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Within the framework of three-channel Ross-Shaw effective range theory, we derive the constraints
among different parameters of the theory in the case of a narrow resonance close to the threshold of the third
channel, which is relevant for the resonancelike structure Zcð3900Þ. The usage of these constraint relations,
together with the multichannel Lüscher formula in lattice QCD calculations are also discussed and the
strategies are outlined.
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I. INTRODUCTION

In the past decade, exotic hadronic resonancelike struc-
tures, known as XYZ particles, have been discovered by
various experiments, with Zcð3900Þ being a typical exam-
ple [1–3]. The exotic structures have been discovered in
both charm and bottom sectors which necessarily bear a four
valence quark structure Q̄qq̄0QwithQ being a heavy-flavor
quark while q and q0 are two different light flavored ones.
They also tend to appear close to the threshold of two heavy
mesons with valence structures Q̄q and q̄0Q. The physical
nature of these structures have been contemplated and
discussed in many phenomenological studies. For recent
reviews on these matters, see, e.g., Refs. [4–7]. Despite
many studies, the nature of Zcð3900Þ remains unclear. It is
therefore highly desirable that nonperturbative studies like
lattice QCD could provide some useful information.
Contrary to the phenomenological studies, lattice studies

on these states remain relatively scarce. A lattice study was
performed by S. Prelovsek et al. who investigated the
energy levels of the two charmed meson system in the
channel whereZc appeared in a finite volume [8]. They used
quite a number of operators, including two-meson operators
in the channel of J=ψπ, DD̄�, etc. and even tetraquark
operators. However, there was no indication of extra new
energy levels apart from the almost free scattering states of

the two mesons. Taking DD̄� as the main relevant channel,
which is also supported by experimental facts, CLQCD
utilized single-channel Lüscher scattering formalism [9–13]
to tackle the problem within a single-channel approxima-
tion. For a comprehensive review on the Lüscher formalism,
interested readers could consult Ref. [14]. CLQCD found
slightly repulsive interaction between the two charmed
mesons [15,16], making them unlikely to form bound
states. A similar study using staggered quarks also finds
no clue for the existence of the state [17].
On the other hand, HALQCD studied the problem using

the so-called HALQCD approach [18] which is different
from Lüscher’s adopted by the other groups mentioned
above. An effective potential is first extracted from lattice
data which is then substituted into the Schrödinger-like
equation to solve for the scattering. They claimed that
Zcð3900Þ can be reproduced and it is a structure formed
due to strong cross-channel interactions among three
channels, J=ψπ, ηcρ, and DD̄�; see Ref. [19,20] and
references therein. This scenario will be referred to as
the HALQCD scenario in the following.
Recently, in order to clarify this mismatch of the two

types of approaches, CLQCD performed a two-channel
lattice study using the two-channel Ross-Shaw effective
range expansion [21]. They took the two channels J=ψπ and
DD̄� that are most strongly coupled to Zcð3900Þ. It is found
that, in this two-channel approach, the parameters of the
Ross-Shaw matrix do not seem to support the HALQCD
scenario. The parameters turn out to be large and the Ross-
ShawM matrix is far from singular, which is required for a
resonance close to the threshold. However, since only two
channels are studied, it is still not a direct comparison with
the HALQCD approach in which three channels have been
studied. In this paper, we move one step further to close this
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gap. We take exactly the same three channels as HALQCD
did, namely, J=ψπ, ηcρ and DD̄�. BESIII experiments
have investigated several channels and these three channels
are found to couple to Zcð3900Þ strongly, all of which are
s-wave two-particle channels, with DD̄�, ρηc and Jψπ in
decreasing order of the effective coupling and threshold.
In fact, they have not seen an indication ofZcð3900Þ in other
channels, e.g., higher partial wave two-particle channels
[22,23]. Therefore, in this paper, we utilize the Ross-Shaw
effective range theory [24,25] for the above mentioned
three channels and derive the constraint relations among
the parameters of Ross-Shaw matrix M in the zero-range
approximation, assuming that there is a resonance close to
the threshold of the third channel, i.e., that of DD̄�. Similar
constraint relations in the two-channel case have been
discussed in detail by Ross and Shaw long time ago; see,
e.g., Ref. [25]. However, to our knowledge, the correspond-
ing constraint relations in the three-channel case, which will
be established in this paper, are still lacking. These con-
straint relations can be further utilized in future lattice
simulations, the strategy of which will also be outlined in
this paper.
The difficulty with the multichannel Lüscher approach,

which we briefly outline below, is twofold:
(i) First, with the number of channels n increasing, the

number of unknown functions entering the S matrix
also increases rapidly. For example, in the case of
two channels, there are three functions, while in the
case of three channels, six functions are needed to
describe the full S matrix. On the other hand, the
Lüscher formula only offers a single relation among
these functions at a particular energy level, which is
extracted from lattice simulation. Therefore, we aim
to investigate the already verified two-particle chan-
nels suggested by the experiments and take the
Ross-Shaw effective range expansion as our para-
metrization for the scattering phases, which is a
special case of the K-matrix parametrization.

(ii) Second, the number of constant parameters needed to
parametrize the S matrix grows quadratically fast
when the number of channels n is increased. Based
on the experimental facts and also to make a direct
comparison with the HALQCD study, we focus on
the three-channel Lüscher approach in this paper. To
be more specific, we will single out the following
three channels for Zcð3900Þ: J=ψπ, ηcρ, and DD̄�,
the first being the discovery channel for Zcð3900Þ
and the second and the third have been shown to be
dominant channels that couple to Zcð3900Þ by
BESIII experiments [26]. Similar to the single-
channel effective range expansion which, to the
second order, is characterized by two real parameters,
namely, the scattering length a0 and the effective
range r0, in a three-channel situation, one needs nine
real parameters to describe the so-called Ross-Shaw

matrix M: six for the scattering length matrix, and
three for the effective range parameters.

This paper is organized as follows. In Sec. II, we briefly
review the Ross-Shaw effective range expansion that is
needed to parametrize S-matrix elements. In Sec. III, within
the zero-range approximation of Ross-Shaw theory, we
derive the constraint conditions that need to be satisfied in
order to have a narrow resonance behavior close to the third
threshold. These conditions are derived first in the limit
where the coupling of the first two channels are switched
off and then generalized to the case where it is turned on. In
Sec. IV, we briefly outline the strategies of the lattice
computations and discuss how the constraints derived in
Sec. III can be tested. In Sec. V, we will conclude with some
general remarks.

II. THE ROSS-SHAW EFFECTIVE
RANGE THEORY

In this section, we briefly recapitulate the Ross-Shaw
effective range theory which is a generalization of the usual
effective range expansion to multichannels. As already
mentioned in the previous section, in order to utilize the
multichannel Lüscher formula, it is crucial to have a
parametrization of the S-matrix elements in terms of
constants instead of functions of the energy and the
multichannel effective range expansion developed by
Ross and Shaw [24,25] serves this purpose.
In the single-channel case, this theory is just the well-

known effective range expansion for low-energy elastic
scattering,

k cot δðkÞ ¼ 1

a0
þ 1

2
r0k2 þ � � � ; ð1Þ

where � � � designates higher order terms in k2 that vanish in
the limit of k2 → 0. Therefore, in low-energy elastic
scattering, the scattering length a0 and the effective range
r0 completely characterize the scattering process. Ross-
Shaw theory simply generalizes the above theory to the
case of multichannels. For that purpose, they define a
matrix M via

M ¼ k1=2 · K−1 · k1=2; ð2Þ

where k and K are both matrices in channel space. Here,
and in what follows, we will be working in the case of
s-wave scattering. In principle, Ross-Shaw effective range
expansion also works for higher partial waves. For exam-
ple, one simply replaces the kinematic factors k1=2 by klþ1=2

for a partial wave with orbital angular momentum l.
However, since no higher partial waves are observed in
the experiments [22,23,26], we therefore will not work out
the explicit formula in the general case. The matrix k is the
kinematic matrix which is a diagonal matrix given by
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k ¼

0
B@

k1 0 0

0 k2 0

0 0 k3

1
CA; ð3Þ

and k1, k2, and k3 are related to the scattering energy E. The
matrix K is called the K matrix in scattering theory whose
relation with the S matrix is given by1

S ¼ 1þ iK
1 − iK

: ð4Þ

Another useful formal expression for the matrix K is

K ¼ tan δ; ð5Þ
where both sides are interpreted as matrices in channel
space. From the above expressions, it is easily seen that the
K−1 that appears in Eq. (2) is simply the matrix cot δ
and without cross-channel coupling, the M matrix is
also diagonal with entries M ∼ Diagðk1 cot δ1; k2 cot δ2;
k3 cot δ3Þ. Thus, it is indeed a generalization of the
single-channel case in Eq. (1). In their original paper,
Ross and Shaw showed that the M matrix as function of
energy E can be Taylor expanded around some reference
energy E0 as

MijðEÞ ¼ MijðE0Þ þ
1

2
Riδij½k2i ðEÞ − k2i ðE0Þ�; ð6Þ

where we have explicitly written out the channel indices i

and j. The matrix MijðE0Þ≡Mð0Þ
ij is a real symmetric

matrix in channel space that we will call the inverse
scattering length matrix; R≡ DiagðR1; R2; R3Þ is a diago-
nal matrix which we shall call the effective range matrix. k2i
are the entries for the kinematic matrix defined in Eq. (3).
Therefore, for three channels, there are altogether nine
parameters to describe the scattering close to some energy
E0: six in the inverse scattering length matrix Mð0Þ and
three in the effective range matrix R. One could further
reduce the number of parameters to six by neglecting terms
associated with effective ranges. This is called the zero-
range approximation [24]. For convenience, we usually
take E0 to be the threshold of the third channel, i.e., that
of DD̄�.
The Ross-Shaw parametrization in Eq. (6) is a special

form of the more general K-matrix parametrization. In this
K-matrix representation, assuming there are altogether n
open channels, the n × n K-matrix element KðEÞij is
parametrized as

KðEÞij ¼
Xm
α¼1

γαi γ
α
j

E − Eα
þ
X
k

cðkÞij E
k: ð7Þ

Here the label α ¼ 1; 2;…; m designates different poles
that enter the modeling and γαi with i ¼ 1; 2;…; n are the
couplings of each individual channel to these poles.
Possible polynomials in the energy are also added with

symmetric coefficients: cðkÞij ¼ cðkÞji . In this paper, we only
focus on the Ross-Shaw parametrization, i.e., a multichan-
nel generalization of the effective range expansion with
zeroth or first order for three channels.

III. RESONANCE SCENARIO
IN ROSS-SHAW THEORY

In this section, we investigate the possibility of a narrow
peak just close to the threshold of the third channel. In
particular, this will be studied within the framework of the
three-channel Ross-Shaw theory. It turns out that this
requirement will implement some constraints among the
different parameters in Ross-Shaw theory.
It is convenient to inspect the resonance scenario using

the so-called T matrix which is continuous across the
threshold. Formally, it is related to the K matrix via

K−1 ¼ T−1 þ i; ð8Þ
or equivalently as T ¼ Kð1 − iKÞ−1. The relation between
the S matrix and the T matrix is given by

S ¼ 1þ 2iT; ð9Þ

where both S and T now are 3 × 3 matrices in channel
space. Since the scattering cross section σij is essentially
proportional to jTijj2, the so-called elastic cross section in a
particular channel i is given by

σii ¼
4π

k2i
jTiij2: ð10Þ

Therefore, if we denote

wii ≡ Tii

ki
¼ 1

αiðEÞ − iβiðEÞ
; ð11Þ

with αi and βi being real functions of the energy, then the
elastic cross section in channel i reads

σii ¼ 4πjwiij2 ¼¼ 4π

α2i þ β2i
: ð12Þ

Normally, the imaginary part of wii, namely, βiðEÞ, is a
positive, smooth function of the energy in the energy region
to be studied. In fact, if there were no coupling among
different channels, we have βi ¼ ki. The real part (i.e., αi),
however, could develop a zero in the corresponding energy
range, which then leads to a resonance peak structure. To be
more specific, a resonance peak happens when αiðEÞ ¼ 01The K matrix is symmetric so that the S matrix is unitary.
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and the half-width positions for this peak can be obtained
by the condition αiðEÞ=βiðEÞ ¼ �1, respectively.
To be more specific, the T matrix in channel space looks

like

T ¼ k1=2ðM − ikÞ−1k1=2: ð13Þ

Therefore, if we define the matrix w in channel space as

w ¼ ðM − ikÞ−1; ð14Þ

the elements of which will be denoted by wij, then the
following expression for T11 can be obtained:

w11 ≡ T11

k1
¼ 1

D

����M22 − ik2 M23

M23 M33 − ik3

����; ð15Þ

where D is the determinant of the 3 × 3 matrix,

D ¼

��������
M11 − ik1 M12 M13

M12 M22 − ik2 M23

M13 M23 M33 − ik3

��������
: ð16Þ

Similar expressions are obtained for w22 and w33. We get
the following expression for wii with i ¼ 1, 2, 3:

w−1
11 ¼ α1 − iβ1 ¼ M11 − ik1 −M12

����M12 M23

M13 M33 − ik3

��������M22 − ik2 M23

M23 M33 − ik3

����
þM13

����M12 M22 − ik2
M13 M23

��������M22 − ik2 M23

M23 M33 − ik3

����
;

w−1
22 ¼ α2 − iβ2 ¼ M22 − ik2 −M12

����M12 M13

M23 M33 − ik3

��������M11 − ik1 M13

M13 M33 − ik3

����
−M23

����M11 − ik1 M12

M13 M23

��������M11 − ik1 M13

M13 M33 − ik3

����
;

w−1
33 ¼ α3 − iβ3 ¼ M33 − ik3 þM13

����M12 M22 − ik2
M13 M23

��������M11 − ik1 M12

M12 M22 − ik2

����
−M23

����M11 − ik1 M12

M13 M23

��������M11 − ik1 M12

M12 M22 − ik2

����
: ð17Þ

In the above formulas, below a specific threshold, the
corresponding momentum becomes purely imaginary. For
example, below the threshold of the third channel, we have
−ik3 ¼ κ3 with κ3 being a positive real number.
On the other hand, it is known from BESIII experiments

[1,23] that, close to the threshold of the third channel, all
three elastic channels show resonant peaks. If we assume
that these three peaks correspond to a single resonance
structure, constraint equations can be obtained from
Eq. (17). In the following, using Eq. (17), we will derive
these equations that needs to be satisfied among the
parameters. The corresponding conditions in the two-
channel case have been studied a long time ago by Ross
and Shaw, e.g., Refs. [24,25]. However, to our knowledge,
the case of three channels has not been studied explicitly,
which will be done within this paper.

A. Resonance scenario in Ross-Shaw theory:
M12 = 0 case

It is worthwhile to work in a somewhat simpler situation,
namely, that the coupling between channel 1 and 2 is
negligible. This turns off the coupling between channels 1
and 2 completely, so we haveM12 ¼ 0. Suppose that such a

close to the third threshold resonance structure arises from a
single pole structure of the T matrix in the complex plane,
then we could demand that the position of the pole to the be
same; i.e., they correspond to the same structure. As wewill
see, this then leads to a relation among different matrix
elements of the M matrix.
In the limit where M12 ¼ 0, the condition w−1

11 ¼ w−1
22 ¼

w−1
33 ¼ 0 turns out to yield a single equation (not three, but

only one) for the parameters,

M33 − ik3 ¼
M2

13

M11 − ik1
þ M2

23

M22 − ik2
; ð18Þ

where k1, k2, and k3 are all related to the energy via

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

J=ψ þ k21
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k21

q
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ηc þ k22

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þ k22

q
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k23

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ k23

q
: ð19Þ

Here, mJ=ψ , mπ , etc. are the masses of the corresponding
mesons and ki’s with i ¼ 1, 2, 3 being the scattering
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momenta in various channels. Now, viewing the k2i ’s, i ¼ 1,
2, 3 as complex variables that are related to each other by
Eq. (19), one can solve Eq. (18) in some Riemann sheet to
yield the pole position for the complex k2i ’s. This pole then
manifests itself as peaks in elastic cross sections in all three
channels. Therefore, in the limit of M12 ¼ 0, the so-called
HALQCD scenario is fully represented by Eq. (18) in the
Ross-Shaw theory.
To search for such solutions, we utilize the following

notations. We assume that k3 ≡ z is small in magnitude
compared with the typical energy scale of the problem, say

kð0Þ1 , the magnitude of the momentum for the two particles
in the first channel (i.e., J=ψπ) at the threshold of the third
channel (i.e., DD̄�). Thus, we have

δE≡ E − ðmD� þmDÞ ¼
z2

2μDD�
; ð20Þ

with μDD� being the reduced mass of D and D�. Similarly,
k1 and k2 will assume their values at the third threshold,

namely, kð0Þ1 and kð0Þ2 , plus small corrections that are linear
in z2.

δk1 ¼
z2

2μDD� ðvð0ÞJ=ψ þ vð0Þπ Þ
¼ γ1z2;

δk2 ¼
z2

2μDD� ðvð0Þηc þ vð0Þρ Þ
¼ γ2z2; ð21Þ

where vð0ÞJ=ψ , vð0Þπ , vð0Þηc , and vð0Þρ are the speed of the
corresponding mesons at the threshold. To be specific, we

have vð0ÞJ=ψ ¼ kð0Þ1 =EJ=ψ ðkð0Þ1 Þ, etc. Therefore, the solution z0,
where all wii diverge satisfy the following equation:

M33 − iz0 ¼
M2

13

M11 − ikð0Þ1 − iγ1z20
þ M2

23

M22 − ikð0Þ2 − iγ2z20
:

ð22Þ

This equation should be solved for small jz0j near the origin
in the complex z plane. Here, smallness could be measured
in some reasonable unit. A convenient choice is to use a unit

system in which kð0Þ1 ¼ 1 adopted in Ref. [21]. In such a
system, every quantity in Eq. (22) becomes dimensionless
and we are searching for jz0j ≪ 1 in the complex plane.
Now, note that the lhs of Eq. (22) is linear in z0 while

the rhs depends on z20; therefore, we could write the solution
z0 as

z0 ¼ zð1Þ0 þ zð2Þ0 þ � � � ; ð23Þ

where zðiÞ0 for different i designates different orders of z0, all
of which are small, but the higher the index i is, the smaller

the zðiÞ0 becomes. Taylor expanding both sides of Eq. (22),
order by order, we obtain the following equations:

izð1Þ0 ¼ ε≡M33 −
M2

13

M11 − ikð0Þ1

−
M2

23

M22 − ikð0Þ2

ð24Þ

zð2Þ0 ¼
�

M2
13γ1

ðM11 − ikð0Þ1 Þ2
þ M2

23γ2

ðM22 − ikð0Þ2 Þ2
�
ε2 ð25Þ

zð3Þ0 ¼ 2i
�

M2
13γ1

ðM11 − ikð0Þ1 Þ2
þ M2

23γ2

ðM22 − ikð0Þ2 Þ2
�
2

ε3

zð4Þ0 ¼ � � � : ð26Þ

It is seen that the leading order equation (24) demands
that the quantity ε thus defined needs to be a complex
number that is small in magnitude. Otherwise, there is no
consistent small z solution for Eq. (22). This implies that
both the real part and the imaginary part have to be small. If
we denote

ε ¼ ε1 − iε2; ð27Þ
with both ε1 and ε2 being real, it is easy to work out the
explicit expressions. It is also found that, the imaginary part
parameter ε2 > 0 at the threshold of the third channel. The
sign of ε1, however, is not definite, depending on other
parameters. In order for them to be small, we have����M33 −

M2
13M11

M2
11 þ ðkð0Þ1 Þ2

−
M2

23M22

M2
22 þ ðkð0Þ2 Þ2

���� ≪ 1;

M2
13k

ð0Þ
1

M2
11 þ ðkð0Þ1 Þ2

þ M2
23k

ð0Þ
2

M2
22 þ ðkð0Þ2 Þ2

≪ 1: ð28Þ

To leading order, the solution of the pole reads

zð1Þ0 ¼ −iε ¼ −ε2 − iε1; ð29Þ
which points out the approximate location of the pole
position in the complex plane. To be more precise, the
location is given by

z0 ¼ −ε2 − iε1 þ zð2Þ þ zð3Þ þ � � � ; ð30Þ

where zð2Þ and zð3Þ are given by Eq. (25) and Eq. (26). More
iterates can be obtained if necessary.
We can now work out the elastic scattering cross sections

close to the threshold of the third channel. These are given
by Eq. (17) by taking M12 ¼ 0. Taking, e.g., the first
channel, we have

w−1
11 ¼ M11 − ik1 −

M2
13

M33 − ik3 −
M2

23

M22−ik2

; ð31Þ
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where ki takes real or pure imaginary values, depending on
whether it is above or below the thresholds. Since the ki’s
are related to the total energy via Eq. (19), we know that the
rhs vanishes when the ki’s take complex values at k3 ¼ z0:

M11 − ik1ðz0Þ ¼
M2

13

M33 − ik3ðz0Þ − M2
23

M22−ik2ðz0Þ
; ð32Þ

which is consistent with Eq. (22). Therefore, we introduce
the function

w−1
ii ¼ FiðzÞ; ð33Þ

where in FiðzÞ the ki’s are viewed as complex functions of
z, which we still take as the complex k3 ¼ z. We know that
the function FiðzÞ has a zero at the location z0 which is
given by Eq. (30), and that z0 is close to the origin.
Therefore, we may expand

FiðzÞ ¼ Fiðz0Þ þ F0
iðz0Þðz − z0Þ þ � � �

≈ F0
ið0Þðz − z0Þ; ð34Þ

where we have utilized the condition Fiðz0Þ ¼ 0 and
F0
iðz0Þ ≈ F0

ið0Þ since z0 is rather close to the origin.
Thus, the elastic cross section in channel i reads

σii ¼
4π

jFiðzÞj2
¼ 4π

jF0
ið0Þj2jz − z0j2

; ð35Þ

which exhibits a typical resonance behavior. Here, it is
understood that z takes real or pure imaginary values,
depending on whether it is above or below the third
threshold. To be more explicit, if we take only the first
approximation for z0, we have the following cross sections
for above and below the third threshold,

σii ¼
( 4π

jF0
ið0Þj2j½ðk3þε2Þ2þε2

1
� ;

4π
jF0

ið0Þj2j½ðκ3þε1Þ2þε2
2
� ;

ð36Þ

where the first/second line is for above/below the threshold,
with k3 ¼ z ¼ iκ3, κ3 > 0 in the second case. Since we

have ε2 > 0, the peak above the third threshold must be in
the tail region. If ε1 < 0, then we could see a full peak just
below the threshold. If ε1 > 0, however, a cusp will show
up exactly at the threshold.

B. Resonance scenario in Ross-Shaw theory:
General case

Here we would like to go beyond the approximation of
M12 ¼ 0. We will show below that, the above results in fact
hold in the most general case of three-channel scattering.
For this purpose, we investigate Eq. (13) and Eq. (14)

and realize that, in order to have a resonant behavior, the
matrix w ¼ ðM − ikÞ−1 needs to be singular. This implies
that the determinant D defined in Eq. (16) must vanish.
Therefore, when viewed as a complex function of k3 ¼ z,
we may define

DðzÞ ¼

��������
M11 − ik1ðzÞ M12 M13

M12 M22 − ik2ðzÞ M23

M13 M23 M33 − iz

��������
; ð37Þ

the complex resonance pole z0 should be solved for under
the condition of Dðz0Þ ¼ 0, in the neighborhood of the
origin. In the above equation, functions k1ðzÞ and k2ðzÞ
should be obtained by using the energy condition equa-
tion (19). Expanding both k1 and k2 around the origin we

see that k1;2ðzÞ ¼ kð0Þ1;2 þ γ1;2z2. Therefore, close to the
origin, equation Dðz0Þ ¼ 0 yields a quintic equation for
z0. Since jz0j ≪ 1, we may expand the determinant Dðz0Þ
into a Taylor expansion. To first order, we get

Dðz0Þ ≈Dð0Þ − ðiz0ÞΔ33ð0Þ þ � � � ; ð38Þ

where � � � designates terms of higher orders in z0 and with
Δ33ð0Þ being the cofactor for the matrix element ðM33 −
ik3Þ in the 3 × 3 matrix ðM − ikÞ, i.e.,

Δ33ð0Þ ¼ ðM11 − ikð0Þ1 ÞðM22 − ikð0Þ2 Þ −M2
12: ð39Þ

Therefore, to this order, the solution is

izð1Þ0 ¼ ε≡ Dð0Þ
Δ33ð0Þ

¼ M33 þM13

����M12 M22 − ikð0Þ2

M13 M23

��������M11 − ikð0Þ1 M12

M12 M22 − ikð0Þ2

����
−M23

����M11 − ikð0Þ1 M12

M13 M23

��������M11 − ikð0Þ1 M12

M12 M22 − ikð0Þ2

����
: ð40Þ

It is easy to verify that, in the limit of M12 ¼ 0, this
reproduces the previous result in Eq. (24). The discus-
sions about the elastic scattering cross section remains

unchanged. The only thing that needs to be modified is the
explicit expression for the solution z0 to various orders,
which, to the first order, is now shown in Eq. (40) instead of
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Eq. (24). Again, higher order expressions can be obtained
easily if necessary.

IV. MULTICHANNEL LÜSCHER FORMULA
AND THE STRATEGY FOR LATTICE

COMPUTATIONS

In this section, we briefly outline the strategies for a
lattice calculation within the multichannel Lüscher
approach for three channels. As we have mentioned in
Sec. I, in the case of three channels, one first needs a
parametrization for the S matrix in terms of functions, and
furthermore in terms of the Ross-Shaw parameters.
The most general form of the S matrix for three

channels, assuming time reversal symmetry, was first
given by Waldenstrøm in 1974 and it looks like the
following [27]:

S ¼

2
64

η1e2iδ1 iX12eiðδ12Þ iX13eiðδ13Þ

iX12eiðδ12Þ η2e2iδ2 iX23eiðδ23Þ

iX13eiðδ13Þ iX23eiðδ23Þ η3e2iδ3

3
75; ð41Þ

where δ1, δ2, and δ3 are scattering phases in channel 1, 2,
and 3, respectively, and ηi ∈ ½0; 1�; i ¼ 1, 2, 3 are called the
inelasticity parameters for each channel, all of which are
functions of the energy. The other parameters Xij and δ12,
δ23, and δ23 are related to the δi and ηi in a complicated
manner; hence, the are also functions of the energy.
Interested readers can consult Ref. [27] for details.
These six functions of energy are then parametrized within
the Ross-Shaw theory in terms of 9 real parameters: 6 for
the scattering length matrix M, 3 for the effective ranges.
Note that S matrix is related to the T matrix via S ¼
1þ 2iT while the latter is further related to the Ross-Shaw
M matrix via Eq. (13).
The multichannel Lüscher formula has many forms. The

most convenient one is the one that is directly related to the
Ross-Shaw M matrix,

det ½M − BðPÞ� ¼ 0; ð42Þ

where the matrix BðPÞ, called the box function by Colin
Morningstar et al. [28], is a complicated but computable
function involving modified zeta functions that can be
obtained from the energy eigenvalues in a finite box. The
label P designates the total three-momentum of the two-
particle system so that it applies also to moving frames. The
corresponding constraint equations that are derived in the
previous section needs to be boosted accordingly using an
appropriate Lorentz transformation. The explicit expression
for the box function reads

hJ0mJ0L0S0a0jBðPÞjJmJLSai
¼−iδaa0δSS0 ðuaÞLþL0þ1WðPaÞ

L0mL0 ;LmL
ðk2i ÞhJ0mJ0 jL0mL0 ;SmSi

× hLmL;SmSjJmJi: ð43Þ

Here, J, mJ, L, and S correspond to the total angular
momentum quantum number, the third component of total
angular momentum, the orbital angular momentum, and the
spin quantum number of the two-particle state. The index a
designates other quantum numbers, e.g., channel or isospin,

etc. The function WðPaÞ
L0mL0 ;LmL

ðk2i Þ involves zeta functions

and the arguments k2i with i ¼ 1, 2, 3 represent the
momenta in the corresponding channels which are related
to the energy via Eq. (19). Therefore, Eq. (42) shows that
the matrices M and B, which are defined explicitly in
Ref. [28], share the same threshold behavior, which is also
indicated in Ref. [29].
For a given set of parameters in the Ross-Shaw matrix

M, the multichannel Lüscher formula (42) can be viewed as
an equation for the energy eigenvalues that enter the
equation via the box function BðPÞ. Therefore, when solved
numerically it yields a set of energy eigenvalues in the finite
box. These energy levels can be compared with the real
energy levels obtained from the lattice simulations. This
comparison in turn yields an estimate for various Mij’s in
the Ross-Shaw matrix, as illustrated in Ref. [21]. On the
other hand, as we have obtained the conditions that need to
be satisfied by these parameters in order to have a
resonance peak close to the threshold of the third channel,
cf. Eq. (28), one can directly check if the lattice extracted
parameters really support such a scenario or not, as was
already done in the two-channel case in Ref. [21].
It is interesting to note that, in the general Ross-Shaw

theory, Eq. (6) can be utilized to any energy region. In
particular, if we investigate only the region close to the third
threshold, it is good enough to use the zero-range expan-
sion. This sets all the effective ranges to zero, leaving us
with only six parameters. In other words, if we focus on the
energy region very close to the threshold, the zero-range
approximation is always valid. Of course, by utilizing the
multichannel Lüscher formula, other energy levels that are
somewhat distant from the threshold enter the game (via
fitting of Mij ’s); therefore, there could be some deviations
from the zero-range approximation. Still, extraction of the
Mij’s and a check of whether they satisfy the constraints as
outlined in Eq. (28) offer a crucial test. This comparison
will hopefully clarify, or at least shed some light on, the
differences from the two different approaches so far: the
HALQCD approach and the conventional Lüscher
approach. In fact, one could try to arrange a situation
where as many as possible energy levels are close to the
third threshold. In such a case, one could utilize the zero-
range approximation without any problem as long as one
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drops the energy levels that are too distant from the
threshold.

V. CONCLUSIONS

To shed more light on the nature of the resonancelike
structure Zcð3900Þ, lattice studies have been performed
over the years. However, some puzzles still remain. The
existing lattice studies fall into two categories: the ones
using Lüscher’s approach and the ones using the HALQCD
approach. The results from these two types of approaches
are not consistent with each other as they should be. This
discrepancy needs to be clarified.
In this paper, we study the problem using the three-

channel Ross-Shaw theory, which is the generalization of
the effective range expansion. We have obtained the
constraint conditions that need to be satisfied by various
parameters of the theory in order to have a narrow
resonance close to the threshold of the third channel, a
scenario that Zcð3900Þ realizes. We have pointed out that,
combined with the multichannel Lüscher formula, a real

lattice computation could be performed which will yield the
results for these parameters and furthermore, one could
check if these constraint relations are supported by the
lattice results or not. We have also outlined the strategies of
such lattice simulations on how to extract these parameters
in a more reliable fashion. Currently, we are working on the
simulation details along the lines that are described here
and we hope to report the results soon.
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