

so that

ΨVðRÞ ¼ q̄aFðxÞqaFðyÞΨ0

¼ q̄aðxÞVab
F ðx; y; t;UÞqbðyÞΨ0: ð66Þ

Computing EVðRÞ in an F-gauge, where VF ¼ 1 and
hU0i ≠ 0, we find that

lim
R→∞

EVðRÞ ¼ − lim
R→∞

log

�
1

N
hTr½U†

0ðx; tÞU0ðy; tÞ�iF
�

¼ − log

�
1

N
Tr½hU†

0ðx; tÞiFhU0ðy; tÞiF�
�

¼ finite; ð67Þ

which shows that the color electric field carried by charged
operators in the F-gauge is finite. The fact that hϕiF ≠ 0
means that the vacuum is not an eigenstate of charge (by
which we mean, more precisely, a state which transforms
covariantly under the remnant gauge symmetry), and the
theory is in a Higgs phase. Carrying out the usual
expansion with ϕðxÞ ¼ ϕ0 þ δϕðxÞ fluctuating around a
fixed ϕ0, the gauge bosons in U(1) and SU(2) gauge
theories all obtain a mass in the usual way, and there are
only Yukawa forces in the theory. This is C confinement.
As a second argument for C confinement, when

hϕiF ≠ 0, consider the overlap of the charged and neutral
states10

jchargedxyi ¼ q̄aðxÞVab
F ðx; y;UÞqbðyÞjΨ0i;

jneutralxyi ¼ ðq̄aðxÞϕaðxÞÞðϕ†aðyÞqaðyÞÞjΨ0i; ð68Þ

where we imagine taking y → ∞, leaving a quark at site x.
These are both physical states, but the neutral state is
obtained from operators creating two separated color
singlet objects, with no color electric field diverging from
points x, y. The charged state is created by operators which
transform, at sites x, y, under the remnant gauge symmetry.
Then evaluating the overlap in the F-gauge, where VF ¼ 1,
integrating out the heavy quark fields, and taking the R ¼
jx − yj → ∞ limit

lim
jx−yj→∞

hneutraljchargedi ∝ lim
jx−yj→∞

hϕ†aðxÞϕaðyÞiF
¼ hϕ†aiFhϕaiF
> 0: ð69Þ

This nonzero overlap shows that the “charged” state
containing an isolated quark at point x is not really charged;
it has a finite overlap with states created by color singlet
operators acting on the vacuum at point x. If the state
created by a color singlet operator is neutral, then so is the
state created by the charged operator. In fact, we see that the
charged state is not associated with a long range color
electric field characteristic of a charged field. If it were, and

10We note that in the SU(2) case the SU(2) group-valued scalar
can be reexpressed at each site as a complex two vector of unit
norm, with components ϕaðxÞ transforming in the fundamental
representation [18].
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because there is no such long range field in the state created
by a color singlet operator acting on the vacuum, then the
charged and neutral states would be orthogonal, which is
not the case.
However, in the spin glass phase there also existF-gauges

in which hϕiF ¼ 0 in some or all of this region of the phase
diagram. But it makes no sense to say that the theory is in a
Higgs phase in one F-gauge but not in another. Either the
system is in a C confinement phase or it is not; this is a
question which is independent of the gauge choice. The
vanishing of the Higgs field expectation value hϕiF does
imply that the state created byϕF operating on the vacuum is
orthogonal to the vacuum, but this could be for one of two
reasons: (a) the vacuum is an eigenstate of charge, and
remnant gauge symmetry is unbroken; or (b) the color
electric field created by gFðx;UÞ is of infinite energy, and for
this reason the overlap of the stateϕFΨ0withΨ0 can vanish.
Option (a) seems inconsistent in the spin glass phase, for
reasons just mentioned, and also because the remnant ZN
gauge symmetry is indistinguishable, in its action on the
U;ϕ fields, from the ZN subgroup of custodial symmetry,
and the order parameter for broken custodial symmetry is
gauge invariant. Consistency therefore requires that if
hϕiF ¼ 0 in some region of the spin glass phase in one
particular F-gauge, then also hU0iF ¼ 0 in that gauge in the
same region. In that case, the last line of (67) should be
infinity, and option (b) is the correct explanation.

1. Example: Axial gauge

An example of hϕiF ¼ 0 in the spin glass phase is the
maximally fixed axial gauge U1ðx; tÞ ¼ 1, with U2 and U3

set to 1 on a plane and a line, respectively, to eliminate any
residual local gauge symmetry on a time slice. We can show
that both of the expectation values of ϕ and U0 vanish in
this gauge, and that the charged field operators q; q̄;ϕ
create infinite energy states. Let the subscript A denote the
axial gauge just mentioned. Then the transformation to the
gauge is

gAðx; t;UÞ ¼
	
P

�Y∞
n¼0

U1ðxþ n{̂; tÞ
�
†

; ð70Þ

where P denotes path ordering in the x-direction. Defining
VA as in (65), and supposing that x and y ¼ xþ R{̂ lie on a
line parallel to the x-axis, then VAðx; y; UÞ is simply a
Wilson line joining points x, y, i.e.,

VAðx; y; t;UÞ ¼ P

�YR−1
n¼0

U1ðxþ n{̂; tÞ
�
: ð71Þ

Therefore

EVðRÞ ¼ − log

�
1

N
WðR; 1Þ

�
; ð72Þ

where WðR; 1Þ is the expectation value of a rectangular
timelike Wilson loop which is one lattice spacing long in
the time direction. SinceWðR; 1Þ falls exponentially to zero
with the perimeter 2Rþ 2, it follows that

lim
R→∞

EVðRÞ ¼ ∞: ð73Þ

On the other hand, if EVðRÞ is evaluated in axial gauge,
where Vðx; y; UÞ ¼ 1, then for x − y parallel to the x-axis
we have in this gauge

lim
R→∞

EVðRÞ ¼ − lim
R→∞

log

�
1

N
hTrU†

0ðx; tÞU0ðy; tÞiA
�

¼ − log

�
1

N
TrhU†

0ðx; tÞiAhU0ðy; tÞiA
�
: ð74Þ

From (73) we see that, in axial gauge, hU†
0ðx; tÞiA ¼ 0. It

follows that the state created by q, q̄ operators in axial
gauge, i.e.,

ΨVðRÞ ¼ q̄ðxÞVAðx; y;UÞqðyÞΨ0

¼ q̄AðxÞqAðyÞΨ0; ð75Þ

is infinite energy in the R → ∞ limit. Moreover, from
hU0iA ¼ 0 we deduce that hϕiA ¼ 0, because if this were
not so, then U0 would have a finite expectation value. We
conclude that hϕiA ¼ hU0iA ¼ 0 in axial gauge, and
isolated field operators ϕ; q; q̄ create infinite energy states
in this gauge. For axial gauge this is actually true at all
couplings. The underlying reason is that a Wilson line
operator creates a line of electric flux whose energy
increases with length, regardless of whether the theory is
in a C, Sc, or massless phase.

C. The symmetric phase and Sc confinement

If custodial symmetry is unbroken in the ground state,
then for any operatorQðϕ; UÞ composed of fields on a time
slice, and z in the center subgroup of custodial symmetry,

hQðzϕ; UÞiF ¼ hQðϕ; UÞiF ð76Þ

in the appropriate h → 0 and infinite volume limits. But the
action of the ZN subgroup of remnant gauge symmetry on
fields ϕ; U is indistinguishable from the action of the ZN
subgroup of custodial symmetry, so if custodial symmetry
is unbroken, so is the ZN remnant gauge symmetry, and the
vacuum state is invariant under this symmetry. This means
that any operator which transforms covariantly under the
ZN remnant gauge symmetry, operating on the vacuum,
creates a charged state which also transforms covariantly
under ZN remnant gauge symmetry. States of this kind can
be created, e.g., by operators qF; q̄F;ϕF in any F-gauge,
which transform covariantly under (at a minimum) the
remnant ZN symmetry.
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With this in mind we return to the overlap of charged and
neutral states, as defined in (68), this time in the symmetric
phase. We have

lim
jx−yj→∞

hneutraljchargedi

∝ lim
jx−yj→∞

hϕ†aðxÞVabðx;y;UÞϕbðyÞi

¼ lim
jx−yj→∞

Z
DUϕaðxÞϕbðyÞ½U�Vabðx;y;UÞPðUÞ; ð77Þ

where

ϕaðxÞϕbðyÞ½U�

¼ 1

ZspinðUÞ
Z

dϕϕaðxÞϕbðyÞe−Hspin=kT: ð78Þ

Since custodial symmetry is unbroken for gauge configu-
rations drawn from the probability distribution PðUÞ, it
follows that for such configurations, in the symmetric phase
at h → 0,

lim
jx−yj→∞

ϕaðxÞϕbðyÞ½U� ¼ 0: ð79Þ

Because V is a bounded operator [see (55)], this means that
the overlap between all charged states and the neutral,
“string broken” states must vanish in the R → ∞ limit:

lim
jx−yj→∞

hneutraljchargedi ¼ 0: ð80Þ

Note that this result holds for all V operators in the
symmetric phase, independent of any gauge choice.
Charged states in the unbroken phase may be either of

finite or of infinite energy. For example, if there is an
F-gauge in the unbroken phase such that hU0iF ≠ 0, then
the energy EVF

at R → ∞ is finite, according to (67).11 If
there are no charged states of finite energy above the
vacuum energy, then the system is in an Sc confinement
phase. If, on the other hand, there do exist charged finite
energy states, orthogonal to all neutral states, then states of
this kind will necessarily appear in the spectrum. The
system cannot then be in a C confining phase, where there
are no charged particles in the spectrum. Nor can it be in an
Sc confining phase, where isolated charges are all states of
infinite energy. The remaining possibility is a massless
phase. So the phase of unbroken custodial symmetry is
either Sc confining or massless. This is consistent with the
fact that hϕiF ¼ 0 in all F-gauges in the symmetric phase,
so there exists no sensible perturbative expansion of ϕðxÞ
around a nonzero expectation value, and no broken

symmetry that could supply a 1=k2 pole in the scalar
propagator, which could then be absorbed to produce a
massive pole in gauge boson propagators. In other words,
there is no Brout-Englert-Higgs mechanism in the sym-
metric phase, at least not one that can be seen in any
physical F-gauge.

1. Pseudomatter fields

Charged states may also be created, in the unbroken
phase, by combining matter fields with “pseudomatter”
fields. A pseudomatter field (cf. [3]) is an operatorωaðx;UÞ
which is entirely a functional of the gauge field, trans-
forming in the fundamental representation of the gauge
group for all local gauge transformations, but which is
invariant under global ZN transformations. An explicit
example, in the continuum Abelian gauge theory, is
gCðx;AÞ in (63), which transforms covariantly under local
gauge transformations, but is invariant under global U(1)
gauge transformations. Another example is any eigenstate
ζanðx;UÞ, or any linear combination of eigenstates, of the
spatial covariant Laplacian

ð−DiDiÞabxy ζbnðy;UÞ ¼ λnζ
a
nðx;UÞ; ð81Þ

where

ð−DiDiÞabxy

¼
X3
k¼1

½2δabδxy−Uab
k ðxÞδy;xþk̂−U†ab

k ðx− k̂Þδy;x−k̂�: ð82Þ

Since the gauge field is invariant under global ZN gauge
transformations, the same is true of the ζnðx;UÞ eigen-
states, although these operators must transform covariantly
in the fundamental representation under all other gauge
transformations. Given a pseudomatter field ωaðx;UÞ, a
charged state in the unbroken phase, associated with the
operator Vðx; y;UÞ in the y → ∞ limit, can be constructed
as in (54) by replacing the quark operator qaðyÞ with a
pseudomatter operator, creating a state

Ψq ¼ q̄aðxÞVabðx; y;UÞωbðy;UÞΨ0

¼ q̄aðxÞω̃aðx;UÞΨ0; ð83Þ
and taking the same y → ∞ limit. Note that

ω̃aðx;UÞ ¼ Vabðx; y;UÞωbðy;UÞ ð84Þ
is itself a pseudomatter operator, and indeed any state of the
form (83), for any pseudomatter field ω̃aðx;UÞ, transforms
under global ZN gauge transformations, but not under local
gauge transformations.
A set of N pseudomatter fields ωa

nðx;UÞ can be used to
define an F-gauge choice, as exemplified by the Laplacian
gauge introduced by Vink and Wiese [19]. Following those
authors, define

11This is not inconsistent with hϕiF ¼ 0. While hϕiF ≠ 0
implies hU0iF ≠ 0, the converse is not necessarily true.
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MabðxÞ ¼ ωa
bðx;UÞ; ð85Þ

and carry out a polar decomposition at each site

Mðx;UÞ ¼ Wðx;UÞPðx;UÞ; ð86Þ

where W is a unitary matrix. Let

Dðx;UÞ ¼ eiαðxÞ=N1; eiαðxÞ ¼ det½Wðx;UÞ�: ð87Þ

Then the SU(N) matrix-valued field

gFðx;UÞ ¼ Dðx;UÞW†ðx;UÞ ð88Þ

defines the gauge transformation to an F-gauge. In this
construction the remnant gauge symmetry is reduced to the
minimal symmetry possible, i.e., to the center subgroup
G ¼ ZN , and the gauge condition on any time slice is

Fðx; UÞ ¼ gFðx;UÞ − 1 ¼ 0: ð89Þ

The Gribov ambiguity is eliminated in gauges of this kind,
and the components of, e.g., the q̄ operator in this gauge are
given by

q̄aFðxÞ ¼ q̄bðxÞgbaF ðx;UÞ: ð90Þ

Each of the q̄aFðxÞ components is invariant under local
gauge transformations, and transforms under the global
remnant ZN symmetry. This remnant symmetry does not
transform the components among themselves.
In Refs. [20,21] it was observed that particles in the

physical spectrum of an SU(2) gauge Higgs theory (such as
the physical W’s, quarks, and Higgs particles) are created
from local gauge invariant composite operators, and these
particles are all color singlets. That observation is correct if
there is no massless phase in the theory, and the charged
operators create only infinite energy states in the unbroken
phase. If there is, however, a massless phase, as in the
Abelian-Higgs model in 3þ1 dimensions and lattice SU(2)
gauge Higgs theory in 4þ 1 dimensions, then there are
charged particles in the spectrum in that phase, and the list
of operators in [20,21] is incomplete. As we have just
pointed out, it is possible to construct physical charged
states, invariant under local but transforming under global
gauge transformations, and these are required to complete
the spectrum in the massless phase.

D. Transitions

To summarize: Any physical F-gauge, in which field
operators ϕ; q; q̄ acting on the vacuum create physical
states, leaves unfixed a remnant gauge symmetry contain-
ing at least the global ZN subgroup. In the spin glass phase
this global ZN subgroup is broken spontaneously, and the
Sc confinement condition is violated. Physical states in this

phase cannot be distinguished by their transformation
properties under the remnant gauge symmetry; there are
no charged states in the spectrum distinct from neutral
states. This is the Higgs or C confinement phase. In this
phase there always exist F-gauges in which the field
operators create finite energy states, and hϕiF is nonzero.
In the phase of unbroken custodial symmetry the global

ZN subgroup of gauge symmetry is unbroken, and hϕiF
vanishes in every physical gauge. In this phase it is possible
to construct charged states orthogonal to the vacuum, and
orthogonal to any uncharged state, which transform cova-
riantly under the remnant gauge symmetry. If there exist
charged states of finite energy, then charged states must
appear in the spectrum, in which case the theory is not in a
C confinement phase and Sc confinement is also ruled out.
The remaining possibility is a massless phase. But if every
charged state is a state of infinite energy relative to the
vacuum, then there is separation of charge confinement,
and the system is in the Sc confined phase.
The conclusion is that the spin glass phase is a C

confinement Higgs phase, while the phase of unbroken
custodial symmetry may be either a massless or an Sc
confining phase, depending on the couplings. In the
absence of a massless phase, as in SU(2) gauge Higgs
theory in D ¼ 3þ 1 dimensions, the transition to the spin
glass phase coincides with the transition from Sc confine-
ment to C confinement.
That is the main result of this paper.

E. Other gauges

In unitary gauge, in U(1) and SU(2) gauge Higgs
theories with a fixed modulus Higgs field, we can set
ϕðxÞ ¼ 1 everywhere. Then a standard perturbative analy-
sis suggests that the theory is in a Higgs phase everywhere
in the phase diagram, at all β, γ couplings apart from γ ¼ 0.
This conclusion is demonstrably false in some regions of
the phase diagram, since it is known from numerical
simulations that the Abelian-Higgs model with a compact
gauge group has a massless phase inD ¼ 3þ 1 dimensions
[10,11], while the SU(2) gauge Higgs model has, on the
lattice, a massless phase in D ¼ 4þ 1 dimensions [12].
The question is what is going wrong with the usual
perturbative reasoning in unitary gauge.
The answer is that field operators transformed to unitary

gauge (denoted by a subscript U) are color singlet oper-
ators, and the nonzero expectation value of the scalar field
operator hϕiU, which is a triviality in unitary gauge, says
nothing about the vacuum state and the phase of the theory.
To see this, we observe how the Gauss law operates in
unitary gauge. In this case the transformation gU to unitary
gauge, in U(1) and SU(2) gauge theories with unimodular
Higgs fields, is simply

gUðx;ϕÞ ¼ ϕ†ðxÞ ð91Þ
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so that

ϕUðxÞ ¼ gUðx;ϕÞϕðxÞ ¼ 1 ð92Þ

is an uncharged, color singlet operator. The same obser-
vation holds for other matter field operators in unitary
gauge,

qaUðxÞ ¼ ϕ†ab
U ðxÞqbðxÞ;

q̄aUðxÞ ¼ q̄bðxÞϕba
U ðxÞ; ð93Þ

which are also local color singlets, invariant under all gauge
transformations including transformations in the global
center subgroup. Isolated color neutral operators of this
type, operating on the vacuum state, will produce excited
states of finite energy at any β; γ > 0 in phase plane, but
even in the massless phase they cannot by themselves
create charged states.
Another question which arises in unitary gauge is the fate

of the dynamical degrees of freedom associated with
custodial symmetry, which seem to have disappeared in
this gauge. That disappearance is deceptive, however. In
fact the relevant degrees of freedom are still there in unitary
gauge, but they are now found in the gauge sector. Let us
write UμðxÞ ¼ gðxÞUμ;FðxÞg†ðxþ μ̂Þ, where Uμ;F is the
gauge field in an F-gauge, and gðxÞ is some SU(2) valued
field. Custodial symmetry is now a global transformation
on the gðxÞ field. To see this, begin by fixing to unitary
gauge, ϕ ¼ 1. Then, in the SU(2) gauge Higgs model (1),

Z ¼
Z

DU exp

�
−SW þ γ

X
x;μ

1

2
Tr½UμðxÞ�

�
: ð94Þ

Now insert unity in the usual way to obtain

Z ¼
Z

DU

	
ΔFP½U�

Z
DgδðF½g ∘ U�Þ




× exp

�
−SW þ γ

X
x;μ

1

2
TrUμðxÞ

�

¼
Z

DUΔFP½U�δðF½U�Þe−SW

×
Z

Dg exp

�
γ
X
x;μ

1

2
Tr½g†ðxÞUμðxÞgðxþ μ̂Þ

�
; ð95Þ

which is simply the SU(2) gauge Higgs theory in an
F-gauge. Obviously the Higgs action SH is again invariant
under custodial transformations of the g field, and unbroken
custodial symmetry, combined with EVðRÞ finite for some
V at R → ∞, is a sufficient condition for the existence of a
massless phase, as discussed above. Similar considerations
apply to the Abelian-Higgs model.

The action in unitary gauge in (94), for the U(1) and
SU(2) gauge groups, is sometimes described as a rewriting
of the action in terms of gauge invariant variables. While it
is true that the link variables in unitary gauge are formally
gauge invariant, it can be mistaken to conclude, simply
from the form of the action in (94), that the theory is
necessarily in a massive Higgs phase, regardless of the
couplings β, γ. This conclusion, as already mentioned, is
directly contradicted by numerical simulations.
Turning to covariant gauges such as Landau gauge, the

problem is that the gauge condition cannot be imposed
independently on each time slice, and the transformation to,
e.g., Landau gauge, gLanðx; t; UÞ, is a function of the gauge
field over the entire lattice, on all time slices. The con-
struction of a ΨV state with V ¼ VF in (65) does not work
in any covariant gauge, and the energetics argument in
Eq. (67) does not apply. The same is true in the temporal
gauge, where the transformation gtempðx;UÞ to temporal
gauge on the Euclidean lattice involves the U0 component
of the gauge field, and physical states are not produced by
isolated field operators ϕ; q; q̄ acting on the vacuum.
Unless these field operators are combined with pseudo-
matter fields, as described above, such operators will
generate unphysical states that violate the Gauss law
constraint. In covariant gauges, an isolated field operator
acting on the vacuum will also produce an unphysical state,
but in fact even the physical state conditions in covariant
gauges are not well defined on the lattice, for reasons
associated with Neuberger’s theorem [16]. The theorem
tells us that the expectation values of Becchi-Rouet-Stora-
Tyutin (BRST) invariant operators are formally ratios of
0=0. This ambiguity is evaded in lattice Monte Carlo
simulations, as already noted in Sec. IV, by a restriction,
implemented by the gauge fixing algorithm, of gauge field
configurations to the first Gribov region. But this restriction
breaks BRST symmetry [22], so the identification of
physical states in the lattice formulation is problematic
in covariant gauges.
For all of these reasons we have focused on the

implications of hϕi in the physical F-gauges, since the
unitary, temporal, and covariant gauges do not seem
suitable for our purposes.

VII. DISCUSSION

A. Comparison to our earlier proposal

The custodial symmetry breaking criterion put forward in
Sec. II is a little different from our original proposal in [4], so
we should explain the difference. The two criteria are very
similar, but here we define the spin glass phase in D space
dimensions in a quantum statistical system defined by the
quantumHamiltonianH and the operator exp½−H=kT�, with
an order parameterΦðUÞ that depends only on link variables
on a time slice, whereas in our previous work we defined the
spin glass phase inDþ 1 Euclidean spacetime dimensions,
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and a classical Boltzmannweight exp½−SE�, where the order
parameter depends on the gauge fields at all times. The
difference in the Monte Carlo implementations is this: in
the current proposal, when computing the spin glass order
parameter by means of the (Dþ 1)-dimensional Euclidean
path integral, the gauge field is fixed only on the t ¼ 0 time
slice, but is allowed to vary on all other time slices in the
Euclidean path integral, while in our previous formulation
the spin glass order parameter12 was computed in the same
Euclidean path integral, but the gauge field was fixed at all
times. Likewise, in our earlier work, the order parameterwas
computed from ϕðx; tÞ at all times, while in the present case
the order parameter is computed only from ϕðx; tÞ on the
t ¼ 0 time slice. We conjectured, in our previous work, that
custodial symmetry breaking coincides with the Sc to C
confinement transition. That conjecture was almost correct.
The statement is true in our new formulation, as set out in
this paper.

B. Goldstone’s theorem

Custodial symmetry is a continuous global symmetry,
which raises the question of why there are no gapless
excitations in the spin glass phase. The answers are similar
to those provided by Guralnik et al. [17] many decades ago,
as we have already remarked in Sec. IV. In the first place,
any long range correlations in ϕðxÞ at fixedUiðxÞ are gauge
dependent, and, in the absence of gauge fixing, average to
zero after integrating over UiðxÞ. In the second place, upon
fixing to a physical F-gauge, the Hamiltonian operator is in
general nonlocal, which violates one of the assumptions
that goes into the proof of the Goldstone theorem.

C. ZN symmetry

We note again the relevance of the nontrivial center of the
gauge group. If the center is trivial, then there are local
operators ξaðx;UÞ, transforming in the fundamental repre-
sentation of the gaugegroup,which dependonly on thegauge
field. Unlike the pseudomatter operators described above,
these operators transform under all elements of the gauge
group. Then, choosing Vabðx; y;UÞ ¼ ξaðx;UÞξ†bðy;UÞ,
the corresponding ΨV state consists of two separated color
singlet excitations above the ground state, whose interaction
energy is negligible, and Sc confinement is ruled out.
Suppose instead that the center subgroup is nontrivial, but

that the scalar field transforms in a zero N-ality representa-
tion, such as the adjoint representation of the gauge group, as
in the Georgi-Glashow model. A custodial symmetry, if one
exists, does not necessarily contain a subgroup which
coincides with a global subgroup of the gauge transforma-
tions. The Sc criterion still makes sense, for q, q̄ static
quarks transforming in the fundamental representation, but

in this case it is associated with a different group of ZN
transformations which are not gauge transformations, and
not elements of the custodial group. This is the center
symmetry whose importance to confinement in pure gauge
theories was emphasized long ago by ’t Hooft [24], and
which is associated with the center vortex theory of confine-
ment (cf. the review in [25]). The order parameter for the
breaking of this symmetry is the Polyakov line. The system
is in an Sc confinement phase if and only if this global ZN
center symmetry is not spontaneously broken.

D. Custodial symmetry and the spectrum

Particles in the physical spectrum of a gaugeHiggs theory
in the C and Sc phases are created by local color singlet
operators, as pointed out long ago in [20,21]. In SU(2) gauge
Higgs theory there is a triplet of massive vector bosons, the
W bosons, that can be created by such operators in the Higgs
phase. This is in accordance with the usual perturbative
treatment, where there is a massive vector boson associated
with each of the three “broken” generators of the gauge
group. However, as emphasized recently byMaas and Törek
[26] (see also Sondenheimer [27]), this agreement between
the perturbative counting of asymptotic particle states, and
the distinct states that can be created by local gauge invariant
operators, seems to be a coincidence in SU(2) gauge Higgs
theory, resulting from the fact that the custodial group is also
SU(2). For larger gauge groups the counting of vector boson
states according to the perturbative BRST approach and the
number of distinct vector bosons that can be created by local
color singlet operators according to the analysis of [20,21]
may not agree; cf. [26].

E. Other proposals

Our spin glass criterion is certainly not the first proposal
for distinguishing the Higgs phase from other phases, so it
may be appropriate to comment here on other suggestions,
many of which are found in the condensed matter literature.
Most modern textbooks on quantum field theory and

many-body theory have a section on spontaneously broken
gauge symmetry, and in most cases what is done is to fix to
unitary gauge and show that the would-be Goldstone mode
is “eaten” by the gauge particles, which then acquire a
mass. We have already discussed, in Sec. VI E, the
deficiencies in this argument. In fact, the subject heading
“spontaneous gauge symmetry breaking” is already a little
misleading, since no local gauge symmetry can break
spontaneously, as we know from the Elitzur theorem.
However, the Elitzur theorem does not forbid the

spontaneous breaking of a global remnant of the gauge
symmetry in some definite gauge, and therefore some
treatments, e.g., [28], define the concept of spontaneous
gauge symmetry breaking as the breaking of that remnant
symmetry, deduced from hϕi ≠ 0 in some gauge. The
problem is that the transition to the Higgs phase would then
appear to depend on the gauge choice; e.g., the transition

12Described as such in [23] in the context of an Abelian lattice
gauge theory.
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lines in Coulomb and Landau gauge do not coincide [13].
Physics cannot depend on gauge choice, so the absence of a
Higgs phase cannot be inferred simply from hϕi ¼ 0 in one
particular gauge.
In the lattice gauge theory literature, the Osterwalder-

Seiler-Fradkin-Shenker work [1,2], combined with the
observation that physical particles in the Higgs sector
are created by local gauge invariant operators [20,21],
has generally discouraged any attempt to distinguish the
Higgs from the confinement region, when the scalar field is
in the fundamental representation of the gauge group. The
Fredenhagen-Marcu confinement criterion [29], for exam-
ple, was intended as a definition of confinement in a theory
with matter in the fundamental representation, but this
criterion essentially amounts to distinguishing massive
from massless phases. It does not distinguish the Higgs
from the confinement phase, which both satisfy the
Fredenhagen-Marcu criterion. In other words, it is essen-
tially a criterion for C confinement.
In many-body theory it becomes more urgent to distin-

guish between the normal (i.e., massless) phase and the
superconducting (“Higgs”) phase. Of course the supercon-
ducting phase in the Abelian theory differs from the normal
phase by, e.g., the Meissner effect, and also by certain
topological properties [30]. However, we are interested in
whether these effects are associatedwith a broken continuous
symmetry. In a simple Bardeen-Cooper-Schrieffer (BCS)
Hamiltonian which ignores any coupling to the gauge field,
or the correspondingLandau-Ginzburgmodel derived froma
Hubbard-Stratonovich transformation, there is only a global
U(1) symmetry which, if spontaneously broken, results in
finite expectationvalues for theCooper pair creation operator
c†↑ðxÞc†↓ðxÞ or the double-charged scalar field ϕðxÞ. The
problem is that when the electrons, or the scalar field, are
coupled to a quantized electromagnetic field, and the theory
becomes locally gauge invariant, an expectation value for
these charged operators is ruled out by the Elitzur theorem.
To deal with this difficulty, there are a number of proposals
which would replace the gauge noninvariant order parameter
by anostensibly gauge invariant order parameter.When these
order parameters are examined closely, they always boil
down to a gauge choice, in the sense that if these order
parameters are evaluated in a particular gauge, they reduce to
hϕi, or (what amounts to the same thing) the correlator
hϕ†ðxÞϕðyÞi in the jx − yj → ∞ limit. An example in
ordinary scalar QED, where the charge of the scalar ϕ field
is an integer multiple of electric charge ne, is the operator
construction due to Dirac,

ΩðxÞ ¼ gnCðx;AÞϕðxÞ; ð96Þ

where gC is the gauge transformation to Coulomb gauge,
shown explicitly in (63). This order parameter is invariant
under local gauge transformations, but not under global
gauge transformations gðxÞ ¼ eiθ, which is the remnant

gauge symmetry in Coulomb gauge, as already noted. In
Coulomb gauge, ΩðxÞ ¼ ϕðxÞ. Other proposals for locally
gauge invariant order parameters, constructed along the
same lines, are based on Lorentz gauge [31] or (implicitly)
on axial gauges [32,33]. The point is that all of these order
parameters depend at least implicitly on a gauge choice for
their construction.13 Where there is a thermodynamic
transition, these parameters sometimes (but not always
[11]) agree on the location of the transition. In regions of
the phase diagram where there is no thermodynamic
transition, in both Abelian and non-Abelian lattice gauge
Higgs theories, such order parameters will still locate
transition lines, but will in general disagree on their
locations [11,13]. The point is that if hϕiF ≠ 0 in a physical
F-gauge, then the theory is in a Higgs phase. But if
hϕiF ¼ 0 the theory may or may not be in a Higgs phase,
as discussed at length above.

VIII. CONCLUSIONS

We have shown that gauge Higgs theories possess a spin
glass phase in which a global custodial symmetry is broken
spontaneously, and that the transition to the spin glass
phase in a non-Abelian theory, in the absence of a massless
phase, is accompanied by a transition from one type of
confinement to another, namely a transition from separation
of charge (Sc) confinement to ordinary color (C) confine-
ment. The asymptotic particle spectrum in both phases
consists of color singlets, but this is because of broken
symmetry in the C confinement phase and for energetic
reasons in the Sc phase. The Sc phase can only exist for
gauge groups with a nontrivial center subgroup.
It therefore seems meaningful to identify the Higgs phase

of gauge Higgs theory as the spin glass phase, in which a
global custodial symmetry is spontaneously broken, and
which is distinguished by both symmetry and type of
confinement from a nonspin glass or confinement phase.
These qualitative distinctions between theHiggs and confine-
ment phases exist even in the absence of a thermodynamic
transition which completely isolates these phases from one
another, and the symmetry breaking order parameter does not
involve, either explicitly or implicitly, a choice of gauge.
Since the color electric field energy associated with a

pair of charged objects grows with separation in the Sc
confinement phase, up until string breaking by matter
fields, a spectrum of resonances associated with color flux
tube formation, lying on linear Regge trajectories, seems
inevitable. The mechanism is the same as in QCD: there is
some energetic barrier to pair production and string

13It has also been suggested in [34] that the symmetry which is
broken in the abelian theory is a global U(1) symmetry which is
distinct from global gauge symmetry. There may very well be a
connection here to custodial symmetry breaking, although in the
absence of an order parameter which would detect the breaking of
this distinct symmetry we are not able to make an appraisal.
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breaking, and even when energetically favorable, string
breaking is not immediate. Hence the existence of flux tube
resonances in the Sc phase. In the spin glass phase, where
one can always find a physical gauge in which hϕiF ≠ 0,
particle pair production is not really required for string
breaking, and this energetics argument may not apply. It is
in any case an experimental fact that there is no spectrum of
resonances of this kind in the electroweak theory.
The transition between the Sc confinement and Higgs

phases also represents the boundary between a region
where a perturbative approach may apply and a region
where such an approach must fail. The growth of energy
with color charge separation, which is the definition of Sc
confinement, is fundamentally nonperturbative, as it is in
QCD. Moreover, there is no physical F-gauge, in the Sc
confinement phase, for which hϕiF ≠ 0, so the expansion
of the Higgs field around some nonzero minimum in

the Higgs potential is almost certainly misleading. This
expansion can only make sense in the Higgs region, at least
in physical gauges. It must fail in the Sc confining and (in
the lattice Abelian-Higgs model) the massless phases.
Using the procedures described here, it should be

possible to map out numerically the confinement/Higgs
phase structure for SU(N) gauge Higgs systems with one or
more scalar fields, and this may conceivably have phe-
nomenological implications. We hope to return to this
question at a later time.
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