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We apply the kT-factorization approach to the production of ϕ mesons in deep inelastic scattering.
The helicity-conserving γ�ðT; LÞ → ϕ impact factor is calculated for longitudinal and transverse photon
polarization using ϕ meson distribution amplitudes. Different unintegrated gluon distributions are used in
the calculations. The formalism for massless quarks/antiquarks gives too large transverse and longitudinal
cross sections for photon virtualities belowQ2 ∼ 8 GeV2. We suggest how to improve the description of the
HERA data by introducing effective strange-quark masses into the formalism. We derive the corresponding
impact factor for a finite quark mass by comparing to the light-cone wave function representation used
in previous kT-factorization calculations and the color-dipole approaches. As a byproduct we present
expressions for higher twist amplitudes as weighted integrals over the light-cone wave function. The quark
mass mq ≈ 0.5 GeV allows to improve the description of both longitudinal and transverse cross sections

down to Q2 ∼ 4 GeV2 but this depends slightly on the renormalization scale used in the calculation.
We also present the polarized cross section ratio σL=σT and the behavior of the total cross section
σtot ¼ σL þ σT as a function of photon virtuality.
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I. INTRODUCTION

The diffractive electroproduction of vector mesons,
γ�p → Vp, has attracted much attention at the HERA
collider (for a review see e.g., Ref. [1]) and it is expected
to be an important subject in future experiments e.g., at an
electron-ion collider (EIC) [2]. In this work we are
interested in the limit of large γ�p center-of-mass energy
W, s≡W2 ≫ Q2 ≫ Λ2

QCD, which implies a small gluon
longitudinal fraction x ¼ ðQ2 þm2

VÞ=ðW2 þQ2 −m2
pÞ∼

Q2=W2. In this kinematics, the photon virtuality Q2 gives
a handle on the dominant size of color dipoles in the
γ� → V transition and thus allows to study a transition
from the hard, perturbative (small dipole), to the soft,

nonperturbative (large dipole) regimes of scattering. In
momentum space, the color-dipole approach has its cor-
respondence in the kT factorization, where the main
ingredient is the unintegrated (transverse-momentum de-
pendent) gluon distribution (UGD). At large photon vir-
tualities the diffractive cross section is a sensitive probe of
the proton UGD.
In the language of Regge theory, the dominant produc-

tion mechanism at high energies is the t-channel Pomeron
exchange [3]. One of the main results of the HERA
accelerator was the observation that effectively, the inter-
cept of the Pomeron depends on the hard scale of the
process; see e.g., the review Ref. [1]. This behavior is
indeed born out by the approaches in which the Pomeron
exchange is modeled by a gluon ladder, such as the kT-
factorization approach used in this work, or the closely
related color-dipole approach. For an application of the
dipole approach to ϕ electroproduction, see e.g., Ref. [4].
The kT-factorization formalism reviewed in Ref. [1]

includes, besides the transverse momentum of gluons,
the transverse momentum of the quark and antiquark in
the vector meson as encoded in the light-cone wave
function of the meson. This approach was used with some
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success in Ref. [5]. At very large Q2 one may expect,
that the relative transverse motion of (anti)quarks in the
bound state becomes negligible, and can be integrated out.
Then, regarding the vector meson only a dependence on the
longitudinal momentum fraction of quarks encoded in the
distribution amplitudes (DAs) is left.
A quite general factorization formalism of vector-meson

production in deep inelastic scattering was formulated in
Refs. [6,7] and has been recently applied in Ref. [8] to the
diffractive deep inelastic production of ρ mesons. While
the production of longitudinal vector mesons involves the
leading-twist DA, similar to the one introduced for other
hadronic processes in Refs. [9–12], for transverse vector
mesons higher twists are involved and the corresponding
DAs studied in Ref. [13] are needed.
The recent analysis of helicity amplitudes for ρ0 meson

production [8] showed that this approach may be useful in
testing UGDs.
In this paper, in order to test the formalism further,

we wish to focus on and investigate the exclusive photo-
production of ϕ mesons:

γ�p → ϕp:

Corresponding experimental data were obtained by the
H1 [14,15] and ZEUS [16] collaborations at HERA. In this
paper we will show how the kT-factorization approach of
Ref. [17] matches to the higher-twist DA expansion, at least
in the Wandzura-Wilczek (WW) approximation, where no
explicit qq̄g contributions are included. Future applications
at an EIC may require the inclusion of next-to-leading-
order (NLO) contributions. Here the approach based on
DAs has the advantage that for the case of collinear partons
in the final state, the necessary techniques for the calcu-
lation of NLO impact factors are well advanced [18,19].
The first part of the paper is devoted to a summary of the
theoretical framework of calculating the helicity amplitudes
within the kT-factorization approach. The second part
shows the cross sections of the process and the effects
due to UGDs and/or due to the strange-quark mass. Here
we take advantage of the fact that we can rather straight-
forwardly derive the massive impact factor in the WW
approximation from the light-cone wave function approach.
As a byproduct we show how higher-twist DAs can be
obtained from the light-cone wave functions which may
also be interesting for the application of various light-cone
models to other vector mesons.
A comparison with the H1 and ZEUS measurements are

presented. The conclusion section closes our paper.

II. THEORETICAL FRAMEWORK

A. Helicity amplitudes TλVλγ

In the high-energy regime, s≡W2 ≫ Q2 ≫ Λ2
QCD,which

implies small x¼ðQ2þm2
VÞ=ðW2þQ2−m2

pÞ∼Q2=W2, the

forward helicity amplitude TλVλγ can be expressed, in the kT
factorization, as the convolution of the γ� → V impact factor
(IF), Φγ�→V

λV ;λγ
ðκ2; Q2Þ, with the UGD, F ðx; κ2Þ. Here, �κ is

the transverse momentum (in the γ�p frame) carried by the
exchanged gluon (see Fig. 1).
Our normalization of the impact factor is chosen, such

that the forward amplitude for the γ�p → Vp process reads

ℑmTλVλγ ðs;Q2Þ ¼ s
Z

d2κ
ðκ2Þ2Φ

γ�→V
λV ;λγ

ðκ2; Q2ÞF ðx; κ2Þ: ð1Þ

Here, the UGD is related to the collinear gluon parton
distribution as

xgðx; μ2Þ ¼
Z

μ2 dκ2

κ2
F ðx; κ2Þ: ð2Þ

We now turn to the two different approaches to the
impact factors which we want to compare in this work.

B. Distribution amplitude expansion

We start with the scheme based on the collinear
factorization of the meson structure which was worked
out in Refs. [6,7] and was used recently for ρ-meson
electroproduction in Ref. [8]. This approach starts from the
observation, that at large Q2 the transverse internal motion
of partons in the meson can be neglected.
The longitudinal impact factor is expressed in terms of

the standard twist-2 distribution amplitude. In the normali-
zation adopted by us, the IF for the L → L transition reads

Φγ�→V
0;0 ðκ2; Q2Þ ¼ 4παSðμ2rÞeq

ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
fV

NcQ

Z
1

0

dyφ1ðy; μ2Þ

×

�
α

αþ yȳ

�
; ð3Þ

FIG. 1. A typical Feynman diagram for the γ�p → ϕp forward
amplitude, at cm energyW. The t-channel gluons carry transverse
momenta �κ. The transverse momentum of quarks �k is
integrated out in the approach based on distribution amplitudes.
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where α ¼ κ2=Q2, y is the fraction of the mesons’ light-
cone plus momentum carried by the quark, ȳ ¼ 1 − y, and
φ1ðy; μ2Þ is the twist-2 DA. It is normalized asZ

1

0

dyφ1ðy; μ2Þ ¼ 1 ð4Þ

and we recall its asymptotic form

φ1ðy; μ2Þ⟶
μ2→∞

φas
1 ðyÞ ¼ 6yȳ: ð5Þ

The expression for the transverse case is

Φγ�→V
þ;þ ðκ2; Q2Þ ¼ 2παSðμ2rÞeq

ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
fVmV

NcQ2
×

�Z
1

0

dy
αðαþ 2yȳÞ
yȳðαþ yȳÞ2 ½ðy − ȳÞφT

1 ðy; μ2Þ þ φT
Aðy; μ2Þ�

−
Z

1

0

dy2

Z
y2

0

dy1
y1ȳ1α

αþ y1ȳ1
×

�
2 − Nc=CF

αðy1 þ ȳ2Þ þ y1ȳ2
−

Nc=CF

y2αþ y1ðy2 − y1Þ
�
Mðy1; y2; μ2Þ

þ
Z

1

0

dy2

Z
y2

0

dy1

�
2þ Nc=CF

ȳ1
þ y1
αþ y1ȳ1

� ð2 − Nc=CFÞy1α
αðy1 þ ȳ2Þ þ y1ȳ2

− 2

�

−
Nc

CF

ðy2 − y1Þȳ2
ȳ1

1

αȳ1 þ ðy2 − y1Þȳ2

�
Sðy1; y2; μ2Þ

�
; ð6Þ

where

CF ¼ N2
c − 1

2Nc
; ð7Þ

Bðy1; y2; μ2Þ ¼ −5040y1ȳ2ðy1 − ȳ2Þðy2 − y1Þ; ð8Þ

Dðy1; y2; μ2Þ ¼ −360y1ȳ2ðy2 − y1Þ

×

�
1þ

ωA
f1;0gðμ2Þ

2
ð7ðy2 − y1Þ − 3Þ

�
;

ð9Þ

and where the three-body DAs read

Mðy1; y2; μ2Þ ¼ ζV3Vðμ2ÞBðy1; y2; μ2Þ
− ζA3Vðμ2ÞDðy1; y2; μ2Þ; ð10Þ

Sðy1; y2; μ2Þ ¼ ζV3Vðμ2ÞBðy1; y2; μ2Þ
þ ζA3Vðμ2ÞDðy1; y2; μ2Þ ð11Þ

with the dimensionless coupling constants ζV3Vðμ2Þ and
ζA3Vðμ2Þ defined as

ζV3Vðμ2Þ ¼
fV3Vðμ2Þ

fV
; ζA3Vðμ2Þ ¼

fA3Vðμ2Þ
fV

: ð12Þ

The dependence on the factorization scale μ2 can be
determined from evolution equations [13] (see also
Appendix B in Ref. [7]), with the initial condition at a
renormalization scale μ0 ¼ 1 GeV.

The DAs φT
1 ðy; μ2Þ and φT

Aðy; μ2Þ in Eq. (6) encompass
both genuine twist-3 and WW contributions1 [13].
While the distribution amplitude for the pion has been

frequently discussed, there are only a few studies on the
case of the ϕ meson; see e.g., Ref. [20]. Here we follow
Ref. [8] and truncate the Gegenbauer expansion of the DA
at the second order

ϕ1ðy; μ2Þ ¼ 6yȳ

�
1þ a2ðμ2Þ

3

2
ð5ðy − ȳÞ2 − 1Þ

�
: ð13Þ

We will neglect a2 below. A very small value for a2 was
found e.g., in Refs. [13,20]. Also a small a2 is obtained
from the light-cone wave function discussed below. In the
distribution amplitude formalism one often includes the
QCD evolution of ϕ1ðy; μ2Þ. However, for the ϕ meson
where the initial distribution amplitude is already very
close to the asymptotic one the evolution can be safely
neglected.

C. Light-cone wave function approach

In the light-cone kT-factorization approach, the calcu-
lation proceeds in a slightly different way. Here one
calculates the amplitude for the γ�p → qq̄p diffractive
process and projects the final state qq̄ pair onto the vector-
meson state. We treat the ϕ meson as a pure ss̄ state. The
meson of momentum P ¼ ðPþ; m2

ϕ=ð2PþÞ; 0Þ is described
by the ss̄ light-cone wave function (LCWF) as

1Genuine terms are related to Bðy1; y2; μ2Þ and Dðy1; y2; μ2Þ;
WW contributions, instead, are those obtained in the approxi-
mation in which Bðy1; y2; μ2Þ ¼ Dðy1; y2; μ2Þ ¼ 0. For their
expressions in this last case see Eq. (9) in Refs. [7,8].
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jϕ; Pþ; λVi ¼
Z

dyd2k
yȳ16π3

ΨðλV Þ
λλ̄

ðy; kÞjsðyPþ; k; λÞ

× s̄ðȳPþ;−k; λ̄Þi þ � � � ð14Þ

The amplitude for diffractive vector-meson production
then takes the form

ℑmTλV ;λγ ðs;Q2Þ

¼ s
Z

dyd2k
yȳ16π3

X
λλ̄

M
ðλγÞ
λλ̄

ðγ�p → ss̄pÞΨðλVÞ�
λλ̄

ðy; kÞ:

ð15Þ

The explicit expressions for the diffractive amplitudes can
be found in Ref. [1]. Here we are interested only in the
forward scattering limit of vanishing transverse momentum
transfer, where only the helicity-conserving amplitudes
with λV ¼ λγ contribute.
We can easily read off the following expressions for the

impact factors of interest. The L → L IF reads

Φγ�→ϕ
0;0 ðκ2;Q2Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
eq8παSðμ2rÞQ

Z
dyd2kffiffiffiffiffi
yȳ

p
16π3

I0ðk;κÞ

×yȳfΨð0Þ�
þ− ðy;kÞþΨð0Þ�

−þ ðy;kÞg: ð16Þ

For the T → T IF we obtain

Φγ�→ϕ
�;� ðκ2; Q2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
eq4παSðμ2rÞ

Z
dyd2kffiffiffiffiffi
yȳ

p
16π3

× ½ðeð�Þ · I1ðk; κÞÞfðy − ȳÞðΨð�Þ�
þ− ðy; kÞ þ Ψð�Þ�

−þ ðy; kÞÞ

þΨð�Þ�
þ− ðy; kÞ − Ψð�Þ�

−þ ðy; kÞg þ
ffiffiffi
2

p
mqI0ðk; κÞΨð�Þ�

þþ ðy; kÞ�: ð17Þ

Here

I0ðk; κÞ ¼
1

k2 þ ε2
−

1

ðkþ κÞ2 þ ε2
;

I1ðk; κÞ ¼
k

k2 þ ε2
−

kþ κ

ðkþ κÞ2 þ ε2
; ð18Þ

and ε2 ¼ m2
q þ yȳQ2. We now want to compare these

results with the twist expansion approach presented in the
previous subsections. To this end, we should expand the
impact factors around the limit of collinear kinematics
for the qq̄ pair. While an analogous expansion around the
small-κ limit, has been discussed in great detail, the
analogous comparison to leading- and higher-twist distri-
bution amplitudes is up to now missing.

Expanding in k2=ðκ2 þ ε2Þ ≪ 1, we obtain

I0ðk; κÞ ≈
1

ε2
−

1

κ2 þ ε2
¼ κ2

ε2ðκ2 þ ε2Þ ; ð19Þ

and

I1ðk; κÞ ≈ k
κ2

ε2ðκ2 þ ε2Þ þ
2ðk · κÞκ
ðκ2 þ ε2Þ2 →

κ2ðκ2 þ 2ε2Þ
ε2ðκ2 þ ε2Þ2 k;

ð20Þ

where we performed the azimuthal average in the last step.
Inserting the expanded I0 into the IF for the L → L
transition, we find

Φγ�→ϕ
0;0 ðκ2; Q2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
eq8παSðμ2rÞQ

Z
1

0

dy yȳ
κ2

ε2ðκ2 þ ε2Þ ×
1ffiffiffiffiffi
yȳ

p
Z

d2k
16π3

fΨð0Þ�
þ− ðy; kÞ þ Ψð0Þ�

−þ ðy; kÞgθðμ2 − k2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
eq

4παSðμ2rÞfV
NcQ

Z
1

0

dy
yȳ

ðyȳþ τÞ
α

ðαþ yȳþ τÞφ1ðy; μ2Þ: ð21Þ

Here we introduced the variables α ¼ κ2=Q2 and τ ¼ m2
q=Q2. We see that we have obtained a generalization of the impact

factor of Eq. (3) including a finite quark mass. The helicity combination of the LCWF which appears under the k integral
gives rise to the leading-twist distribution amplitude of the longitudinally polarized vector meson, defined following the
rules of Ref. [11] as

fVφ1ðy; μ20Þ ¼
2Ncffiffiffiffiffi
yȳ

p
Z

d2k
16π3

θðμ20 − k2ÞfΨð0Þ�
þ− ðy; kÞ þΨð0Þ�

−þ ðy; kÞg: ð22Þ

The scale μ2 in Eq. (21) must be chosen such that the small-k expansion is valid, i.e., μ2 ∼ ðQ2 þm2
ϕÞ=4.
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We can now follow a similar strategy for the transverse IF. To that end we introduce the following representations of the
higher-twist DAs:

fVφT
1 ðy; μ20Þ ¼

2Ncffiffiffiffiffi
yȳ

p
Z

d2k
16π3

θðμ20 − k2Þðeð�Þ · kÞfΨð�Þ�
þ− ðy; kÞ þ Ψð�Þ�

−þ ðy; kÞg;

fVφT
Aðy; μ20Þ ¼

2Ncffiffiffiffiffi
yȳ

p
Z

d2k
16π3

θðμ20 − k2Þðeð�Þ · kÞfΨð�Þ�
þ− ðy; kÞ −Ψð�Þ�

−þ ðy; kÞg;

fVφmðy; μ20Þ ¼
2Ncffiffiffiffiffi
yȳ

p
Z

d2k
16π3

θðμ20 − k2Þ
ffiffiffi
2

p
mqΨ

ð�Þ�
þþ ðz; kÞ: ð23Þ

We notice, that Z
1

0

dyφðy; μ20Þ ¼ 1;
Z

1

0

dyφT
1 ðy; μ20Þ ¼ 0: ð24Þ

The transverse IF that we derive is again a generalization of Eq. (6) to finite quark mass and reads

Φγ→ϕ
�;� ðκ2; Q2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
eq

2παSðμ2rÞfV
NcQ2

Z
1

0

dy
yȳþ τ

�
αðαþ 2yȳþ 2τÞ
ðαþ yȳþ τÞ2

× ððy − ȳÞφT
1 ðy; μ2Þ þ φA

1 ðy; μ2ÞÞ þ
α

αþ yȳþ τ
φmðy; μ2Þ

�
: ð25Þ

We realize that up to the DA φm, which vanishes in the
massless limit, the structure of the IF is exactly the same
as for the one of Eq. (6) neglecting the so-called genuine
three-particle distributions. The latter obviously can appear
only at the level of the qq̄g Fock state.
We nowwish to give some explicit expressions for theDAs

in question. To this end, we use the V → qq̄ vertex from
Ref. [1], where the ϕ meson is treated as a pure
S-wave bound state of a strange quark and antiquark. For
the relevant combinations of light-cone wave functions we
obtain in the case of the longitudinally polarized vectormeson

Ψð0Þ�
þ− ðy; kÞ þΨð0Þ�

−þ ðy; kÞ

¼ −4M
ffiffiffiffiffi
yȳ

p �
1þ ðy − ȳÞ2

4yȳ

2mq

M þ 2mq

�
ψðy; kÞ: ð26Þ

The radial wave function ψðy; kÞ is normalized as

Nc

Z
dyd2k
yȳ16π3

2M2jψðy; kÞj2 ¼ 1: ð27Þ

AboveM2 ¼ ðk2 þm2
qÞ=ðyȳÞ is the invariant mass of the ss̄

system.We can now express the leading-twistDA through the
radial WF as

fVφ1ðy; μ20Þ ¼
Nc

2π2

Z
μ2
0

0

dk2M

�
1þ ðy − ȳÞ2

4yȳ

2mq

M þ 2mq

�

× ψðy; kÞ: ð28Þ

Now, for the higher-twist DAs of the transversely polarized
vector meson, we obtain

fVφT
1 ðy; μ20Þ ¼ ðy − ȳÞ Nc

8π2

Z
μ2
0

0

dk2 k2
M

M þ 2mq

ψðy; kÞ
yȳ

;

fVφT
Aðy; μ20Þ ¼

Nc

4π2

Z
μ2
0

0

dk2 k2
ψðy; kÞ
yȳ

;

fVφmðy; μ20Þ ¼ m2
q
Nc

4π2

Z
μ2
0

0

dk2
�
1þ k2

mqðM þ 2mqÞ
�

×
ψðy; kÞ
yȳ

: ð29Þ

D. Characteristic parameters

Typical constants for ϕ mesons, entering the DAs and
IFs, used in numerical computations, are provided in
Tables I and II.

TABLE I. Experimental value of the coupling to the vector
current [21] (first row) and the couplings entering the vector-
meson DAs at the scale μ0 ¼ 1 GeV.

V ϕ

fV [GeV] 0.254
ζA3V 0.032
ζV3V 0.013
ωA
1;0 −2.1

ωV
1;0 28=3
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E. Cross section and diffraction slope

The imaginary part of the amplitude in Eq. (1) which
enters the expression of the cross section for transverse and
longitudinal polarization, can be written as

σLðγ�p → VpÞ ¼ 1

16πbðQ2Þ
				T00ðs;Q2Þ

W2

				2; ð30Þ

σTðγ�p → VpÞ ¼ 1

16πbðQ2Þ
				T11ðs;Q2Þ

W2

				2; ð31Þ

where bðQ2Þ is the diffraction slope which depends on the
virtuality of the photon and it is parametrized in the present
analysis as follows [22]:

bðQ2Þ ¼ β0 − β1 log

�
Q2 þm2

ϕ

m2
J=ψ

�
þ β2
Q2 þm2

ϕ

; ð32Þ

with β0 ¼ 7.0 GeV−2, β1 ¼ 1.1 GeV−2 and β2 ¼ 1.1.
In Fig. 2 we show a plot of our parametrization of the

diffractive slope. The full cross section is a sum of
longitudinal and transverse components, and it reads

σtotðγ�p → VpÞ ¼ σT þ ϵσL; ð33Þ

where ϵ ≈ 1 due to HERA kinematics.

F. Unintegrated gluon distributions

Before turning to the numerical results, let us briefly
review the salient properties of the unintegrated gluon
distributions used in this work.
(1) Ivanov-Nikolaev UGD:

The UGD proposed in Ref. [17] probes different
regions of the transverse momentum. In the large-κ
region, DGLAP parametrizations for gðx; κ2Þ are
used. Moreover, for the extrapolation of the hard
gluon densities to small κ2, an ansatz is made [23].
The gluon density at small κ2 is endowed with a
nonperturbative soft part, according to the color-
dipole phenomenology. This model of UGD has the
following form:

F ðx; κ2Þ ¼ F ðBÞ
softðx; κ2Þ

κ2s
κ2 þ κ2s

þ F hardðx; κ2Þ
κ2

κ2 þ κ2h
; ð34Þ

where κ2s ¼ 3 GeV2 and κ2h ¼ ½1þ
0.047 log2ð1=xÞ�1=2 GeV2.
The soft term reads

F ðBÞ
softðx; κ2Þ ¼ asoftCFNc

αSðκ2Þ
π

�
κ2

κ2 þ μ2soft

�
2

VNðκÞ;

ð35Þ

where CF ¼ N2
c−1
2Nc

and μsoft ¼ 0.1 GeV. The param-
eter asoft ¼ 2 gives a measure of how important the
soft part is compared to the hard one. On the other
hand, the hard component is

F hardðx; κ2Þ ¼ F ðBÞ
pt ðκ2Þ

F ptðx;Q2
cÞ

F ðBÞ
pt ðQ2

cÞ
θðQ2

c − κ2Þ

þ F ptðx; κ2Þθðκ2 −Q2
cÞ; ð36Þ

where F ptðx; κ2Þ is related to the standard gluon
parton distribution. We refer to Ref. [17] for insights
about the expressions of the vertex function VNðκÞ
and of F ðBÞ

pt ðκ2Þ as well as about discussions of
the parameter of this model. Another important
feature of this UGD is given by the choice of the
coupling constant. The infrared freezing of the
strong coupling at leading order is imposed by
fixing ΛQCD ¼ 200 MeV:

αSðμ2Þ ¼ min

(
0.82;

4π

β0 logð μ2

Λ2
QCD

Þ

)
: ð37Þ
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FIG. 2. Q2 dependence of the diffraction slope bðQ2Þ for ϕ-
meson production in the γ�p → ϕp reaction. Due to the high
uncertainty of the experimental data, we keep the standard
choices for the β0, β1 and β2 parameters from Ref. [22] for all
our results.

TABLE II. Decay constants obtained from Eq. (12).

V ϕ

mVfA3V [GeV2] 3.37 × 10−3

mVfV3V [GeV2] 5.26 × 10−3
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(2) Golec-Biernat–Wüsthoff (GBW) UGD:
This UGD parametrization comes from the effec-

tive dipole cross section σ̂ðx; rÞ for the scattering of a
qq̄ pair off a nucleon [24],

σ̂ðx; r2Þ ¼ σ0

�
1 − exp

�
−

r2

4R2
0ðxÞ

��
; ð38Þ

through a reverse Fourier transform of the
expression

σ0

�
1 − exp

�
−

r2

4R2
0ðxÞ

��

¼ 2π

Nc

Z
d2κ
κ4

αSF ðx; κ2Þð1 − expðiκ⃗ · r⃗ÞÞ

× ð1 − expð−iκ⃗ · r⃗ÞÞ; ð39Þ

4π

Nc
αSF ðx; κ2Þ ¼ κ4σ0

R2
0ðxÞ
2π

e−κ
2R2

0
ðxÞ; ð40Þ

with

R2
0ðxÞ ¼

1

GeV2

�
x
x0

�
λp ð41Þ

and the following values:

σ0¼23.03mb; λp¼0.288; x0¼3.04×10−4:

ð42Þ

The normalization σ0 and the parameters x0 and λp
of R2

0ðxÞ have been determined by a global fit to
F2ðx;Q2Þ in the region x < 0.01.
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III. NUMERICAL RESULTS

In what follows we present theoretical predictions
adopting two different UGD models:
(1) The Ivanov-Nikolaev parametrization, endowed

with soft and hard components to probe both
large and small transverse momentum regions (see
Ref. [17] for further details).

(2) The model provided by Golec-Biernat and Wüst-
hoff, which derives from the dipole cross section for
the scattering of a qq̄ pair off a nucleon [24].

We start by calculating the longitudinal cross section
using the formalism described in the previous section.
In Fig. 3 we show the results of our calculation for the
Ivanov-Nikolaev (left panel) and GBW (right panel) UGDs.

In order to get these predictions, below we always use for
the renormalization scale in the strong coupling μ2r ¼ Q2.
As far as the scale dependence in the DA is concerned, in
Fig. 3, the asymptotic DA has been used. This calculation
has been obtained for W ¼ 75 GeV. We observe that the
cross sections obtained for massless strange quarks (black
solid line) overestimate the experimental cross section
below Q2 < 10 GeV2. This is very different for ρ0 pro-
duction to be discussed elsewhere. In both cases we also
present our results when using quarks/antiquarks with
effective masses. The quark mass enters the calculation
through the parameter τ ¼ m2

q=Q2 in the relevant impact
factors; see Eq. (21) and Eq. (25). Including a finite quark
mass, a good description of the experimental data is
obtained for both the Ivanov-Nikolaev and GBW UGDs.
How much the cross section depends on the quark mass

is shown in Fig. 4 for the asymptotic (left panel) and LCWF
(right panel) DAs, respectively. The best description of the
data is obtained with mq ¼ 0.5 GeV. A similar result was
found in Ref. [5] within the kT-factorization approach with
a Gaussian ss̄ light-cone wave function for the ϕ meson.
The preferred quark mass very much resembles the typical
value expected for a constituent quark. We note in passing,
that for the light mesons ρ and ω, a similar approach [25]
suggests mu;d ∼ 300 MeV. Now we pass to the transverse
cross section as a function of photon virtuality.
In Fig. 5 we show the cross sections for the Wandzura-

Wilczek and genuine three-parton contributions. In this
calculation massless quarks were used. We observe that the
transverse cross section for the genuine three-parton con-
tribution is rather small. However, the WW contribution for
massless quarks, similarly as for the longitudinal cross
section, overpredicts the H1 and ZEUS data. Can this be
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explained as due to the mass effect discussed in the
previous section?
In Fig. 6 we show how the WW contribution changes

when including the mass effect discussed in the previous
section. The inclusion of the mass effect improves the
description of the H1 and ZEUS experimental transverse
cross section. The description is, however, not perfect.
In Fig. 6 we present a similar result for both UGD
models. Unlike for the longitudinal cross section, here
the GBW overpredicts the experimental data in the whole
range of virtuality, while the Ivanov-Nikolaev model only

overpredicts at smaller Q2 values. A reasonable result is
obtained when including the mass effect.
As for any truncated pQCD calculations, here the cross

section also depends on the choice of the renormalization
scale. For the vector-meson production sometimes one uses
the renormalization scale μ2r ¼ ðQ2 þm2

ϕÞ=4 [1]. As shown
in Fig. 7 this choice leads to a larger cross section than for
μ2r ¼ Q2, at least for the same effective quark mass. Then
the calculated cross section is somewhat above the H1 and
ZEUS experimental data. To improve the agreement with
the data one can increase ms as is shown in Fig. 7. Then
ms ∼ 0.6 GeV would lead to a better agreement with the
experimental data. This mass is a bit larger than the one
used in Ref. [5] where the effects of the transverse motion
of quarks and a dynamical choice of the renormalization
scale were included explicitly.
We also wish to show results for the σL=σT ratio (see

Fig. 8) as a function of photon virtuality Q2 for the Ivanov-
Nikolaev and GBW UGDs. In this calculation the quark
mass was fixed for mq ¼ 0.45 GeV. The Ivanov-Nikolaev
UGD better describes the H1 and ZEUS data.
How much does the ratio depend on the effective quark

mass parameter? This is shown in Fig. 9. The ratio is much
less sensitive to the quark mass than the polarized cross
sections σL and/or σT separately. So the extraction of the
mass parameter from the normalized cross section is
preferred.
Now we shall show the total cross section σtot as a

function of virtuality. In Fig. 10 we show both the
longitudinal and transverse components as well as their
sum. The transverse cross section is somewhat steeper
(falls faster with virtuality) than the longitudinal one. The
comparison with the HERA data is presented in Fig. 11.
The GBW UGD better describes the experimental data
at small photon virtualities. There seems to be a small
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inconsistency between the H1 and ZEUS data at larger
virtualities.
So far we did not consider skewness effects and the real

part of the γ�p → ϕp amplitude. Both these corrections can
be calculated from the energy dependence of the forward
amplitude. Defining

ΔIP ¼ ∂ logðℑmTλVλγ ðs;Q2Þ=sÞ
∂ logð1=xÞ ; ð43Þ

we can calculate the real part from

ρ ¼ ℜeTλVλγ ðs;Q2Þ
ℑmTλVλγ ðs;Q2Þ ¼ tan

�
πΔIP

2

�
: ð44Þ

The skewness correction is obtained from multiplying the
forward amplitude by the factor [26]
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Rskewed ¼
22ΔIPþ3ffiffiffi

π
p ·

ΓðΔIP þ 5=2Þ
ΓðΔIP þ 4Þ : ð45Þ

Now we wish to show our estimates of these corrections.
We show results for the longitudinal (Fig. 12) and trans-
verse (Fig. 13) components separately. The effect is not too
big but cannot be neglected. The effect of the skewness is
much larger than the effect of the inclusion of the real part.
We observe that the effect of the skewness does not cancel
in the σL=σT ratio as can be seen in Fig. 14.

IV. CONCLUSIONS

In the present paper we have used a recently formulated
hybrid formalism for the production of ϕ mesons in the
γ�p → ϕp reaction using unintegrated gluon distributions
and meson distribution amplitudes. In this formalism the
γ� → ϕ impact factor is calculated in collinear factorization
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using (collinear) distribution amplitudes. So far this for-
malism was used only for massless quarks/antiquarks (e.g.,
for ρ0 meson production). Both twist-2 and twist-3 con-
tributions are included. The impact factor for the p → p
transition is expressed in terms of UGDs. Two different
UGD models have been used.
We have shown that for massless quarks the genuine

three-parton contribution is more than an order of magni-
tude smaller than the WW one. Therefore in this paper we
have concentrated on the WW component.
We have observed a too quick rise of the cross section

when going to smaller photon virtualities compared to
the experimental data measured by the H1 and ZEUS
collaborations at HERA. This was attributed to the mass-
less quarks/antiquarks. We have proposed how to include
effective quark masses into the formalism. Corresponding
distribution amplitudes were calculated and have been
used in the present approach. With the effective quark
mass mq ∼ 0.5 GeV a good description of the H1 and
ZEUS data has been achieved for the Ivanov-Nikolaev and

GBW UGDs down to Q2 ∼ 4 GeV2. This value of the
strange-quark mass is similar to the one found in Ref. [5],
where the kT-factorization formalism with the ss̄ light-
cone wave function of the ϕ meson was used for real
photoproduction.
We also have estimated the skewness effect which turned

out to be not too big but not negligible. We have shown
some residual effects of the skewness for the ratio of
longitudinal-to-transverse cross sections.
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