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Stimulated by the state Yð4626Þ recently reported by the Belle Collaboration, we utilize a multiquark
color flux-tube model with a multibody confinement potential and one-gluon-exchange interaction to make
an exhaustive investigation on the diquark-antidiquark state ½cs�½c̄ s̄�. Numerical results indicate that the
spatial configuration of the states ½cs�½c̄ s̄� like a dumbbell, the larger the orbital excitation L, the farther
the distance between the diquark ½cs� and the antidiquark ½c̄ s̄�, the more clearer the shape. The mixing of
the color configurations ½½cs�3̄c ½c̄ s̄�3c �1 and ½½cs�6c ½c̄ s̄�6̄c �1 in the ground states is strong, while the color

configuration ½½cs�3̄c ½c̄ s̄�3c �1 is absolutely predominant in the excited states. The states Yð4626Þ, Yð4630Þ,
and Yð4660Þ can be uniformly described as the P-wave tetraquark state ½cs�½c̄ s̄� with 1−−. The states
Yð4626Þ and Yð4630Þ can be described as the same state consisting of a scalar ½cs�
and a scalar ½c̄ s̄�, while the state Yð4660Þ is made of a scalar ½cs� (½c̄ s̄�) and an axial-vector ½c̄ s̄� (½cs�).
Their hidden-bottom partner is predicted in the model calculation. The states Xð4140Þ, Xð4274Þ, Xð4350Þ,
Xð4500Þ, and Xð4700Þ are also discussed.

DOI: 10.1103/PhysRevD.101.054039

I. INTRODUCTION

The past decade or so has witnessed the great prosperity
of the development of hadron physics. A large number of
hidden charmed and bottomed hadrons were subsequently
observed in experiments [1], some of which, such as
charged states Zb and Zc, are difficult to accommodate
in the naive quark model. Very recently, the Belle
Collaboration reported a vector charmoniumlike state in
the process of eþe− → Dþ

s Ds1ð2536Þ− þ c:c: via initial-
state radiation [2]. The state has respectively a measured
mass and width of 4265.9þ6.2

−6.0 � 0.4 MeV and 49.8þ13.9
−11.5 �

4.0 MeV and decays into a charmed antistrange and
anticharmed-strange meson pair Dþ

s Ds1ð2536Þ− with a
significance of 5.9σ, which are consistent with those of
the states Yð4630Þ and Yð4660Þ within errors although they
are observed in the different processes [3,4]. The state is
suggested as an exotic charmoniumlike state with 1−−,
called Yð4626Þ [2], which provides an ideal opportunity to
research the low-energy strong interaction. The most
intuitive information provided by the decay behavior of

the state Yð4626Þ is that its main component is likely to be a
tetraquark system csc̄ s̄.
In analogy with the deuteron, which is bound through the

exchange of pion and other light mesons [5], Karliner and
Rosner predicted the masses of tetraquark state csc̄ s̄ based
on the proximity to thresholds of DsD̄s pairs [6].
Albuquerque and Nielsen described the state Yð4660Þ as
the state ½cs�½c̄ s̄� with QCD sum rules [7]. Inspired by
the states Xð4140Þ, Xð4274Þ, Xð4500Þ, Xð4700Þ, and
Yð4140Þ, the tetraquark state csc̄ s̄ was also systematically
researched in various theoretical frameworks, such as
simple color-magnetic interaction models [8,9], the QCD
sum rule [10–12], nonrelativistic and relativistic quark
models [13,14], the diquark model [15], and lattice QCD
[16]. A question then arises as to whether or not the main
component of the states Yð4626Þ can be described as the
tetraquark state ½cs�½c̄ s̄]. Therefore, chiral constituent
quark model and quasipotential Bethe-Salpeter equation
with the one-boson-exchange model were immediately
used to describe the state Yð4626Þ as a molecular state
of D�

sD̄s1ð2536Þ with 1−− [17].
A multiquark color flux-tube model based on the lattice

QCD picture and the traditional quark models has been
developed to study multiquark states, in which the multi-
body confinement potential is a dynamical mechanism in
the formation and decay of the multiquark states [18].
Similar multibody string models were also extensively
applied to study the properties of multiquark states
[19,20]. In this work, we move on to the investigation
on the tetraquark state ½cs�½c̄ s̄� to interpret the inner
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structures of the states Yð4626Þ, Yð4630Þ, and Yð4660Þ
within the framework of the multiquark color flux-
tube model, which is anticipated to exhibit new insights
into the binding mechanisms in multiquark states, and
maybe improve understanding of QCD in the nonpertur-
bative regime.
This paper is organized as follows. After the Introduction

section, the presentation of the multiquark color flux-
tube model is given in Sec. II. The wave function of the
tetraquark state ½cs�½c̄ s̄� is shown in Sec. III. The numerical
results and discussions are presented in Sec. IV. A brief
summary is listed in the last section.

II. MULTIQUARK COLOR FLUX-TUBE MODEL

Constituent quark models (CQM) are formulated under
the assumption that hadrons are color-singlet nonrelativistic
bound states of constituent quarks with phenomenological
effective masses and interactions. One expects the dynam-
ics of the CQM to be governed by QCD. The perturbative
effect is well-known one-gluon-exchange (OGE) interac-
tion. The central part of the OGE interaction takes its form
used extensively and is listed in [21]

VG
ij ¼

αs
4
λci · λ

c
j

�
1

rij
−
2πδðrijÞσi · σj

3mimj

�
;

where λc and σ respectively represent the Gell-Mann
matrices and the Pauli matrices. The color-magnetic mecha-
nism, which is proportional to the factor λci · λ

c
jσi · σj, in the

OGE interaction leads to mass splitting among different
color-spin configurations. αs is a running strong coupling
constant in the perturbative QCD [22],

αsðμ2Þ ¼
1

β0 ln
μ2

Λ2

: ð1Þ

In this work, we take the form

αsðμ2ijÞ ¼
α0

ln
μ2ij
Λ2
0

; ð2Þ

where μij is the reduced mass of two interacting particles.
The function δðrijÞ should be regularized [23],

δðrijÞ ¼
1

4πrijr20ðμijÞ
e−rij=r0ðμijÞ; ð3Þ

where r0ðμijÞ ¼ r̂0=μij. Λ0, α0, μ0, and r̂0 are adjustable
model parameters determined by fitting the data of
qq̄-mesons.
Color confinement is one of the most prominent features

of QCD and should play an essential role in the low-energy
hadron physics. At present, it is still impossible for us
to derive color confinement analytically from the QCD

Lagrangian. Color confinement is a long-distance behavior
whose understanding continues to be a challenge in
theoretical physics. The color confinement potential in
the traditional constituent quark model can be phenom-
enologically described as the sum of two-body interactions
proportional to the color charges and r2ij [24],

VC ¼ −ac
Xn
i>j

λci · λ
c
jr

2
ij; ð4Þ

where rij is the distance between two interacting quarks qi
and qj. The model can automatically prevent overall color-
singlet multiquark states disintegrating into several color
subsystems by means of color confinement with an
appropriate SUcð3Þ Casimir constant [25]. In contrast,
the model allows a multiquark system dissociating into
color-singlet clusters, and it leads to interacting potentials
within mesonlike qq̄ and baryonlike qqq subsystems
in accord with the empirically known potentials [25].
However, the model is known to be flawed phenomeno-
logically because it leads to power law van der Waals forces
between color-singlet hadrons. In addition, it also leads to
anticonfinement for symmetrical color structure in the
multiquark system [26].
Up to now, color confinement can be established both

from gauge-invariant lattice QCD (LQCD) simulations and
from experimental observations like Regge trajectories
[27,28]. qq̄ systems can be well reproduced at short
distances by a linear potential. Such a potential can be
physically interpreted in a picture in which the quark and
the antiquark are linked with a three-dimensional color flux
tube. In the dual superconductor picture of color confine-
ment [29], the color flux tube is formed due to the dual
Meissner effect caused by monopole condensation. The
chromoelectric field lines between color sources, like a
quark and antiquark pair, are squeezed into a narrow flux
tube along the line connecting the pair. Color flux tubes
play significant roles in many interesting places of hadron
physics, such as color confinement, quark pair creation, and
hadron structure.
LQCD calculations on baryons, tetraquark, and penta-

quark states revealed that there exist flux-tube structures
[30]. In the case of a given spatial configuration of
multiquark states, the confinement is a multibody inter-
action and can be simulated by a static potential, which is
proportional to the minimum of the total length of color
flux tubes. A naive flux-tube model, used in the present
work, based on this picture has been constructed [18]. It
takes into account multibody confinement with harmonic
interaction approximation, i.e., where the length of the
color flux tube is replaced by the square of the length to
simplify the numerical calculation. There are two theoreti-
cal arguments to support this approximation. One is that the
spatial separations of the quarks (lengths of the color flux
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tube) in hadrons are not large, so the difference between the
linear and quadratic forms is small and can be absorbed in
the adjustable parameter, the stiffness. The other is that we
are using a nonrelativistic description of the dynamics, and,
as was shown long ago [31], an interaction energy that
varies linearly with separation between fermions in a
relativistic, first-order differential dynamics has a wide
region in which a harmonic approximation is valid for the
second-order (Feynman-Gell-Mann) reduction of the equa-
tions of motion. We calculated the bb̄ spectrum by using
quadratic and linear potentials, the results showing that the
differences between two potentials are small for the low-
lying states [32]. In addition, the calculations on nucleon-
nucleon interactions also support the replacement [33].
The color flux-tube structures of qq̄-mesons and the

tetraquark state ½cs�½c̄ s̄� with diquark-antidiquark configu-
ration are shown in Fig. 1, in which the blue and green
disks, respectively, represent the quark and antiquark. In the
tetraquark state ½cs�½c̄ s̄�, the big disk stands for a heavy
quark, while the small one stands for a light quark. The
quark and antiquark in the mesons are linked with a three-
dimensional color flux tube. A two-body confinement
potential can be written as

VC
minð2Þ ¼ Kr2; ð5Þ

where r is the distance between the quark and antiquark and
the parameter K is the stiffnesses of a three-dimensional
color flux-tube and determined by fitting the ground heavy-
meson spectra. In the state ½cs�½c̄ s̄�, the codes of the quarks
(antiquarks) c, s, c̄, and s̄ are assumed to be 1, 2, 3, and 4,
respectively. According to a double Y–shaped color flux-
tube structure of the state ½cs�½c̄ s̄�, a four-body quadratic
confinement potential instead of linear one used in the
LQCD can be written as

VCð4Þ ¼ K½ðr1 − y12Þ2 þ ðr2 − y12Þ2 þ ðr3 − y34Þ2
þ ðr4 − y34Þ2 þ κdðy12 − y34Þ2�; ð6Þ

in which r1, r2, r3, and r4, respectively, represent the
position of the corresponding quark (antiquark). Two
Y-shaped junctions y12 and y34 are variational parameters,
which can be determined by taking the minimum of the
confinement potential. The relative stiffness parameter κd is
equal to Cd

C3
[34], where Cd is the eigenvalue of the Casimir

operator associated with the SUð3Þ color representation d
at either end of the color flux tube, such as C3 ¼ 4

3
, C6 ¼ 10

3
,

and C8 ¼ 3.
The minimum of the confinement potential VC

minð4Þ can
be obtained by taking the variation of VCð4Þ with respect to
y12 and y34, and it can be expressed as

VC
minð4Þ ¼ K

�
R2

1 þR2
2 þ

κd
1þ κd

R2
3

�
: ð7Þ

The canonical coordinates Ri have the following forms:

R1 ¼
1ffiffiffi
2

p ðr1 − r2Þ; R2 ¼
1ffiffiffi
2

p ðr3 − r4Þ;

R3 ¼
1ffiffiffi
4

p ðr1 þ r2 − r3 − r4Þ;

R4 ¼
1ffiffiffi
4

p ðr1 þ r2 þ r3 þ r4Þ: ð8Þ

The use of VC
minðnÞ can be understood here as that the gluon

field readjusts immediately to its minimal configuration.
The diquark ½cs� and antidiquark ½c̄ s̄� can be considered

as compound bosons Q̄ and Q with no internal orbital
excitation, and the orbital excitation L is assumed to occur
only between Q and Q̄ in the present work. To facilitate
numerical calculations, the spin-orbit interactions are
assumed to take place approximately between compound
bosons Q̄ and Q, which is consistent with the work [35].
The spin orbit–related interactions can be expressed as

VG;LS
Q̄Q ≈

αs
4
λc̄Q̄ · λcQ

1

8MQ̄MQ

3

X3
L · S; ð9Þ

VC;LS
Q̄Q ≈

K
4MQ̄MQ

κd
1þ κd

L · S; ð10Þ

where the masses of the compound bosons MQ ¼ MQ̄≈
mc þms, X is the distance between the two compound
bosons, and S stands for the total spin angular momentum
of the state ½cs�½c̄ s̄�.
The complete Hamiltonian involving the multibody

confinement potential and OGE interaction for the heavy
mesons and the states ½cs�½c̄ s̄� can be presented as

Hn ¼
Xn
i¼1

�
mi þ

p2
i

2mi

�
− TC þ

Xn
i>j

ðVG
ij þ VG;LS

ij Þ

þ VC
minðnÞ þ VC;LS

min ðnÞ: ð11Þ

Tc is the center-of-mass kinetic energy of the state and
should be deducted; pi is the momentum of the ith quark
(antiquark). LQCD computations on the static tetraquark
potential show that the tetraquark potential is consistent

FIG. 1. Color flux-tube structures.
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with a four-body confining potential plus one-gluon-
exchange Coulomb potentials [36].
It is worth mentioning that the multiquark color flux-tube

model is not a completely new model but the updated
version of the traditional CQM based on the color flux-tube
picture of hadrons in the LQCD. In fact, it merely modifies
the two-body confinement potential in the traditional CQM
into the multibody one to describe multiquark states with
multibody interaction. Furthermore, the multiquark color
flux-tube model can overcome the disadvantages of the
traditional CQM.

III. WAVE FUNCTION OF THE STATE ½cs�½c̄ s̄�
The numerical results of the state ½cs�½c̄ s̄� should be

solved using a complete wave function which includes all
possible flavor-spin-color-spatial channels that contribute
to a given well-defined parity, isospin, and total angular
momentum. Within the framework of the diquark-
antidiquark configuration, the wave function of the state
½cs�½c̄ s̄� can be constructed as a sum of the following
direct products of color χc, isospin ηi, spin χs, and spatial
ϕG
lm terms:

Φ½cs�½c̄ s̄�
IMIJMJ

¼
X
α

ξα½½½ϕG
lama

ðrÞχsa �½cs�sa
½ϕG

lbmb
ðRÞ

× χsb �½c̄ s̄�sb
�½cs�½c̄ s̄�
S

ϕG
LMðXÞ�½cs�½c̄ s̄�

JMJ

× ½η½cs�ia
η½c̄ s̄�ib

�½cs�½c̄ s̄�
IMI

½χ½cs�ca χ½c̄ s̄�cb �½cs�½c̄ s̄�CWC
: ð12Þ

The subscripts a and b in the intermediate quantum
numbers represent the diquark ½cs� and antidiquark ½c̄ s̄�,
respectively. The summering index α stands for all possible
flavor-spin-color-spatial intermediate quantum numbers.
The parity of the state ½cs�½c̄ s̄� is related to the orbital
excitations L as P ¼ ð−1ÞL because of la ¼ 0 and lb ¼ 0.
Considering a pair of charge-conjugated bosons QQ̄, we
can obtain the C-parity C ¼ ð−1ÞLþS−sa−sb because the
total wave function has to be completely symmetric under
exchange of coordinates and spin of the bosons Q and Q̄.
The relative spatial coordinates r, R, and X in the state

½cs�½c̄ s̄� can be defined as

r ¼ r1 − r2; R ¼ r3 − r4

X ¼ m1r1 þm2r2
m1 þm2

−
m3r3 þm4r4
m3 þm4

:

In the dynamical calculation, the relative motion wave
functions ϕG

lama
ðrÞ, ϕG

lbmb
ðRÞ, and ϕG

LMðXÞ can be expressed
as the superposition of many different-size Gaussian func-
tions with well-defined quantum numbers, which share the
exact same form with Eq. (15) in Sec. IV, to obtain accurate
numerical results. For the sake of saving space, the explicit
expressions of ϕG

lama
ðrÞ, ϕG

lbmb
ðRÞ, and ϕG

LMðXÞ are not

presented here. It is worth mentioning that we do not make
any approximation or simplification in the course of numeri-
cal calculation in spite of a heavy computational workload.
The color representation of the diquark ½cs� maybe

antisymmetrical 3̄c or symmetrical 6c, whereas that of
the antidiquark ½c̄ s̄� maybe antisymmetrical 3c or symmet-
rical 6̄c. Coupling the diquark and the antidiquark into an
overall color singlet only have two ways: ½½cs�3̄c ⊗ ½c̄ s̄�3c �1
and ½½cs�6c ⊗ ½c̄ s̄�6̄c �1 according to the color coupling rule.
The spin of the diquark ½cs� is coupled to sa, and that of
the antidiquark ½c̄ s̄� is coupled to sb. The total spin wave
function of the state ½cs�½c̄ s̄� can be written as S ¼ sa ⊕ sb.
Then, we have the following basis vectors as a function of
the total spin S:

S ¼
8<
:

0; 1 ⊕ 1 or 0 ⊕ 0

1; 1 ⊕ 1; 1 ⊕ 0 or 0 ⊕ 1

2; 1 ⊕ 1

: ð13Þ

For S ¼ 0 and 2, the state ½cs�½c̄ s̄� should have definite
C-parity ð−1ÞL because both the diquark and the anti-
diquark have the same spin. For S ¼ 1, the C parity of the
channel 1 ⊕ 1 is ð−1ÞLþ1, while that of the channels 0 ⊕ 1

and 1 ⊕ 0 are ð−1ÞL.
The quarks c and s have isospin zero so that they do not

contribute to the total isospin. The possible color-flavor-
spin functions of the states ½cs�½c̄ s̄� with total spin S can be
written as

S ¼

8>>><
>>>:

0; ½½cs�0;1
3̄c
½c̄ s̄�0;13c

�0
1c
; ½½cs�0;16c

½c̄ s̄�0;1
6̄c
�0
1c

1; ½½cs�0;1
3̄c
½c̄ s̄�0;13c

�1
1c
; ½½cs�0;16c

½c̄ s̄�0;1
6̄c
�1
1c

2; ½½cs�1
3̄c
½c̄ s̄�13c �21c ; ½½cs�

1
6c
½c̄ s̄�1

3̄c
�2
1c

; ð14Þ

where the superscript and subscript denote the spin and
color representations, respectively. The number of the wave
functions is big because the Pauli principle is out of
operation in the state ½cs�½c̄ s̄�.

IV. NUMERICAL CALCULATIONS
AND ANALYSIS

The starting point of the study on the state ½cs�½c̄ s̄� is
to accommodate qq̄-mesons in the multiquark color flux-
tube model to determine model parameters. To avoid the
misjudgment of the behavior of model dynamics due to
inaccurate numerical results, a high-precision numerical
method is therefore indispensable. The Gaussian expansion
method (GEM) [37], which has been proven to be rather
powerful to solve few-body problem in nuclear physics,
is therefore widely used to study few-body systems.
According to the GEM, the two-body relative motion wave
function of qq̄-mesons can be written as

CHENGRONG DENG, HONG CHEN, and JIALUN PING PHYS. REV. D 101, 054039 (2020)

054039-4



ϕG
lmðrÞ ¼

Xnmax

n¼1

cnNnlrle−νnr
2

Ylmðr̂Þ; ð15Þ

where r ¼ rq − rq̄. Gaussian size parameters are taken as
geometric progression

νn ¼
1

r2n
; rn ¼ r1an−1; a ¼

�
rnmax

r1

� 1
nmax−1

: ð16Þ

The coefficient cn is determined by the dynamics of
systems. With r1¼0.3 fm, rnmax

¼ 2.0 fm, and nmax ¼ 7,
the converged numerical results can be arrived at.
The mass of the ud quark is taken to be one-third of that

of the nucleon, and other adjustable model parameters in
Table I can be determined by approximately strictly solving

the two-body Schrödinger equation to fit the masses of the
ground states of heavy mesons in Table II.
The mass spectrum of the states ½cs�½c̄ s̄� with JPC under

the assumption of the total spin S ¼ 0, 1, and 2 and orbital
excitation L ¼ 0, 1, and 2 in the multiquark color flux-
tube model can be obtained by solving the four-body
Schrödinger equation with the well-defined trial wave
functions of the state ½cs�½c̄ s̄� involving all possible
channels,

ðH4 − E4ÞΦ½cs�½c̄ s̄�
IMIJMJ

¼ 0; ð17Þ

which are listed in Table III. Using the wave function of the
state ½cs�½c̄ s̄� obtained by solving the Schrödinger equation,
the mass and proportion of the color configurations
½½cs�3̄c ½c̄ s̄�3c �1 and ½½cs�6c ½c̄ s̄�6̄c �1, which are respectively
denoted by 3̄c − 3c and 6c − 6̄c, can be arrived at and are
given in Table III. In the same way, the average distances
hr2iji12 between any two particles and hX2i12 between the
diquark ½cs� and antiquark ½c̄ s̄� can also be calculated and
are shown in Table IV.
The hr212i

1
2 and hr234i

1
2 respectively represent the size of

the diquark ½cs� and antidiquark ½c̄ s̄�. It can be found from
Table IV that they share the same value, around 0.6 fm, and
are mainly determined by their own inner interactions.
They are almost independent of the orbital excitation L and
are slightly influenced by the total spin S. The hX2i12 stands
for the average distance between the diquark ½cs� and
antidiquark ½c̄ s̄�, which greatly increases with the increase
of the orbital excitation L. In the ground states, the short
distance hX2i12 ranging from 0.35 to 0.41 fm is less than
the size of the diquark ½cs� and antidiquark ½c̄ s̄�, which
indicates that the overlap of the two subclusters is

TABLE I. Model parameters, quark mass, and Λ0 unit in
MeV, ac unit in MeV · fm−2, r0 unit in MeV · fm, and α0 is
dimensionless.

Para. mu;d ms mc mb K α0 Λ0 r0

Valu. 313 494 1664 5006 800 4.25 40.85 119.3

TABLE II. Ground heavy-meson spectra, unit in MeV.

States D� D� D�
s D�

s ηc J=Ψ B0

Theo. 1886 2000 1982 2109 2965 3103 5261
PDG. 1869 2007 1969 2112 2980 3097 5280

States B� B0
s B�

s Bc B�
c ηb ϒð1SÞ

Theo. 5305 5346 5399 6244 6366 9376 9486
PDG. 5325 5366 5416 6277 ... 9391 9460

TABLE III. The mass spectra of the state ½cs�½c̄ s̄� with JPC in the multiquark color flux-tube model; C.C. represents the coupling
results of the color configurations 3̄c − 3c and 6c − 6̄c, units in MeV.

L ¼ 0 L ¼ 1 L ¼ 2

S JPC 3̄c − 3c 6c − 6̄c C.C. JPC 3̄c − 3c 6c − 6̄c C.C. JPC 3̄c − 3c 6c − 6̄c C.C.

0 0þþ 4360, 39.5% 4318, 60.5% 4239 1−− 4629, 95.2% 4802, 4.8% 4620 2þþ 4868, 99.1% 5163, 0.9% 4865

0−− 4665, 97.4% 4875, 2.6% 4659 1þþ 4899, 99.1% 5188, 0.9% 4897
1 1þþ 4378, 64.1% 4416, 35.9% 4330 1−− 4664, 97.3% 4872, 2.7% 4659 2þþ 4900, 99.1% 5188, 0.9% 4897

2−− 4663, 97.3% 4867, 2.7% 4657 3þþ 4902, 99.1% 5189, 0.9% 4899

0−þ 4687, 99.4% 4879, 0.6% 4686 1þ− 4925, 99.7% 5164, 0.3% 4924
1 1þ− 4420, 19.0% 4360, 81.0% 4342 1−þ 4687, 99.4% 4877, 0.6% 4686 2þ− 4926, 99.7% 5165, 0.3% 4925

2−þ 4687, 99.4% 4873, 0.6% 4686 3þ− 4928, 99.7% 5166, 0.3% 4927

0þþ 4935, 99.6% 5190, 0.4% 4934
1−− 4705, 99.2% 4911, 0.8% 4704 1þþ 4935, 99.6% 5190, 0.4% 4934

2 2þþ 4430, 75.8% 4455, 24.2% 4418 2−− 4705, 99.2% 4908, 0.8% 4704 2þþ 4936, 99.6% 5191, 0.4% 4935
3−− 4705, 99.2% 4903, 0.8% 4703 3þþ 4938, 99.6% 5193, 0.4% 4937

4þþ 4940, 99.6% 5194, 0.4% 4939
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extremely strong so that the picture of the diquark and
antidiquark is not clear. In the excited states, the picture is
gradually clear because the diquark ½cs� and the dntiquark
½c̄ s̄� are well separated with the increase of the orbital
excitation L. The diagrammatic sketch of this picture is
shown in Fig. 2.
One can judge from the average distance in Table IV that

the diquark ½cs� and antidiquark ½c̄ s̄� are not located on a
plane but twist into a three-dimensional spatial configura-
tion, which is determined by the dynamics of the systems.
First, the configuration of the diquark ½cs� and antidiquark
½c̄ s̄� is mainly determined by their inner dynamics. Under
the condition of the specified L, the distance between the
two subclusters is mainly determined by the competition
between their relative motion and the confinement between
the two subclusters because the former is inversely propor-
tional to the distance while the latter is proportional to
the distance. Second, the other interactions between the
two subclusters result in the twist to arrive at a balance so
that the diquark and antidiquark are not on a plane. The
appearance of the tetraquark state ½cs�½c̄ s̄� like a dumbbell;
the larger the orbital excitation L, the more distinguished
the shape (see Fig. 2). The multibody confinement poten-
tial, which is a collective degree of freedom, based on the
color flux-tube picture, is the mainly dynamical mechanism
of the formation of the picture. Lattice QCD calculation on
the tetraquark states indicated that the three-dimensional
spatial configuration is more stable than a planar one
against transition into mesnons [38].

To understand dynamical behavior of various inter-
actions in the tetraquark states ½cs�½c̄ s̄�, we give the
contributions from various parts of the Hamiltonian and
the average distances hr2iji

1
2 and hX2i12 in the ground states

and S ¼ 0 excited states, which are shown in Table V. Ek,
Vc
min, V

cm, and Vclb represent kinetic, confinement poten-
tial, color-magnetic interaction, and Coulomb interaction,
respectively.
The Coulomb interaction depends on 1

r and the color
factor hQ̂iji listed in Table VI, which generally provides a
very strong attraction; see Table V. The Coulomb inter-
action is attractive in any two particles in the color
configuration 3̄c − 3c because of hQ̂iji < 0. In the color
configuration 6c − 6̄c, the Coulomb interaction between
the diquark ½cs�6 and antiquark ½c̄ s̄�6̄ is attractive and is
stronger than that in the color configuration 3̄c − 3c
because the strength of the interaction depends on the
color factor hQ̂iji, while the Coulomb interaction within the
diquark ½cs�6 and antiquark ½c̄ s̄�6̄ is repulsive because
of hQ̂12i ¼ hQ̂34i > 0. Therefore, the final result of the
Coulomb interaction in the configuration 6c − 6̄c depends
on the distance hX2i12 between the diquark ½cs�6 and
antidiquark ½c̄ s̄�6̄. In the ground states, the distance
hX2i12 is small so that the Coulomb interaction between
the diquark ½cs�6 and antidiquark ½c̄ s̄�6̄ in the color
configuration 6c − 6̄c is a little stronger than that in the
configuration 3̄c − 3c, which can offset the repulsive
interaction in the diquark ½cs�6 and antidiquark ½c̄ s̄�6̄.
Therefore, the configuration 6c − 6̄c cannot be ignored
in the ground states because the Coulomb interaction in the
color configuration 6c − 6̄c is stronger than that in the color
configuration 3̄c − 3c; see Table V. In the excited states, the
Coulomb interaction in the color configurations 6c − 6̄c
and 3̄c − 3c rapidly becomes weak because the distance
hX2i12 increases with the increase of L. The Coulomb
interaction in the color configuration 3̄c − 3c is obviously
stronger than that in the color configuration 6c − 6̄c
because of the strong attractive Coulomb interaction in
the diquark ½cs�3̄ and antiquark ½c̄ s̄�3. In this way, the

TABLE IV. The average distances hr2iji
1
2 and hX2i12, units in femtometers.

S ⊕ L 0 ⊕ 0 0 ⊕ 1 0 ⊕ 2 1 ⊕ 0 1 ⊕ 1 1 ⊕ 2 1 ⊕ 0 1 ⊕ 1 1 ⊕ 2 2 ⊕ 0 2 ⊕ 1 2 ⊕ 2
JPC 0þþ 1−− 2þþ 1þþ 0; 1; 2−− 1; 2; 3þþ 1þ− 0; 1; 2−þ 1; 2; 3þ− 2þþ 1; 2; 3−− 0; 1; 2; 3; 4þþ

hr212i
1
2 0.58 0.59 0.60 0.59 0.60 0.61 0.61 0.61 0.62 0.61 0.61 0.62

hr234i
1
2 0.58 0.59 0.60 0.59 0.60 0.61 0.61 0.61 0.62 0.61 0.61 0.62

hr213i
1
2 0.40 0.63 0.79 0.43 0.64 0.79 0.40 0.64 0.79 0.45 0.65 0.80

hr224i
1
2 0.72 0.88 1.00 0.75 0.89 1.01 0.75 0.90 1.02 0.78 0.91 1.03

hr214i
1
2 0.58 0.77 0.90 0.61 0.78 0.91 0.60 0.78 0.91 0.64 0.79 0.92

hr223i
1
2 0.58 0.77 0.90 0.61 0.78 0.91 0.60 0.78 0.91 0.64 0.79 0.92

hX2i12 0.35 0.60 0.76 0.38 0.61 0.76 0.36 0.61 0.76 0.41 0.62 0.77

FIG. 2. Diquark-antiquark picture.

CHENGRONG DENG, HONG CHEN, and JIALUN PING PHYS. REV. D 101, 054039 (2020)

054039-6



proportion of the color configuration 6c − 6̄c is not small or
even very big in the ground state. However, the color
configuration 6c − 6̄c is very small in the excited states
while the configuration 3̄c − 3c is dominant. The propor-
tion of each color configuration is mainly determined by
the Coulomb interaction.
The difference of the Coulomb interaction between the

color configurations 3̄c − 3c and 6c − 6̄c in the ground
states is not as obvious as in the excited states because of
the small distance hX2i12. It can be found from Table V that
the mass difference between the color configurations
3̄c − 3c and 6c − 6̄c in the ground states 0þþ and 1þ−

mainly results from the color-magnetic interaction Vcm.
The color configuration 6c − 6̄c is dominant because its
Vcm is obviously lower than that of the configuration
3̄c − 3c. For the ground states with 1þþ and 2þþ, the
difference of Vcm between the two color configurations is
not obvious, although Vcm of the color configuration
3̄c − 3c is lower, especially the state 2þþ. However, Ek

and Vc
min of the color configuration 3̄c − 3c are both lower

than those of the color configuration 6c − 6̄c. In this way, the
masses of the two states with the color configuration 3̄c − 3c
are lower so that the color configuration 3̄c − 3c is dominant.
The color-magnetic interaction is a significant factor

resulting in the mass splitting in the states with the same

orbital excitation L but different spin structures. For the
ground states, the mass splitting between two adjacent
states is about 90 MeV; see the states with 0þþ, 1þþ, and
2þþ in Table III, which is very close to the difference of the
corresponding Vcm in Table V. For the excited states with
orbital excitations L ¼ 1 and L ¼ 2, the mass splittings are,
respectively, around 40 and 35 MeV; see the states 1−− and
2þþ in Table III. The phenomenon of the stable mass
difference between two adjacent states can be understood
from the spatial distance shown in Table IV, which is
mainly determined by the orbital excitation L but slightly
influenced by the total spin S. The states with the total spin
S ¼ 1 and opposite C parity due to different spin-coupling
models have close masses. The difference in the ground
states is 12 MeV, while the difference in excited states is
less than 30 MeV.
The orbital excitation has a great influence on the

mass of the state ½cs�½c̄ s̄�. It induces a large mass splitting,
about several hundred MeVs, among the states with
different orbital angular momentum, which mainly comes
from the Coulomb interaction and confinement potential;
see Table V. The spin-orbit interaction is extremely weak,
which brings about a very small mass splitting, less than
5 MeV. Therefore, the masses of the excited states with the
same L and S but different total angular momentum J are
almost degenerate, which is qualitatively consistent with
the conclusion of the work [35]. In addition, the tensor
interactions are usually weak as the spin-orbit interaction
[39], which is therefore frequently ignored in the prelimi-
nary research and should be taken into account in the
further investigation of hyperfine structure.
The LHCb Collaboration recently confirmed the

states Xð4140Þ and X(4274) in the J=Ψϕ invariant mass

TABLE V. Energy of various parts of the Hamiltonian in MeV and the average distances in femtometers.

LS JPC States Mass, proportion Ek Vc
min Vcm Vclb hr212i

1
2 hr234i

1
2 hr213i

1
2 hr224i

1
2 hr214i

1
2 hr223i

1
2 hX2i12

00 0þþ 3̄c − 3c 4360, 39.5% 1061 358 −55 −1271 0.56 0.56 0.47 0.75 0.62 0.62 0.43
6c − 6̄c 4318, 60.5% 1064 322 −104 −1281 0.60 0.60 0.39 0.74 0.59 0.59 0.34
C.C. 4239 1063 317 −158 −1300 0.58 0.58 0.40 0.72 0.58 0.58 0.35

10 1−− 3̄c − 3c 4629, 95.2% 1004 423 −53 −1062 0.59 0.59 0.64 0.89 0.77 0.77 0.62
6c − 6̄c 4802, 4.8% 1070 415 −60 −942 0.67 0.67 0.55 0.89 0.74 0.74 0.51
C.C. 4620 1007 422 −69 −1058 0.59 0.59 0.63 0.88 0.77 0.77 0.60

20 2þþ 3̄c − 3c 4868, 99.1% 1046 520 −51 −965 0.60 0.60 0.79 1.00 0.90 0.90 0.77
6c − 6̄c 5169, 0.9% 1116 507 −30 −747 0.71 0.71 0.70 1.02 0.87 0.87 0.66
C.C. 4865 1047 520 −55 −965 0.60 0.60 0.79 1.00 0.90 0.90 0.76

01 1þþ 3̄c − 3c 4378, 64.1% 976 330 −22 −1223 0.57 0.57 0.47 0.76 0.63 0.63 0.43
6c − 6̄c 4415, 35.9% 990 351 −1 −1241 0.62 0.62 0.41 0.77 0.61 0.61 0.35
C.C. 4330 981 337 −50 −1256 0.59 0.59 0.43 0.75 0.61 0.61 0.38

01 1þ− 3̄c − 3c 4420, 19.0% 954 343 −1 −1194 0.58 0.58 0.47 0.76 0.63 0.63 0.43
6c − 6̄c 4360, 81.0% 983 347 −53 −1234 0.61 0.61 0.40 0.75 0.60 0.60 0.35
C.C. 4342 977 346 −48 −1251 0.61 0.61 0.40 0.75 0.60 0.60 0.36

02 2þþ 3̄c − 3c 4430, 75.8% 901 354 32 −1175 0.59 0.59 0.48 0.78 0.65 0.65 0.44
6c − 6̄c 4455, 24.2% 926 377 37 −1202 0.63 0.63 0.42 0.78 0.62 0.62 0.36
C.C. 4418 908 360 38 −1204 0.61 0.61 0.45 0.78 0.64 0.64 0.41

TABLE VI. Color matrix elements, Q̂ij ¼ λci · λ
c
j .

hQ̂iji hQ̂12i hQ̂34i hQ̂13i hQ̂24i hQ̂14i hQ̂23i
h3̄c − 3cjQ̂ijj3̄c − 3ci − 8

3
− 8

3
− 4

3
− 4

3
− 4

3
− 4

3

h6c − 6̄cjQ̂ijj6c − 6̄ci 4
3

4
3

− 10
3

− 10
3

− 10
3

− 10
3
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distribution and determined their spin-parity quantum
numbers to be both 1þþ [40], which has a large impact
on its possible interpretations. The possibility of describing
the state Xð4140Þ as a 0þþ or 2þþ D�þ

s D�−
s molecule state

was excluded [41]. At the same time, the depiction of the
state Xð4274Þ as a molecular bound state or a cusp cannot
account for its quantum numbers [40]. In the present
work, the lowest energy of the state ½cs�½c̄ s̄� with 1þþ is
4330 MeV, see Table III, which is much higher, about
200 MeV, than the state Xð4140Þ. In this way, it is difficult
to accommodate the state Xð4140Þ as a state ½cs�½c̄ s̄� with
1þþ in the multiquark color flux-tube model. However,
the lowest energy is quite close to the mass of the state
Xð4274Þ, which implies a possibility that the main com-
ponent of the state Xð4274Þ may be the state ½cs�½c̄ s̄� with
1þþ. Many of the previous investigations on the two states
also indicated that it is not easy to simultaneously arrange
the two states within the same theoretical framework under
the assumption of 1þþ [15,16,42]. However, QCD sum
rules and simple color-magnetic interaction models both
can interpret the states Xð4140Þ and Xð4274Þ as S-wave
states with 1þþ [8–10].
Accompany with the states Xð4140Þ and Xð4274Þ, the

high J=Ψϕ mass region was investigated for the first time
with good sensitivity and shows very significant structures,
the states Xð4500Þ and Xð4700Þ, which can be described as
two 0þþ resonances [40,43]. Comparing the data, the mass
of the lowest S-wave ½cs�½c̄ s̄� state with 0þþ in the present
work seems to be too light. It is therefore necessary to
introduce radial excitation, D-wave or two P-wave angular
excitation, which can satisfy the requirement of quantum
numbers. The mass of the lowest D-wave ½cs�½c̄ s̄� state
with 0þþ in Table III is much higher, more than 200 MeV,
than those of the states Xð4500Þ and Xð4700Þ. Two P-wave
excited states are higher than D-wave one. The two states
should therefore not be the D-wave or two P-wave angular
excited state ½cs�½c̄ s̄� in the present work. The masses of
the fourth and fifth S-wave radial excited states ½cs�½c̄ s̄�
are respectively 4466 and 4699 MeV, which can match
with those of the states Xð4500Þ and Xð4700Þ. Zhu also
explained the two states as the radial excitation of JP ¼ 0þ
tetraquark state [44]. Chen et al. interpreted the two states
as the D-wave ½cs�½c̄ s̄� tetraquark states of JP ¼ 0þ within
the framework of QCD sum rules [11]. In addition to the
½cs�½c̄ s̄� explanation, the states Xð4500Þ and Xð4700Þ were
described as conventional charmonium states with 43P1

and 53P1, respectively, in the nonrelativistic constituent
quark model [45].
The Belle Collaboration observed a narrow J=Ψϕ peak

at 4350.6þ4.6
−5.1 � 0.7 MeV in two-photon collisions, which

implies JPC ¼ 0þþ or 2þþ [46]. It is expected that the
related experiments can provide more accurate information
on the quantum numbers of the state in the future. If
JPC ¼ 0þþ, one can find from Table III that the pure
½½cs�3̄c ½c̄ s̄�3c �1 state with 0þþ has a mass of 4360 MeV,

which is completely consistent with the experimental data.
If JPC ¼ 2þþ, our prediction, 4418 MeV, is a little higher
than the result reported by the experiment. Anyway, the
state seems to be accommodated in the multiquark color
flux-tube model just from the judgement of the mass and
quantum number. In the simple color-magnetic interaction
model, the states can be assigned as the state ½cs�½c̄ s̄� with
0þþ [9]. However, the state cannot be interpreted as the
½cs�½c̄ s̄� tetraquark with either 0þþ and 2þþ in the QCD
sum rules [12].
The states Yð4626Þ, Yð4630Þ, and Yð4660Þ with 1−−

were observed by Belle Collaboration in the different
processes [2–4]. However, their masses and widths are
consistent with each other within errors. Various theoretical
explanations of the Yð4660Þ and Yð4630Þ have been done
to describe their internal structure, in which the two states
were interpreted as the same state [47]: the tetraquark state
½cq�½c̄ q̄� and f0ð980Þψ 0 bound state. In the present work,
the P-wave tetraquark state ½cs�0½c̄ s̄�1 þ ½cs�1½c̄ s̄�0 with
1−− has a mass of 4659 MeV, which is consistent with that
of the state Yð4660Þ. The P-wave state ½cs�0½cs�0 with 1−−

has a mass of 4620 MeV, which is compatible with that
of the states Yð4630Þ and Yð4626Þ. In this way, the
states Yð4626Þ, Yð4630Þ, and Yð4660Þ can be uniformly
described as the P-wave tetraquark state ½cs�½c̄ s̄� with 1−−.
The states Yð4630Þ and Yð4626Þ have the same spin
structure, which consists of a scalar ½cs� and a scalar
½c̄ s̄�, so that they are the same state in the present work.
However, the state Yð4660Þ is made of a scalar ½cs� (½c̄ s̄�)
and an axial-vector ½c̄ s̄� (½cs�), which is supported by the
result of QCD sum rules [7]. The color configuration
½½cs�3̄c ½c̄ s̄�3c �1 in the three states is an overwhelming
advantage, or the color configuration ½½cs�6c ½c̄ s̄�6̄c �1 can
be ignored.
The P-wave state ½cs�1½cs�1 with 1−− has a mass of

4704 MeV, which is not far from that of the state Yð4660Þ.
As a mater of fact, the three states ½cs�½c̄ s̄� with 1−−

predicted by the model can intermix through the tension
interaction, which is left for precision calculation in the
future. It can be anticipated that the tension interaction
should be weak and does not change the present qualitative
conclusion. The interpretations provide new insights into
the inner structure of the states Yð4626Þ, Yð4630Þ, and
Yð4660Þ from the perspective of the phenomenological
model. What the real structures of the three states are,
which needs more experiments and theoretical work to
analyze their properties in the future. As a byproduct, the
masses of the P-wave states ½bs�½b̄ s̄�with 1−− are estimated
in the multiquark color flux-tube model, which are in the
range of 11,099 to 11,134 MeV. We propose to search for
them in the ϒϕ invariant mass distribution in the future.
The assignment of the ½cs�½c̄ s̄� component of the states

discussed in the present work is completed just based on the
proximity to the experimental masses. The more rigorous
test of the component of these states is to study their decay
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behavior. The states should eventually decay into several
color-singlet mesons due to their high energy. In the course
of the decay, the three-dimensional spatial structure must
collapse first because of the breakdown of the color flux
tubes, and then the decay products form by means of the
recombination of color flux tubes. The decay widths are
determined by the transition probability of the breakdown
and recombination of color flux tubes, which is worthy of
further research in the future work.

V. CONCLUSIONS

We systematically study the state ½cs�½c̄ s̄� with the
diquark-antidiquark picture in the multiquark color flux-
tube model with a multibody confinement potential and
one-gluon-exchange interaction. The sizes of the diquark
½cs� and diquark ½c̄ s̄� share the same value, which is
almost independent of the orbital excitation L and is
slightly influenced by the total spin S. The average distance
between the diquark ½cs� and diquark ½c̄ s̄� greatly increases
with the increase of the orbital excitation L. The appearance
of the tetraquark state ½cs�½c̄ s̄� is therefore like a dumbbell;
the larger the orbital excitation L, the more distinguished
the shape. The multibody confinement potential is the
mainly dynamical mechanism of the formation of the
picture. The mixing of the two color configurations
½½cs�3̄c ½c̄ s̄�3c �1 and ½½cs�6c ½c̄ s̄�6̄c �1 in the ground states is
strong, while the color configuration ½½cs�3̄c ½c̄ s̄�3c �1 is
favored and absolutely predominant in the excited states.
The states Yð4626Þ, Yð4630Þ, and Yð4660Þ can be

uniformly described as the P-wave tetraquark state
½cs�½c̄ s̄� with 1−− in the multiquark color flux-tube model.
The states Yð4626Þ and Yð4630Þ can be interpreted as the
same state consisting of a scalar ½cs� and a scalar ½c̄ s̄�, while

the state Yð4660Þ is made of a scalar ½cs� (½c̄ s̄�) and an
axial-vector ½c̄ s̄� (½cs�). Their hidden bottom partner has a
mass in the range of 11,099 to 11,134 MeV and can be
searched for in the ϒϕ invariant mass distribution in the
future. The properties of the states Xð4140Þ, Xð4274Þ,
Xð4350Þ, Xð4500Þ, and Xð4700Þ are also discussed in the
model. The state Xð4274Þ is quite close to the lowest mass
of the state ½cs�½c̄ s̄� with 1þþ. The states Xð4500Þ and
Xð4700Þ can be described as the fourth and fifth excited
states of the ground state ½cs�½c̄ s̄� with 0þþ. The masses of
the ground states ½cs�½c̄ s̄� with 0þþ and 2þþ are both close
to that of the state Xð4350Þ. However, the lightest state
Xð4140Þ regarded as the state ½cs�½c̄ s̄� with 1þþ cannot be
accommodated in the model. These results to some extent
reinforce the validity of the multiquark color flux-tube
model to quantitatively describe the phenomenology of the
multiquark states and get insights on the dynamics that
leads to their formation.
As an outlook of the continuation of this work, the string

flip-flop potential regarded as the correct phenomenologi-
cal model for the confinement should be taken into
accounted. The flip-flop potential is important for the
properties of the tetraquark states, especially for the decay
process into two mesons.
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