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We discuss the phase structure of QCD for Nf ¼ 2 and Nf ¼ 2þ 1 dynamical quark flavors at finite
temperature and baryon chemical potential. It emerges dynamically from the underlying fundamental
interactions between quarks and gluons in our work. To this end, starting from the perturbative high-energy
regime, we systematically integrate out quantum fluctuations toward low energies by using the functional
renormalization group. By dynamically hadronizing the dominant interaction channels responsible for the
formation of light mesons and quark condensates, we are able to extract the phase diagram for μB=T ≲ 6.
We find a critical endpoint at ðTCEP; μBCEP

Þ ¼ ð107; 635Þ MeV. The curvature of the phase boundary at
small chemical potential is κ ¼ 0.0142ð2Þ, computed from the renormalized light chiral condensate Δl;R.
Furthermore, we find indications for an inhomogeneous regime in the vicinity and above the chiral
transition for μB ≳ 417 MeV. Where applicable, our results are in very good agreement with the most
recent lattice results. We also compare to results from other functional methods and phenomenological
freeze-out data. This indicates that a consistent picture of the phase structure at finite baryon chemical
potential is beginning to emerge. The systematic uncertainty of our results grows large in the density regime
around the critical endpoint and we discuss necessary improvements of our current approximation toward a
quantitatively precise determination of QCD phase diagram.
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I. INTRODUCTION

The detailed understanding of the QCD phase structure
at finite temperature and density is not only essential for our
understanding of the formation of matter, but also for the
interpretation and prediction of the wealth of data collected
at running and planned heavy-ion experiments. For over-
views on both, experimental measurements and theoretical
studies, see, e.g., the reviews [1–8] and references therein.
While our experimental and theoretical understanding of
the phase structure at small densities has advanced rapidly
in the past decade, at large densities theoretical and
experimental investigations have been hampered by several
intricacies. They range, e.g., from the sign problem of
lattice gauge theory [9] to the influence of finite detector
efficiency on signatures of the phase transition [10].
This leaves us with many highly relevant open questions

regarding the phase diagram, in particular the existence and

location of a critical endpoint (CEP) and the phase structure
at small temperatures and large densities. The relevance of
a CEP derives from the fact that the phase transition is of
second order at this point. The resulting critical long-range
correlations can potentially be observed, e.g., in particle
number correlations measured in heavy-ion experiments,
see e.g., [11]. Within the beam energy scan (BES) program
at RHIC, significant measurements have been performed in
this direction [2,12–15]. This will be extended in BES
phase II. Experimental studies of the QCD phase structure
are also planned or run at other facilities with different
collision energies and luminosities, such as CBM at FAIR
[16] and HADES at GSI [17] in Germany, NA61/SHINE at
CERN [18], the NICA/MPD in Russia [19], J-PARC-HI in
Japan [20], and HIAF in China [21], see also [22–24].
Theoretical investigations of the QCD phase structure

have been performed with first principle approaches to
QCD, such as functional approaches and lattice simula-
tions, and with low energy effective theories. In the past
decade functional approaches like the functional renor-
malization group (fRG), see, e.g., [25–34], and Dyson-
Schwinger equations (DSE), see, e.g., [7,35–41] have made
significant progress in the description of the QCD phase
structure, for lattice simulations, see, e.g., [42–53].
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In the present work we evaluate the phase structure of
Nf ¼ 2 and Nf ¼ 2þ 1 flavor QCD within the fRG
approach as introduced in [54], see also [55,56]. For
QCD-related reviews see, e.g., [57–63]. We built upon
the fRG-results for Yang-Mills theory in the vacuum,
[31], and at finite temperature, [33], as well as vacuum
QCD results in the quenched approximation, [27], and
in full unquenched QCD, [28,29,32]. This work is extended
to unquenched QCD at finite temperature and density,
which gives us access to the chiral and confinement-
deconfinement phase structure of QCD in terms of QCD
correlation functions.
Our study cumulates in a prediction for the QCD phase

diagram for μB=T ≲ 6. For Nf ¼ 2þ 1 it is presented
in Fig. 1 on the next page together with a survey of
other theoretical predictions as well as a compilation of
freeze-out points from different incarnations of the hadron
resonance gas. We define the chiral phase boundary
through the renormalized light chiral condensate Δl;R. At
small and intermediate baryon chemical potential the
transition is a crossover. At μB ¼ 0 the pseudocritical
temperature is Tc ¼ 156 MeV. The curvature of the
chiral phase boundary at small chemical potential is κ ¼
0.0142ð2Þ. With increasing μB, the crossover becomes
sharper and we find a critical endpoint at

ðTCEP; μBCEP
Þ ¼ ð107; 635Þ MeV: ð1Þ

Our results for the chiral phase boundary are depicted by
the black dashed line in Fig. 1.
In addition to a CEP, we also find indications for an

inhomogeneous regime for μB ≳ 420 MeV in the vicinity
and above the chiral phase boundary. It is given by the
region in the phase diagram where the mesonic dispersion
relation develops a minimum at nonvanishing spatial
momentum, for more details we refer to Sec. V B. This
indicates a potential instability toward the formation of an
inhomogeneous quark condensate. The region where this
regime has significant overlap with a sizable homogeneous
chiral condensate is shown by the red hatched area in
Fig. 1. Within this area, a potential competition between
homogeneous and inhomogeneous quark condensation has
to be taken into account. Hence, this already suggests that
the systematic error of the present approximation grows
large for μB=T ≳ 3.
We also compare our results to recent predictions of

lattice gauge theory for the phase structure at small μB=T
from the Wuppertal-Budapest Collaboration [46] (WB)
and the HotQCD Collaboration [51] (HotQCD), see in
Fig. 1. Our result for the pseudocritical temperature and the
curvature of the phase boundary agree very well with the
lattice. We also show predictions of the DSE approach from
different groups, [37] (Fischer et al.) and [65] (Gao et al.).
Finally we included the freeze-out data from [2] (STAR),
[66] (Alba et al.), [3] (Andronic et al.), [67] (Becattini

et al.), [68] (Vovchenko et al.), and [69] (Sagun et al.). The
freeze-out points are surprisingly close to our result for the
chiral phase boundary, even at larger μB. All in all, we see
that a consistent picture of the QCD phase boundary at
finite density starts to emerge form a culmination of results
from different sources.
In order to discuss the implication for CEP searches, it is

instructive to convert μB to the center-of-mass beam energy
per nucleon,

ffiffiffi
s

p
. Assuming the connection between these

FIG. 1. Phase diagram for Nf ¼ 2þ 1 flavor QCD in com-
parison to other theoretical approaches and phenomenological
freeze-out data. Our result for the chiral crossover is depicted by
the black dashed line. The crossover temperature has been
determined through the peak position of the thermal susceptibility
of the renormalized light chiral condensate, ∂TΔl;R, at fixed
baryon chemical potential μB. For more details see Sec. VA, and
in particular Fig. 10. We show dotted black lines for μB=T ¼ 2, 3
to indicate the reliability bounds for the lattice and functional
methods. The phase boundary globally agrees well with recent
lattice results. In particular the curvature of the phase boundary for
small chemical potential, κ ¼ 0.0142ð2Þ, is consistent with recent
lattice results, κ ¼ 0.0149ð21Þ in [46], κ ¼ 0.0144ð26Þ in [49],
and κ ¼ 0.015ð4Þ in [51], for an overview see [64]. We find a
critical endpoint at ðTCEP; μBCEP

Þ ¼ ð107; 635Þ MeV. Indications
for an inhomogeneous regime (minimum of pion dispersion at
nonvanishing spatial momentum and sizable chiral condensate)
close to the chiral phase transition for μB ≳ 420 MeV are depicted
by the hatched red area. For quantitative statements in this area the
current approximation has to be upgraded systematically. Accord-
ingly the hatched red area also serves as a reliability bound for the
current approximation. For more details see Sec. V B and Fig. 21.
Other theoretical results: lattice QCD with analytic continuation
from imaginary chemical potential [46] (WB), lattice QCD with
Taylor expansion about vanishing chemical potential [51]
(HotQCD), DSE approach with backcoupled quarks and a dressed
vertex [37] (Fischer et al.), and DSE calculations with a gluon
model [65] (Gao et al.). Freeze-out data: [2] (STAR), [66] (Alba
et al.), [3] (Andronic et al.), [67] (Becattini et al.), [68]
(Vovchenko et al.), and [69] (Sagun et al.). Note that freeze-
out data from Becattini et al. with (light blue) and without (dark
green) afterburner-corrections are shown in two different colors.
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quantities is captured by the statistical hadronization
scenario, one finds to a very good approximation for
central collisions the relation

ffiffiffi
s

p ¼ ða=μB − 1Þ=bwith a ¼
1307.5 MeV and b ¼ 0.288 GeV−1 [3]. This yields for our
prediction of the location of the CEP the beam energy

ffiffiffiffiffiffiffiffiffi
sCEP

p
≈ 3.7 GeV: ð2Þ

This is clearly below the smallest beam energy of current
BES measurements of

ffiffiffi
s

p ¼ 7.7 GeV, but well within
reach of future experiments such as FAIR’s SIS100 [16],
NICA MPD [19], J-PARC HI [20], and STAR’s Fixed-
Target (FXT) program [70], see also [22–24]. Our results
therefore provide a strong motivation for CEP searches at
these future experiments. Furthermore, the inhomogeneous
regime appears to be also within reach of heavy-ion
collisions at small beam-energies. Hence, looking for
experimental signatures of this regime might be a worth-
while endeavor.
With the present work many significant steps toward a

self-consistent quantitative description of the QCD phase
structure are taken. This requires the derivation of many
novel and the significant extension of existing RG flow
equations for correlation functions in QCD. In particular,
this applies to the quark-gluon sector, but also to the
mesonic sector as well as the flows of chiral order
parameters. In order to improve the accessibility, we defer
many technical details, including the relevant discussion of
the definition and the flow of chiral order parameters in the
present framework, to the Appendixes. In short, we try to
follow the physics and concepts first rule. However, we
strongly emphasize, that this does not imply a relevance
ordering of the material: a full understanding of the
approach and in particular the evaluation of the systematic
error can only be obtained from the complete picture.
Keeping the above in mind, this work is organized as

follows. In Sec. II we introduce the functional renormal-
ization group approach to QCD with a special emphasis on
dynamical hadronization, [58,71–73]. We derive a novel
version where the explicit chiral symmetry due to finite
current quark masses is carefully taken into account. In
Secs. III, IV we discuss in detail the underlying systematic
truncation scheme, and specify the flows for correlation
functions including the propagators, vertices, and the
effective potential. These flow equations are temperature-
and density-dependent counter parts with significant sys-
tematic extensions of the vacuum QCD flows put forward
in [28,29], as well as flows in low energy effective models
of QCD. The same applies to the systematic truncation
scheme that allows to build the flows in an expansion about
already existing quantitative results, in the present work on
[27,31–33]. In combination, these results constitute impor-
tant technical steps forward within the fRG approach to
QCD. In Sec. V we present the numerical results and
discuss them in detail. In Sec. VI we analyze the systematic

error in the current approximation, also in relation to that of
other functional approaches. In Sec. VII we close with a
short summary. Many technical details of our calculations
are deferred to the Appendixes.

II. FUNCTIONAL RENORMALIZATION GROUP
APPROACH TO QCD

Here we discuss the functional renormalization group
approach to QCD. Our study is based on and extends the
work on QCD in [25–29,31–33,74] and also draws from
results on the QCD phase structure within low energy
effective theories (LEFTs), [30,34,75–81]. For a selection
of fRG studies within LEFTs see [30,34,75–128]. For
QCD-related reviews on the fRG approach see [57–63].
While this section is used to introduce the approach and

recall some of its specific properties, we also derive an
important structural result—a novel flow equation for
QCD with dynamical hadronization and manifest chiral
symmetry—see (26). We emphasize that former versions,
[58,71–73] also carry chiral symmetry, but this important
property is encoded in a combination of nontrivial terms.
Accordingly, nontrivial cancellations may be lost in a given
approximation which has a direct impact on the size of
spontaneous chiral symmetry breaking. In turn, within the
explicitly chirally symmetric flow equation derived in the
present work chiral symmetry is present in general approxi-
mation schemes. This setup reduces significantly the
systematic error related to spontaneous symmetry breaking.

A. QCD with dynamical hadronization

The fRG approach is based on an infrared regularization
for momentum modes p2 ≲ k2 of the theory at hand, where
k is the infrared (IR) cutoff scale. This is achieved by
adding a momentum-dependent mass term to the action
which vanishes for momenta p2 ≳ k2. Accordingly, the
ultraviolet quantum fluctuations of the theory with
momenta p2 ≳ k2 are untouched. In turn, in the presence
of the infrared cutoff, quantum fluctuations with momenta
p2 ≲ k2 carry a mass proportional to k and are therefore
suppressed. The presence of this regulator leads to a scale
dependent effective action Γk, which includes quantum
fluctuations of momentum modes p2 ≳ k2.
Thus, in the ultraviolet (UV) at large cutoff scales,

k2=Λ2
QCD ≫ 1, the effective action Γk tends toward the

bare QCD action, which is well under control with
perturbation theory. This can be used as the starting point
of a renormalization group (RG) evolution of Γk, where the
IR cutoff scale k plays the role of an RG scale. By evolving
Γk from the UV to the IR, quantum fluctuations at a given
momentum scale p2 ∝ k2 are included successively, and
the full quantum theory of QCD is resolved as k → 0. Γk¼0

is the full quantum effective action of QCD. Its flow k∂kΓk,
is given by the Wetterich equation [54], see also [55,56].
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It is evident from the discussion above that the fRG is a
practical realization of the Wilson RG.
At low energies or momenta the dynamical degrees

of freedom of QCD are hadrons rather than quarks and
gluons. The offshell dynamics relevant for the flow
equation is then dominated by the lightest hadrons. At
small and intermediate densities, these are the pseudo-
Goldstone bosons of spontaneous chiral symmetry break-
ing, in particular the pseudoscalar pions π, and the
scalar resonance f0ð500Þ, or σ. Formulated in terms of
the fundamental degrees of freedom, this requires taking
care of the scalar-pseudoscalar four-quark interaction
channels where these mesons emerge as resonances, as
well as their scatterings. This is done conveniently by
introducing a composite field

ϕ ∝ q̄ðT0
f; iγ5T

a
fÞq; ð3Þ

where q is a Dirac spinor with Nf flavors and Nc colors.
Ta
f; a ¼ 1;…; N2

f − 1 are the generators of the SUðNfÞ
flavor group and T0

f ¼ 1=
ffiffiffiffiffiffiffiffiffi
2Nf

p
. For example, in the two-

flavor case with up and down quarks, q ¼ ðu; dÞ we have
the tensor structure ðiγ5σ=2Þ, where σ ¼ ðσ1; σ2; σ3Þ are the
Pauli matrices. This part of ϕ then corresponds to the three
pions. The full field ϕ reflects the underlying SUðNfÞ
flavor symmetry for Nf ¼ 2, which translates into a Oð4Þ
symmetry for ϕ in case of isospin symmetric matter. In the
physically more relevant case of Nf ¼ 2þ 1 with the light
l ¼ ðu; dÞ quarks, the heavy s quark and q ¼ ðl; sÞ we
simply embed (3) accordingly. This is discussed later,
see (16).
The systematic introduction of the composite field ϕ in

the fRG approach is done via dynamical hadronization, see
[58,71–73]. The present formulation follows [27,28,32,58]:
we introduce a scale-dependent composite field ϕ̂kðq; q̄Þ
and ϕ ¼ hϕ̂ki through a source

R
x Jϕϕ̂k and a respective

regulator term. This field carries scalar and pseudoscalar
quantum numbers. The effective action is then given by a
modified Legendre transformation of the Schwinger func-
tional Wk½J� with respect to the current

J ¼ ðJA; Jc; Jc̄; Jq; Jq̄; JϕÞ; ð4Þ

including that of the composite field ϕ̂k. This leads us to

Γk½Φ� ¼
Z
x
J ·Φ −Wk½J� − ΔSk½Φ�; ð5Þ

with the currents J½Φ� defined by the equations of motion
(EoM),

J ¼ δðΓk½Φ� þ ΔSk½Φ�Þ
δΦ

; ð6Þ

and the cutoff term

ΔSk½Φ� ¼ 1

2

Z
p
Φð−pÞ · RkðpÞ ·ΦðpÞ: ð7Þ

The cutoff term implements the IR regularization though a
momentum dependent masslike term, as discussed above.
The components of the superfield Φ in (5), (7) are gluons,
ghosts, quarks and the scalar-pseudoscalar mesonic field ϕ,

Φ¼ ðΦf;ϕÞ; Φf ¼ ðA;c; c̄; q; q̄Þ; ϕ¼ ðσ;πÞ; ð8Þ

and q ¼ l with l ¼ ðu; dÞ for Nf ¼ 2, and q ¼ ðl; sÞ for
Nf ¼ 2þ 1. Note also that the cutoff term includes an
infrared regularization with Rϕ for the composite field. This
leads us to the regulator matrix

Rk ¼

0
BBBBBBBBBB@

RA 0 0 0 0 0

0 0 −Rc 0 0 0

0 Rc 0 0 0 0

0 0 0 0 −Rq 0

0 0 0 Rq 0 0

0 0 0 0 0 Rϕ

1
CCCCCCCCCCA
: ð9Þ

The regulatorRkðpÞ specifies the momentum dependence of
the masslike cutoff. It is chosen such that it suppresses
quantum fluctuations with momenta smaller than the cutoff
scale,p2 ≲ k2, while it leaves the UV physics with momenta
p2 ≳ k2 unaffected. Furthermore, to recover the full quantum
effective action at k ¼ 0, we demand Rk→0 → 0.
This setup is closely related to a two-particle irreducible

(2PI) or rather two-particle point irreducible (2PPI) for-
mulation. If also considering the density channel q̄γ0q it
resembles density functional theory, for a more detailed
discussion of these relations for generic composite fields
see [58].
The scale evolution of ϕ̂k, or rather its expectation

value h∂tϕ̂ki, can be chosen freely. Its choice corres-
ponds to a reparametrization of the theory. We emphasize
that the mean field ϕ ¼ hϕ̂ki in the effective action is
k-independent. Note also that on the EoS of the auxiliary
field the effective action reduces to the standard effective
action of QCD in terms of the fundamental fields,
ΓQCD½Φf �: The EoM of the composite field including the
cutoff term entail a vanishing current,

Jϕ ¼ δΓk¼0½Φ�
δϕ

����
ϕEoM½Φf �

¼ 0: ð10Þ

Since the composite field is introduced only trough the
source Jϕ and its regulator Rϕ in the first place, the
EoM (10) removes ϕ̂k from the path integral at vanishing
cutoff, reducing it to the standard gauge fixed path integral
of QCD. We are led to

FU, PAWLOWSKI, and RENNECKE PHYS. REV. D 101, 054032 (2020)

054032-4



ΓQCD½A; c; c̄; q; q̄� ¼ Γk¼0½Φf;ϕEoM½Φf��: ð11Þ

At finite cutoff scale the composite field can also be
eliminated. There, vanishing of the current Jϕ is obtained
for δðΓk þ ΔSkÞ=δϕ ¼ 0, and the infrared regularized path
integral at Jϕ ¼ 0 still depends on the cutoff term of the
composite field. This amounts to inserting a UV-irrelevant
four-quark interaction in the classical QCD action. This
procedure does not spoil the renormalizability as a pointlike
Nambu–Jona-Lasinio (NJL)-type interaction does, but solely
provides an IR regularization of the respective resonant four-
quark interaction.
In summary this setup encodes the full information of

the QCD correlation functions but also allows for a
simple access to bound state information such as the
Bethe-Salpeter wave functions, see [27,28,33,129]. Note
also that in general the QCD correlation functions now
involve derivatives of the composite field. As an important
example we consider general four-quark vertices. They are
given by functional derivatives of the QCD effective action
ΓQCD on the EoM Φf;EoM ¼ 0 at T. At finite temperature
Φf;EoM contains a nonvanishing temporal gluon back-
ground field, A0;EoM, which carries the information of
confinement, see [74,130–132].
If the composite field ϕ is simply proportional to a quark

bilinear as indicated in (3), the four-quark derivatives of
(11) lead us to

Γð4Þ
QCD;q1q̄1q2q̄2

½0� ¼Γð4Þ
0;q1q̄1q2q̄2

½0;ϕ�

þ
Z
x

δ2ϕðxÞ
δq1δq̄1

Γð3Þ
0;q2q̄2ϕ

½0;ϕ�þpermut:

þ
Z
x;y

δ2ϕðxÞ
δq1δq̄1

δ2ϕðyÞ
δq2δq̄2

Γð2Þ
0;ϕϕ½0;ϕ�þpermut::

ð12Þ

In (12) it is understood that ϕ ¼ ϕEoM½Φf�, and we have
restricted ourselves to the T ¼ 0 case with Φf;EoM ¼ 0. In
(12) we have also introduced our notation for n-point
correlation functions or vertices,

ΓðnÞ
Φi1

���Φin
½Φ� ¼ δnΓ½Φ�

δΦi1 � � � δΦin

: ð13Þ

If we choose the composite field such that it completely
absorbs a given momentum channel in the four-quark
scattering, the first term on the right hand side in (12)
vanishes and we are left with exchange terms of the
composite field. For example, for the pseudoscalar channel
the second and third line in (12) comprise terms with a pion
propagator ð1=Γð2ÞÞππ with two Bethe-Salpeter wave func-

tions Γð3Þ
qq̄π attached.

Note also that nontrivial terms such as in the second and
third line of (12) only occur in correlation functions of the
fundamental fields Φf for more than one quark-antiquark
pair. For example, for the quark two-point function or
inverse propagator we find schematically

Γð2Þ
QCD;q1q̄1

¼ Γð2Þ
0;q1q̄1

þ
Z

δ2ϕ

δq1δq̄1
Γð1Þ
0;ϕ ¼ Γð2Þ

0;q1q̄1
; ð14Þ

with ϕ ¼ ϕEoM½Φf�. Then the term proportional to Γð1Þ
0;ϕ

vanishes as the latter is the EoM for ϕ. Finally we use
Φf ¼ 0 as in (12).
For the dynamical hadronization in the present work we

use the option of absorbing the dominant four-quark
interaction channel completely. This is achieved by choos-
ing the flow of ϕ̂k such that the scalar-pseudoscalar channel
in the effective four-quark interaction of the light quarks
u, d is eliminated. Formally, this can be viewed as a suc-
cessive bosonization in terms of a Hubbard-Stratonovich
transformation of this interaction channel at each RG
scale k. For more details see Sec. III E. This puts forwards
the general hadronization relation

h∂tϕ̂ki ¼ _Akq̄τqþ _Bkϕþ _Ckêσ; ð15Þ

with τ ¼ ðT0
2; iγ5T2Þ and Ta

f defined in (3). The vector êσ
points in the σ-direction, with the convenient normalization
êσ ¼ 1=

ffiffiffiffiffiffiffiffiffi
2Nf

p
matching that of τ. Since we only consider

the dynamical hadronization of the π–σ channel of the light
quarks, we embed the SUð2Þ scalar-pseudoscalar field
ðσ; πÞ into SUð3Þ. This implies in (15),

τaNf¼2þ1 ¼
�
τa 0

0 0

�
; ð16Þ

in a slight abuse of notation. The hadronization functions
_Ak, _Bk, and _Ck can be chosen freely. The hadronization
function _Ak controls the overlap of ϕ with the scalar-
pseudoscalar channel, while _Bk simply changes the wave
function renormalization Zϕ of the composite field. The
latter function can, e.g., be used to conveniently choose
Zϕ ¼ 1. As it does not change the parametrization of the
theory we discard it in the following, using _Bk ¼ 0.
Finally, the hadronization function _Ck introduces a shift

in the scalar field σ. In general, this shift can be used to
entirely absorb the quark mass of the respective quark
flavor, leading to chiral quarks. However, this comes at the
expense of diffusing the symmetry properties of the
effective action. For example, if we start with a Z2-
symmetric effective potential VðσÞ ¼ Vð−σÞ necessary
(but not sufficient) for chiral symmetry, a shift in σ
introduces odd powers in the σ field in the effective
potential. Of course, chiral symmetry is not lost, but the
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respective symmetry transformation is not simply σ → −σ
anymore. A prominent example is the σ-mass term
1=2m2

σσ
2. A shift in σ with σ → σ − cσ=m2

σ leads to a
linear term in the effective action,

Γk½Φ� ∝ −
Z
x
cσσ; ð17Þ

while still keeping the original σ-mass term. In the presence
of higher powers of σ, more σ-odd terms are generated
as well as changing the coefficients of the σ-even terms.
Consequently we expect that _Ck cannot be chosen freely if
we restrict ourselves to dynamical hadronization setups that
keep chiral symmetry apparent. Indeed this constraint leads
us to _Ck ≡ 0, see Appendix B.
The linear term (17) plays a special role in the effective

action. To see this more clearly, we solve the Legendre
transform (5) for the Schwinger functional and use the EoM
for the current leading to J½Φ� defined in (6). With these
definitions (17) implies that J½Φ� contains the term −cσ.
Then, the Schwinger functional reads,

Wk½J� ¼
Z
x
J ·Φ − Γk½Φ� − ΔSk½Φ�; ð18Þ

where J ¼ J½Φ�. Evidently the cσ-dependences in the first
two terms on the right-hand side of (18) cancel each other.
We conclude already from here that the flow equation of
the effective action with dynamical hadronization should be
explicitly cσ-independent. Moreover, necessarily the left-
hand side of (18) is also cσ-independent. Consequently, the
cσ-dependence of the current in the Schwinger functional is
canceled by that of Wk½0�. This leaves us with

Wk½J� ¼ Ŵk½Ĵ� with Ŵk ¼ Wkjcσ¼0; ð19Þ

and J ¼ J½Φ� satisfies the EoM (6). The current is shifted in
the Jσ-direction, Ĵ½Φ� ¼ J½ϕ� þ cσδΦσ , in components:

Ĵ ¼ ðJA; Jc; Jc̄; Jq; Jq̄; Jσ þ cσ; JπÞ: ð20Þ

The shifted current Ĵ½Φ� in (20) does not depend on cσ, that
is ∂cσ Ĵ ≡ 0. With these relations we finally arrive at a
convenient form of the effective action,

Γk½Φ� ¼
Z
x
J ·Φ − Ŵk½Ĵ� − ΔSk½Φ�; ð21Þ

We would like to elucidate the above relations within a
simple example which is relevant in the present context:
Consider a composite σ-field that is just proportional to the
scalar quark bilinear,

σ̂k ¼ −Dk ˆ̄q q̂; ð22Þ

with a cutoff dependent prefactor Dk. Note that the hats
indicate that this relation holds on the level of the
fluctuation fields in the path integral. We also emphasize
that our example (22) has an overlap with the first term in
the dynamical hadronization flow (15) with _Ak ¼ −∂tDk,
but is not identical: h ˆ̄q q̂i ¼ q̄qþGq̄q½Φ�. Importantly, the
linear term −

R
x cσσ in the effective action (17) is in one to

one correspondence to the quark (current) mass term in the
classical action, SQCD ∝ m0

q

R
ˆ̄q q̂. Obviously, the latter

term can be absorbed into a shift of the source term for
σ̂ with

−m0
q

Z
ˆ̄q q̂þ

Z
x
Jσσ̂k ¼

Z
x
Ĵσσ̂k; ð23Þ

where

Ĵσ ¼ Jσ þ cσ; with cσ ¼
m0

q

Dk
: ð24Þ

We conclude that the Schwinger functional with a source
for the composite field σ̂k in (22) and the classical QCD
action with a quark current mass term, SQCD ∝ m0

q

R
ˆ̄q q̂, is

that in the chiral limit withm0
q ¼ 0 and a shifted current for

the composite field. However,m0
q ¼ 0 simply is cσ ¼ 0, see

(24), and we arrive at

Wk½Jσ� ¼ Wk½Ĵσ�jmq¼0 ¼ Ŵk½Ĵσ�: ð25Þ

Note that (25) entails that the full dynamics of QCD in the
presence of explicit chiral symmetry breaking is that of the
theory with a composite condensate field σ̂ with full chiral
symmetry: The explicit chiral symmetry breaking is com-
pletely absorbed in a shift of the external current J → Ĵ.
In summary this leads us to a novel flow equation for

QCD with dynamical hadronization with manifest chiral
symmetry,

∂tΓk½Φ� þ
Z

h∂tϕ̂k;ii
�
δΓk½Φ�
δϕi

þ cσδiσ

�

¼ 1

2
TrðGk½Φ�∂tRkÞ þ

1

2
Tr

�
GϕΦj

½Φ�δh∂tϕ̂ki
δΦj

Rϕ

�
; ð26Þ

with the RG time t ¼ lnðk=ΛÞ, and

Gk½Φ� ¼ 1

Γð2Þ
k ½Φ� þRk

; GΦiΦj
½Φ� ¼ ðGk½Φ�ÞΦiΦj

: ð27Þ

The shift in the dynamical hadronization term in the first
line in (26) subtracts the explicit chiral symmetry breaking

term in Γð1Þ
σ . The t-derivative ∂tΓk in (26) is taken at fixed

cσ as the _cσ terms from ∂tΓk cancel with that from
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∂t

R
J ·Φ ∝ ∂t

R ð∂tJsymÞ ·Φ −
R
_cσσ. The ð∂tJsymÞ-terms

are cancel by those from the Schwinger functional in (21).
We emphasize that (26) is explicitly cσ-independent, and is
a novel representation of dynamical hadronization.
Note also that (26) with (15) entails that we do not have

to specify ϕ̂k but only the expectation value of its flow,
h∂tϕ̂ki, as done in (15). The second term in the first line of
(26) accounts for the cutoff dependence of the reparamet-
rization that originates in the cutoff dependence of ϕ̂k. It
can be understood as a generalized anomalous dimension
of ϕ. Indeed, for

h∂tϕ̂i ¼ −
1

2
ηϕϕ; ð28Þ

this term carries nothing but the anomalous rescaling of the
composite field ϕ. However, we emphasize again that ∂t is
a derivative at fixed mean superfield Φ, and in particular at
fixed ϕ. The second term in the second line also accounts
for the cutoff dependence of the reparametrization via ∂tϕ̂k.
The first term in the second line of (26) is the standard

functional flow. The trace sums over momenta, internal
indices and species of fields including the composite field.
More explicitly it reads

1

2
TrGk∂tRk ¼

1

2
TrGAA∂tRA − TrGcc̄∂tRc

− TrGqq̄∂tRq þ
1

2
TrGϕϕ∂tRϕ; ð29Þ

where all propagators are Φ-dependent. We show the flow
equation (26) with ∂tϕ̂ ¼ 0 diagrammatically in Fig. 2 for
QCD. The first gluon and ghost diagrams constitute the
glue contributions, and the last two arise from the matter
sector, which are the quark and meson degrees of freedom,
respectively. Note that the scalar and pseudoscalar mesonic
loops are present here because we introduced them explic-
itly with dynamical hadronization. This is nothing but a
convenient parametrization of resonant interaction chan-
nels. We emphasize that the absence of explicit loops for
other hadrons, e.g., other mesons and baryons, does not
entail that their dynamics is not included.

III. TRUNCATION SCHEME

In this section we discuss in detail the expansion scheme
for the effective action and the flow equations used in the
present work. This includes in particular a discussion of the
approximations used, and their quantitative or qualitative
validity. In particular, we detail a systematic expansion of
the flow equations about a given input, which in the present
case are first-principles fRG results on QCD in vacuum and
Yang-Mill theory at finite temperature [27,31–33]. An
important benchmark test is the fRG result for the 2þ 1
flavor gluon propagator obtained in this expansion, which
is in quantitative agreement with the lattice data, see Fig. 3.
Finally, QCD is determined by its fundamental parameters,
whose values as well as some benchmark observables can
be found in Table I.
We also emphasize that while many of the technical

details are deferred to Appendixes, they are of great
importance for the evaluation of the systematic error.
The latter is but one of the reasons why the discussion
of our approximations is carried out in the present section
with great care.

A. Vertex expansion

In QCD, (26) can only be solved within given trunca-
tions to the effective action. The systematic expansion
scheme behind such approximations is the vertex expan-
sion. It is an expansion of the effective action in powers of
the field, the expansion coefficients being the n-point

FIG. 2. Flow of the effective action of QCD. The first three
diagrams arise from the gluon, ghost, and the quark degrees of
freedom respectively. The last diagram is that of the mesonic
contribution. The double line with the up-down arrows indicates
the nature of the mesons as quark-antiquark composites. The
crossed circles indicate the regulator insertion in the flow
equation.

FIG. 3. Nf ¼ 2þ 1 gluon dressing function 1=ZAðp2Þ and
gluon propagator GA ¼ 1=½ZAðp2Þp2� (inset) in the vacuum as
functions of momenta in comparison to lattice results based
on the Nf ¼ 2þ 1 configurations (domain wall fermions) of
the RBC/UKQCD collaboration, e.g., [133]. The lattice results
are continuum extrapolated from data with β ¼ 2.25; a−1 ¼
2.359ð7Þ GeV; mπ ¼ 139.2ð5Þ MeV and β ¼ 2.13; a−1 ¼
1.730ð4Þ GeV; mπ ¼ 139.2ð4Þ MeV, see [134–136]. The mo-
mentum dependence of the fRG results is given by p2 ¼ k2, in
accordance with the same identification of the Nf ¼ 2 flavor
input data; for more details see Sec. IVA 2.
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functions ΓðnÞðp1;…; pnÞ. Typically, this expansion shows
a rather good convergence if no divergent exchange
processes or couplings are present. In Landau gauge
QCD the strong couplings related to gluon exchange
grow toward the infrared but tend to zero for momenta
or cutoff scales below approximately one GeV, reflecting
the QCD mass gap, see [27–29,32,137]. This behavior
supports the apparent convergence of the vertex expansion.
Another source for divergent exchange processes are
resonant interactions that potentially spoil or at least slow
down the convergence of the vertex expansion. In particular
for this reason dynamical hadronization is crucial as it
controls the resonant interaction channels and allows to
take into account multiscatterings of resonances in a
technically accessible way via the respective effective
potential of the composite fields.

B. Expansion about vacuum QCD and finite
temperature Yang-Mills theory

We can rely on quantitative results for vacuum Yang-
Mills theory, [31] and Nf ¼ 2 flavor QCD, [27,32], and

finite temperature Yang-Mills theory, [33], as input as well
as benchmark tests for our current computations. State-of-
the-art truncations which involve a large set of correlation
functions have been used in these works.
Furthermore, it is well-known that mild momentum-

dependences of vertex functions and propagators are
well captured by scale-dependent dressing functions; for
investigations in QCD and low energy effective models see
e.g., [28,75,78,100,137]. This suggests an approximation
scheme in which only the dominant nontrivial momentum
dependences are taken into account explicitly, while the rest
of the dependences is approximated by scale-dependent
dressings.
This approach has been successfully applied to vacuum

QCD in [28,29,137] and for QCD at finite temperature and
imaginary chemical potential in [26]. In these works QCD
flows have been expanded about the full gluon and ghost
two-point functions of Yang-Mills theory. All other corre-
lation functions considered there have been approximated
with scale-dependent dressings. Schematically we decom-

pose the two-point functions as Γð2Þ ≃ ZSð2Þkinþ (additional

tensor structures). For example, for the quark, Sð2Þkin carries
the Dirac term, while the mass term is buried in the
additional tensor structures. For the gluon this entails for

the two-point function is Γð2Þ
AAðpÞ ≃ ZAðp2ÞSð2ÞAAðpÞ, but we

have to consider different Lorentz tensors. The nontrivial
momentum- and scale-dependence of the kinetic term of a
given field is fully captured by the anomalous dimensions,

ηΦi
¼ −

∂tZΦi

ZΦi

: ð30Þ

Note that (30) only schematically provides the anomalous
dimension, we have neither specified the projection pro-
cedure nor the momentum evaluation. We further exem-
plify the setup with the relevant case of the gluon two-point
function. There, one also utilizes the observation that the
anomalous dimension ηA of the gluon can be parametrized
in terms of the running coupling αYMk in Yang-Mills theory,

ηYMA;k ¼ ηglueA ðαYMk ; ðm̄YM
A;k Þ2Þ; ð31Þ

with the Yang-Mills running coupling αYMk and the trans-
versal gluon mass parameter,

m2
A;k ¼

1

3ðN2
c − 1Þ

1

k2
Π⊥

μνðpÞΓð2Þ
AA

aa
μνðpÞ

����
p¼0

; ð32Þ

where Π⊥
μν is the transversal projection operator, see (N2).

The renormalized gluon mass parameter m̄2
A differs from

m2
A in (32) by an appropriate renormalization. This

renormalization has to be applied to all coupling parameters
and fields and is discussed in detail in the next Sec. III C.
In (31) the Yang-Mills gluon mass parameter ðm̄YM

A;k Þ2 has

TABLE I. Upper part: observables and related fundamental
QCD couplings at the initial cutoff scale Λ ¼ 20 GeV: the strong
coupling αs;Λ, the pion pole massmπ;pol via cσ , and the ratio fK=fπ
via the constituent quark mass difference Δm̄sl ¼ m̄s − m̄l for the
presentNf ¼ 2 andNf ¼ 2þ 1 flavor computations. Middle part:
IR enhancement of quark-gluon coupling αq̄Aq → ð1þ aÞαq̄Aq
below k ≈ b. The value of a is adjusted with the constituent light
quark mass m̄l, for more details see Appendix E 2. This phenom-
enological IR-enhancement effectively accounts for the effect of
nonclassical tensor structures in the quark-gluon vertex which are
missing in the present approximation. If taking the full quark-gluon
vertex into account, this is not necessary and m̄l is a prediction, see
[27,32]. Lower part: predictions in vacuum QCD: the strange
constituent quark masses m̄s and the σ-mass m̄σ . Also fπ is a
prediction as we have fixed the pion pole massmπ;pol instead of fπ .
Fixing the latter relative to the pion decay constant fπ;χ in the chiral
limit (in the present work fπ;χ ¼ 88.6 MeV for Nf ¼ 2þ 1)
would have been the more physical but less accessible choice, for a
detailed discussion see Appendix E 3.

Observables Value Parameter in ΓΛ

mπ;pol [MeV] 137 2: cσ ¼ 3.6 GeV3

2þ 1: cσ ¼ 3.6 GeV3

fK=fπ 1.17 2þ 1: Δm̄sl ¼ 120 MeV
αs RG-consistency:

Section IV B 3
2: αs;Λ ¼ 0.21

2þ 1: αs;Λ ¼ 0.235

m̄l [MeV] 2: 367 2: a ¼ 0.008 b ¼ 2 GeV
2þ 1: 347 2þ 1: a ¼ 0.034 b ¼ 2 GeV

fπ [MeV] 2: 96.0 …
2þ 1: 93.0

m̄s [MeV] 467 …
m̄σ [MeV] 2: 531 …

2þ 1: 510
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been used. ηglueA stands for all diagrams involving gluons
and ghosts that contribute to the gluon anomalous dimen-
sion. This parametrization of the glue part of the anomalous
dimension allows for a simple representation of the
anomalous dimension of full QCD,

ηA;k ¼ ηglueA ðαk; m̄2
A;kÞ þ ηquarkA;k ; ð33Þ

with the full QCD coupling αk and renormalized mass
parameter m̄2

A;k ¼ m2
A;k=ZA, respectively. Importantly, this

setup also takes care of the backreaction of the quark
fluctuations to the pure glue and ghost diagrams, for a
detailed description see [28,137]. A benchmark test con-
cerns the full gluon propagator in unquenched two-flavor
QCD, which has been shown to be in quantitative agree-
ment with the lattice results in [137], more details can be
found in Appendix D.
A simpler approximation is given by the “direct sum”

ηA;k ≈ ηYMA;k þ ηquarkA;k : ð34Þ

With (34) the backreaction of the quark loop on the pure
glue couplings and propagators in ηglueA is neglected. While
such an approximation also lacks full RG invariance,
it works well for initial scales of Λ ≈ 10–20 GeV. Alter-
natively a readjustment of the scales can be done on top
of the simple approximation (34). A respective benchmark
test for the full gluon propagator in unquenched two-
flavor QCD has been done in [137], for more details see
Appendix D. The direct-sum approximation has been used
very successfully in many functional applications to the
phase structure of QCD, notably in fRG application to
QCD, [26], as well as the DSE applications [7,36,
37,40,138–144]. We also emphasize that the approximation
may get even better for large chemical potential, as the
latter lifts the Fermi sea and successively more quark
fluctuations are buried in it. This effect reduces the impact
of the quark loop on the purely gluonic correlation
functions. However, this reasoning does not apply straight-
forwardly to the quark-gluon vertex, and has to be taken
with a grain of salt beyond the onset of baryon density. Still,
in summary the approximation is well founded and well
tested.
Here we apply this promising approximation scheme to

the unquenched QCD gluon propagator at vanishing
temperature as well as the glue contribution at finite
temperature. Let us describe this procedure with an
expansion of the finite temperature and density theory
about the vacuum. Schematically this is described by the
following separation of the flow for a given correlation
function at finite T and μ,

∂tΓ
ðnÞ
T;μðpÞ ¼ ∂tΓ

ðnÞ
0;0ðpÞ þ ∂tΔΓ

ðnÞ
T;μðpÞ; ð35Þ

where we suppressed the subscript k, and ΔΓðnÞ is
defined by,

ΔΓðnÞ
T;μðpÞ ¼ ΓðnÞ

T;μðpÞ − ΓðnÞ
0;0ðpÞ: ð36Þ

Its flow is given by the difference of the flow diagrams for
the correlation function at finite T, μ and the vacuum,

∂tΔΓ
ðnÞ
T;μðpÞ ¼ FlowðnÞ

T;μðpÞ − FlowðnÞ
0;0ðpÞ; ð37Þ

with

FlowðnÞ
Φi1

���Φin
¼ δn

δΦi1 � � �Φin

�
1

2
TrGk½Φ�∂tRk

�
: ð38Þ

While the first term on the right-hand side of (37) depends

on ΔΓðnÞ
T;μðpÞ and ΓðnÞ

0;0ðpÞ, the second term is a function of
only the latter vacuum correlation functions. Accordingly,
the flows (37) are closed equations for the set fΔΓðnÞg of
thermal and density corrections of general correlation

functions ΓðnÞ
T;μ with the given input of the set of vacuum

correlation functions fΓðnÞ
0;0g.

In summary this allows for the use of scale-dependent
dressings for ΔΓðnÞ with a mild momentum dependence at
finite temperature and density, while still maintaining the
quantitative nature of the approximation: Quantitative
results for vacuum QCD and finite temperature Yang-
Mills theory [27,31–33] are used for the nontrivial momen-
tum dependences of this part of the correlation functions.
Note that this setup also allows for the use of quantitative
results from other approaches such as lattice simulations
and DSE computations.
In the present work we apply this approach to the gluon

two-point function Γð2Þ
AA. Its density corrections and thermal

quark fluctuations are computed with the input of the
quantitatively reliable vacuum QCD results from [32] and
the finite temperature Yang-Mills results in [33]. For the

ghost two-point function Γð2Þ
cc̄ we only use input from

vacuum QCD from [32]. The details can be found in
Sec. IVA 2.

C. Truncation for the effective action

Having captured the nontrivial momentum-dependence
of the gluon propagation, we adopt the following truncation
for the Euclidean scale-dependent effective action Γk for
both, Nf ¼ 2 and Nf ¼ 2þ 1 flavors,
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Γk ¼
Z
x

�
1

4
Fa
μνFa

μν þ Zcð∂μc̄aÞDab
μ cb þ 1

2ξ
ð∂μAa

μÞ2

þ 1

2

Z
p
Aa
μð−pÞðΓð2Þ

AA
ab
μνðpÞ − ZAΠ⊥

μνδ
abp2ÞAb

νðpÞ

þ q̄½ZqðγμDμ − γ0μ̂Þ þmsðσsÞ�q
− λq½ðq̄τ0qÞ2 þ ðq̄τqÞ2� þ hq̄ðτ0σ þ τ · πÞq

þ 1

2
Zϕð∂μϕÞ2 þ Vkðρ; A0Þ − cσσ −

1ffiffiffi
2

p cσsσs

	
; ð39Þ

with
R
x ¼

R 1=T
0 dx0

R
d3x and τ ¼ 1=2ð1; iγ5σÞ being

defined in (3). Note that all couplings depend on the RG
scale k, which in most cases is omitted for the sake of
clarity. The effective potential

Vkðρ; A0Þ ¼ Vglue;kðA0Þ þ Vmat;kðρ; A0Þ; ð40Þ

carries a dependence on the mesonic field ρ ¼ ðσ2 þ π⃗2Þ=2,
and the temporal gauge field A0, which is related to the
Polyakov loop L½A0�. The expectation values of these fields
are approximate order parameters for the chiral phase
transition (ρÞ and the confinement-deconfinement phase
transition (A0 or L½A0�), for more details see Sec. III F.
In (40) we separated the contribution from the gluonic loop
in (26), see Fig. 2, that is Vglue;k and that of the quark and
meson loops, Vmat;k. We also neglected the subleading ρ-
dependences of the gluon loop,Vglue;kðA0; ρÞ → Vglue;kðA0Þ.
The gluon two-point function Γð2Þ

AA has been already
discussed in the previous Sec. III B. The subtraction with
ZAp2 in the second line removes the A2-contribution
coming from the F2

μν-term for avoiding double counting.
In the present fRG approach the theory is fully determined
by the strong running coupling αs;Λ at the initial cutoff
scale k ¼ Λ in the UV, the light current quark mass m0

l for
Nf ¼ 2 and additionally the strange current quark m0

s for
Nf ¼ 2þ 1 with the choice

ZΦ;k¼Λ ¼ 1: ð41Þ

With dynamical hadronization the current quark masses are
encoded in cσ and cσs . Their values in the physical case are
fixed by the pion mass and the kaon mass. Alternatively, the
pion and kaon decay constants can be used to pin down
these parameters. This is explained below. The values for an
initial cutoffΛ ¼ 20 GeV can be found in Table I at the end
of this section.
The field strength tensor Fa

μν and the covariant deriva-
tives in the ghost and quark kinetic terms also carry a cutoff
dependence, and are defined and discussed in detail in
Sec. III D, (60) and (57) respectively. The ZΦi

’s are the
cutoff dependent wave function renormalizations of the
respective component fields Φi of the superfield defined
in (8). Note that the effective action is renormalization

group invariant (but k-dependent) with respect to the
underlying renormalization group scale μ of the theory
at k ¼ 0, for more details see [58]. This suggests the
introduction of renormalized fields

Φ̄ ¼ Z1=2
Φ Φ; ð42Þ

as well as renormalized coupling parameters, for example

m̄Φ ¼ mΦ

Z1=2
Φ

; h̄ ¼ h

Z1=2
ϕ Zq

: ð43Þ

Since we perform our computations in Euclidean space-
time, the renormalized masses in (43) are curvaturemasses
in contradistinction to the physical pole masses mΦ;pol.
Within the fRG setup this difference has been discussed in
detail in [100]. For example, the constituent quark masses
are curvature masses. In turn, the pion pole mass mπ;pol is
used for fixing the value of explicit chiral symmetry
breaking, see Table I. For more details on the definition
of the mesonic pole masses see Sec. IVA 1.
Similar relations hold for the other coupling parameters

and are discussed later. Note that the epithet renormalized
is related to the k-dependence. Note also that the renor-
malized fields carry classical dispersions if we use fully
momentum-dependent ZΦ’s in (42). Accordingly in pole
renormalization schemes the respective masses are pole
masses. Moreover, observables are provided in terms of the
renormalized fields and couplings, and we shall discuss
physics in terms of these objects.
The quark chemical potential matrix μ̂ considered

here is understood to couple to all flavors equally,
μ̂ ¼ diagðμq; μq; μqÞ. Thus, it is directly related to the
baryon chemical potential μB ¼ 3μq. The constituent quark
mass m̄s also has to be read as a diagonal flavor
matrix diagð0; 0; m̄sÞ.
In the present work we do not consider dynamical

hadronization of the full Nf ¼ 3 flavor multiplet
Ta
Nf
ðσa þ iγ5πaÞ, with the UðNfÞ generators Ta

Nf
,

a ¼ 0;…; N2
f − 1. In the singlet-octet basis they are given

by T0
Nf

¼ 1Nf×Nf
=

ffiffiffiffiffiffiffiffiffi
2Nf

p
and the SUðNfÞ generators Ti

Nf

for i ¼ 1;…; N2
f − 1. Instead, we only consider part of the

embedded Nf ¼ 2 multiplet: the scalar σ as well as the
pseudoscalar pions. The four-quark interaction that gives
rise to the corresponding resonances is given by λq. The
other mesons of the scalar and pseudoscalar nonets are
too heavy for playing a significant rôle in the offshell
dynamics. Of the strange part of the multiplet we only
consider the scalar σs. The two scalars σ; σs are related
to the ones in the singlet-octet basis via

�
σ

σs

�
¼ 1ffiffiffi

3
p

� ffiffiffi
2

p
1

1 −
ffiffiffi
2

p
��

σ0

σ8

�
; ð44Þ
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for more details see, e.g., [34,78,94,98,125,145]. Both,
light and strange quark constituent masses are given in
terms of condensates,

m̄l ¼
1

2
h̄ σ̄; m̄s ¼

1ffiffiffi
2

p h̄σ̄s; ð45Þ

with the renormalized Yukawa coupling and the renormal-
ized σ; σs-expectation value σ̄ ¼ Z1=2

ϕ σ and σ̄s ¼ Z1=2
ϕ σs

respectively, see (42) and (43). Their values are determined
via the explicit breaking terms cσσ and 1=

ffiffiffi
2

p
cσsσs, as well

as dynamical chiral symmetry breaking. Both phenomena
lead to nonvanishing σEoM and σs;EoM and hence to non-
vanishing renormalized expectation values ðσ̄; σ̄sÞEoM. The
explicit breaking coefficient cσ in the light sector is fixed
with the physical pion mass. Alternatively one could use
the ratio of the pion decay constant fπ with that in the chiral
limit, fπ;χ for fixing cσ, that is fπ=fπ;χ ≈ 93=88, [146].
Here, we choose the pion mass instead of this ratio as it is
more easily accessible. Furthermore, small errors in the
determination of the pion mass only propagate to small
errors in other observables. In turn, the explicit breaking
coefficient cσs may be either determined by e.g., the kaon
mass or the ratio fK=fπ ≈ 111=93, [146]. We refer to
Appendix E 3 for a more detailed discussion of the scale
setting.
The relative size of the explicit breaking coefficients,

cσs=cσ may also be determined by their relation to the
current quark masses m0

l and m0
s . For large momentum

scales of the order of the electroweak scale ∼90 GeV, that
is in the absence of any chiral dynamics, the constituent
quark masses (45) reduce to the current quark masses. Note
also that the renormalized mesonic quantities tend toward
bare ones for large momentum or cutoff scales as Zϕ → 1.
Moreover, Zq → 1 due to the Landau gauge. Accordingly,
σ̄; σ̄s → σ; σs and h̄; m̄q → h; m̄q. This limit entails,

σEoM ¼ 2m0
l

h
¼ cσ

m2
ϕ

; σs;EoM ¼
ffiffiffi
2

p
m0

s

h
¼ cσsffiffiffi

2
p

m2
ϕ

; ð46Þ

where m2
ϕ is the unique mesonic mass function for large

momentum scales. Equation (46) entails that the ratio of the
current quark masses agrees with that of the explicit
breaking parameters,

cσs
cσ

¼ m0
s

m0
l

≈ 27.46ð15Þð41Þ; ð47Þ

in Nf ¼ 2þ 1 flavor computations. The estimate comes
from lattice computations, see [147]. Equation (46) and
(47) also enable us to relate the chiral condensates to cσ-
and cσs-derivatives, for more details see Appendix A.

Finally, one may also adjust the constituent strange quark
mass m̄s or the difference to the constituent light quark
mass m̄l,

Δm̄sl ¼ m̄s − m̄l; ð48Þ

on the basis of quantitative functional or lattice results in
the Landau gauge.
In the present work we compute observables in the

light quark sector. We use that offshell flavor-mixing
terms are small, as they always involve the propagator
of a heavy mesonic state. This is in stark contradistinction
to onshell flavor-mixing terms, which are e.g., maximal
in the pseudoscalar sector due to the axial anomaly.
Accordingly, light quark and gluon correlation functions
are sensitive to strange quark fluctuations only via the
gluon propagator or rather the gluon dressing. The latter
carries the momentum and RG running of the strange-
quark–induced vacuum polarization, and it is well known
from respective quantitative Nf ¼ 2 flavor computations
that the gluon propagator is almost insensitive to changes of
the quark mass. This has been studied in [33], where the
pion mass (and hence the light quark mass) has been
changed from very light quarks to heavy ones in the range
60 MeV≲mπ ≲ 300 MeV. This change had no effect on
the gluon propagator within the systematic error bars of
the result. This analysis carries over readily to the present
Nf ¼ 2þ 1 flavor computation. Indeed, the influence of
the strange quark mass is even smaller due to the smaller
relative importance of the strange quark and its more
effective decoupling in the infrared due to the larger explicit
chiral symmetry breaking.
Consequently we use a simple approximation to the

strange sector. The chiral offshell dynamics are dominated
by the pions, and we approximate

σ̄s;EoM ¼ 1ffiffiffi
2

p σ̄EoM þ
ffiffiffi
2

p

h̄
Δm̄sl; ð49Þ

With (49) the chiral dynamics in the strange quark sector
are the same as in the light quark sector.
All these determinations have to be taken with a grain of

salt due to the rough nature of our approximation of the
strange quark sector. While this approximation has to be
improved for an access to observables with strangeness, the
observables considered here depend only very mildly on
the difference between the constituent light and strange
quark masses, (48),

100 MeV≲ Δm̄sl ≲ 200 MeV: ð50Þ

For the determination of Δm̄sl in the present work we use
the ratio of the decay constants, which relates the current
strange quark mass directly to observables. In the mean
field approximation in low energy effective theories we
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typically have fπ≈ σ̄EoM and fK ≈ 1=2σ̄EoM þ 1=
ffiffiffi
2

p
σ̄s;EoM.

We emphasize that these relations do not hold true in QCD
as the determination of the decay constant requires the full
momentum dependence of the quark mass functions; for a
detailed discussion of the pion decay constant see
Appendix E 3. However, the cutoff scale (and momentum)
dependence of both the light and the strange quark masses
are very similar (after being rescaled by their value at
vanishing momentum). Hence we conclude that the mean
field relations should hold even quantitatively for the ratios of
the decay constants. Using (49) in the mean field approxi-
mation for the ratio of kaon decay constant and pion decay
constant, this is well adjusted with Δm̄sl ¼ 120 MeV,

fK
fπ

≈ 1þ 1

2

Δm̄sl

m̄l
⟶

Δm̄sl¼120 MeV fK
fπ

≈ 1.17: ð51Þ

Equation (51) is in good agreement with the actual value
fK
fπ
≈ 1.19, see [146]. More accurately we may derive the

mass difference with a comparison to Nf ¼ 2þ 1 lattice
QCD (with isospin symmetry). The ratio of the decay
constant is determined with fK=fπ ¼ 1.194ð5Þ, [147], and
provides Δm̄sl ≈ 135 MeV.
For our choice Δm̄sl ¼ 120 MeV, the constituent

strange quark mass is found to be m̄s ¼ 467 MeV, in
good agreement with quark model values. Note however,
that the Landau gauge constituent strange quark mass is
considerably higher, m̄s ≳ 500 MeV, see, e.g., [7], which
would amount to a current strange quark mass of Δm̄sl ≳
150 MeV in the present approach. This is further discussed
in Appendix A. We emphasize again that a variation of
Δm̄sl within this range does not influence our results for
light quark observables.
Next we discuss the treatment of the four-quark sector in

(39): We only consider the four-quark interaction λq of the
Nf ¼ 2 scalar-pseudoscalar multiplet as well as the corre-
sponding Yukawa interaction h and the mesonic composite
fields. In turn, the Dirac term depends on all quark fields, so
either u, d in the Nf ¼ 2 flavor case or, u, d, s in the
Nf ¼ 2þ 1 flavor case. Accordingly, the mesonic field
ϕ ¼ ðσ; πÞ in (39) is in the Oð4Þ-representation with ρ ¼
ϕ2=2 for both, Nf ¼ 2 and Nf ¼ 2þ 1. The linear term
−cσσ breaks the two flavor chiral symmetry explicitly, and
leads to the current quark masses for u, d quarks. We
assume light isospin symmetry here, so they have identical
masses. They are absorbed in a shift of σ, leading to current
quark mass terms from the Yukawa term. In the present
setup the cσ-term is generated from the u, d-quark mass
term via dynamical hadronization with an appropriate
choice of _Ck in (15), for more details see Sec. III E. It is
now apparent that the shifted σ-current coupled to the
dynamical hadronization flow _ϕk is chirally symmetric, as
it does not depend on cσ ,

∂cσ

�
δΓk

δσ
þ cσ

�
≡ 0: ð52Þ

In turn, we do not consider offshell fluctuations from the
four-quark interactions with strangeness: In (39) neither
four-quark terms nor mesonic fields with strangeness are
included. This approximation is based on the observation
that at T; μ ¼ 0 even the two-flavor scalar-pseudoscalar
terms produce negligible contributions for cutoff scales k≳
500 MeV above the onset of chiral symmetry breaking,
[27,33]. For cutoff scales in the vicinity of the onset of
chiral symmetry breaking and below, k≲ 500 MeV the
other two-flavor channels and even more so the s-quark
channels are not dynamical anymore due to their large mass
scales. Indeed, sizable contributions at T; μ ¼ 0 are only
triggered by the pion channel. This is in line and supports
chiral perturbation theory.
Note however, that e.g., in the vicinity of the phase

transition, kaons and the eta meson may play a role.
Neglecting this is part of our current systematic error.
We also emphasize that at large densities we expect relevant
offshell contributions from diquark and/or density chan-
nels. The importance of the additional Nf ¼ 2 flavor
channels has been investigated thoroughly in effective
theories in [79,81,120], leading to a semiquantitative
agreement of both approximations up to large densities
after an appropriate rescaling including the critical region
found in the present work for Nf ¼ 2 flavor QCD, see
Sec. V D and Fig. 20. This estimate is fully confirmed in a
QCD study with the fRG in [148]. Note that the observed
dominance of the scalar-pseudoscalar channel for Nf ¼ 2

flavors in [79,81,148] translates to μB=T ≲ 7 in the present
Nf ¼ 2þ 1 flavor study, and includes the respective
critical region, see Fig. 1.
Accordingly, the Nf ¼ 2 and Nf ¼ 2þ 1 theories differ

by the Dirac term in the effective action, and hence by the
respective additional s-quark loops. This is important for
purely gluonic correlation functions and amounts to a
relative change in the physics scale ΛQCD as well as the
respective β-functions. This is very similar to respective
DSE computations, a difference being the backreaction
onto the purely gluonic diagrams which is partly taken into
account in the present work.
In summary the couplings αs;Λ, cσ and Δm̄sl [or the

ratio of the current quark masses m0
s=m0

l ¼ cσs=cσ, see
(47)] with ZΦ;Λ ¼ 1 in the initial action ΓΛ at the initial
UV scale Λ ¼ 20 GeV are fixed by the fundamental
parameters of QCD; for the strong coupling and the
current quark masses, aswell as phenomenological infrared
enhancement parameters a, b for the quark-gluon coupling,
see Table I. The latter phenomenological parameters, ða; bÞ,
effectively account for the infrared effects of the missing
nonclassical tensor structures of the quark-gluon vertex, see
Appendix E 2.
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Strictly speaking, absolute momentum scales should be
measured in the pion decay constant in the chiral limit. In
the present approximation it is computed as

fπ;χ ¼ 88.6 MeV for Nf ¼ 2þ 1; ð53Þ

see (E16). The details of the scale setting procedure are
discussed in Appendix E 3. Apart from the quantitative
precision of the predictions for observables in Table I in
particular for Nf ¼ 2þ 1, the Nf ¼ 2þ 1 gluon dressing
is a prediction within the current setup. It agrees quanti-
tatively with the respective lattice results, see Fig. 3. Note
that the gluon propagator shows the expected deviations in
the deep infrared: the Nf ¼ 2 flavor propagator in [32] is of
the scaling type, related to a different infrared closure of the
Landau gauge as that implicitly defined by the lattice gauge
fixing. This has been discussed at length in the literature,
see [32] and references therein. Importantly, as part of the
gauge fixing, it has no impact on observables.

D. Strong couplings αs from gluon,
ghost-gluon, and quark-gluon vertices

The quark-gluon and purely gluonic correlation func-
tions in the current approximation give rise to different
‘avatars’ of the strong couplings αΦ1���Φn

with Φi ¼
Aμ; c; c̄; q; q̄ and n ¼ 3, 4. For details see [27,31–33],
for similar considerations in quantum gravity see
[149,150]. They are defined by the respective vertex
dressings λΦ1���Φn

, divided by the wave function renormal-

izations
Q

Z1=2
Φi

of the attached legs evaluated at vanishing
momentum, see, e.g., [32]. Here we consider the couplings
of the purely gluonic sector,

αA3 ¼ 1

4π

λ2A3

Z3
A

; αA4 ¼ 1

4π

λA4

Z2
A
; αc̄Ac ¼

1

4π

λ2Acc̄
ZAZ2

c
; ð54Þ

and that of the matter sector, αq̄Aq ¼ ðαl̄Al; αs̄AcÞ with two
entries for the light quark-gluon and strange quark-gluon
couplings respectively,

αl̄Al ¼
1

4π

λ2
All̄

ZAZ2
l

; αs̄As ¼
1

4π

λ2Ass̄
ZAZ2

s
: ð55Þ

Note that the strong couplings (54), (55) are natural
definitions of gluon exchange couplings. For example,
the quark-gluon couplings involve two quark-gluon vertex
functions and one gluon dressing 1=ZA, related to the one-
gluon scattering of two quark currents, see Fig. 4.
For perturbative and semiperturbative scales k≳

1–3 GeV these couplings are related by modified
Slavnov-Taylor identities (mSTIs). This property also holds
true in the quantitative approximation [27,31–33] for
the purely gluonic couplings, for more details see in
particular [32]. We emphasize that in the present setup

gauge invariance is encoded in these mSTIs. They arise
from Becchi-Rouet-Stora-Tyutin-variations of the gauge
fixed action in the presence of the regulator terms, see e.g.,
[58,151–160]. For smaller momenta and cutoff scales k≲
1–3 GeV they start to differ for two reasons: first of all the
gluon mass scale starts to influence the running. More
importantly the mSTIs only relate the longitudinal cou-
plings, while the flow depends on the transversal couplings.
It can be shown that some of the transversal α’s cannot be
identified with their longitudinal counterparts as otherwise
the gluon mass scale would be absent, see [31,161–164].
However, in the absence of the gluon mass scale in the
propagator the theory lacks confinement, [74,130,131].
Here we compute the flows of the three-gluon coupling,

αA3 , and the quark-gluon couplings αq̄Aq. From the vacuum
results for the couplings in [28,32] we infer that the four-
gluon coupling runs closely to αA3 , and the ghost-gluon
coupling runs closely to αq̄Aq in the relevant momentum
regime k≳ 1 GeV. In the deep infrared all these couplings.
However, except of the ghost-gluon coupling, all the
avatars of the strong coupling decay for these scales, see
Fig. 17 in Sec. IV B 3, and [28,32]. The ghost-gluon
coupling only enters in diagrams that are suppressed except
for the deep infrared with k≲ 100 MeV, a more detailed
discussion of this fact is provided in Sec. IV B 2. In
summary the differences lead to negligible effects and
we use

FIG. 4. Flow equation for the four-quark coupling in the present
approximation. Further diagrams with the nonresonant part of the
scalar-pseudoscalar channel and other four-quark tensor structures,
as well as that with higher order couplings are dropped. The black
dots denote the full vertices and the various lines represent for
the full propagators. The derivative ∂̃t ¼ ∂tjfΓðnÞ

k g only hits the k-

dependence of the regulator, e.g., ∂̃tGk ¼ −Gk
_RkGk. The first line

with the quark-gluon diagrams generates the four-quark interaction
through gluon-exchange at large scales. The second line takes into
account the self-interaction of the resonant four-quark interaction
in terms of meson exchange diagrams. The last line comprises the
mixed diagrams with meson and gluon exchange. Gluon-exchange
dominates the flow for large and intermediate energy scales, while
the meson-exchange diagrams dominate at low energy, see
Appendix L. Accordingly, in the present work we keep the
quark-gluon and quark-meson diagrams and drop the mixed ones.
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αA4 ¼ αA3 ¼ αglue; αc̄Ac ≃ αq̄Aq: ð56Þ

For gluons and quarks this leads us to covariant derivatives
in the fundamental and adjoint representation of SUðNcÞ
respectively,

Dμ ¼ ∂μ − iZ1=2
A gq̄AqAa

μta;

Dab
μ ¼ ∂μδ

ab − Z1=2
A ggluefabcAc

μ; ð57Þ

where

gglue ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παglue

q
; gq̄Aq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παq̄Aq

q
: ð58Þ

The covariant derivative in the ghost terms is an adjoint one
but carries gq̄Aq. In (57), fabc are the structure constants for
the SUðNcÞ group with

½ta; tb� ¼ ifabctc; Trtatb ¼ 1

2
δab: ð59Þ

The terms in the first two lines on the right-hand side (r.h.s.)
of (39) are built from the operators in the classical QCD
action. The gluonic field strength tensor reads

Fa
μν ¼ Z1=2

A ð∂μAa
ν − ∂νAa

μ þ Z1=2
A ggluefabcAb

μAc
νÞ; ð60Þ

and the Landau gauge ξ ¼ 0 is chosen in this work.
A similar truncation has been found to be successful in

describing the transition from the quark-gluon regime at
high energy to the hadronic one at low energy in the
vacuum [28]. The truncation (39) for the effective action
takes into account all order scatterings of the resonant
scalar and pseudoscalar channels of the four-fermi inter-
action through the scale-dependent effective potential
Vkðρ; L; L̄Þ. It is complementary to taking into account a
Fierz-complete four-fermi basis as done in [27,32,79,
81,127]. A respective two flavor study with a Fierz
complete basis and all order interactions of resonant
channels is work in progress, [165].

E. Dynamical hadronization in the σ − π channel

As discussed in Sec. II, we take into account the resonant
interactions in the σ − π channel with the help of dynamical
hadronization. We use (15) with _Bk ¼ 0, _Ck ¼ 0,

h∂tϕ̂ki ¼ _Akq̄τq; ð61Þ

in the flow equation (26). Our strategy is to choose the
coefficients in (61) such that the running of the four-quark
interaction λq in (39) is exactly cancelled. This amounts to a
scale dependent bosonization of this channel. We empha-
size that this only transfers the information carried by four-
quark interaction from the quark-gluon sector to the meson

sector. It is a practical way to enter the symmetry broken
phase in the presence of resonant channels and still retain
the full information of the underlying dynamics of the
fundamental degrees of freedom. In case of the scalar-
pseudoscalar channel considered here, a resonance at
vanishing momentum indicates the formation of a quark
condensate hq̄qi and therefore chiral symmetry breaking.
To this end, we project the flow equation on the flow of

the scalar-pseudoscalar four-quark vertex, λq in (39) at
vanishing momentum. We define the respective dimension-
less, renormalized four-quark coupling, Yukawa coupling
and hadronization function as

λ̄q ¼
λqk2

Z2
q
; h̄ ¼ h

Z1=2
ϕ Zq

; _̄A ¼ Z1=2
ϕ

Zq

_Ak2; ð62Þ

where we suppressed the subscript k, and the renormalized
Yukawa coupling has already been introduced in (43). With
these definitions the flow of the renormalized four-quark
function reads

∂tλ̄q − 2ð1þ ηqÞλ̄q − h̄ _̄A ¼ Flowð4Þ
ðq̄τqÞðq̄τqÞ; ð63Þ

where

FlowðnÞ
Φi1

���Φin
¼ 1Q

n
j¼1 Z

1=2
Φij

k
dλΦi1

���Φin

Flowð4Þ
Φi1

���Φin
; ð64Þ

are the dimensionless, renormalized flow diagrams.
The projection on the scalar-pseudoscalar four-quark

channel in (64) is done along the lines of [62] with an
expansion of the flow in terms of quark-bilinears. This is
indicated by the subscript ðq̄τqÞðq̄τqÞ. FlowðnÞ is defined in
(38), and dλΦi1

���Φin
is the canonical momentum dimension of

the vertex dressing λΦi1
���Φin

. Now we resort to fully
hadronized flows in the σ–π channel by demanding

λ̄q ≡ 0; ∀ k: ð65Þ

With this, all diagrams with four-quark vertices λ̄q are
absent and the flow is depicted by Fig. 4. The diagrams in
the first line on the r.h.s. in Fig. 4 arise from the exchange
of gluons and those in the second line from mesons.
The respective expressions are given in Appendix L,
(L1) and (L2). The mixed diagrams with gluon and meson
exchange, shown in the third line in Fig. 4, are neglected
here, since the dynamics of gluons and mesons dominate in
approximately disjoint regions of the RG scale and the
mixed diagrams are comparatively small in either regime,
cf. Appendix L.
Inserting (65) into (63) leaves us with an equation for the

hadronization function,
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_̄A ¼ −
1

h̄
Flowð4Þ

ðq̄τqÞðq̄τqÞ: ð66Þ

This choice entails that the quantum fluctuations contrib-
uting to the quark scattering in the σ–π channel are
transferred completely to effective hadronic degrees of
freedom, the σ and π fields, their propagation, self-
scattering and scattering with quark-antiquark pairs.
The original four-quark interaction is described with

instantaneous meson propagators and a Yukawa interaction
of the σ, π with a quark-antiquark pair. Multi-scatterings of
the resonant channels are encoded in the effective potential
Vk. The flow of the respective couplings and propagators is
discussed in Sec. IV.

F. Thermodynamic potential and order parameters

The equilibrium thermodynamic potential density Ω is
given by

Ω½Φ;T; μ� ¼
�
T
V

�
Γk¼0½Φ�; ð67Þ

where V is the spatial volume. Ω½Φ;T; μ� is nothing but
Vk¼0ðρ; L; L̄Þ in (40). It depends on the given background
Φ, the temperature T and the quark chemical potential μ. In
the present case we only consider homogeneous back-
ground fields and the infinite volume limit. Equation (67)
can be obtained from the evolution of the effective action
Γk with (26). To simplify the calculations, we split Γk into
two parts,

Γk½Φ� ¼ Γglue;k½Φ� þ Γmatt;k½Φ�; ð68Þ

where the glue sector corresponds to the first two loops in
Fig. 2, and the matter sector to the latter two. The
thermodynamic potentials related to the two parts are dealt
with differently in this work; that is, we do not evolve the
flow of Γglue;k, but instead replace it with the QCD-
enhanced glue potential [93,94], to wit,

�
T
V

�
Γglue;k¼0½Φ� ¼ VglueðL; L̄Þ: ð69Þ

In (69) we have introduced the traced Polyakov loops L, L̄
with

LðxÞ ¼ 1

Nc
hTrPðxÞi; L̄ðxÞ ¼ 1

Nc
hTrP†ðxÞi; ð70Þ

and

PðxÞ ¼ P exp

�
ig
Z

β

0

dτÂ0ðx; τÞ
�
: ð71Þ

Here, P on the r.h.s. standing for the path ordering. In (71)
the gauge field is the fluctuation field and A0 ¼ hÂ0i is the
temporal mean gauge field in Φ. Accordingly, the expect-
ation values (70) are nontrivial functions of the mean field
A0 and

L½A0� ≠
1

Nc
TrP½A0�: ð72Þ

This has been discussed at length in [74,130–132,166], for
related work see, e.g., [167–173]. However, in [132] it has
been shown that the difference in (72) can largely be
attributed to a temperature-dependent rescaling.
Hence, in the present work this difference is ignored, it

will be discussed elsewhere. We approximate L½A0� ≈
1
Nc
TrP½A0� which allows us to utilize pure glue lattice

results for the expectation value L and the correlations of
the Polyakov loop for the construction of the Polyakov loop
potential. The glue potential Vglue employed in this work is
that computed in [174], where the quadratic fluctuations of
the Polyakov loop, hP½A0�ðxÞP½A0�ðyÞi, are taken into
account. We specify the glue potential in Appendix G.
Finally, one obtains the thermodynamic potential density as
follows

Ω½Φ;T; μ� ¼ VglueðL; L̄Þ þ Vmatðρ; L; L̄Þ − cσσ: ð73Þ

The potential (73) allows us to access both, the confine-
ment-deconfinement phase transition or crossover via the
Polyakov loop expectation value L,

∂Ω½Φ;T; μ�
∂L

����
Φ¼ΦEoM

¼ ∂Ω½Φ;T; μ�
∂L̄

����
Φ¼ΦEoM

¼ 0; ð74Þ

where ΦEoM now includes LEoM; L̄EoM instead of A0;EoM in
a slight abuse of notation.
In turn, explicit and spontaneous chiral symmetry break-

ing is encoded in the expectation value hσi ≔ σEoM of the
σ-field, defined with the respective EoM,

∂Vk¼0ðρ; L; L̄Þ
∂σ

����
ΦEoM

¼ cσ: ð75Þ

The expectation value σEoM is an order parameter for chiral
symmetry breaking similar to the magnetization in the Ising
model. It is closely related to the chiral condensate of the
light quarks, hūuþ d̄di=2, which is a function of the
constituent quark mass of the light flavors,

m̄l ¼
1

2
h̄σ̄EoM: ð76Þ

The potential (73) also gives us access to the thermody-
namics of the system which will be discussed elsewhere.
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IV. CORRELATION FUNCTIONS

In this section we discuss the correlation functions
presented in (39), and derive their flow equations. This
includes the propagators of all fields and the respective
anomalous dimensions (Sec. IVA), the strong couplings
related to pure glue, ghost-gluon and quark-gluon vertices
(Secs. IV B 2, IV B 1), the four-quark scattering and the
Yukawa coupling between pions, σ and the quarks due to
dynamical hadronization (Sec. IV C), and the flow of the
effective potential (Sec. IV D).
Again, most of the technical details as well as equations

for the explicit flows are deferred to Appendixes. Here we
only discuss the setups, approximations, and projections.
Both, the systematic expansion scheme, as well as the
explicit flows constitute important technical results of the
current work. The combination of the discussions found in
the present section and the Appendixes provides a self-
contained account of the present approach and can be
readily used for further computations.

A. Propagators and anomalous dimensions

The flow equation for the (inverse) propagators,

∂tΓ
ð2Þ
k ðpÞ is obtained by taking the second derivative with

respect to the fields of the Wetterich equation (26). They are
depicted in Fig. 5 for the quark, gluon, and meson fields,
respectively. We are led to the anomalous dimensions ηΦi

withΦi ¼ ðA; q; q̄;ϕÞ. While the ηA comprises the full flow
of the inverse gluon propagator, the mass terms of quarks
and mesons are field dependent. They are captured by the
Yukawa term and the second derivative of the effective
potential respectively.

1. Mesons and quarks

The full quark and meson two-point functions (at
vanishing pion fields π ¼ 0 and vanishing quark chemical
potential μq ¼ 0) are given by

Γð2Þ
qq̄ ðpÞ ¼ ZqðpÞ½ipþMqðpÞ�;

Γð2Þ
ϕϕðpÞ ¼ ZϕðpÞp2 þm2

ϕ; ð77Þ

where both the wave function renormalizations and the
mass terms also depend on the chosen mesonic field ϕ. The
notation in (77) is that in [27,32], where the full momentum
dependence of the meson and quark two-point function of
two-flavor QCD in the vacuum has been computed. The
running quark mass parameter in the present work is given
by m̄l;k ¼ Ml;kð0Þ, and this relation holds on a quantitative
level, see the Figs. 26 and 28 in Appendix E 3. Evidently,
the fully momentum-dependent wave function renormali-
zations ZqðpÞ and mass functions MqðpÞ of the quarks are
uniquely defined as the prefactor of the Dirac tensor
structure and the scalar tensor structure respectively,

ZqiðpÞ ¼
1

4Nc

1

p2
trpΓð2Þ

qiq̄iðpÞ;

MqiðpÞ ¼
1

4Nc

1

ZqiðpÞ
trΓð2Þ

qiq̄iðpÞ; ð78Þ

where tr stands for the Dirac and colour trace, and we do
not sum over the flavor index i ¼ 1;…; 3. The different
tensor structures for the kinetic term and the mass term
provide us also with unique projections of the flow
equation on the flows ∂tZqðpÞ and ∂tMqðpÞ respectively.
The latter flow is related to the flow of the Yukawa coupling
and is discussed in Sec. IV C. The flow of the wave
function renormalization is encoded in the anomalous
dimension (30) of the quarks. In the present work we do
not introduce a thermal splitting of the wave function
renormalization in parts longitudinal and transversal to the
heat bath, but use the transversal part throughout. This
leads us to

ηqiðp0;pÞ¼
1

4Nc

1

Zq;kðp0;pÞ
Re

�
i
p2
trγ ·p∂tΓ

ð2Þ
q̄iqi;k

ðpÞ
�
; ð79Þ

where no sum over the flavors i is taken. It is well known
that the anomalous dimension of the quark carries a mild
momentum dependence, for results in the present fRG
setting as well as respective DSE and lattice results see
[7,27,32,40,175]. In particular, from [27,32] we infer
a very small momentum dependence of ηq in the regime
p2 ≤ k2. Hence, we use p ¼ 0 which facilitates the explicit
expressions,

ηqiðp0Þ ¼
1

4Zqi;kðp0Þ
Re

�
i
∂
∂p2 tr γ · p∂tΓ

ð2Þ
q̄iqi;k

ðpÞ
�
p¼0

; ð80Þ

where p0 is a small, but nonvanishing, frequency, for more
details see Appendix J. Its nontrivial choice is also related
to fact that the expression in the square bracket is complex

FIG. 5. Flow equations for the inverse propagators of quarks,
gluons, mesons respectively, in the present approximation; in
particular the tadpole contribution from two-quark–two-meson as
well as the remnant four-quark scatterings are missing, as is the
ghost-gluon tadpole. The derivative ∂̃t is defined in the caption of
Fig. 4. The left-hand sides stand for, in a slight abuse of notation,

∂tΓ
ð2Þ
k ¼ ∂tðG−1

k − RkÞ, where we have dropped the −Rk in the
depiction.
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for nonvanishing chemical potential. This is well under-
stood and originates in the silver blaze property: At
vanishing temperature correlation functions involving a
quark field qðωÞ below density onset are real functions of
the complex frequency variable ω − iμq, for a detailed
discussion in the fRG and 2PI approaches see [77,101,176].
Therefore we project the flow on its real part, denoted by
Re. The trace in (80) projects on the Dirac tensor structure
in the quark two-point function, that is its kinetic part. The
explicit expression of ηq;k is also given in Appendix J.
It follows from the parametrization (77) that the mesonic

wave function renormalizations and masses are given by

ZϕðpÞ ¼
1

p2
½Γð2Þ

ϕϕðp2Þ − Γð2Þ
ϕϕð0Þ�;

m2
ϕ ¼ Γð2Þ

ϕϕð0Þ: ð81Þ

In contradistinction to the quark wave function renormal-
izations and masses, that of the mesonic degrees of freedom
do not allow for unique definitions as they cannot be
distinguished by their tensor structures. Accordingly, one
can easily shift momentum dependence from the wave
function renormalization Zϕ to the mass m2

ϕ in (77).
Furthermore, for given ϕ0 ¼ ðσ0; π ¼ 0Þ, the σ and π parts

of Γð2Þ
ϕϕ are different,

Γð2Þ
σσ ðpÞ ¼ Zσ;kðpÞp2 þm2

σ;

Γð2Þ
πiπiðpÞ ¼ Zπ;kðpÞp2 þm2

π: ð82Þ

The σ and pion masses are given by the curvature of the
mesonic potential Vk in the respective field directions,

m2
π ¼ ∂ρVk; m2

σ ¼ m2
π þ 2ρ∂2

ρVk; ð83Þ

and are hence called curvature masses, see, e.g., [100].
Evidently, the pion mass vanishes in the chiral limit as
it is simply given by the EoM for cσ ¼ 0. The two masses
differ by a higher ρ-derivative term which is only present
for ρ0 ≠ 0, that is σ0 ≠ 0 as π≡ 0. The wave function
renormalizations follow similarly,

ZπðpÞ ¼ ZϕðpÞ; ZσðpÞ ¼ ZϕðpÞ þ ρ∂ρZϕðpÞ: ð84Þ

In the present approximation we do not consider the
dependence of the wave function renormalizations on
the mesonic fields. These terms amount to momentum-
dependent mesonic self-scatterings that vanish at vanishing
momentum. These terms are suppressed at low energies
which is the only regime where the offshell mesonic
fluctuations can play a role in the first place. This leaves
us with a uniform wave function renormalization which we
define via the pion two-point function,

ZϕðpÞ ¼ ZπðpÞ: ð85Þ

A natural definition of Zπ comes from the definition of the
pion pole mass

Γ̄ð2Þ
πiπiðp0 ¼ imπ;pol; p2 ¼ 0Þ ¼ 0; ð86Þ

with Γ̄ð2Þ
ϕϕðp0; pÞ ¼ Γð2Þ

ϕϕðp0; pÞ=Zϕðp0; pÞ, which implies

m2
π;pol ¼

1

Zπðimπ;pol; 0Þ
m2

π; ð87Þ

see, e.g., [100]. In the present Euclidean setup we are
restricted to p2

0 ≥ 0. The approximation Zπðimπ;pol; 0Þ ≈
Zπð0; 0Þ≡ Zπð0Þ is therefore the optimal choice for the
wave function renormalization in (87), as it is closest to the
pion pole. Since this pole, in turn, is close to the origin in
the region where mesons are dynamically relevant, this
approximation is even quantitative if ZπðpÞ is only mildly
momentum dependent in the small region jp2j≲m2

π .
Indeed, this has been demonstrated to be true for cutoffs
≲1 GeV within low energy effective theories in [100].
Hence, we arrive at

m2
π;pol ¼

1

Zπð0Þ
m2

π; ð88Þ

which also implies that the pole mass and the (renormal-
ized) curvature mass of the pion agree. Therefore we
consider explicitly the pion wave function renormalization,
and with (85) we arrive at

ZϕðpÞ ¼
1

3
δij

1

p2
½Γð2Þ

πiπjðpÞ − Γð2Þ
πiπjð0Þ�: ð89Þ

For momenta close to the pion pole this agrees well with
the pole renormalization. In the present work we consider
p2 ≥ 0 and hence the optimal choice is p2 ¼ 0 and p0 ¼ 0,
where the latter limit is taken first. This leads us to

Zϕð0Þ ¼
1

3
δij

�∂Γð2Þ
πiπj

∂p2
�
ðp ¼ 0Þ; ð90Þ

with the pion pole mass (88). As for the quarks we have
neglected the thermal splitting of the wave function
renormalization in parts longitudinal and transversal to
the heat bath. Instead we use the transversal part through-
out. The validity of this approximation has been checked
explicitly in, e.g., [126].
In the present work we also approximate the full

momentumdependence of the quark andmeson propagators
in the diagrams by cutoff-scale–dependent wave function
renormalizations and masses. The cutoff scale dependence
carries the—averaged—momentum dependence at p2 ≈ k2.
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Accordingly, this approximation provides even semiquan-
titative results in the flow if the momentum dependence of
the propagators is small formomentap2 ≲ k2.Moreover, the
spatial momentum q loop integrals of flows of correlation
functions at vanishing external spatial momenta pi ¼ 0 are
peaked at q2 ≈ k2 for generic cutoffs, and q2 ¼ k2 for the
present cutoff choice. Both properties originate in the spatial
momentum measure

Z
d3q
ð2πÞ3 Ikðq2Þ ¼

1

2π2

Z
∞

0

dqq2Ikðq2Þ; ð91Þ

with Ikðq2 > k2Þ ¼ 0 for the present cutoff choice (N1).We
conclude that if approximating the full ZϕðpÞ with (89) at
p ¼ k, the flow diagrams with meson propagators are well-
approximated. This leads us to the following approximation
of the full momentum dependence of the meson two point
function in the right-hand side of the flow equations,

Γð2Þ
ϕϕðpÞ ¼ Z̄ϕ;kp2 þm2

ϕ;

∂tZ̄ϕ;k ¼
∂tΓ

ð2Þ
ϕϕð0; kÞ − ∂tΓ

ð2Þ
ϕϕð0Þ

k2
; ð92Þ

where ð0; kÞ stands for ðp0 ¼ 0; p2 ¼ k2Þ. In summary, best
use of these consideration is made if Z̄ϕ with (92) is used in
the flow diagrams, while Zϕð0Þ defined in (90) is used for
determining the current quark masses via the pole mass of
the pion in the vacuum.
It is left to derive the flow equations for the wave

function renormalizations Z̄ϕ and Zϕð0Þ. Both can be read
of from the anomalous dimension (30) computed from the
k-derivative of (89). We use that

ηϕð0; pÞ ¼ −
δij

3Zϕð0; pÞ
∂tΓ

ð2Þ
πiπjð0; pÞ − ∂tΓ

ð2Þ
πiπjð0; pÞ

p2
; ð93Þ

lead to the flow of Z̄ϕ with

1

Z̄ϕ
∂tZ̄ϕ ≔ −ηϕð0; kÞ; with Z̄ϕ;Λ ¼ Zϕ;Λ ≡ 1: ð94Þ

Note that (93) and (94) imply that Z̄ϕ ≠ Zϕð0; kÞ. This can
be seen from the t-derivative of Zϕð0; kÞ,

∂t½logZϕð0; kÞ� ¼ −ηϕð0; kÞ þ
k

Zϕð0; kÞ
∂Zϕ

∂jpj ð0; kÞ; ð95Þ

where the second term comes from the spatial momentum
jpj ¼ k in Zϕð0; kÞ. We emphasize again that the present
approximation is based on the mild momentum dependence
of the mesonic wave function renormalization for p2 ≲ k2

of both low energy effective theories as well as full QCD. In
the vacuum this has been shown in [27,32,100]. Note,

however, that at finite density a nontrivial momentum
dependence of the meson wave function renormalization
can be induced by a modulated spatial structure, e.g., due to
an inhomogeneous quark condensate. As discussed below,
we find indications for such a regime here.
For the determination of the pion mass in the vacuum we

also require the wave function renormalization at vanishing
momentum, Zϕð0Þ. Its flow is read-off from (90),

ηϕð0Þ ¼ −
1

3Zϕð0Þ
δij

� ∂
∂p2 ∂tΓ

ð2Þ
πiπj

�
ðp ¼ 0Þ: ð96Þ

The explicit expression for (93) and (96) are deferred to
Appendix I. Note that Zϕð0Þ and Zϕð0; kÞ agree at k ¼ 0,
while Z̄ϕ does not. This deviation can be used for a
systematic error estimate, since the wave function renorm-
alizations only enter via ηϕ. Accordingly, it is the difference
ηϕð0; kÞ þ ∂t lnZϕð0; kÞ, that is the last term on the right-
hand side of (95), which is missing in the flows. We have
checked numerically that this difference does not play
any rôle.
In the current approximation, the pion pole mass in the

vacuum is given by

mπ;pol ¼
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zϕ;k¼0ð0Þ
p : ð97Þ

Similarly we approximate

mσ;pol ≈
mσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zϕ;k¼0ð0Þ
p : ð98Þ

However, we emphasize that (98) carries a qualitatively
larger systematic error in comparison to (97): Apart from
the fact that the physical meaning of the σ-resonance in the
scalar four-quark channel is still debated, [177,178], it
requires a small momentum behavior for a larger momen-
tum range jp2j≲m2

σ;pol. Nonetheless, in an extension of the
current setup to Minkowski frequencies the respective
observable provides the position of the lowest resonance
in the scalar channel.
Within this setup we adjust the pion mass in the vacuum,

mπ;pol ¼ 137 MeV, by fixing cσ . For the systematic error
estimate we also have run the vacuum flows with ηϕð0Þ
instead of ηϕð0; kÞ. Starting from the same initial conditions
we get a pion pole mass of 140 MeV, which gives us a ∼2%
error. Moreover, the purely fermionic observables, e.g.,
for Nf ¼ 2þ 1 the constituent light quark mass m̄l ¼
347 MeV (ηϕð0; kÞ), 343MeV (ηϕð0Þ) and the four fermion
coupling h̄2k=ð2m̄2

π;kÞ¼2.73×103GeV−2 (ηϕð0;kÞ), 2.80×
103 GeV−2 (ηϕð0Þ) also give us a systematic error estimate
of ≲2%. Technically, this stability of the fermionic observ-
ables comes about as ηϕ plays a subleading rôle for purely
fermionic observables. In summary both the actual small
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changes as well as the formal argument for the fermionic
observables support the present approximation.
At finite chemical potential the situation changes sig-

nificantly: The mesonic dispersion develops a minimum for
nonvanishing momentum. This entails that Zϕð0; kÞ and
Zϕð0Þ may and do differ qualitatively. Moreover, such a
behavior indicates an inhomogeneous regime, for more
details see Sec. V B and Fig. 21. Still, we have checked that
this does not affect the purely fermionic observables.

2. Gluons and ghosts

It is left to specify the gluon and ghost anomalous
dimensions. The ghost propagator has been shown to be
rather insensitive to quark contributions for Nf ¼ 2
and Nf ¼ 2þ 1 flavors as well as finite temperatures
T ≲ 1 GeV, see e.g., [33] and references therein. For this
reason we use the ghost anomalous dimension at vanishing
temperature from [32],

ηc ¼ −
∂tZ

QCD
c;k¼0ðpÞ

ZQCD
c;k¼0ðpÞ

����
p¼k

: ð99Þ

Note that (99) only enters explicitly the ghost triangle in the
vacuum flow of the three-gluon vertex depicted in Fig. 6,
see Sec. IV B 2. Implicitly, ηc is also present via the input
from [32,33] and in the temperature and density fluctua-
tions of purely gluonic two- and three-point functions.
For the gluon anomalous dimension we decompose the

flow for the inverse gluon propagator into the pure glue
diagrams and the quark loop, see Fig. 5. As discussed in
Sec. III B, we utilize quantitative results for vacuum two-
flavor QCD, [32], and finite temperature Yang-Mills theory,
[33]. Then, the gluon anomalous dimension ηA;k at finite
temperature and density is decomposed into a sum of three
parts,

ηA ¼ ηQCDA;vac þ ΔηglueA þ ΔηqA: ð100Þ

The first term on the r.h.s. of the equation above accounts
for the vacuum contribution to the gluon anomalous
dimension. In turn, ΔηAA and ΔηqA account for the medium
contributions to the gluon anomalous dimension, from
gluon loops and quark loops respectively.
For Nf ¼ 2 we infer it directly from the corresponding

gluon dressing function ZQCD
A;k¼0ðpÞ from [32] with

ηQCDA;vacjNf¼2
¼ −

p∂pZ
QCD
A;k¼0ðpÞ

ZQCD
A;k¼0ðpÞ

����
p¼k

: ð101Þ

Full RG-invariance of the procedure is then obtained by
rewriting the anomalous dimension as a function of the
running coupling αs;k as done in [28,137]. This is described
further in Appendix D. In the present work we simply
adjust the input coupling αs;Λ consistent with its implicit
value given in ηA: We choose αs;Λ such that the quark-gluon
and purely gluonic couplings show the same ultraviolet
running. Their running is proportional to 1=2ηA and 3=2ηA
respectively, the rest of the β-functions is given by diagrams
proportional to αs;k. Only for the consistent initial coupling
both runnings can agree as they should. For more details
see Sec. IV B 3.
We also emphasize that instead of the fRG data from [32]

we also could have taken lattice data or other data from
other functional approaches such as the DSE. As mentioned
before, it is an important feature of the current setup that
results obtained within other approaches can be system-
atically included. This allows for systematic improvements
and hence enhances the reliability of the current approach.
For Nf ¼ 2þ 1 we include the contribution of the

s-quark via its flow. Then we use

ηQCDA;vac ¼ ηQCDA;vacjNf¼2
þ ηsA;vac; ð102Þ

with

ηsA;vac ¼ −
1

2ðN2
c − 1Þ ∂p2 ½Π⊥

μνFlow
ð2Þ
AA

aa
μνðpÞ�ðsÞp¼0

: ð103Þ

The transversal projection operator Π⊥ in (103) is defined
in (N2). The superscript ðsÞ denotes the strange quark
contribution. As in the two-flavor case the initial coupling
αs;Λ is adjusted by RG-consistency. For more details see
Sec. IV B 3.
Now we proceed to the gluon anomalous dimension

at finite temperature and density. The difference to the
vacuum anomalous dimension is comprised in the second
and third term on the right hand side of (100). Here, ΔηqA;T
in (100) denotes the contribution of the quark loop at finite
temperature and quark chemical potential μq. With (64)
it reads

FIG. 6. Flow equations for the three-point functions computed
here: quark-gluon, three-gluon and Yukawa couplings. In the
present approximation, the diagrams with higher order vertices
and the remnant four quark vertices are dropped. ∂̃t is defined in
the caption of Fig. 4.
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ΔηqA ¼ −
1

2ðN2
c − 1Þ

ΠM
μνðpÞ
p2

ð½Flowð2Þ
AA

aa
μνðpÞ�ðqÞT;μ

− ½Flowð2Þ
AA

aa
μνðpÞ�ðqÞT;μ¼0

Þjp0¼0
jpj¼k

; ð104Þ

where the superscript ðqÞ indicates the contribution of the
different quark flavors. The vacuum contribution is sub-
tracted in (104), and we have used the transverse magnetic
tensor in the projection,

ΠM
μνðpÞ ¼ ð1 − δμ0Þð1 − δν0Þ

�
δμν −

pμpν

p2

�
: ð105Þ

Moreover, the contraction of Lorentz and group indices is
implicitly understood in (104). The explicit expression for
ΔηqA can be found in (H1).
The thermal contribution of the glue sector is encoded in

the second term on the r.h.s. of (100), i.e., ΔηglueA . It has
been discussed in [33] that it is well-captured by a thermal
screening mass, its inclusion is described in detail in
Appendix H. Note that the present setup does not take
into account the full backcoupling of the thermal and
density fluctuations of the quark in the pure glue diagrams.
A respective error estimate is discussed in Appendix D.
There it is shown that this approximation, the ‘direct sum’
of the contributions, already works semiquantitatively for
the much bigger backcoupling effects related to adding the
quarks to pure glue in the vacuum. In the present work we
take the vacuum backcoupling fully into account, and only
apply the direct sum approximation to the much smaller
thermal and density contributions. This suggests a quanti-
tative nature of the current setup.

B. “Avatars” of the strong coupling αs

In the present truncation we consider different “avatars”
of the strong coupling, introduced in Sec. III D, as well as
the Yukawa coupling between quarks and the scalar-
pseudoscalar mesons, introduced via dynamical hadroniza-
tion in Sec. III E.

1. Quark-gluon couplings

The strong couplings and their running with the RG
scale, especially the quark-gluon couplings gq̄Aq ¼
ðαl̄Al; αs̄AsÞ, play a significant rôle in dynamical chiral
symmetry breaking, see, e.g., [27,28,72,179] for more
detailed discussions. As we discuss in Sec. III D, different
strong couplings are identical in the perturbative regime
due to the mSTIs, however, they deviate from each other in
the nonperturbative or even semiperturbative regime [32].
In Fig. 6 we show the flow equations for the quark-gluon
and three-gluon couplings. The first and third diagrams on
the r.h.s. of the equation in the first line are the usual QCD
contributions, while the second one arises from the mesonic
fluctuations. Thus the relevant flow equation for the

quark-gluon coupling is given by the projection of the

flow of Γð3Þ
Aqq̄ on the classical tensor structure Tð1Þ

Aqq̄ ¼
Sð3ÞAqq̄=g. This leads us to

∂tgq̄Aq ¼
�
1

2
ηA þ ηq

�
gq̄Aq

−
1

8ðN2
c − 1Þ tr½½Flow

ð3Þ
Aqq̄�aμ½T

ð1Þ
Aqq̄�aμ�ðfpgÞ; ð106Þ

where the trace sums over Dirac indices and the funda-
mental representation of gauge group. The classical tensor
structure is given by

½Tð1Þ
Aqq̄�aμ ¼

�
1

g
Sð3ÞAqq̄

�
a

μ

¼ −iγμta; ð107Þ

where the coupling has been divided out. The contracted
flow in (106) is normalized with the trace of the classical
tensor structure squared,

tr½½Tð1Þ
Aqq̄�aμ½T

ð1Þ
Aqq̄�aμ� ¼ −8ðN2

c − 1Þ: ð108Þ

In (106), fpg denotes the set of external momenta for the
three-point vertex. The momentum for the gluon is chosen
to be vanishing, and that for the quark as illustrated in
Appendix J. We divide the term in the second line of (106)
into two parts, i.e., ∂tgq̄AqjA and ∂tgq̄Aqjϕ, which corre-
spond to the relevant contributions from the quark-gluon
and quark-meson couplings, respectively. Their expres-
sions are given in (M2) and (M3).
It is left to discuss the effect of the current approximation

with only the classical tensor structure. In quantitatively
reliable approximations to QCD the initial conditions at a
perturbative initial scale Λ≳ 10 GeV, as described in
Appendix E 1, lead to QCD physics at vanishing cutoff
scale k ¼ 0. In particular, this holds for the physics of
spontaneous chiral symmetry breaking, see [27,32] for
quenched and unquenched Nf ¼ 2 flavor results respec-
tively. From these computations we also know that not only
the classical tensor structure of the quark-gluon vertex
carries the fluctuations important for chiral symmetry
breaking. In turn this implies, that an approximation with
only the classical vector tensor structure may lack inter-
action strength. This typically calls for a phenomenological
infrared enhancement of the quark-gluon coupling αq̄Aq that
compensates for the missing tensor structures. This is
common to all functional approaches within approxima-
tions that lack full quark gluon vertices, for related
discussions in DSEs see Sec. VI and e.g., [35–37,39,
65,138–141,175,180], for a recent review see [7].
In the present work we follow the approach proposed in

[28], where the infrared enhancement is directly introduced
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in the infrared part of the flow. More details can be found in
Appendix E 2. Here, we simply summarize the results:
In the present setup it turns out that the required

infrared enhancement is rather small, only for cutoff scales
smaller than 2 GeV the flow is enhanced with a factor
1.034, see (E9) and (E10) in Appendix E 2. While being
small, its effect is significant as the constituent quark mass
of the light quarks would be mq ¼ 217 MeV without the
enhancement. Thus, there is only a fine line between “too
little” (or no) and “too much” chiral symmetry breaking in
QCD. This has already been observed in [27,32], where a
quantitative approximation to two-flavor QCD in the
vacuum was studied. See also [181] for a related two-
flavor DSE study with Nc ¼ 2. This peculiar behavior of
first principle QCD which may also has significant
consequences for the interplay of confinement and chiral
symmetry breaking at finite temperature and density, can be
phrased as: QCD is living on the edge. In [27,32], in
particular all tensor structures and momentum dependences
of the quark-gluon vertex have been included self-
consistently. There it has been observed that the non-
classical tensor structures, in particular the chiral symmetry
breaking ones, contribute significantly to the size of
dynamical chiral symmetry breaking.
Still, we interpret the smallness of the enhancement as a

sign of robustness and quantitative reliability of the present
setup: At finite μB the coupling decreases and we are
sensitive to the functional form of how the infrared
enhancement is switched of at larger momentum scales.
Note that the latter scale also includes temperature and
chemical potential. Accordingly, the smaller the infrared
enhancement is the less influence this can have. In turn, in
the presence of a significant infrared enhancement this calls
for a systematic study of its shape.

2. Gluonic couplings

The gluonic couplings includes the three- and four-
gluon couplings gA3 , gA4 , and the ghost-gluon coupling
gc̄Ac. In the vacuum we adopt the approximations: gA4 ¼
gA3 and gc̄Ac ¼ gl̄Al, see also (56). This is consistent with
the results obtained in [28,32] for cutoff and momentum
scales k≳ 1 GeV. For smaller cutoff scales k≲ 1 GeV the
purely gluonic couplings, gA3 , gA4 , decay rapidly and the
relative difference is subleading. In turn, the ghost-gluon
coupling gc̄Ac approaches a sizable value (αc̄Acðk¼ 0Þ≈3).
However, in the present setup, the ghost-gluon coupling
only contributes explicitly to the vacuum part of the flow of
the three-gluon vertex in the ghost triangle in Fig. 6. This is
a subleading diagram except in the deep infrared for
k≲ 100 MeV. In this regime it leads to the zero-crossing
of the three-gluon vertex and a small negative IR value of
the coupling. This infrared limit is not reproduced in the
present approximation, but this deep-IR property has no
effect on the present results.

This leaves us with the quark-gluon couplings αq̄Aq with
the flows (106) at finite temperature and density, and the
three-gluon coupling αA3 . We strive for RG-consistency
also at finite temperature and density and identify the
thermal contributions of the quark-gluon and ghost-gluon
couplings. For the computations we use that of the quark-
gluon coupling, (106), which is the most relevant for the
chiral dynamics of the theory. This entails for the medium
contribution ∂tΔgA3 ¼ ∂tgA3 − ∂tgA3;vac

∂tΔgA3 ¼ ∂tΔgq̄Aq: ð109Þ

The vacuum part has been computed in [28] and we use the
respective flows

∂tgA3 ¼ 2

3
ηAgA3 þ i

12NcðN2
c − 1Þ

× lim
p→0

�
1

p2
pρfabc½Flowð3Þ

A3 ðp;−pÞ�abcμνρ
δμν

�

þ ∂tΔgA3 : ð110Þ

The momentum configuration of Flowð3Þ
A3 ðp;−pÞ is chosen

such that the three external gluons carry incoming momenta
p, −p and 0 respectively. The contraction with δμνpρfabc

and the normalization comes from the projection on the

classical tensor structure Tð1Þ
A3 ,

½Tð1Þ
A3 �abcμνρ

ðp1;p2;p3Þ ¼
1

g
½Sð3ÞA3 �abcμνρ

ðp1;p2;p3Þ

¼ ifabc½ðp2−p1Þρδμνþðp1−p3Þνδμρþðp3−p2Þμδνρ�:
ð111Þ

As in (107), the strong coupling has been divided out. For
the diagrammatic representation of the quark-, gluon-,
ghost- triangle diagrams, and the tadpole diagram from
the four-gluon coupling, see Fig. 6.

3. RG-consistency of the avatars of the strong coupling

The flows computed in the present work utilize input
from the quantitative Nf ¼ 2 flavor vacuum QCD [32] and
finite temperature YM computations [33]: Parts of the
gluon and ghost anomalous dimensions ηA and ηc are taken
from these works, see Sec. IVA 2. The input is given in
terms of the running scale k in either Nf ¼ 2 flavor vacuum
QCD or finite temperature Yang-Mills (YM) theory. The
current setup differs in several aspects. First of all, we also
consider Nf ¼ 2þ 1 flavors. Moreover, the regulators
chosen in the present work differ from that in [32,33].
These differences are fully accounted for if one resolves the
anomalous dimension as a function of αs and further
parameters, that is ηA;k ¼ ηAðαs;kÞ. This has been put
forward in [28,137], see also Appendix D.
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This scale matching entails in particular that the strong
coupling at the initial scale has to be chosen consistently
with that implicit in ηAðαsÞ. In the present work we
guarantee the above RG-consistency in the following sense:
In the perturbative regime the β-functions of the different
avatars of the strong coupling, i.e., the three-gluon coupling
(54) and the quark-gluon coupling (55) have to agree. Their
flows are given by (110) and (106) respectively. In the
perturbative regimewe have gA3

¼ gq̄Aq ¼ gs, which entails
schematically

∂tgA3 − ∂tgq̄Aq ¼ ηAðαsÞgs þ diagramsðαsÞ¼! 0; ð112Þ

where “diagramsðαsÞ” stands for the difference of the
diagrams for the three-gluon and quark-gluon vertices
depicted in Fig. 6. The constraint (112) is the requirement
of RG-consistency of the couplings. For a given initial
cutoff scale k ¼ Λ it defines the consistent initial condition
for the strong coupling. In particular, it adjusts for the
relative RG-scaling in Nf ¼ 2 and Nf ¼ 2þ 1 flavor
QCD. The couplings αq̄Aq; αs̄As; αA3 determined by this
procedure agree well with each other for cutoff scales
k≳ 5 GeV, and hence are RG-consistent, see Fig. 17. For
smaller cutoff scales, k≲ 5 GeV the different couplings
start to separate which is also seen in [32]. This is expected
and necessary, as for smaller scales we enter the non-
perturbative regime which is influenced by the confining
gluon gap. Moreover, the initial coupling αs;Λ derived from
(112) agrees quantitatively with that in [32]. Both proper-
ties constitute nontrivial reliability tests of the current
approach. Moreover, in Appendix D it is shown that the
procedure adapted here only leads to small quantitative
effects even if going from Yang-Mills theory to Nf ¼ 2

flavor QCD, which requires a far larger scale correction. In
summary the combined checks suggest a small systematic
error of the current procedure, the attraction of which is its
simplicity.

C. Yukawa coupling

In the full effective action without approximation the
Yukawa coupling in (39) is field-dependent, h ¼ hðρÞ, and
the ρ-dependence takes into account higher scattering
processes of quarks with the scalar-pseudoscalar mesonic
channel [75]. This already entails that strictly speaking we
have to deal with two Yukawa couplings at the expansion
point ϕ0 ¼ ðσ0; π ¼ 0Þ,

hπ ¼ hðρ0Þ ¼ Γð3Þ
ðq̄τqÞπ½Φ0�;

hσ ¼ hðρ0Þ þ ρh0ðρ0Þ ¼ Γð3Þ
ðq̄τ0qÞσ½Φ0�: ð113Þ

Both vertices are derived from hðρÞ and are present in the
flow equations for correlation functions. In the present
work we consider the ρ-dependence of the Yukawa

coupling as subleading and identify hσ ¼ hπ ¼ h. The
corresponding error is minimized by identifying h ¼ hπ
as we have three pions and only one radial mode σ.
Moreover, the pions are lighter except in the scaling regime
in the vicinity of the critical point. Hence already the
diagrams with one pion mode give bigger contributions
than those with the σ. In the critical region the σ, as the
critical mode, becomes massless. However, this regime is
exceedingly small and a detailed analysis of its features will
be presented elsewhere.
This leaves us with the flow equation of h ¼ hπ, or rather

that of h̄,

∂th̄ ¼
�
1

2
ηϕ þ ηq

�
h̄ − m̄2

π
_̄Aþ Flowð3Þ

ðq̄τqÞπ; ð114Þ

where m̄2
πðρ̄Þ ¼ V̄ 0ðρ̄Þ=k2, and the subscript ðq̄τqÞπ indicates

the projection on the pseudoscalar part of the Yukawa

coupling. The diagrams contributing to Flowð3Þ
ðq̄τqÞπ are

shown in the third line of Fig. 6. Note that, as discussed

in Sec. III E, the hadronization function _̄A explicitly enters
the flow of the Yukawa coupling. This highlights the fact
that dynamical hadronization, in contrast to conventional
bosonization, stores the full dynamical information of the
four-quark correlation in the constituent-quark–meson
sector. The ratio h̄2=ð2m̄2

ϕÞ then is identical to λ̄q (without
dynamical hadronization) in the chirally symmetric phase,
reflecting the smooth transition from fundamental to
composite degrees of freedom in QCD.
However, instead of using the flow equation for

Γð3Þ
qq̄πi ½Φ0�, it is simpler to use the fact that the scalar part

of the quark two-point function is proportional to
Zqσ0hðρ0Þ. Note that this only holds true within a dynami-
cal hadronization of the theory which keeps the formulation
maximally symmetric: The only term that breaks explicitly
chiral symmetry are the linear terms in σ and σs. As shown
in Appendix B this implies _Ck ≡ 0 in (15). Then, the flow
of h̄ can be deduced from that of the quark two-point
function, see Fig. 5, with

∂th̄ ¼
�
1

2
ηϕ þ ηq

�
h̄ − m̄2

π
_̄Aþ 1

σ̄
ReFlowð2Þ

q̄τ0q; ð115Þ

where the subscript ðq̄τ0qÞ indicates the projection on the
scalar part q̄τ0q ¼ ðūuþ d̄dÞ=2 of the quark two-point
function. More details can be found in Appendix B.
Both, (114) and (115) provide the flow of h̄. This is

different from the flows of hπ and hσ, which differ by a term
proportional to h0ðρÞ. In the present case we use (115) for
∂th̄, as it has the simpler diagrammatic part.
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D. Effective potential

The effective potential Vkðρ; L; L̄Þ in (39) receives direct
contributions from the quark and meson loop in Fig. 2. Via
the quark loop of the flow equation for the gluon two-
point function the gluon propagator also develops a
ϕ-dependence. The latter ϕ-dependence then also propa-
gates to the ghost loop. However, both dependences are
negligible and are dropped in the following. This leaves us
with a flow for the effective potential which only receives
contributions from the quark and meson loop in (26), see
also Fig. 2. Owing to the coupling between the gluon
background field A0 and the quarks, the quark loop also
induced a dependence on the Polyakov loop to the effective
potential. The flow equation for ∂tVk, (F1), is discussed in
detail in Appendix F, results for the Polyakov loop are
depicted in Fig. 7.
Here we only emphasize the important parts of

Appendix F. In the present work we resort to a Taylor
expansion of the effective potential. In general this can be
done about a k-dependent expansion point,

V̄mat;kðρ̄; L; L̄Þ ¼
X∞
n¼0

λ̄n;k
n!

ðρ̄ − κ̄kÞn; ρ̄ ¼ Zϕρ; ð116Þ

where ρ̄ is the renormalized field (42). On the right-hand
side of (116) we have suppressed the dependences on L, L̄
of the expansion coefficients: λn;k ¼ λn;kðL; L̄Þ and
κk ¼ κkðL; L̄Þ. Moreover, in (116) we have implicitly
assumed its convergence. It has been shown in [75] that
the most rapid convergence of this expansion is achieved if
the expansion point κ is kept fixed, for applications see also
[28,76,78]. Then the only k-dependence of the expansion
point in (116) comes from the mesonic wave function Zϕ.
In the present work we resort to an expansion about

the flowing solution of the quantum equation of motion,
κk ¼ ρ̄EoM;k with

∂
∂ρ̄ ðV̄kðρ̄; L; L̄Þ − c̄kσ̄Þjρ̄¼ρ̄EoM;k

¼ 0: ð117Þ

Using the flowing expansion point (117) facilitates the
access to the expectation value of the σ-field. The expan-
sion is described in more detail in Sec. F.
The price we pay for this simple access to the EoM of the

σ field is that this expansion shows bad convergence
properties for large chemical potential. This is but one
of the reasons why our current analysis is limited to
μB=T ≲ 6. For general considerations concerning the sta-
bility of this expansion scheme see [75,182]. Respective
k-independent expansion schemes, full effective potentials
and a detailed stability analysis will be considered in
future work.

V. RESULTS AND DISCUSSION

In this section we discuss a selection of numerical results
obtained in the present setup. We concentrate on Nf ¼
2þ 1 flavor QCD, and use the corresponding results for
Nf ¼ 2 only for the comparison of the Nf ¼ 2 and Nf ¼
2þ 1 flavor QCD phase structures. Confinement and chiral
symmetry breaking is discussed in Sec. VA. Indications for
an inhomogeneous phase at large chemical potential are
shown in Sec. V B. The strong couplings and propagators at
finite T and μB are discussed Sec. V C. In Sec. V D we
present phase structure of Nf ¼ 2 and Nf ¼ 2þ 1 flavor
QCD at finite temperature and density.
In practice, we numerically solve the coupled set of flow

equations discussed in the previous section together with
the initial conditions discussed in Appendix E. As it has
been discussed extensively in the literature, e.g., [27–29,
32,63,72,183–185], the running couplings in the bound
state sector are governed by an IR attractive fixed point in
the chirally symmetric regime. As a consequence, if we
initialize the flow in the perturbative regime, the initial

FIG. 7. Left panel: Nf ¼ 2þ 1 constituent mass m̄l of light quarks as a function of temperature T at various baryon chemical
potentials μB. Right panel: Polyakov loops L, L̄ as functions of temperature T at different baryon chemical potentials μB.
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conditions are fixed by the initial values of the strong
coupling and the quark masses. As long as the initial meson
masses are larger than the cutoff scale, our results are
independent of the choice for the initial values in the meson
sector, i.e., independent of any low-energy effective param-
eters. The low-energy sector emerges dynamically in our
case, and the corresponding parameters cannot be tuned,
but are predicted.
Note that the mutual coupling of the different n-point

functions through their respective flow equations leads to a
resummation of infinitely many diagrams upon integration
of these equations. The renormalization and regularization
provided by the fRG gives us access to the nonperturbative
IR regime of QCD.

A. Chiral and confinement-deconfinement order
parameters and signatures for the CEP

Observables and order parameters are derived from fields
with nonvanishing expectation values: The scalar conden-
sates σ̄EoM and σ̄s;EoM are directly related to dynamical
chiral symmetry breaking, and the Polyakov loop and its
conjugate, L, L̄, are related to confinement, as introduced in
Sec. III F. Note however that these order parameters are not
observables themselves.
In particular, the mesonic fields ϕ ¼ ðσ; πÞ are intro-

duced as low energy effective fields that carry the dynamics
of the scalar-pseudoscalar four-quark interaction. They
carry the same quantum numbers as the related mesons
but their direct physics interpretation in terms of on shell
mesons has to be taken with a grain of salt. Nonetheless,
the renormalized light chiral condensate and the reduced
chiral condensate, Δl;R and Δl;s respectively, are given in
terms of the unrenormalized expectation values σEoM and
σs;EoM, for more details see Appendix A. In the present
work we concentrate on the renormalized light chiral
condensate Δl;R,

Δl;RðT; μqÞ ¼ −
cσ

2N R
½σEoMðT; μqÞ − σEoMð0; 0Þ�; ð118Þ

with a normalization −cσ=ð2N RÞ which is fixed to the
lattice, see also (A3). The reduced condensate is also
discussed in Appendix A, but carries a larger systematic
error in the present approximation.
In turn, the Polyakov loop is an order parameter for

confinement in pure Yang-Mills theory, but does not
carry a direct physics interpretation in QCD with dyna-
mical quarks. Despite these deficiencies both, σ̄EoM and
ðL; L̄ÞEoM play a distinguished rôle for the low energy
dynamics of QCD.
In Fig. 7 we show the constituent mass of light quarks

and the Polyakov loop as functions of the temperature for
several values of μB. The size of the quark mass entails the
strength of dynamical chiral symmetry breaking triggered
by the scalar-pseudoscalar four-quark interaction. We see

that both transitions are crossovers for small baryon
chemical potential as is well-known due to explicit chiral
and center symmetry breaking, see, e.g., [186]. They are
getting sharper and shift to smaller temperatures with
increasing μB. As L and L̄ are related to the free energy
of a single quark and antiquark respectively, they are
different at finite μB: Heuristically speaking, it is easier
for an antiquark to propagate in a system with an excess of
quarks, and hence L̄ is larger than L at finite, positive μB.
As discussed in particular in Sec. III E, the four-quark

interaction plays a central role for chiral symmetry break-
ing. The physical picture is that, as the strong coupling
increases in strength with decreasing energy scale, the
scattering of quark-antiquark pairs, mediated by gluon
exchange, becomes stronger and eventually resonant. If
this resonance occurs in the channel which carries the
quantum numbers of a scalar quark condensate, hq̄qi, chiral
symmetry is spontaneously broken. Dynamical hadroniza-
tion allows us to accurately capture the dynamics of the
resonant quark-antiquark scattering channels in both the
symmetric and the spontaneously broken phase. As argued
in Sec. IV C, the resulting effective four-quark interaction
of the scalar-pseudoscalar channel is the given by the ratio
h̄2=ð2m̄2

πÞ. In Fig. 8 we show it as a function of the RG
scale k for several values of the temperature. Starting from
large k, the coupling rises as expected from the increasingly
strong quark-antiquark scattering. At T ¼ 0 and around
k ≈ 400 MeV, the increasingly steep rise indicates the
resonance. The coupling turns into a pion-exchange inter-
action below this scale through dynamical hadronization.
Since the pion mass and the pion-quark Yukawa coupling
are essentially constant in the chirally broken phase
(cf. Figs. 11 and 16), this interaction becomes approx-
imately constant as well. The thermal suppression of the
strong coupling discussed below leads to a suppression of
the four-quark interaction with increasing temperature. As a

FIG. 8. Nf ¼ 2þ 1 effective four-quark coupling h̄2=ð2m̄2
πÞ in

the pseudoscalar channel as a function of the RG scale k at
different temperatures and μB ¼ 0.
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consequence, the resonance disappears and chiral sym-
metry is restored at sufficiently high temperature. This is
discussed in more detail in [179].
In Fig. 9 we show the effective four-quark interaction

h̄2=ð2m̄2
πÞ as a function of T for k ¼ 0 for various chemical

potentials. The insensitivity to μB at vanishing temperature
is a consequence of the silver blaze property discussed in
Sec. IVA 1. For correlation functions below onset density,
it implies that their dependence on μB is given solely by a
μB-dependent shift of the frequencies of external legs that
carry baryon number. This is discussed in detail in [101].
For the present case, see Appendix J. For increasing
temperature, the four-quark interaction melts down earlier
and more rapidly with increasing μB. Consequently, the
chiral transitions occurs also more rapidly and at lower
temperatures.

The order parameter for chiral symmetry breaking used
in the present work is the renormalized light chiral
condensate Δl;R, see Appendix A, in particular (A7) and
Fig. 22. In Fig. 10 (left panel) we show Δl;R as a function
of temperature at various baryon chemical potentials. At
μB ¼ 0 we compare our result to the continuum extrapo-
lation of lattice results at the physical point from [187] and
find very good agreement. The corresponding thermal
susceptibility, ∂Δl;R=∂T, is shown in the right plot of
Fig. 10. We use the peak position to define the pseudoc-
ritical temperature. We note that the pseudocritical temper-
ature Tc ¼ 156 MeV at μB ¼ 0 is in quantitative agreement
with the lattice prediction. Similarly, one can use the
inflection points of m̄l and the Polyakov loop in Fig. 7
to extract Tc, which yield 155 MeV and 153 MeV
respectively, at vanishing baryon chemical potential.
While these are not unique definitions of the crossover
temperature, they match well with each other. For a more
detailed comparison of chiral order parameters in the
crossover regime see, e.g., [75].
The dynamics of the system at different T and μB are

reflected in the meson masses. They are shown in Fig. 11.
The splitting of the pion and σ meson mass due to the chiral
condensate is clearly visible. Furthermore, since m̄σ is
directly related to the inverse correlation length of the
system, it has a dip at the chiral crossover. The closer the
system is to the CEP, the lighter the sigma becomes at
the transition until it eventually dips below m̄π. This
indicates that the system enters the critical region, as
visible in Fig. 11 for μB ¼ 630 MeV. At the CEP, the
sigma is exactly massless since it is the critical mode of the
chiral phase transition.
We also find that in the chirally symmetric phasemπ and

mσ become degenerate and grow rapidly with the increase
of T. This entails that the mesonic degrees of freedom

FIG. 9. Nf ¼ 2þ 1 effective four-quark coupling h̄2=ð2m̄2
πÞ at

vanishing cutoff scale, k ¼ 0, in the pseudoscalar channel as a
function of temperature T at various baryon chemical potentials μB.

FIG. 10. Left panel: Nf ¼ 2þ 1 renormalized light chiral condensate, Δl;R, see Eqs. (A3), (A7), as a function of temperature T at
various baryon chemical potentials μB. The normalization constant in (A3), (A7) is chosen to match the scale in the lattice calculation
[187]. Right panel: Thermal susceptibility of Nf ¼ 2þ 1 renormalized light chiral condensate, ∂tΔl;R, as a function of temperature T at
various baryon chemical potentials μB.
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decouple quickly when the temperature of the system is
above Tc. In this regime the dynamics are governed by the
fundamental degrees of freedom of QCD. This will be
discussed in more detail below. We note that the inclusion
of only the resonant scalar-pseudoscalar interaction channel
in the two-flavor subspace of 2þ 1 flavors entails that
Uð1ÞA is maximally broken. Hence, the mesons in the light
sector that receive a positive contribution to their mass from
the axial anomaly, η0 and a0, are fully decoupled here. We
defer a more complete study of chiral symmetry restoration,
including the anomalous effects, to future work.

B. Potential inhomogeneous regime
at large chemical potential

At finite chemical potential the situation changes sig-
nificantly: The mesonic dispersion develops a minimum
at nonvanishing momentum. This is signaled by Zϕð0Þ at
k ¼ 0 as defined in (85) and (90) turning negative. Indeed
this happens for baryon chemical potentials μB ≳ 420 MeV
for a temperature regime that widens with increasing
chemical potential, see Fig. 12. The left panel shows
Zϕð0Þ as a function of temperature for different baryon
chemical potentials, while the right panel shows 1=jZϕð0Þj,
which highlights the negative regime bounded by the
spikes. This property entails that the mesonic two-point
function develops a negative slope at vanishing momentum.

With Γð2Þ
ϕϕ ≥ 0 and it being proportional to p2 for large

momenta this implies a minimum for Γð2Þ
ϕϕðpÞ for p0 ¼ 0

at nonvanishing spatial momentum, p2min ≠ 0. This may
signal a spatially modulated or inhomogeneous regime.
Vanishing of the wave function renormalization, as the
coefficient of p2 in the meson propagator, can be indicative
of an instability toward the formation of an inhomogeneous
quark bound state, such as a chiral density wave. Whether
or not inhomogeneous condensation occurs cannot be
answered on the basis of only the meson wave function
renormalization. Such an analysis requires a systematic
study of the competing effects of potential homogeneous
and inhomogeneous resonances in quark-antiquark scatter-
ing channels. This will be deferred to future work. The
relation between a minimum of the dispersion relation of
bound states and inhomogeneous phases has been dis-
cussed in detail in the past decade within low energy
effective theories at and beyond mean field. For reviews

FIG. 11. Nf ¼ 2þ 1 meson masses m̄π , m̄σ as function of the
temperature at different baryon chemical potentials μB. They are
rescaled by the multiplicative constant zϕ ≡ ðZ̄ϕ=Zϕð0ÞÞ1=2T;μB¼0. As
a result, zϕm̄ coincides with the pole mass defined in (88) and (98)
in the vacuum. The in-medium behavior is that of the curvature
masses defined in (43). For more details see Sec. IVA 1.

FIG. 12. Left panel: Zϕð0Þ at vanishing cutoff scale as a function of the temperature T for various baryon chemical potentials μB.

Negative Zϕð0Þ, see (90), entails a negative spatial momentum slope of the dispersion Γð2Þ
ϕϕðpÞ at vanishing momentum. This indicates a

minimum of the dispersion at a finite p2 ≠ 0. Right panel: j1=Zϕð0Þj for the data in the left panel. Between the spikes the wave function
renormalization is negative at p2 ¼ 0.

FU, PAWLOWSKI, and RENNECKE PHYS. REV. D 101, 054032 (2020)

054032-26



see, e.g., [188–192], for applications with the functional
RG see, e.g., [116,118,193–195].
This regime is indicated in the phase diagram in Fig. 21.

The blue shaded area corresponds to the region with
Zϕð0Þ < 0. The hatched red area denotes where this region
overlaps with a sizable homogeneous chiral condensate.
Note that the chiral phase boundary lies within this regime
for baryon chemical potentials μB ≳ 500 MeV. Hence, in
particular in the hatched red region a competition between
homogeneous and inhomogeneous quark-antiquark pairing
is expected. This competing order effect can alter the
phase structure. The hatched red region should therefore
also be interpreted as a systematic error on our phase
boundary. Accordingly, the present approximation should
be upgraded by inhomogeneous four-quark interactions at
larger μB. Most notably, the CEP lies in this regime.
The connection between the CEP and inhomogeneous

phases has been investigated within low energy effective
theories, e.g., [193]. It has been shown that the relative
position of the onset of the inhomogeneous regime and the
chiral CEP is related to the σ mass gap, mσ , and the
constituent light quark mass, ml. For ml ¼ mσ=2 the two
onsets agree on the mean field level. In this case the phases
with restored chiral symmetry, the homogeneous phase and
the inhomogeneous phase meet at a singe point, the Lifshitz
point. For ml ≥ mσ=2 the location of the (potential) chiral
CEP is at larger baryon chemical potential as that for the
onset of the inhomogeneous regime. In the present case we
have ml ≥ mσ=2 with ml=mσ ¼ 347=510 ≈ 0.68 in the
vacuum. However, it has been argued in [196] that strong
IR fluctuations wipe out the Lifshitz point. This could even
lead to the destruction of the CEP. We emphasize that a
detailed investigation of this regime goes beyond the scope
of the present work but will be discussed in a forthcoming
publication. However, we emphasize again that our obser-
vation of a minimum at nonzero spatial momentum in the
mesonic dispersion is a strong indication for very interest-
ing physics in this regime.

C. Dynamics and sequential decoupling

The relevance of the different fields for the dynamics of
the system at different energy scales is encoded in the
strength of the vertices and the propagator dressings. For
example, we have already seen, that the effective four quark
coupling h̄2=ð2m̄2

πÞ decays rapidly for large momentum or
cutoff scales, see Figs. 8 and 9. Accordingly, the quark-self
coupling gets irrelevant in the UV. Moreover, for increasing
temperature and chemical potential the effective four quark
coupling decreases further. In the present parametrization
with dynamical hadronization this decoupling is solely
triggered by the increase of the pion mass function m̄2

π , for
the temperature dependence of the mesonic mass functions
see Fig. 11. In turn, the Yukawa interaction does not show a
significant momentum scale and parameter dependence,
see Fig. 16 and discussion there. Similar observation apply

to the gluonic sector. All avatars of the strong coupling
show a rather strong scale dependence, as do the gluon and
meson dressings. This will be discussed in the following. In
combination, the different dynamics and scale dependence
of the couplings, wave function renormalizations and mass
functions allow us to provide a consistent picture of a
sequential decoupling of gluon, quark and mesonic degrees
of freedom with decreasing momentum and cutoff scales.
This leads to the natural emergence of low energy effective
theories (LEFTs) of QCD for scales below ∼1 GeV and is
discussed at the end of the present section.
We start our analysis of the dynamics and decoupling

properties of the system with the gluon dressing. Here
we also provide a further benchmark test of the present
approach at vanishing baryon chemical potential: In Fig. 13
we compare our results at finite T and μB ¼ 0 to lattice
results on the magnetic gluon dressing function from [197]
based on the tmfT configurations [198]; for this simulation
setup see also [199,200]. Note that the lattice results
are obtained for Nf ¼ 2þ 1þ 1 flavors, with β ¼ 2.1,
a ¼ 0.0646 fm and an approximate pion mass of mπ ¼
369ð15Þ MeV leading to a critical temperature of Tdeconf ¼
193ð13Þð2Þ MeV. Hence, agreement with our results can
only be expected at large temperatures and the correspond-
ing spatial momentum scales. In this regime, the vacuum
constituent quark masses are small against their thermal
masses and the perturbative running of Nf ¼ 3 vs Nf ¼ 4

is not yet dominant. Furthermore, the effects of the addi-
tional quark flavor and the different masses are subleading.
In order to facilitate this comparison, we rescaled our
momentum scale by jpj → 1.07jpj as to match our results in

FIG. 13. Nf ¼ 2þ 1 gluon dressing function 1=ZA as a
function of spatial momenta jpj at different temperatures in
comparison to the Nf ¼ 2þ 1þ 1 lattice data from [197], based
on the tmfT configurations [198], for the tmfT simulation setup
see also [199,200]. The lattice results depicted here are obtained
for β ¼ 2.1, a ¼ 0.0646 fm and an approximate pion mass of
mπ ¼ 369ð15Þ MeV leading to a pseudocritical temperature of
Tdeconf ¼ 193ð13Þð2Þ MeV, for more details see [197].
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the semiperturbative regime around p ≈ 2 GeV. This is
necessary since, owing to the different mass scales, also the
momentum scales of our results and the lattice results are
inherently different. Indeed, we find good agreement for
the temperatures, 191, 218, 254, 277 and 305 MeV, for
0.8 GeV≲ jpj ≲ 3 GeV. For larger momenta, our result
show the correct leveling-off expected from the logarithmic
momentum dependence in the perturbative regime. For
smaller momenta, both the different mass scales and the
different infrared gauge fixing come into play. Note also
that the lattice data are subject to lattice artefacts at large
momenta, as is the case in the Nf ¼ 2 vacuum data,
see Fig. 25.
In Fig. 14 we show the gluon dressing function

1=ZAðjpjÞ ¼ 1=ZA;k¼jpj at vanishing Matsubara frequency
p0 ¼ 0 as a function of spatial momenta for different
temperatures (left panel) and baryon chemical potentials
(right panel). While the gluon dressing shows a mild
dependence on the temperature, it is essentially indepen-
dent on the baryon chemical potential. Note that the
respective dependences are more significant in the gluon
propagator GA ¼ 1=ðp2ZAðpÞÞ shown in Fig. 29 in
Appendix H. However, we emphasize that the flows of
the couplings and observables computed in the present
work depend on the gluon dressing rather than on the gluon
propagator.
The suppression of the thermal and chemical potential

dependences discussed above are linked to the mass gap of
the gluon propagator in the Landau gauge. This mass gap
signals confinement, see [74,130–132,166], and manifests
itself through the nonmonotonicity of the curves depicted in
Fig. 14. The backbending of the gluon propagator at small
momenta also signals positivity violation [201], and results in
a negative spectral function at low frequencies [202]. With
increasing temperature above Tc, the chromoelectric part of

the gluon is subject to increasingly strong Debye-screening.
As discussed in Sec. IVA 2, we define the gluon dressing via
the chromomagnetic contribution. Hence, the thermal sup-
pression in the left plot of Fig. 14 is due to nonperturbative
magnetic screening. For more technical details on the in-
medium gluon propagator we refer to Sec. IVA 2 and
Appendix H.
Overall, the temperature dependence of the gluon

dressing is a subleading effect in the temperature region
relevant for the phase transition. Below the critical temper-
ature it is mostly affected in the infrared, where the mass
gap suppresses gluon fluctuations anyway. While thermal
corrections are also present in the pure gauge theory,
density corrections are only triggered by the quark con-
tributions discussed in Sec. IVA 2. We find that the gluon
dressing function is almost insensitive to μB. This is
shown in the right plot of Fig. 14, and also in Fig. 29
for the propagators itself. For temperatures in the vicinity of
the crossover, we find a slight enhancement of the gluon
propagator with increasing μB for momenta below ∼1 GeV.
The reason is that the quark contribution to the gluon
propagator, i.e., the vacuum polarization, is suppressed at
finite μB, which can be read-off from the explicit expression
in (H1). This counteracts the color screening of quarks.
These findings support the qualitative or even semiquanti-
tative approximations in functional applications (fRG and
DSE), where either both or part of the thermal and density
dependence of the gluon dressing is left out.
The quark and meson wave function renormalizations

and their dependence on T and μB are shown in Fig. 15.
Owing to our choice of regulators, shown in (N1a) and
(N1b), Zq;k and Zϕ;k enter the system of flow equations
only indirectly through the corresponding anomalous
dimensions, (30). Consequently, the flows of the wave
function renormalizations do not have to be integrated and

FIG. 14. Nf ¼ 2þ 1 gluon dressing function 1=ZA at vanishing Matsubara frequency, p0 ¼ 0, as a function of spatial momenta jpj at
different temperatures (left panel) and baryon chemical potentials (right panel). As for the Nf ¼ 2 flavor input data and the Nf ¼ 2þ 1

vacuum results, see Fig. 3, we use the identification p2 ¼ k2.
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their initial values are irrelevant. We have chosen Zk¼Λ ¼ 1
for convenience, see (41). One observes that there is a
bump in Zq as a function of T during the phase transition,
and it evolves into a sharp peak with the increase of the
baryon chemical potential. This indicates that constituent
quark fluctuations are enhanced in the vicinity of the phase
transition at finite μB. We also find that the meson wave
function renormalization decreases after chiral symmetry is
restored. This effect drives the decoupling of mesons from
the physical spectrum above Tc, which is also visible in
Fig. 11 and discussed in the previous section.
Interestingly, the renormalized Yukawa coupling, (43), is

relatively stable over all scales. Accordingly, the quark-
meson vertex running counterbalances the strong scale
dependence of the meson wave function renormalization.
This is explicitly seen in Fig. 16: On the left side we show
the temperature and chemical potential dependence of the

physical Yukawa coupling, h̄k¼0. On the right side we show
its running with k at different temperatures. The Yukawa
coupling is related to the expectation value of the renor-
malized σ̄-field and the constituent mass of the light quarks
via h̄k¼0 ¼ 2m̄q=hσ̄i. In the symmetric phase, the fast
decrease of h̄ with increasing T triggers a more rapid
melting of m̄q as compared to hσ̄i. It is evident from the
running of the Yukawa coupling in the right panel of
Fig. 16 that thermal corrections only set in if the RG scale is
smaller than the temperature scale, k≲ 2πT. For larger k
and the 3d spatial regulators used here, see Appendix N,
they are exponentially suppressed with expð−k=ð2πTÞÞ and
there is only the vacuum running. For a respective dis-
cussion of the thermal properties including also other
regulators we refer to [203]. Furthermore, we have explic-
itly checked that our results are independent of the initial
value of the Yukawa coupling: The Yukawa coupling is an

FIG. 15. Nf ¼ 2þ 1 quark (left panel, Zq) and meson (right panel, Z̄ϕ) wave function renormalizations at vanishing cutoff scale,
k ¼ 0, as functions of temperature T at different baryon chemical potentials μB.

FIG. 16. Left panel: Nf ¼ 2þ 1 Yukawa coupling at vanishing cutoff scale, k ¼ 0, as a function of the temperature T at different
baryon chemical potentials μB. Right panel:Nf ¼ 2þ 1Yukawa coupling as a function of the RG scale k at different temperatures T and
vanishing baryon chemical potential μB ¼ 0.
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irrelevant coupling that is generated by the flow. The
memory of its initial condition is washed-out by an IR-
attractive fixed point in the regime of small strong coupling.
This is in line with the discussion at the beginning of this
section.
This stability of the renormalized Yukawa coupling

together with the rapid rise of the meson mass parameters
m̄σ; m̄π entails the decoupling of the scalar-pseudoscalar
mesonic channel of the four-quark interaction in the
chirally symmetric phase at large scales, discussed in
Sec. VA.
For larger scales, k≳ 1 GeV, the gluon exchange inter-

actions are dominating the system, while for smaller scales,
k≲ 1 GeV, the gluons decouple. This is clearly seen in
Fig. 17, where we show the running of the different strong
couplings: The quark-gluon and the three-gluon couplings.
We have distinguish between the quark-gluon coupling for
u and d quarks, denoted by αl̄Al, and for the s quark, αs̄As.
The quark-gluon couplings αl̄Al and αs̄As match for
momentum scales k above ∼1 GeV. In turn, the strange
quark coupling is slightly smaller at lower scales. This is
expected since quark number conservation of the strong
interactions implies that there is no flavor mixing in the
quark-gluon interactions. Hence, only strange quarks con-
tribute to the leading quantum corrections of αs̄As, resulting
in a suppression relative to the leading corrections to αl̄Al.
The quark-gluon couplings and the three-gluon coupling

agree with each other, and are also consistent with
perturbation theory, for scales above ∼5 GeV [28,32].
One also finds that for scales k≲ 5 GeV, the light flavor
coupling αl̄Al and the strange coupling αs̄As grows bigger
than αA3 , which is qualitatively consistent with the calcu-
lation in [32]. For scales k≲ 1–2 GeV, αl̄Al, αs̄As and αA3

deviate from each other pronouncedly, and all strong

couplings are suppressed significantly. This behavior in
the IR region is due to the running of the gluon dressing
function shown in the left panel of Fig. 14 and our
definition of the strong couplings in (54) and (55). Since
they effectively describe gluon exchange, the suppression
of glue dynamics in the nonperturbative regime due to the
dynamically generated gluon mass gap is transferred to the
RG invariant strong couplings. Apparently, the three-gluon
coupling is more suppressed than the quark-gluon vertex in
the IR, since more gluons are attached to the former, which
is verified in Fig. 17. The dependence of the strong
couplings on the temperature is consistent with our expect-
ation inferred from the results of the gluon propagator. The
strong couplings decrease with the increase of the temper-
ature, which indicates the interaction between gluons and
quarks gets weaker at high temperature. We have also
investigated the dependence of the strong couplings on the
baryon chemical potential, and find a small μB- dependence
in the μB region of our interest.
We close this section with a discussion of sequential

decoupling and the natural emergence of low energy
effective theories (LEFT) in the present fRG approach to
QCD for low cutoff scales k≲ 1 GeV: The flows of matter
vertices and propagators (quarks and mesons) are driven by
the tree-level four-point single field exchange couplings
with either quark or meson legs in the current approach. We
emphasize that this is not due to the approximations used
here but originates in the one loop completeness of the flow
equation for the effective action, (26). Relevant examples
are provided by the flows of the quark-gluon and Yukawa
couplings depicted in Fig. 6, and the flow of the four quark
coupling depicted in Fig. 4. These flows contain all single
field exchange couplings considered in the present
approach: The four-quark single gluon exchange coupling
and the four-quark single meson exchange coupling. Note
that the potential third single field exchange coupling, the
two-quark–two-meson single quark exchange coupling
simply comes from a reordering of the building blocks
in the diagrams. It also originates in the fundamental
building blocks in the QCD matter sector considered here,
the scalar-pseudoscalar channel of the four-quark interac-
tion. Accordingly, the two-quark–two-meson single quark
exchange coupling simply measures the strength of the
Yukawa coupling and has no physical interpretation. In
particular, it does not entail a possible decoupling. This
leaves us with

g2q̄Aq;
h̄2

1þ m̃2
ϕ

; ð119Þ

with ϕ ¼ σ; π and the dimensionless mass functions m̃
defined in (F2). Note also that these exchange couplings
generate genuine four-field interactions in the flow, such as
the four-quark and four-meson vertices. Consequently, the
strength of these higher order couplings is tightly linked to

FIG. 17. Nf ¼ 2þ 1 quark-gluon coupling for light quarks
(αl̄Al) and strange quarks (αs̄As) quarks, and three-gluon coupling
(αA3 ) as functions of the RG scale k for several values of the
temperature T and for vanishing baryon chemical potential,
μB ¼ 0.
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that of the single field exchange couplings, the analysis of
which suffices in the absence of additional resonant
interaction channels besides the scalar-pseudoscalar one.
In Fig. 18 we depict the two fundamental single field

exchange couplings defined in (119). The UV dominance
of the gluonic exchange coupling for cutoff scales k≳
1 GeV is clearly visible. In turn, for cutoff scales k≲
1 GeV the mesonic exchange coupling takes over gradually
with g2

l̄Al
¼ h̄2=ð1þm2

πÞ at k ≈ 600 MeV, while the gluonic
coupling decays more quickly. Note that the exchange
couplings only provide the qualitative picture; the respec-
tive flow diagram also have different combinatorial factors
from the different color and flavor traces. For the four-
quark flow a details comparison is done in Appendix L, and
is summarized in Fig. 30.
In the matter-dominated regime the best indicator for the

further decoupling is given by the respective propagator
gapping

1

1þ m̃2
q
;

1

1þ m̃2
ϕ

; ð120Þ

with ϕ ¼ σ; π, q ¼ l, s and the m̃ defined in (F2). These
gapping functions are depicted in Fig. 19, where also the
full gluon dressing is displayed for the sake of comparison.
Note that the latter does not only entail the gapping
information for cutoff scales smaller than that of the peak
position of the dressing function, k≲ kpeak, but also the
running of the gluon wave function for k≳ kpeak.
Qualitatively, this carries the same information as that
depicted in Fig. 18: gluonic fluctuations decouple first.
However, Fig. 18 carries the full decoupling which also
requires the coupling strengths of quark-gluon vertex and
Yukawa vertex respectively.

In turn, after the decoupling of the gluonic sector the
interactions between quark and mesons only depend on the
Yukawa coupling, and the respective propagator gapping is
sufficient for the decoupling information: the propagator
gappings of quarks and mesons clearly entail that diagrams
with quark propagators decouple first (first strange, than the
light quark diagrams). The σ-field decouples at roughly the
same scale as the light quarks and finally the contributions
of pion diagrams tend toward zero below the pion
mass scale.
In summary, the sequential decoupling is clearly seen.

First the gluonic dynamics decouples from the matter
sector, then the quark and σ exchange diagrams decouple
and finally the pion decouples. For example, this already
entails that in the vacuum chiral perturbation theory emerges
naturally in this setup, for investigations of respective low
energy parameters see, e.g., [204,205]. Moreover, it allows
us to also investigate the validity bounds of chiral perturba-
tion theory. Note also that the ordering in the sequential
decoupling is changes at finite density. In particular the σ
mode decouples later in the vicinity of the CEP, where, as the
critical mode, gets massless.
This leads us to an intriguing and simple picture:

Initiating the QCD flow at a large perturbative cutoff scale
k ¼ ΛUV

QCD, here ΛUV
QCD ¼ 20 GeV, the flow smaller scales

leaves us with the dynamics of quarks and mesons for
k ≪ 1 GeV. In the present setup with dynamical hadroni-
zation we flow into a Polyakov loop enhanced quark meson
model. In turn, without dynamical hadronization we arrive
at a Polyakov loop enhanced NJL-type model. We also

FIG. 18. Dimensionless four-quark single gluon exchange
coupling (g2

l̄Al
and g2s̄As) and four-quark single meson exchange

couplings (h̄2=ð1þ m̃2
πÞ and h̄2=ð1þ m̃2

σÞ) as functions of the
cutoff scale k in the vacuum. Gluons, quarks, and mesons
decouple sequentially from the matter dynamics.

FIG. 19. Dimensionless propagator gapping 1=ð1þ m̃2
Φi
Þ for

Φi ¼ l; s; σ;π. For comparison, we also show the gluon dressing
function Zpeak

A =ZA with the solid blue line. Here, 1=ZA is

normalized by its peak position at kpeak, that is Zpeak
A ¼

ZAðkpeakÞ: for cutoff scales k ≳ kpeak the k-dependence of ZA

is dominated by the running of the gluon wave function
renormalization, for k≲ kpeak it shows the gluon gapping. In
summary, the sequential decoupling of gluon, quark and meson
dynamics toward the IR is evident here.
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emphasize that while the offshell dynamics of gluons
decouples, the gluon sector still leaves its imprint in terms
of the quantum equations of motion for the gluonic back-
ground A0 or L, L̄.
Hence, the underlying assumption of LEFTs, that high-

energy degrees of freedom are integrated out, can be made
explicit with the present setup. Moreover, this can also
provide valuable reliability checks for LEFTs. In summary
this provides an explanation and further reliability. The
sequential decoupling demonstrated here adds further
justification for the unreasonable effectiveness of LEFTs
in QCD. For a selection of fRG work on QCD LEFTs see
[30,34,75–128,206].
We emphasize that the emergence of QCD LEFTs in the

infrared at scales k≲ 1 GeV within the current approach
allows for their systematic improvement in terms of
QCD-assisted LEFTs, and constitutes important progress
in the setup and the qualitative and quantitative reliability
of low energy effective theories. Of course, QCD LEFTs
in general rely on QCD information. For example, the
parameters of QCD LEFTs used for QCD at finite tem-
perature and density are typically fixed with vacuum
observables such as the pion decay constant and meson
masses as well as quark constituent masses. Further QCD
input ranges from the enhancement of the models with a
Polyakov loop potential that carries information about the
confinement-deconfinement phase transition.
A step in the direction toward using dynamical or

fluctuation information of QCD is done with the imple-
mentation of the QCD-running of external parameters such
as the critical temperature parameter T0 in the Polyakov
loop potential as suggested in [207]. A first example for a
QCD-assisted LEFTs is then provided by [93,94], where
the phenomenological approach in [207] was confirmed
and improved by results for the Polyakov loop potential
from fRG-computations in Yang-Mills theory [74,131] and
Nf ¼ 2 flavor QCD [26]. Another example is provided by
[114], where the UV initial conditions for the QCD LEFT
were computed from QCD flows.
The results and in particular the flows of the current

work can be readily used as external input for QCD
LEFTs, hence lifting them to QCD-assisted LEFTs. An
interesting and relevant example under progress is provided
by fluctuation observables such as cumulants of net-
particle multiplicity distributions, e.g., [30,80]. A qualita-
tive improvement of the computations there is given by
utilizing the quark-gluonic flows from the present work as
external input. This provides quantitative reliability of the
results at large density or small

ffiffiffi
s

p
relevant for the search of

the critical endpoint.

D. Phase structure of Nf = 2 and Nf = 2 + 1 flavor QCD

In Fig. 20 we show our results on the phase structure in
T − μB plane for Nf ¼ 2 and Nf ¼ 2þ 1 flavors. In both
cases, as discussed in Sec. VA, we define the pseudocritical

temperature via the thermal susceptibility of the renormal-
ized light chiral condensate, ∂Δl;R=∂T. At vanishing
baryon chemical potential, the respective chiral transition
temperatures are

Tc;Nf¼2 ¼ 171 MeV; Tc;Nf¼2þ1 ¼ 156 MeV: ð121Þ

The width of the transition is taken to be the full width at
80% of the maximum of this susceptibility. For Nf ¼ 2, the
crossover phase boundary is given by the long-dashed red
line and its width by the gray band. The corresponding CEP
is denoted by the red star. ForNf ¼ 2þ 1, the short-dashed
black line marks the phase boundary and the blue band its
width. The black point shows our result for the CEP of
Nf ¼ 2þ 1 QCD.
At small chemical potential lattice results provide a

benchmark test for the present fRG computations. This
includes the curvature of the phase boundary. It is a
sensitive measure for the correct relative strength of
quantum, thermal and density fluctuations. The curvature
coefficient κ of the phase boundary at vanishing baryon
chemical potential is the quadratic expansion coefficient of
TcðμBÞ around μB ¼ 0, i.e.,

TcðμBÞ
Tc

¼ 1 − κ

�
μB
Tc

�
2

þ λ

�
μB
Tc

�
4

þ � � � ; ð122Þ

with Tc ¼ TcðμB ¼ 0Þ. We refer, e.g., to [7] for additional
relevant discussions. As for the transition temperature, the
curvature of the phase boundary of a crossover depends on

FIG. 20. Phase diagram in the plane of the temperature and the
baryon chemical potential. The gray and blue bands denote the
crossover transitions for the Nf ¼ 2 and 2þ 1 flavor QCD,
respectively; and the red star and black circle are their relevant
CEP. The bands are determined through the 80% peak height of
∂Δl;R=∂T at fixed μB. The black and red dashed lines depict the
peak positions for the Nf ¼ 2þ 1 and Nf ¼ 2, respectively. We
also provide the two lines of μB=T ¼ 2, 3 related to reliability
bounds for both lattice and functional methods.
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its definition [75]. By using the renormalized light chiral
condensate, we ensure comparability with the lattice results
in [46,51]. To extract the curvature, we fit our numerical
results for TcðμBÞ=Tc by the polynomial given in (122) for
orders 2 and 4 in μB=Tc within the regions μB=T ≤ 2 and 3,
and read-off the corresponding quadratic coefficient κ. Our
final result for the curvature with its numerical error is then
given by the mean and the standard deviation of all these
coefficients.
The curvature for the two-flavor pseudocritical line is

determined to be

κNf¼2 ¼ 0.0176ð1Þ: ð123Þ

For the curvature of the 2þ 1 flavor phase boundary we
find

κNf¼2þ1 ¼ 0.0142ð2Þ: ð124Þ

As has been emphasized before, our results are consistent
with recentNf ¼ 2þ 1 lattice results, e.g., κ ¼ 0.0149ð21Þ
in [46] and κ ¼ 0.015ð4Þ in [51]. Note also that κNf¼2≈
κNf¼2þ1ðTc;Nf¼2=Tc;Nf¼2þ1Þ2 ¼ 0.171. This entails that
the two dimensionless phase transition lines given by
TcðμÞ=Tcð0Þ in (122) agree for small baryon chemical
potentials. This even holds for a large μB-range as can be
already deduced from Fig. 20.
All results, including DSE, are summarized in Table II.

For a comparison to other results and potential implications
for experimental CEP searches, we also refer to the
discussion in the introduction, Sec. I, and in particular
Fig. 1. At finite baryon chemical potential lattice simu-
lations are hampered by the sign problem, resulting in
increasing statistical and systematic errors with increasing
μB. The former are shown in Fig. 1, the latter are unknown.
The respective validity bounds are indicated by the dashed
lines at μB=T ¼ 2 and μB=T ¼ 3 in Fig. 20. For μB=T close

to the crossover line and larger than μB=T ¼ 3 also the
approximations used in the present work start to lose
reliability: In the presence of the nontrivial mesonic dis-
persions, the phase structure can be altered, cf. Sec. V B.
Accordingly, results in this regime, including our result for
the location of the CEP, have to be interpreted with care.
We find CEPs for Nf ¼ 2 and Nf ¼ 2þ 1 flavor

QCD at

ðTCEP; μBCEP
ÞNf¼2 ¼ ð117; 630Þ MeV; ð125Þ

and

ðTCEP; μBCEP
ÞNf¼2þ1 ¼ ð107; 635Þ MeV; ð126Þ

respectively. This amounts to rather large values of
μBCEP

=TCEP of

Nf ¼ 2∶
μBCEP

TCEP
¼ 5.38;

Nf ¼ 2þ 1∶
μBCEP

TCEP
¼ 5.93: ð127Þ

Our results for the CEP are extracted from the onset
of critical scaling on the chiral phase boundary. As
discussed in Sec. IV D and Appendix F, we expand the
effective potential about its running minimum. The flow of
the minimum is proportional to the correlation length
1=∂2

σ̄V̄kjEoM [cf. (A29b)], and hence becomes unstable in
the critical region. We use this instability to determine
where the system enters the critical region from below in
μB. To pin down the location of the CEP, we exploit the
well-established fact that, owing to the very small pion
mass and strong mesonic fluctuations close to the CEP, the
critical region is at most a few MeV wide in μB; see, e.g.,
[84]. We emphasize that the critical properties are solely
driven by the quark-meson fluctuations and hence QCD
LEFT investigations are fully applicable here. Accordingly,
to very high accuracy, the CEP is located at the point on the
phase boundary where the running minimum becomes
unstable.
We emphasize that the reduced reliability of our results at

large μB is not of conceptual origin, as opposed to the sign
problem on the lattice. It is related to correlation functions
that have been neglected in our truncation of the effective
action. Improvements require the systematic inclusion of
additional momentum-dependences of correlation func-
tions. Moreover, a Fierz complete basis of the four-quark
tensor structures should be taken into account, including
potentially dynamical hadronization of additional resonant
channels. This is work in progress within the fQCD
collaboration [211].
A physically intriguing source for part of the systematic

error in the present work is related to the indications of
an inhomogeneous regime we discussed in Sec. V B.

TABLE II. Curvature coefficients κ, see (122): from the fRG:
present work; Lattice collaborations: [46] (WB), [49] (Bonati
et al.), [51] (hotQCD), [208] (Allton et al.), [209] (Forcrand and
Philipsen), Lattice overviews [64,210]; DSE: [37] (Fischer et al.),
[65] (Gao et al.), DSE overview [7].

Curvature κ

Reference Nf ¼ 2 Nf ¼ 2þ 1

fRG: this work 0.0176(1) 0.0142(2)
Lattice: [46] … 0.0149(21)
Lattice: [49] … 0.0144(26)
Lattice: [51] … 0.015(4)
DSE: [37] … 0.0238
DSE: [65] … 0.038
Lattice: [208] 0.0078(39) …
Lattice: [209] 0.0056(6) …
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To highlight the potential effect on the phase boundary, we
show the region where the meson wave function renorm-
alization at vanishing spatial momentum is negative,
Zϕð0Þ < 0, with the shaded blue area in Fig. 21. Note
that we only scanned the phase diagram for μB < μBCEP

.
Hence, the boundary of the shaded blue region at μB ¼
635 MeV is of no physical significance. As discussed in
Sec. V B, the possibility of inhomogeneous condensation
leads to a competition between potential resonances in the
homogeneous and inhomogeneous quark-antiquark inter-
action channels. Regarding the phase structure itself, this is
most relevant when condensation occurs in the first place.
The region where the mesonic dispersion with a minimum

at nonvanishing spatial momentum overlaps with a sizable
condensate, defined in Sec. V B and the caption of Fig. 21,
is given by the hatched red area in this figure. There, the
phase structure could be altered significantly by possible
inhomogeneities. To put his into perspective, we also added
a selection of freeze-out points to Fig. 21. It is very
intriguing that the inhomogeneous regime could be probed
in heavy-ion collisions at small beam energies of
roughly

ffiffiffi
s

p ≲ 6 GeV.

VI. CRITICAL ENDPOINT AND SYSTEMATIC
ERROR ESTIMATES IN FUNCTIONAL

APPROACHES

Here we combine the up-to-date CEP results of func-
tional approaches for a first estimate of the most likely
region of the CEP. To that end we discuss the respective
approximations and the potential effect of missing fluctua-
tions. A full discussion of the respective systematic errors is
deferred to future work as it goes far beyond the scope of
the present work.
The results for the phase structure in the present fRG

approach are summarized in Figs. 1 and 20. The respective
DSE results and an exhaustive discussion can be found in
the recent review [7], for original work see, e.g., [35–37,
39,65,103,138–141].
It goes without saying that the approximations applied in

the different works differ vastly. However, all DSE works
share a common feature with the present fRG work: The
most general quark-gluon interactions are not fully taken
into account and both, momentum dependencies as well as
tensor structures are missing. Typically, this causes a lack
of infrared strength of dynamical chiral symmetry breaking
[27,32]. This is compensated for by an infrared enhance-
ment similar in spirit to that described in Appendix E 2.
Accordingly, the systematic error inherent to these approx-
imations (apart from other error sources) relates to the
strength of this infrared enhancement.
As also discussed in Appendix E 2, such a setup guar-

antees the value of the chiral condensate and the correct
temperature dependence of the order parameters at vani-
shing density or chemical potential. However, it potentially
lacks quantitative precision for the μB-dependence, as
the μB-dependence of the infrared enhancement, that is
the μB-dependence of the missing tensor structures in the
quark-gluon vertex, is not known. On the other hand, while
the explicit μB-dependence is only present in the quark-
gluon correlations, the chemical potential dependence of
the gluon propagator has been shown to be very small, see
Fig. 14. Accordingly, the respective systematic error of
dropping this dependence that has been used in various
works is presumably very small.
Now we adopt these observations to the phase structure

computations with the DSE. All of them exhibit a larger
curvature κDSE in comparison to the lattice results and
the fRG results of the present work, which are compatible.

FIG. 21. Phase diagram for Nf ¼ 2þ 1 flavor QCD in com-
parison to freeze-out data. The crossover temperature has been
determined through the peak position of the thermal susceptibility
of the renormalized light chiral condensate Δl;R, see (A3), (A7):
∂TΔl;R at fixed baryon chemical potential μB. For more details see
Sec. V. The phase boundary globally agrees well with recent
lattice results, and in particular the curvature of the phase
boundary for small chemical potential, κ ¼ 0.0142ð2Þ, is con-
sistent with recent lattice results. We find a critical endpoint at
ðTCEP; μBCEP

Þ ¼ ð107; 635Þ MeV. fRG: inhom: The blue area
depicts the regime with a negative slope of the mesonic dispersion
at vanishing spatial momentum, that is Zϕð0Þ < 0, see Fig. 12.
There, the meson dispersion has a minimum at a nonvanishing
spatial momentum. This is a strong indication for an inhomo-
geneous regime. We also show the minimum of Zϕð0Þ in T at a
fixed value of μB with the blue dashed line. The red hatched area
shows where the inhomogeneous regime overlaps with a sizable
homogeneous chiral condensate. The latter is defined as the size
of the (reduced) chiral condensate where the thermal suscep-
tibility ∂Δl;R=∂T at fixed μB reaches 80% of its peak height
(from above), and larger. In this region, a competition between
homogeneous and inhomogeneous condensation is expected and
the phase structure could be altered significantly. For a detailed
discussion see Sec. V B. Freeze-out data: [2] (STAR), [66] (Alba
et al.), [3] (Andronic et al.), [67] (Becattini et al.), [68]
(Vovchenko et al.), and [69] (Sagun et al.). Note that freeze-
out data from Becattini et al. with (blue) and without (dark green)
afterburning corrections are shown in two different colors.
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The larger curvature at low density implies a stronger μB-
dependence of, e.g., order parameters, which suggests -in a
linear error propagation- also a CEP at too small chemical
potential and temperature. Indeed, the DSE curvatures
and positions of the CEPs can be ordered accordingly,
see Fig. 1.
Let us now concentrate on [37]. In this work, as in

the present one, the phase boundary is well described by
only the leading contribution proportional to κ in (122).
Assuming that all physical effects influence the μB-
dependence only linearly, we can rewrite the curvature
term of the DSE phase boundary as follows:

κDSE
μ2B;DSE
T2
c

¼ κfRG
μ2B
T2
c
; where μB¼

ffiffiffiffiffiffiffiffiffi
κDSE
κfRG

r
μB;DSE; ð128Þ

and we note that Tc at vanishing chemical potential is
practically the same in both cases. Using the value κDSE ¼
0.0238 and μB;DSECEP

¼ 488 MeV from [7,37], we are led to

μBCEP
¼ 631 MeV; ð129Þ

to be compared with μBCEP
¼ 635 MeV in the present work,

see (126). This is promisingly close. However, we rush to
add that such a “linear” error analysis can be deceptive. For
example, the analysis of the μB-dependence of the baryonic
contributions in [7,141] show that a smaller κ induced
from baryonic fluctuations comes with a smaller μBCEP

in
contradistinction to the discussion here, involving the direct
μB-dependence in the quark-gluon vertex. This calls for a
more elaborate combined error analysis in functional
approaches, and we hope to report on this in the near future.
Still, our preliminary analysis of the systematic error in

state-of-the-art functional approaches allows for a simple
estimate of a region where the critical endpoint, or more
precisely the onset of a new phase of matter, is most likely.
For this combined estimate we rely on the DSE results from
[37], as this computation has the most complete μB-
dependence of the gluon propagator and the quark-gluon
vertex to date. This is also reflected by the fact that it
features the smallest curvature κDSE of all the DSE
computations, as well as the largest ratio μBCEP

=TCEP.
Now we correct the DSE curvature by hand with the factor
κfRG=κDSE. As the above systematic error analysis for the
DSE also suggests that the CEP is at too low chemical
potential, the rescaled CEP from the DSE gives us a lower
estimate on the CEP on the TcðμBÞ curve of fRG and lattice
with μB ≈ 480 MeV. Moreover, at μB ≳ 500 MeV the
potential inhomogeneous regime intersects the chiral tran-
sition region, see Fig. 21, and the competition between
homogeneous and inhomogeneous condensation could
modify the phase structure there. Below these values we
see no indications for a critical end point. In combination,
this leads us to the estimate

ð135; 480Þ MeV≲ ðTCEP; μBCEP
Þ≲ ð103; 660Þ MeV;

ð130Þ

where it is indicated with ∼ that the upper and lowers
bounds are not strict, as they carry additional systematic
errors of our approximation that are difficult to estimate.
Below the lower boundwe see neither an indication for aCEP
nor signals for the failure of the current approximation. This
is also sustained by the investigations in [79,81,148], where
the Fierz-complete basis of four-quark scattering vertex
has been taken into account: Except of a diquark channel
at very large chemical potential, μB=T ≳ 7, only the scalar-
pseudoscalar channel gives large contributions.
In turn, for chemical potentials above the regime in (130)

either a CEP has already been observed or the standard chiral
symmetry breaking pattern has broken down. For the upper
boundon theCEP regionwe therefore assume that the system
does not enter the critical region in the vicinity of theCEPwe
find here. A simple estimate of the phase boundary without a
CEP at ðTCEP; μBCEP

Þ ¼ ð107; 635Þ MeV is then given by an
extrapolation of the boundaries of the width of the chiral
transition in Fig. 20 from the crossover region toward larger
μB. The intersection of these boundaries then yields the r.h.s.
of (130). To be more specific, we fit the upper and lower
bound of the width of the (2þ 1)-flavor chiral phase
boundary in Fig. 20 by the polynomial in (122) up to fourth
order for chemical potentials μB ≤ 630 MeV. The two
curves intersect at (103,660) MeV.
We emphasize again, that these considerations are only

the first step toward a combined functional analysis of the
CEP. Moreover, (130) should be rather seen as the regime
with either a CEP or interesting new phenomena such as a
phase with an inhomogeneous condensate. As already
mentioned in the beginning of this section, in particular
the present estimate is based on a linear error analysis in a
nonlinear problem and hence has to be taken with a grain of
salt. Despite the obvious deficiencies of the present analysis
this combined functional approach at large chemical
potential, while also utilizing benchmark results from
lattice simulations at smaller chemical potential will finally
enable us to provide quantitative predictions for the large
density regime including the potential CEP in the next
few years.

VII. SUMMARY AND OUTLOOK

In this work we have studied the QCD phase structure at
finite temperature and baryon chemical potential as it
emerges from the fundamental dynamics of QCD. To this
end, we extended the dynamical hadronization technique
within the functional renormalization group approach to
QCD toward the inclusion of in-medium effects. Our
results therefore constitute a new state-of-the-art regarding
the understanding of the QCD phase diagram based on the
dynamics of quarks and gluons.

QCD PHASE STRUCTURE AT FINITE TEMPERATURE AND … PHYS. REV. D 101, 054032 (2020)

054032-35



We have investigated various quantities, including their
temperature and chemical potential dependence. In par-
ticular, we have computed order parameters for chiral
symmetry breaking, e.g., the renormalized chiral conden-
sate, see Fig. 10, as well as the Polyakov loop expectation
value, see Fig. 7. In addition, we studied the constituent
quark mass, the pion and σ-meson masses, the wave
function renormalizations/propagators, the running strong
couplings and the interactions of quarks and the mesonic
low energy degrees of freedom. This allowed us to gain
insights into the interplay of different degrees of freedom at
different momentum-, temperature-, and density-scales.
Most importantly, we have obtained the phase diagram

of Nf ¼ 2 and Nf ¼ 2þ 1 flavor QCD at finite temper-
ature and baryon chemical potential, see Sec. V D. Various
aspects of our results, including comparisons to other
recent works, are shown in Figs. 1, 20, and 21. Our result
for the curvature of the phase boundary for 2þ 1 quark
flavors at small chemical potential is κNf¼2þ1 ¼ 0.0142ð2Þ,
which is fully compatible with the most recent lattice
results [46,51]. In addition, we find a critical end point at
ðTCEP; μBCEP

Þ ¼ ð107; 635Þ MeV. We compare our results
for Nf ¼ 2þ 1 and Nf ¼ 2 in Fig. 20. Owing to strange
quark fluctuations, the (2þ 1)-flavor phase boundary is
systematically lower than the two-flavor boundary.
An intriguing aspect of our results is that we find strong

indications for an inhomogeneous regime at large chemical
potentials in the region μB ≳ 420 MeV, shown in Figs. 1
and 21. Since this regime intersects the phase boundary, it
could have important implications for the QCD phase
structure. For a detailed discussion see Sec. V B.
A preliminary analysis of the systematic error in our

computation is done in Sec. VI. In combination with a
similar analysis of the DSE as well as with the benchmark
results from the lattice at small chemical potential, we put
forward a first suggestion for the region of the critical end
point, see (130). This combination of results from func-
tional approaches at large chemical potential and lattice
results at small chemical potential will finally allow us to
pin down the location of CEP or, given potential inhomo-
geneous phases and their implications, the onset of a new
state of matter at large density.
This calls for a systematic improvement of the approx-

imations used here. First, only quark-antiquark scattering in
the σ-π channel has been taken into account for the
dynamical hadronization. Other channels, however, may
play a sizable rôle in particular at large μB, such as diquark
and vector-meson channels, see, e.g., [79,81]. Therefore,
the present approximation for the four-quark couplings is
currently extended to a Fierz-complete basis, see
[27,32,79,81]. In addition, we need to allow for inhomo-
geneous quark-antiquark scattering channels in order to
supplement our present results in this direction. Second,
we have employed a minimal extension to include strange
quark dynamics in our calculation. In the current work we

have been concentrating on specific light quark observables
which are insensitive to the details of the strange sector.
However, this is insufficient for the highly interesting
investigations of strangeness at finite chemical potential
and temperature; for an fRG point of view see [34,80]. For
these aspects a full (2þ 1)-flavor study, including the
corresponding four-quark interactions and resonances, is
required. Finally, we relied on external input for the
momentum-dependent gluon and ghost propagators in
vacuum, the in-medium screening of gluons in Yang-
Mills theory and the gauge part of the gluon effective
potential. Only the average momentum dependences
encoded in the cutoff dependence have been considered.
Full momentum dependences have so far been considered
in vacuum QCD and finite temperature Yang-Mills theory,
[27,28,31–33]. Its extension to QCD at finite temperature
and chemical potential is under way. This also includes a
complete basis of tensor structures for in particular the
quark-gluon vertex as well as the purely gluonic vertices.
The self-consistent determination of the gluon effective
potential along the lines of [74] is also on our agenda.
Further interesting applications of the present work are

manifold. In the following, we list selected active projects
within the fQCD collaboration [211]. A detailed study of
QCD thermodynamics and the equation of state is the most
obvious application. This will provide input for phenom-
enological studies of heavy-ion collisions that is firmly
rooted in QCD even at small beam energies. Since the
chiral limit is easily accessible within the present approach,
the magnetic equation of state is also being computed.
Furthermore, fluctuations and correlations of conserved
charges are evaluated. The present approach allows for
both, the spectral reconstruction and the direct computation
of real-time correlation functions in QCD along the lines of
[109,202,212–223], that are important for QCD-assisted
transport, [224], and QCD-assisted hydrodynamics, [225].
These applications play important rôles in experimental
searches for the CEP, and more generally for our under-
standing of the QCD phase structure. We hope to report on
these matters in the near future.
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APPENDIX A: CHIRAL CONDENSATES

Here we explain of how to extract chiral condensates
within the present approach. Results in the present approx-
imations for the renormalized chiral condensate, (A3),
and the reduced chiral condensate, (A4), are presented
in Fig. 22 and Fig. 23 respectively.
Naturally, these observables are derived from the

thermodynamic potential density or free energy density
defined in (67), evaluated on the EoM (6) with J ¼ 0. This
is a finite, renormalization group invariant observable, as
follows from its relation to the effective action Γ½ΦEoM�.
The chiral condensates are proportional to

R
xhq̄iqii with

qi ¼ u, d, s and vanishes in the chirally symmetric regime.
Up to the normalization it is given by the derivative of Γ
with respect to the current quark mass m0

qi , to wit

Δqi ¼m0
qi

∂Ω½ΦEoM;T;μq�
∂m0

qi

¼m0
qi

T
V

Z
x
hq̄iðxÞqiðxÞi; ðA1Þ

where no sum over i is implied in (A1). The normalization
in (A1) includes the trivial volume factor T=V with the
spatial volume V. The multiplication factor m0

qi leading to
the logarithmic current quark masses derivative removes
possible ambiguities relative to the condensates from other
formulations such as DSEs and the lattice. In the present
work the masses of the light quarks u, d are the same,
mu ¼ md ¼ ml, and we define the light quark condensate
Δl ¼ Δu ¼ Δd. Up to renormalization terms the conden-
sates Δqi read

Δqi ≃ −m0
qiT

X
n∈Z

Z
d3q
ð2πÞ3 trGqiq̄iðqÞ: ðA2Þ

The necessity of the renormalization of (A2) is typically
circumvented by subtracting two condensates from each
other. One convenient choice is to only consider the thermal
and density part of the condensates, similar to the definition
of the pressure p ¼ −ðΩ½ΦEoM; μq; T� − Ω½ΦEoM; 0; 0�Þ.
This leads us to the renormalized condensate Δqi;R with

Δqi;R ¼ 1

N R
½ΔqiðT; μqÞ − Δqið0; 0Þ�: ðA3Þ

Indeed, Δqi;R ¼ −m0
qi∂qip. In (A3) the normalization N R

renders Δqi;R dimensionless. N R is a convenient normali-
zation that is typically chosen to be one of the character-
istic, well-determined, scales in the theory. A common
choice is N R ¼ m4

π for the physical case. If also being
interested in the chiral limit, N R ¼ f4π is better suited.
Another common choice is the reduced condensate Δl;s,

which is proportional to the weighted difference between
light and strange quark condensate, Δl and Δs. It is
normalized by its value in the vacuum and reads

Δl;sðT; μqÞ ¼
ΔlðT; μqÞ − ðm0

l

m0
s
Þ2ΔsðT; μqÞ

Δlð0; 0Þ − ðm0
l

m0
s
Þ2Δsð0; 0Þ

: ðA4Þ

In the functional RG approach the necessity of renormal-
izing (A2) is resolved by the very definition (A1) to use
current quark mass derivatives of the basic object in the
approach, the finite effective action Γ½ΦEoM�: We first use
that Δl can be represented as a cσ-derivative,

FIG. 22. Nf ¼ 2þ 1 renormalized light chiral condensate Δl;R,
in Eqs. (A3) and (A7) as a function of the temperature with
μB ¼ 0, in comparison to the lattice result in [187]. The
normalization constant in (A3) and (A7) is chosen to match
the scale in the lattice calculation.

FIG. 23. The reduced condensate in the approximation (A17)
for the constituent quark mass difference Δm̄sl ¼ m̄s − m̄l ¼
120, 150, 155, 160 MeV for current quark mass ratios of
m0

s=m0
l ¼ cσs =cσ ≈ 14, 27, 30, 34 in comparison to the lattice

results in [187]. We observe quantitative agreement for all
temperatures for ratios close to the physical one from Nf ¼
2þ 1 flavor lattice simulations, m0

s=m0
l ≈ 27 from [147].
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Δl ¼
1

2
m0

l

∂Ω½ΦEoM;T; μq�
∂m0

l

¼ 1

2
cσ

∂Ω½ΦEoM;T; μq�
∂cσ ; ðA5Þ

where we have used that cσ ∝ m0
l carries the only depend-

ence ofΩ on the current quark massm0
l . This leads us to the

finite chiral condensate

ΔlðT; μqÞ ¼ −
1

2
cσσEoMðT; μqÞ; ðA6Þ

which is simply the term in the effective action that
explicitly breaks chiral symmetry. We emphasize that
(A6) is an exact relation. Using (A6) in (A3) we arrive at

Δl;RðT; μqÞ ¼ −
cσ

2N R
½σEoMðT; μqÞ − σEoMð0; 0Þ�: ðA7Þ

This is readily computed within the present approach. In
Fig. 22 we show the results within the current approxima-
tion in comparison to the continuum extrapolated lattice
result in [187], for results at finite baryon chemical
potentials see Fig. 10 in Sec. VA. The normalization
constant in (A3) and (A7) is chosen to match the scale
in the lattice calculation.
In an approach with (dynamical) hadronization also for

the strange quark sector also the reduced condensate can be
represented in terms of the meson field expectation values.
Similarly to (A5) we get

Δs ¼ m0
s
∂Ω½ΦEoM;T; μq�

∂m0
s

¼ cσs
∂Ω½ΦEoM;T; μq�

∂cσs
; ðA8Þ

leading to

ΔsðT; μqÞ ¼ −
1ffiffiffi
2

p cσsσs;EoMðT; μqÞ: ðA9Þ

With (A6) and (A9) we arrive at

Δl;sðT; μqÞ ¼
ðσ −

ffiffiffi
2

p cσ
cσs

σsÞT;μq
ðσ −

ffiffiffi
2

p cσ
cσs

σsÞ
0;0

; ðA10Þ

where we have used that

m0
l

m0
s
¼ cσ

cσs
; ðA11Þ

see also (47) and Sec. III C for its derivation. It is implicitly
understood that σ and σs in (A10) are evaluated on the
respective EoMs.
In the current work we utilize the simple approximation

(49) for the respective strange condensate. Using (49) in the
reduced condensate (A10) leads us to the simple expression

Δl;sðT; μqÞ ¼
σðT; μqÞ
σð0; 0Þ

1 − m0
l

mlðT;μqÞ

1 − m0
l

mlð0;0Þ
: ðA12Þ

Notably, the explicit dependence on the current strange
quark mass m0

s has dropped out. Equation (A12) also
makes evident that it is even nonvanishing in the flavor-
symmetric case with m0

l ¼ m0
s even though both the

numerator and the denominator in (A10) vanish.
Equation (A10) still contains explicitly the parameters of

explicit chiral symmetry breaking in the initial action,
cσ; cσs . Now we rewrite (A10) in terms of the full effective
action Γk¼0. To that end we utilize the equations of motion.
For constant solutions σEoM; σs;EoM they read

σEoM ¼ cσ

Vð1;0Þ
k ðρEoM; ρs;EoMÞ

;

σs;EoM ¼ 1ffiffiffi
2

p cσs
Vð0;1Þ
k ðρEoM; ρs;EoMÞ

; ðA13Þ

where Vð1;0Þ
k ðρ; ρsÞ ¼ ∂ρVkðρ; ρsÞ and Vð0;1Þ

k ðρ; ρsÞ ¼
∂ρsVkðρ; ρsÞ. Inserting (A13) for k ¼ 0 in (A10) yields

Δl;s ¼



1
m2

π
− 1

Vð0;1Þðρ;ρsÞ

�
T;μq


1
m2

π
− 1

Vð0;1Þðρ;ρsÞ

�
0;0

��������
EoM

; ðA14Þ

where the fields ρ; ρs are evaluated on the respective
EoMs (A13) at finite T; μq and in the vacuum.
Equation (A14) depends on the unrenormalized pion mass
m2

π ¼ Vð1;0ÞðρEoMÞ, and the effective potentials in (A14)
are evaluated at vanishing cutoff scale, Vðρ; ρsÞ ¼
Vk¼0ðρ; ρsÞ. Equation (A14) only depends on the full
effective potential at vanishing cutoff scale k ¼ 0: the
apparent dependence on the parameters of the initial
effective action has been removed. In the chiral limit both
the numerator and the denominator of the reduced con-
densate vanish as they should. A convenient reparametri-
zation of (A14) leads us to

Δl;s ¼
σðT; μqÞ
σð0; 0Þ

1 −
h
Vð1;0Þðρ;ρsÞ
Vð0;1Þðρ;ρsÞ

i
T;μq

1 −
h
Vð1;0Þðρ;ρsÞ
Vð0;1Þðρ;ρsÞ

i
0;0

��������
EoM

: ðA15Þ

Its computation only requires the knowledge of the full
effective potential Vðρ; ρsÞ at vanishing cutoff scales at the
T; μq-dependent EoMs σEoM; σs;EoM: the T; μq-dependent
pion and masses. The flow equation for the effective
potential and the relevance analysis in Sec. V C and
Appendixes K, L allows us also to provide a simple
expression for Vðρ; ρsÞ. The effective potential is generated
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from the σ; σs dependences of the Yukawa terms. These
terms have the full Nf-symmetry which is unspoiled by the
flow as neither cσ nor cσs are present. In the present
approximation we only consider the diagonal terms in the
full potential. This is consistent as long as the potential is
mostly driven by the quark contribution: This approxima-
tion is well justified for larger temperatures and small
baryon chemical potential, but may fail for larger chemical
potential μB and small temperatures. This is one of the
reasons why we do not consider the reduced condensate as
an order parameter for chiral symmetry breaking here, its
reliability at large μB requires a better approximation. In the
present quark-dominated approximation the potential is
simply a sum of the same potential Vk for both ρ and ρs
separately. This yields

Vkðρ; ρsÞ ≈ VkðρÞ þ
1

2
Vkð2ρsÞ; ðA16Þ

which is a quantitative approximations for cutoff scales
k≳ 200–300 MeV. With (A16) we arrive at

Δl;s ¼
σðT; μqÞ
σð0; 0Þ

1 −
h

V 0ðρÞ
V 0ð2ρsÞ

i
T;μq

1 −
h

V 0ðρÞ
V 0ð2ρsÞ

i
0;0

��������
EoM

; ðA17Þ

Eq. (A17) can be evaluated within our current approxima-
tion, see Fig. 23. Note that the reduced condensate, Δl;s, in
contradistinction to the renormalized condensate, Δl;R, is
sensitive to the correct relative treatment of strange and
light quark sector. In the current work we have used a
simple approximation for the strange quark sector as none
of our observables is sensitive to the subleading differences
between light quark and strange quark sector. Put differ-
ently, we may use the reduced condensate for fixing the
strange current quark mass m0

s or cσs, alternatively to the
ratio of the decay constants fK=fπ . Given the large value of
the constituent strange quark mass in the Landau gauge,
m0

s ≳ 500 MeV, see e.g., [7], we expectm0
s ≳ 150 MeV for

this adjustment, for a detailed discussion see Sec. III C
around (47). There we also referred to the Nf ¼ 2þ 1

flavor ratio from lattice simulations, fK=fπ ≈ 27, which is
obtained here for

Δm̄sl ¼ 150 MeV; cσs ¼ 97.5 GeV3: ðA18Þ

Note also that cσs and hence the ratio varies rapidly with
Δm̄sl from current quark mass ratios m0

s=m0
l ¼ cσs=cσ ¼

14, 27, 30, 34 for Δm̄sl ¼ 120, 150, 155, 160 MeV. While
this has a minimal impact on the reduced condensate Δl;s at
small temperatures this variation changes the temperature-
dependence ofΔl;s at large temperature. This is clearly seen
in Fig. 23. Note that while this strange quark mass variation
has no impact on the light quark and gluon correlation

functions and observables, it of course is relevant for
observables and correlations with strange quark content.
In particular we see quantitative agreement of the reduced
condensate for all temperatures studied here for current
quark ratios close to the physical one.
We close this Appendix with a discussion of possible

improvements of the computation of the condensates (or
other observables) utilizing the flow equation of the
condensates instead of their representation in terms of
the effective action/potential at k ¼ 0. Such an improve-
ment is based on the fact that in a given approximation each
flow-step generates terms (information) that is dropped
when projecting on the approximation of the effective
action at hand. Accordingly, a flow representation of a
specific observables may keep this information.
Of course, without approximation both ways have to

give the same results, which can be cast in the form of an
integrability condition,

½∂cσ ; ∂t�Γk½ΦEoM�≡ 0; ðA19Þ

for more details see [58,123,226]. While being trivial for
the full theory, (A19) is nontrivial within a given approxi-
mation. For the flow of the chiral condensateΔqi we use the
flow equation for the effective action,

∂tΔqi ¼ m0
qi

∂
∂m0

qi

∂tΓ½ΦEoM�

¼ 1

2
m0

qi

∂
∂m0

qi

ðTrGk½ΦEoM�∂tRkÞ: ðA20Þ

Note that all the dynamical hadronization terms in the flow
vanish on the equation of motion within our choice as
h∂tϕ̂kiEoM ¼ 0. Seemingly, (A20) carries explicit and
implicit dependences on the current quark mass. The
implicit ones are that of theΦEoM and that of the couplings.
The latter dependences can be computed with the same
recursive relations as has been put forward in [76] for the
μq-dependence. However, (A20) can be simplified with
(A5), and we write for the light quark condensate

∂tΔl ¼
1

2
cσ∂cσ∂tΓ½ΦEoM�

¼ 1

4
cσ∂cσðTrGk½ΦEoM�∂tRkÞ

¼ 1

4
cσ

Z
x

∂ΦEoM

∂cσ
δ

δΦ
ðTrGk½Φ�∂tRkÞjΦEoM

; ðA21Þ

where we have used that the diagrams depends on cσ only
via the equations of motion ΦEoM. As in (A20) all the
dynamical hadronization terms in the flow vanish on the
equation of motion within our choice as h∂tϕ̂kiEoM ¼ 0.
For the strange quark condensate we get
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∂tΔs ¼
1

2
cσs

Z
x

∂ΦEoM

∂cσs
δ

δΦ
ðTrGk½Φ�∂tRkÞjΦEoM

; ðA22Þ

The only nonvanishing solutions of the EoM are σEoM,
σs;EoM and LEoM; L̄EoM. In a further approximation we only
consider the direct contributions and neglect the subleading
dependencies of σs; L; L̄ on cσ via the change of σEoM, as
well as that of σ, L, L̄ on cσs via the change of σs;EoM,

∂ðσs; L; L̄ÞEoM
∂cσ ≈ 0 ≈

∂ðσ; L; L̄ÞEoM
∂cσs

: ðA23Þ

In the current approximation this leads us to

∂tΔl¼
cσ
2

∂σEoM
∂cσ ∂σ

�
1

2
TrGϕϕ∂tRϕ−TrGqq̄∂tRq

�
; ðA24Þ

and

∂tΔs ¼ cσs
∂σs;EoM
∂cσs

∂σs

�
1

2
TrGϕϕ∂tRϕ − TrGqq̄∂tRq

�
;

ðA25Þ

For the explicit result we first concentrate on the light
condensate. Within the approximation (A23) we get

cσ
∂Γð1Þ

σ ½ΦEoM�
∂cσ ¼ Γð2Þ

σσ ½ΦEoM�cσ
∂σEoM
∂cσ − cσ ¼ 0: ðA26Þ

Equation (A26) leads us to

cσ
∂σEoM
∂cσ ¼ cσ

m2
σ
; with m2

σ ¼ ∂2
σVkjσEoM : ðA27Þ

Collecting all the ingredients this leads us to

∂tΔl ¼
1

2

cσ
m2

σ

�
hk
2
TrG2

qq̄∂tRq

−
1

2
TrðG2

σσV
ð3Þ
σσσ þG2

ππV
ð3Þ
σππÞ∂tRϕ

�
: ðA28Þ

Note that the expression in the square bracket is nothing but
∂σ

_Vk and m2
σ is the second σ-derivative of Vk, see (A27).

Now we use that the flow of σEoM;k follows straightfor-
wardly from the cutoff dependence EoM ∂σVk ¼ cσ. The
t-derivative of the EoM reads

∂tσEoM;kV
ð2Þ
k þ ∂tV

ð1Þ
k ¼ 0; ðA29aÞ

which can be solved for the flow of σEoM;k,

→ ∂tσEoM;k ¼ −
_Vð1Þ
k

Vð2Þ
k

����
σ¼σEoM;k

: ðA29bÞ

Accordingly, (A28) is nothing but the flow of σEoM;k up to a
prefactor −cσ. This follows already from (A6), to wit

1

cσ
∂tΔl ¼ −

1

2
∂tσEoM;k; ðA30Þ

which proves that (A19) holds nontrivially in the present
approximation. Note also that at large cutoff scales the term
in the second line of (A28) from the mesonic loop drops
quickly proportional to σEoM. The prefactor of the first term
approaches the current quark mass cσhk

m2
σ
→ 2m0

l . Hence, in

this limit (A28) reduces to the explicit m0
l -derivatives in

(A20). In turn, for smaller cutoff scales (A28) carries also
the implicit ones in (A20).

APPENDIX B: DYNAMICAL HADRONIZATION

Here we carefully derive the hadronization relations for
the given hadronization (15), which is recalled here,

h∂tϕ̂ki ¼ _Akq̄τqþ _Bkϕþ 1ffiffiffiffiffiffiffiffiffi
2Nf

p _Ckêσ; ðB1Þ

with êσ is a conveniently normalized vector in the
σ-direction, ê2σ ¼ 1=

ffiffiffiffiffiffiffiffiffi
2Nf

p
. Now we use the shift in the

σ-direction, _CkðΦÞêσ , for absorbing the current quark mass
of up- and down-quarks into the mesonic field. Here we
allow a field dependence of the coefficient _Ck. Then, the
scalar quark two-point function

ðq̄τ0qÞ ¼ ðūuþ d̄dÞ=2; ðB2Þ

is proportional to σ and its symmetry part vanishes for all
momenta p and cutoff scales k,

Γð2Þ
ðq̄τ0qÞ½σ�ðpÞ þ Γð2Þ

ðq̄τ0qÞ½−σ�ðpÞ≡ 0: ðB3Þ

This entails, that the flow of the symmetric part vanishes,

∂tΓ
ð2Þ
ðq̄τ0qÞ½σ�ðpÞ þ ∂tΓ

ð2Þ
ðq̄τ0qÞ½−σ�ðpÞ≡ 0: ðB4Þ

Moreover, it also leads to vanishing flow diagrams,

Flowð2Þ
ðq̄τ0qÞ½σ�ðpÞ þ Flowð2Þ

ðq̄τ0qÞ½−σ�ðpÞ≡ 0: ðB5Þ

For the determination of _Ck we evaluate the flow equation
for the scalar part of the quark two point function, derived
from (26) with the choice (B1). It reads
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∂tΓ
ð2Þ
ðq̄τ0qÞ þ _Ak

�
δΓ
δσ

þcσ

�
þ _CkΓ

ð3Þ
ðq̄τ0qÞσ ¼ Flowð2Þ

ðq̄τ0qÞ; ðB6Þ

where the field-dependence of all correlation functions has
been suppressed, and the subscript ðq̄qÞ indicates the
projection on the scalar part of the quark two-point function
q̄q ¼ 2q̄τ0q. Upon symmetrizing (B6) the flow of the

quark two-point function, ∂tΓ
ð2Þ
ðq̄τ0qÞ and the diagrams,

Flowð2Þ
ðq̄τ0qÞ, drop out due to (B4), (B5). This leaves us with

_Ck ¼ − _Ak
1

Γð3Þ
ðq̄τ0qÞσ½σ�

Γð1Þ
σ ½σ� þ Γð1Þ

σ ½−σ� þ 2cσ
2

; ðB7Þ

where we have used that (B3) leads us to Γð3Þ
ðq̄τ0qÞσ½−σ� ¼

Γð3Þ
ðq̄τ0qÞσ½σ�. In the chiral limit the numerator in (B7)

vanishes and _Ck ≡ 0 as expected. For finite current quark

masses (B7) the symmetric sum Γð1Þ
σ ½σ� þ Γð1Þ

σ ½−σ� ¼
−2cσ. Hence, we finally conclude

_Ck ≡ 0: ðB8Þ

This is the expected property following from the symmetry
constraints on the σ-dependence we have imposed in (B3),
see also the discussion in Sec. II A. With (B8) we are led to

∂tΓ
ð2Þ
ðq̄τ0qÞ þ _Ak

�
δΓ
δσ

þ cσ

�
¼ Flowð2Þ

ðq̄τ0qÞ; ðB9Þ

As (B9) depends on Γð1Þ
σ , we also study the respective flow

in order to discuss the self-consistence of the current
expansion schemes as well as the optimization of the
approximation (39) used in the present work. The flow

of Γð1Þ
σ at ðq; q̄Þ ¼ 0 reads

∂tΓ
ð1Þ
σ ¼ Flowð1Þ

σ ; ðB10Þ

and is that in the chiral limit: it does not depend on cσ , see
Eq. (52). Accordingly the dynamical hadronization put
forward here carries the full chiral symmetry at each cutoff
scale due to the shift in Jσ. Explicit chiral symmetry
breaking is entirely carried by the linear term in σ.
Inserting (39) in (B9), we arrive at

∂thkðρÞ þm2
πðρÞ _A ¼ 1

σ
Flowð2Þ

ðq̄τ0qÞ; ðB11Þ

where m2
πðρÞ ¼ ∂ρVðρÞ. In terms of dimensionless varia-

bles and after rescaling with the wave function renormal-
izations we are led to (115).
In summary we are left with the two key equations (B10)

and (B11). In particular the latter one, (B11), relates the

ρ-dependence of the pion mass functionm2
πðρÞ to that of the

Yukawa coupling. This entails that the field-dependence of
the Yukawa coupling is in one-to-one correspondence to
that of the effective potential, see also [75]. Since we do not
take into account the ρ-dependence of hkðρÞ, the respective
systematic error is minimized for an expansion point in the
Taylor expansion in ρ, that minimizes the higher Taylor
coefficients of m2

πðρÞ:

min
ρ
j∂n

ρm2
πðρÞj ¼ min

ρ
j∂nþ1

ρ VðρÞj: ðB12Þ

The Taylor coefficients in (B12) are minimized at the
flowing minimum, the k-dependent EoM for κk ¼ σ2EoM;k=2.
Note however that this expansion point does not lead to
best convergence for the flow of the effective potential,
(B10). The latter flow shows best convergence for a fixed
expansion point close to the final minimum σEoM ¼
σEom;k¼0. Accordingly, for small cutoff scales a fixed
expansion point fares better than the running one in terms
of convergence. It is suggestive to switch of the running of
the renormalized expansion point at

∂tκ̄kjkpeak ¼ 0; with κ̄k ¼ ρ̄EoM;k; ðB13Þ

see (117) in Sec. IV D. However, if the frozen expansion
point is too far away from the physical configuration
ρEoM ¼ ρ̄EoM;k¼0 ≤ ρ̄EoM;kpeak , the latter may not be in the
radius of convergence of the Taylor expansion. This is
checked by stopping the flow of the minimum later and
checking the stability of the results under this procedure.
This subtlety can be avoided completely by a field-
dependent Yukawa-coupling (and further field-dependent
couplings such as the wave function renormalizations), see,
e.g., [75]. This will be studied in future work.

APPENDIX C: STRANGE QUARK AND THE
MINIMAL EXTENSION TO Nf = 2 + 1

In this work we adopt an minimal approach to extend
the calculation ofNf ¼ 2 to that ofNf ¼ 2þ 1. First of all,
the contribution of the strange quark loop to the gluon
anomalous dimension is included, i.e., another term
denoted by ηsA;k is added in (100), which reads

ηA;k ¼ ηQCDA;vac þ ΔηYMA þ ΔηlA þ ηsA: ðC1Þ

The in-medium gluon vacuum polarization generated by
the light quarks, ΔηlA, is given by the in-medium part of
(H1) and (H2) with m̄q ¼ m̄l, Nf ¼ 2 and the light-quark–
gluon coupling, gl̄Al, defined in (106) and (M1). For the
strange quark contribution, ηsA, we use (H1) directly with
m̄q ¼ m̄s, defined in (45), Nf ¼ 1 and the strange-quark–
gluon coupling, gs̄As, defined below. Note that ηsA not only
contains the thermal contribution, as does ΔηqA, but also
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includes the vacuum contribution, since our input for the
unquenched QCD calculation in vacuum, i.e., the first term
on the r.h.s. of (C1), in only for two flavors [32].
Furthermore, the quark-gluon coupling for the strange

quark is distinguished from that for the u- and d-quarks,
and its flow equation is given by

∂tgs̄As ¼
�
1

2
ηA þ ηq

�
gs̄As þ Flowð3Þ;A

ðs̄AsÞ: ðC2Þ

where the last term is defined in (M2). In comparison to
(106), we note that in (C2) we have neglected the con-
tribution of mesonic fluctuations to the running of gs̄As.
This will be improved in our future work. All explicit
expressions for the quantities discussed here are given in
Appendix H and M.

APPENDIX D: DIRECT SUM VERSUS
FULL BACK COUPLING

Here, we motivate the approximation we use for the
gauge field propagator. The goal is to find a simple, yet
quantitatively reliable scheme. This discussion is largely
based on [28,137] and reiterated here for completeness. The
most prominent feature in the gauge sector is confinement.
In linear covariant gauges it manifests itself in the emer-
gence of a gluon mass gap, cf. (32), together with an
enhanced ghost propagator in the IR [227–229]. This
implies that in order to capture the mass gap, the full
momentum dependence of the gauge field propagators has
to be resolved. This is a formidable task which requires
sophisticated truncation schemes and considerable numeri-
cal effort, e.g., [27,31,33,230–235]. Here, we motivate an
approximation scheme which uses the full gauge field
propagators from fist-principles computations of the pure
gauge theory as input, while matter effects, i.e., quark and
hadron fluctuations, and their backreaction on the gauge
sector, are computed self-consistently.
Within the truncation scheme described in Sec. III, the

propagators enter the flow equations through the corre-
sponding anomalous dimensions and mass parameters. The
gluon anomalous dimension, for instance, is in general a
function of the strong couplings and the mass gap,

ηQCDA;k ¼ ηQCDA;k ðαq̄Aq; αc̄Ac; αA3 ; αA4 ; m̄2
A; m̄

2
qÞ; ðD1Þ

where we omitted the k-dependence on the couplings
and masses for the sake of brevity. Within both, the fRG
and DSE approaches this can always be split into a part
where only diagrams of the pure gauge theory contribute,
ηglueðαc̄Ac; αA3 ; αA4 ; m̄2

AÞ, and the matter contribution,
ηquarkA ðαq̄Aq; m̄2

qÞ. We note that the couplings themselves
are the ones of QCD, i.e., the couplings in the gauge sector
also depend on the ones in the matter sector and vice versa.

Hence, the splitting of the gluon anomalous dimension into
gauge and matter part is purely formal. A first simplifica-
tion can be made by using that the different gauge
couplings only differ from each other in the low-energy
regime where the mass gap is generated, i.e., where gluons
decouple in QCD. Hence, we parametrize the anomalous
dimension as

ηQCDA;k ¼ ηglueA ðαs; m̄2
AÞ þ ηquarkA ðαq̄Aq; m̄2

qÞ; ðD2Þ

where αs stands for αcc̄A, αA3 or αA4. Note that the gluon
mass gap is part of the gauge contribution. As discussed in
Sec. III, the glue diagrams of the anomalous dimension in
Yang-Mills theory and in QCD agree, and it can be
parametrized in terms of the couplings αs and the mass
gap m2

A. Accordingly, the differences between the glue
parts in QCD and Yang-Mills theory come from the
differences in αs and m2

A. We have

ηglueA jYM ¼ ηYMA;k ¼ ηglueA ðαYM; ðm̄YM
A Þ2Þ;

ηglueA jQCD ¼ ηglueA ðαs; m̄2
AÞ; ðD3Þ

where αs and m2
A are the QCD couplings and mass gap

respectively. This suggest a possible approximation scheme
for the gluon propagator: One takes the Yang-Mills
anomalous dimension ηYMA in (D3) as an external input
from a first-principles computation, computes αs, m̄2

A and
ηquarkA ðαq̄Aq; m̄2

qÞ as functions of the RG scale k and puts
everything together according to (D2).
The advantage of this procedure is that the information

about the full momentum dependence, and in particular the
emergent mass gap, is encoded in the quantitatively reliable
external input. The corrections from matter fluctuations as
well as their feedback on the gauge contribution are
computed “locally,” i.e., the full RG scale dependence of
the correlation functions is resolved, but only one momen-
tum configuration (typically vanishing momenta) is taken
into account. A simple reduction of this procedure is to
ignore the feedback from the matter sector onto the gauge
sector and simply define

ηQCDA;k ¼ ηYMA;k þ ηquarkA;k ðαq̄Aq; m̄2
qÞ: ðD4Þ

This amounts to only adding the gluon vacuum polarization
to the input from YM.
To check the quality of both approximations we compare

the resulting gluon propagators to results from lattice gauge
theory [236,237] at vanishing temperature and chemical
potential in Fig. 24. In this figure we also show the
benchmark fRG calculations with the state-of-the-art trun-
cation of pure Yang-Mills theory in vacuum, [31], (thin
green dashed line), and Nf ¼ 2 flavor QCD [32] (thick
cyan dashed line). The fRG results in the current
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approximation have been taken from [28,137]: The red line
shows the input propagator from the pure gauge theory. The
open circles are the corresponding lattice data in [236]. The
open blue squares show the lattice results for two-flavor
QCD [237]. The solid blue line shows our results within the
approximation based on (D2). We used αs ¼ αc̄Ac.
Indeed, this approximation leads to a perfect agreement

with the corresponding lattice results. To facilitate a
comparison between p- and k-dependent quantities, we
have identified k ¼ p. Note that the momentum scale is
arbitrary here. If the feedback to the gauge sector is
ignored, i.e., the approximation in (D4) is used, we find
the dotted black line in Fig. 24. While it still is a good
approximation to the full propagator, it is clearly out-
performed by (D2).
This results motivates the use of a local approximation,

i.e., resolving only the RG scale dependence of the
correlation functions, for the effects of matter fluctuations,
as long as the relevant nonlocal information, i.e., the
genuine momentum dependence, is taken into account
through the input. This is crucial for the present work,
since we compute the thermal and density corrections to the
gluon vacuum polarization in a local approximation
directly, while we use the gluon anomalous dimension
of QCD at T ¼ 0 as well as the thermal effects of YM as
input, cf. (100).

APPENDIX E: INITIAL CONDITIONS AND
INFRARED ENHANCEMENT

1. Initial conditions

The UV cutoff scale where the flow for the effective
action Γk½Φ�, or rather that of the correlation functions

ΓðnÞ
k ½Φ�, is initiated, is chosen as

Λ ¼ 20 GeV: ðE1Þ

At this scale, only the fundamental couplings of QCD, i.e.,
the strong coupling and the quark masses, are relevant. We
initiate the flow with a nonvanishing strong coupling αs,

αq̄Aq;Λ ¼ αA3;Λ ¼ αA4;Λ ¼ αc̄Ac;Λ ¼ αs;Λ; ðE2Þ

such that all avatars of the strong coupling agree at the
initial scale. The initial strong coupling αsðΛÞ is con-
strained by the requirement of the RG consistency in (112),
and we find that (112) is satisfied for

αs;ΛjNf¼2þ1 ¼ 0.235; αs;ΛjNf¼2 ¼ 0.21: ðE3Þ

The only other input at our perturbative initial scale are the
current quark masses. We identify the up and down quark
masses, mu ¼ md ¼ mq, and fix their value by the pion
mass in the vacuum to be mπ ¼ 138 MeV. Following our
discussion in Sec. IVA 1, we emphasize that the curvature
mass m̄π of the pion has been shown to be in very good
agreement with the pion pole mass mπ;pol defined by

Γð2Þ
ππ ðp2 ¼ −m2

π;polÞ ¼ 0, see [100,219]. This can be traced
back to the mild momentum dependence of the pion
correlation function, [27,32,100] as well as its relatively
small width. For the σ resonance this is less obvious and in
particular the width is not expected to be small.
Accordingly the curvature mass mσ may not be close to
the position of the smallest scalar resonance. In the present
work it is computed to be mσ ¼ 485 MeV. As discussed in
Sec. III, the light quark mass is absorbed in a shift in the
σ-field and simply leads to a linear term in the potential,
cσσ, see Sec. III C. We arrive at

cσ ¼ 3.6 GeV3; with mπ;k¼0 ¼ 137 MeV: ðE4Þ

Note that c̄σ;k ¼ cσ=Z
1=2
ϕ;k with cσ being independent of k.

This leads to

∂tc̄k ¼
ηϕ;k
2

c̄k: ðE5Þ

The strange current quark mass is fixed as ms;Λ ¼
120 MeV by the ratio fK=fπ , see the discussion in
Sec. III C and Table I. This amounts to

FIG. 24. Comparison between the Nf ¼ 2 propagators ob-
tained from lattice gauge theory and fRG results at vanishing
temperature and density. The solid red thin line shows the gluon
propagator of the pure gauge theory we use as input. The open red
circles are the corresponding lattice results [236]. The blue open
squares are the lattice results for two-flavor QCD [237]. The solid
blue thick line shows the fRG result using (D2) and the dotted
black line shows the result based on (D4). Both results are taken
from [28,137]. Furthermore, results from the fRG calculations
with the state-of-the-art truncations at vacuum for the pure Yang-
Mills theory [31] and Nf ¼ 2 unquenched QCD [32] are shown
for comparison, which are denoted by the green and cyan dashed
lines, respectively.
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cσs ¼ 48.8 GeV3; with Δm̄sl ¼ 120 MeV: ðE6Þ

We have checked that a variation of the difference of the
constituent quark masses 100 MeV≲ Δm̄sl ≲ 200 MeV
does not influence our results for light quark and gluon
correlation functions and observables.
In the perturbative regime all other couplings are

irrelevant, so they are either vanishing or have irrelevant
RG flows. This entails in particular that the full four-quark
coupling λ̄q;eff (that on the EoM for ϕ) should be infini-
tesimally small,

λ̄q;eff ¼
h̄2Λ

2m̄2
ϕ;Λ

≈ 0: ðE7Þ

where we have used the trivial initial effective potential

V̄Λðρ̄Þ ¼ m̄2
ϕ;Λρ̄: ðE8Þ

Equation (E7) fixes the ratio of the meson mass parameter
and the Yukawa coupling. Dynamical hadronization entails
that results should only depend on the combination (E7),
and not on m̄2

ϕ;Λ and h̄Λ separately. Moreover, if λ̄q;eff is

small in comparison to its flow, λ̄q;eff=∂tλ̄q;eff ≈ 0, (E7)
holds, and the results at k ¼ 0 do not depend on λ̄q;eff . We
have checked that this is indeed the case as well as the
independence on m̄2

ϕ;Λ and h̄Λ separately, see also [28]. In
fact, this behavior is guaranteed by an IR-attractive fixed
point in the weak-coupling regime [72].
The above scenario holds for initial cutoff scales of

Λ≳ 10 GeV, as we are safely in the perturbative regime of
QCD. Then the above initial conditions should be appli-
cable with appropriately adjusted values for the RG-
consistent strong coupling. We have investigated the
dependence of our results on the value of Λ in this regime.
We found that the Λ-dependence is negligible.

2. Infrared enhancement

In Sec. IV B 1 we have discussed a potential infrared
enhancement of the quark-gluon coupling in order to
compensate for the dynamics of the missing nonclassical
tensor structures in the present approximation. We follow
the approach proposed in Ref. [28]: The potentially missing
interaction strength is compensated for by a phenomeno-
logical infrared enhancement of the vector tensor structure.
This is done with the replacement,

∂tḡq̄qA → ḡq̄qA∂tςa;bðkÞ þ ςa;bðkÞ∂tḡq̄qA; ðE9Þ

with the infrared enhancement function given by

ςa;bðkÞ ¼ 1þ a
ðk=bÞδ

exp½ðk=bÞδ� − 1
: ðE10Þ

This function behaves as ςa;bðkÞ → 1 with k > b and
ςa;bðkÞ → 1þ a with k < b. In this work b ¼ 2 GeV
and δ ¼ 2 are chosen. The strength of the enhancement
for Nf ¼ 2þ 1, a ¼ 0.034, and for Nf ¼ 2, a ¼ 0.008, is
fixed by fitting the physical constituent quark mass. Note
that this IR enhancement is only applied for the quark-
gluon vertex, and the three gluon coupling gA3 is not
enhanced. This takes into account that the infrared
enhancement takes into account missing tensor structures,
which is relevant for the quark-gluon vertex, but not for the
three-gluon vertex.

3. Scales

QCD in the chiral limit, that is with vanishing current
quark masses m0

l;s ¼ 0, has no scale on the classical level,
and all observables can only be measured in the dynami-
cally created scales: The confinement scale, carried, e.g., by
ΛQCD or the string tension, and the chiral symmetry
breaking scale, carried, e.g., in the chiral condensate or fπ;χ.
At the physical point with m0

l;s ≠ 0 all scales are
measured in the above dynamical scales, for more details
and the possible choice of observables see Sec. III C. In
particular, this leads us to

fπ
fπ;χ

¼ 93

88
;

fK
fπ;χ

¼ 111

88
: ðE11Þ

Naturally, the scales at the physical point may also be
measured in units of the reduced condensate, ΛQCD or the
string tension. However, the pion decay constant has a
direct physical meaning and hence is preferable.
These scales may also be set in comparison to lattice

simulations, which has been done in [27,32] for Nf ¼ 2
flavor QCD. In the present work we took over the scales
from [27,32], fixing the scales at Λ ¼ 20 GeV in a direct
extension to Nf ¼ 2þ 1. RG-consistency, see Sec. IV B 3,
then determines the value of the Nf ¼ 2þ 1 flavor strong
coupling αs;Λ at the initial scale, providing us with a
prediction of the Nf ¼ 2þ 1 gluon propagator, see
Fig. 25. This prediction is in quantitative agreement with
the continuum-extrapolated lattice data from [134–136]
with a pion mass of mπ ¼ 139 MeV. This completes our
scale setting for the physical point. All quantities are
measured in the respective absolute units.
For the sake of completeness we also provide results for

the pion decay constant. This computation is also interest-
ing in terms of the predictive power as well as the
limitations of the present approximation. The pion decay
constant can be determined from the momentum depend-
ence of the quark propagator dressings ZqðpÞ and MqðpÞ,
defined in (77). These dressings are linked to the Bethe-
Salpether wave function of the pion, for reviews see, e.g.,
[238–240],
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f2π ¼
3

2π2

Z
∞

0

dp
p3MqðpÞZ−1

q ðpÞ
½p2 þMqðpÞ�2

�
MqðpÞ −

p
4

∂MqðpÞ
∂p

�
:

ðE12Þ

Equation (E12) is sensitive to the full momentum depend-
ence of the quark mass functionMqðpÞ. This dependence is
suppressed in the flows due to the presence of the regulator
term in the propagators. The letter suppression is the
argument for the momentum-independent approximation
in the present work with ml;k ¼ Mq;kðp ¼ 0Þ. Note also
that the results in [32] have been obtained for a fixed
expansion point or background with ∂tκ ¼ 0 with a four-
dimensional flat regulator. Both properties can be taken
account in the present work by evaluating the mass function
on a fixed background κ ¼ 1=2σEoM at vanishing cutoff
k ¼ 0 as well as rescaling the cutoff scale k → 3=4k.
Moreover, we have to rescale the mass function Mq;k →
Mq;kml;0=Mq;0 in order to have the same infrared value.
This leads us to Fig. 26, which first of all confirms
impressively the validity of our approximation scheme.
Moreover it allows us to use the rescaled quark mass

function Mq;resðpÞ of [32] for an estimate of fπ in the
present work with (E12). The rescaled quark mass function
reads

Mq;resðpÞ ¼ Mq;k¼0ðpÞ
ml;k¼0

Mq;k¼0ð0Þ
; ðE13Þ

and the result for the pion decay constant at the physical
point is

fπ ≈ 96.0 MeV; ðE14Þ

see also Table I. In the current approximation the Nf ¼
2þ 1 flavor mass function has the same cutoff behavior as
the Nf ¼ 2 flavor one. This is related to the fact, that the
strange quark feeds into the light quark mass function only
indirectly over the gluon propagator and running coupling
αl̄Al in the quark-gluon vertex. Rescaling the mass functions
with their value at k ¼ 0 makes this very apparent, see
Fig. 27.
We conclude that the agreement of the rescaled Mq;kð0Þ

with the Nf ¼ 2þ 1 flavor light quark mass function ml;k

works equally well as for the two-flavor case depicted in
Fig. 26. The respective plot is shown in Fig. 28.
Consequently we can use the same estimate as in (E13)

for the Nf ¼ 2þ 1 flavor case. This leads us to

FIG. 26. Two-flavor QCD quark mass functions from [32] and
the present work for a fixed background σ ¼ σEoM at vanishing
cutoff scale. In [32] the full momentum-dependent mass Mq;kðpÞ
function in Nf ¼ 2 flavor QCD has been computed, and we have
ml:k=ml:k¼0 ¼ Mq;kð0Þ=Mq;k¼0ð0Þ.

FIG. 25. Nf ¼ 2 flavor and Nf ¼ 2þ 1 gluon dressing func-
tions 1=ZA as function of momentum. The Nf ¼ 2 flavor gluon
dressing computed with the fRG in [32] is the input in the present
work. It is in quantitative agreement with the respective lattice
results. The lattice data here are taken from [237]. The Nf ¼
2þ 1 flavor gluon dressing shown here is a genuine prediction of
the present computation. It is shown to be in quantitative
agreement with the respective lattice results [134–136].

FIG. 27. Nf ¼ 2 and Nf ¼ 2þ 1 light quark mass functions as
a function of the cutoff scale k, normalized by their value at
vanishing cutoff scale k ¼ 0.
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fπ ≈ 93.0 MeV; ðE15Þ

see also Table I. Finally we are interested in the pion decay
constant in the chiral limit. The respective light quark
mass function ml;χ at k ¼ 0 is given by ml;χ ¼ 319 MeV,
leading to

fπ;χ ≈ 88.6 MeV: ðE16Þ

In summary the scale setting in the present work is self-
consistent with both the confinement scales, here deter-
mined via the gluon dressing function, as well as the chiral
symmetry breaking ones, here determined with the pion
decay constant. This is further nontrivial evidence for the
reliability of the present approximation for not too large
chemical potential.

APPENDIX F: FLOW OF THE
EFFECTIVE POTENTIAL

Within the approximation discussed in Sec. IV D, the
effective potential Vmat;kðρ; L; L̄Þ in (40) satisfies the flow
equation (26), which we recall,

∂tVmat;kðρÞ ¼
k4

4π2
½ðN2

f − 1ÞlðB;4Þ0 ðm̃2
π;k; ηϕ;k;TÞ

þ lðB;4Þ0 ðm̃2
σ;k; ηϕ;k;TÞ

− 4NcNfl
ðF;4Þ
0 ðm̃2

q;k; ηq;k;T; μqÞ�; ðF1Þ

where the threshold functions lðB=F;4Þ0 are given in (N9) and
(N10) in Appendix N, and the Polyakov loops L, L̄ are not
shown explicitly for brevity. The right-hand side of (F1)
also depends on the dimensionless renormalized quark and
meson masses, i.e.,

m̃2
q;k ¼

h2kρ
2k2Z2

q;k

; m̃2
π;k ¼

V 0
kðρÞ

k2Z̄ϕ;k
;

m̃2
σ;k ¼

V 0
kðρÞ þ 2ρV 00

kðρÞ
k2Z̄ϕ;k

: ðF2Þ

Performing a Taylor expansion of the effective potential,
one arrives at

Vmat;kðρÞ ¼
XNv

n¼0

λn;k
n!

ðρ − κkÞn; ðF3Þ

where the expansion point κk can depend on the RG scale.
Note that the expansion coefficients λn;k should not be
confused with the four-fermion coupling λq in (39). It is
more convenient to work with RG-invariant variables,
which are denoted in this paper by quantities with a bar,
except for the strong couplings in (54) and (55), for
example, ρ̄ ¼ Z̄ϕ;kρ, κ̄k ¼ Z̄ϕ;kκk, and λ̄n;k ¼ λn;k=Z̄n

ϕ;k with
Z̄ϕ defined in (92). The ηΦi;k’s in (F1) are the anomalous
dimensions for respective fields, which are given in (30).
We reformulate the effective potential in terms of RG-
invariant variables through Vmat;kðρÞ ¼ V̄mat;kðρ̄Þ, i.e.,

V̄mat;kðρ̄Þ ¼
XNv

n¼0

λ̄n;k
n!

ðρ̄ − κ̄kÞn: ðF4Þ

The expansion point κ̄k can be chosen freely, provided that
the physics of our concern is within the radius of con-
vergence of the expansion [75]. Expanding about a fixed
background is a convenient choice, see, e.g., [28,75,76,78],
where the unrenormalized expansion point is chosen to be
independent of k. In this work we adopt the physical point
expansion. In this expansion κ̄k is chosen to be the
minimum of the effective potential at each scale k, i.e.,
it is given by the solution of the EoM,

∂
∂ρ̄ ðV̄kðρ̄Þ − c̄kσ̄Þjρ̄¼κ̄k

¼ 0: ðF5Þ

With (F1) and (F5), see also (A29), one obtains the flow of
the expansion point in (F4), to wit,

∂tκ̄k ¼ −
c̄2k

λ̄31;k þ c̄2kλ̄2;k

�
ηϕ;k

�
λ̄1;k
2

þ κ̄kλ̄2;k

�

þ ∂ ρ̄∂tjρV̄kðρ̄ÞÞjρ̄¼κ̄k

�
: ðF6Þ

The flow equations of the expansion coefficients of the
effective potential λ̄n;k, which describe 2n-meson scatter-
ing, are

∂tλ̄n;k ¼ ∂n
ρ̄ð∂tjρV̄kðρ̄ÞÞjρ̄¼κ̄k

þ nηϕ;kλ̄n;k

þ ð∂tκ̄k þ ηϕ;kκ̄kÞλ̄nþ1;k: ðF7Þ

FIG. 28. Nf ¼ 2 quark mass function from [32] and the Nf ¼
2þ 1 light quark mass function from present work in the fixed
expansion.
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In this work the maximal order of the Taylor expansion for
the effective potential in (F4) is chosen to be Nv ¼ 5, and
we have checked its convergence for the μB-range studied
here, 0 ≤ μB ≲ 600 MeV.

APPENDIX G: GLUE POTENTIAL

We employ the parametrization put forward in [174] for
the glue potential in (69). The advantage is that, besides the
expectation value of the Polyakov loop and the pressure in
Yang-Mills theory, quadratic fluctuations of the Polyakov
loop are taken into account. For a detailed discussion we
refer to [76]. The glue potential reads

VglueðL; L̄Þ ¼ −
aðTÞ
2

L̄Lþ bðTÞ lnMHðL; L̄Þ

þ cðTÞ
2

ðL3 þ L̄3Þ þ dðTÞðL̄LÞ2; ðG1Þ

with the Haar measure

MHðL; L̄Þ ¼ 1 − 6L̄Lþ 4ðL3 þ L̄3Þ − 3ðL̄LÞ2: ðG2Þ

The temperature dependence of coefficients on the r.h.s. of
(G1) enters through

xðTÞ ¼ x1 þ x2=ðtYM þ 1Þ þ x3=ðtYM þ 1Þ2
1þ x4=ðtYM þ 1Þ þ x5=ðtYM þ 1Þ2 ; ðG3Þ

for x ∈ fa; c; dg, and

bðTÞ ¼ b1ðtYM þ 1Þ−b4ð1 − eb2=ðtYMþ1Þb3 Þ: ðG4Þ

The constants in (G3) and (G4) are taken from [174], and
are also collected in Table III for convenience. tYM is
related to the reduced temperature of Yang-Mills theory,
and it has been found in [93,94,241] that unquenching
effects in QCD are well captured through a linear rescaling
of the reduced temperature of the pure gauge theory,

tYM → αtglue with tglue ¼ ðT − Tglue
c Þ=Tglue

c ; ðG5Þ

where α ¼ 0.57, Tglue
c ¼ 250 MeV for Nf ¼ 2 and

225 MeV for Nf ¼ 2þ 1 are used in this work. For more
relevant details, see the foregoing references.

APPENDIX H: GLUON ANOMALOUS
DIMENSION

Implementing the projection as shown in (104), one
obtains the contribution of the quark loop to the gluon
anomalous dimension, which reads

ηqA ¼ −
Nf

π2
g2q̄Aq;k

Z
1

0

dx½ð1 − ηq;kÞ
ffiffiffi
x

p þ ηq;kx�

×
Z

1

−1
d cos θ

�
ðFF ð1;1Þðm̃2

q;k; m̃
2
q;kÞ

− FF ð2;1Þðm̃2
q;k; m̃

2
q;kÞÞ þ ð ffiffiffi

x
p

cos2θ − cos θÞ

× ð1þ rFðx0ÞÞ
�
FF ð2;1Þðm̃2

q;k; m̃
2
q;kÞ

−
1

2
FF ð1;1Þðm̃2

q;k; m̃
2
q;kÞ

��
; ðH1Þ

with the fermionic regulator in (N1d). We have defined
x ¼ q2=k2, x0 ¼ ðq − pÞ2=k2. q and p are the loop and
external momenta, respectively, and θ is the angle between
them. In order to take into account the screening effect of
the quark on the gluon propagator more efficiently, we
choose the external momentum to be jpj ¼ k in (H1). This
is necessary for consistence, since we also evaluate the
external input for the gluon anomalous dimension at
jpj ¼ k. The in-medium contribution, which we use for
the light-quark contribution, is then

ΔηqA ¼ ηqA − ηqAjT;μ¼0: ðH2Þ

The threshold functions in (H1) are given in (N20).
Moreover, the second term on the r.h.s. of (100), viz.
ΔηglueA , which is the thermal part of the pure glue con-
tribution to the gluon anomalous dimension, has to be
specified. Again, we build on the results in Yang-Mills
theory in [33]. As discussed there, ΔηglueA is captured
quantitatively through the inclusion of a thermal screening
mass of the gluon, Δm2

scrðk; TÞ. In addition to the temper-
ature, it has to depend on the RG scale since thermal effects
are rapidly suppressed for k≳ 2πT. Therefore, in the
following we discuss the modification of the gluon anoma-
lous dimension resulting from its thermal screening mass.
Beginning with the inverse gluon propagator,

G−1
A ðkÞ ¼ ZA;kk2; ðH3Þ

one obtains a modified one with the screening mass,

Ḡ−1
A ðkÞ ¼ Z̄A;kk2 ¼ ZA;kk2 þ Δm2

scrðk; TÞ: ðH4Þ

Differentiating both sides with respect to t leads to

Z̄A;kk2ð2− η̄A;kÞ¼ZA;kk2ð2−ηA;kÞþ∂tðΔm2
scrðk;TÞÞ; ðH5Þ

TABLE III. Constants in (G3) and (G4) for the glue potential.

1 2 3 4 5

ai −44.14 151.4 −90.0677 2.77173 3.56403
bi −0.32665 −82.9823 3.0 5.85559
ci −50.7961 114.038 −89.4596 3.08718 6.72812
di 27.0885 −56.0859 71.2225 2.9715 6.61433

QCD PHASE STRUCTURE AT FINITE TEMPERATURE AND … PHYS. REV. D 101, 054032 (2020)

054032-47



where η̄A ¼ −∂tZ̄A=Z̄A is the anomalous dimension with
the screening mass. Replacing ZA in (H5) by resorting to
(H4), one is led to

η̄A ¼ ηA þ Δm2
scrðk; TÞ
Z̄Ak2

ð2 − ηAÞ

−
1

Z̄Ak2
∂tðΔm2

scrðk; TÞÞ: ðH6Þ

Guided by the results of [33], we propose an ansatz for the
screening mass as follows:

Δm2
scrðk; TÞ ¼ ðcTÞ2 exp

�
−
�

k
πT

�
n
�
: ðH7Þ

Here c ¼ 2 is adopted for Nf ¼ 2þ 1, which is consistent
with the result in [33]. Furthermore, we choose n ¼ 2 in
(H7). We have also investigated the dependence of our
results on the parameters in (H7), and find that variations of
the parameters result in only a mild change of the
pseudocritical temperature of the chiral phase transition.
In Sec. V C we show the momentum (or cutoff)

dependence of the gluon dressing function 1=ZAðpÞ for
different temperatures and baryon chemical potentials. In
particular the dependence on μB is very mild and only
concerns the infrared. The in-medium behavior is
more pronounced in the gluon propagator depicted in

Fig. 29. However, we emphasize that the dressing functions
are the relevant quantities for the flow equations in the
present work.

APPENDIX I: SCALAR ANOMALOUS
DIMENSION

The anomalous dimensions of the mesons for vanishing
external momentum p ¼ 0 and nonvanishing momentum
ðp0 ¼ 0; jpj ¼ kÞ are given by (96) and (93), respectively.
This leads us to

ηϕð0Þ ¼
Z̄ϕ

Zϕð0Þ
1

6π2

�
4

k2
κ̄kðV̄ 00

kðκ̄kÞÞ2BBð2;2Þðm̃2
π;k; m̃

2
σ;k;TÞ

þ Nch̄2k½ð2ηq;k − 3ÞF ð2Þðm̃2
q;k;T; μqÞ

− 4ðηq;k − 2ÞF ð3Þðm̃2
q;k;T; μqÞ�

	
; ðI1Þ

where the ratio Z̄ϕ=Zϕð0Þ takes into account that the flow
on the right-hand side of (I1) has been defined with
derivatives with respect to the renormalized field
ϕ̄ ¼ Z̄ϕϕ. The term with the threshold function BBð2;2Þ
arises from the mesonic loop of the flow equation for the
meson propagator in Fig. 5. The terms involving F ðnÞ are
related to the quark loop. Explicit expressions for all
threshold functions are collected in Appendix N. For
(93) we have with ð0; kÞ ¼ ðp0 ¼ 0; jpj ¼ kÞ,

ηϕð0;kÞ¼
2

3π2
1

k2
κ̄kðV̄ 00

kðκ̄kÞÞ2BBð2;2Þðm̃2
π;k;m̃

2
σ;k;TÞ−

Nc

π2
h̄2k

Z
1

0

dx½ð1−ηq;kÞ
ffiffiffi
x

p þηq;kx�

×
Z

1

−1
dcosθ

�
½ðFF ð1;1Þðm̃2

q;k;m̃
2
q;kÞ−F ð2Þðm̃2

q;kÞÞ−ðFF ð2;1Þðm̃2
q;k;m̃

2
q;kÞ−F ð3Þðm̃2

q;kÞÞ�

þ½ð ffiffiffi
x

p
−cosθÞð1þrFðx0ÞÞFF ð2;1Þðm̃2

q;k;m̃
2
q;kÞ−F ð3Þðm̃2

q;kÞ�

−
1

2
½ð ffiffiffi

x
p

−cosθÞð1þrFðx0ÞÞFF ð1;1Þðm̃2
q;k;m̃

2
q;kÞ−F ð2Þðm̃2

q;kÞ�
	
; ðI2Þ

FIG. 29. Nf ¼ 2þ 1 gluon propagator GA ¼ 1=ðZA;kk2Þ at vanishing frequency p0 ¼ 0 as a function of spatial momenta jpj at
different temperatures (left panel) and baryon chemical potentials (right panel).
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with x ¼ q2=k2 and x0 ¼ ðq − pÞ2=k2 as same as in (H1).
Note that in (I2) we have neglected the external momentum
dependence of themeson loop for simplicity in the numerical
calculations. This is a good approximation for both, small

and large k, since meson loops are suppressed by the meson
masses in the IR and decouple in the UV. Only in the phase
transition region and in particular at the CEP, corrections to
the mesonic part of (I2) could become relevant.

APPENDIX J: QUARK ANOMALOUS DIMENSION

The quark anomalous dimension ηq;k in (80) reads

ηq;k ¼
1

24π2Nf
ð4 − ηϕ;kÞh̄2kfðN2

f − 1ÞFBð1;2Þðm̃2
q;k; m̃

2
π;k;T; μq; p0;exÞ þ FBð1;2Þðm̃2

q;k; m̃
2
σ;k;T; μq; p0;exÞg

þ 1

24π2
N2

c − 1

2Nc
g2q̄Aq;kf2ð4 − ηA;kÞFBð1;2Þðm̃2

q;k; 0;T; μq; p0;exÞ þ 3ð3 − ηq;kÞðFBð1;1Þðm̃2
q;k; 0;T; μq; p0;exÞ

− 2FBð2;1Þðm̃2
q;k; 0;T; μq; p0;exÞÞg; ðJ1Þ

where the fermion-bosonmixed threshold functionFB’s are
given in Appendix N. It is obvious that the contributions in
(J1) can be divided into two sectors, which results from the
quark-meson and quark-gluon interactions, respectively.
The external 3-momentum in (J1) is chosen to be p ¼ 0.

However, since the fermionic Matsubara frequency, p0 ¼
ð2nþ 1ÞπT with n ∈ Z, does not have a zero-mode, p0

cannot be chosen to be zero. In fact, a truncation that takes
into account the full frequency dependence of the quark
anomalous dimension plays a significant rôle in obtaining
quantitative accuracy in the computation of particle number
correlations with the fRG, and is also indispensable to
guarantee the silver blaze properties at finite chemical
potential, see [30] for more relevant details. However, a
frequency dependent truncation is computationally very
demanding, in particular in a temporal gluon background
field. Hence, in the present work we use a modification of
the lowest Matsubara mode. As has been discussed in detail
in [76], an evaluation consistent with the silver blaze
property is done with

p0;ex ¼ ðπTÞ expf−k=ðπTÞg − iμq: ðJ2Þ

We use the exponential factor to suppress the artificial
T-dependence in the vacuum part of the flow that is
introduced by the fermionic Matsubara frequency. As
discussed in [30,76], this procedure is necessary to ensure
the correct thermal behavior without taking into account the
full frequency dependence. The chemical potential part
eliminates the μ-part of the argument p0 þ iμq of the
correlation functions. This keeps the expansion point
p0;ex þ iμq fixed and does not lead to an unphysical
μq-dependence. The even quantitative reliability of this
treatment has been verified in [30] through a comparison
with the fully frequency-dependent calculations.
In comparison to [76] we use the limit p0;ex þ iμq → 0

instead of p0;ex þ iμq → k for convenience. This

modification allows us to compare our vacuum results
more directly to that in [28], as there the flows are evaluated
at p0;ex ¼ 0. We drop the suppression factor in the thermal
part of the diagrams: p0;ex → ðπTÞ − iμq. This leads to
simpler expressions, and the necessary suppression of
thermal effects at small T=k is guaranteed by the thermal
distribution functions. Both modifications have no sizable
impact on the numerical results.

APPENDIX K: FLOW OF
THE YUKAWA COUPLING

We have discussed the Yukawa coupling in Sec. IV C,
and its flow is given in (115). Adopting the same external
frequency and momentum as the quark anomalous dimen-
sion, the last term on the r.h.s. of (115) reads

ReðFlowð2Þ
ðq̄τ0qÞÞ=σ̄¼

1

4π2Nf
h̄3k½−ðN2

f−1Þ

×Lð4Þ
ð1;1Þðm̃2

q;k;m̃
2
π;k;ηq;k;ηϕ;k;T;μq;p0;exÞ

þLð4Þ
ð1;1Þðm̃2

q;k;m̃
2
σ;k;ηq;k;ηϕ;k;T;μq;p0;exÞ�

−
3

2π2
N2

c−1

2Nc
g2q̄Aq;kh̄k

×Lð4Þ
ð1;1Þðm̃2

q;k;0;ηq;k;ηA;k;T;μq;p0;exÞ:
ðK1Þ

APPENDIX L: FLOW OF THE FOUR-QUARK
COUPLING

The flow diagrams of the four-quark coupling arising
from the gluon exchange in the first line in Fig. 4, after
projected onto the σ − π channel, are denoted with

Flowð4Þ;A
ðq̄qÞðq̄qÞ. The flow diagrams arising from the meson

exchange or denoted with Flowð4Þ;ϕ
ðq̄qÞðq̄qÞ. The gluon exchange

diagrams read
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Flowð4Þ;A
ðq̄qÞðq̄qÞ ¼ −

3

2π2
N2

c − 1

2Nc

�
3

4
−

1

N2
c

�
g4q̄Aq;k

×

�
2

15
ð5 − ηA;kÞ½FBð1;3Þðm̃2

q;k; 0Þ

− m̄2
q;kFBð2;3Þðm̃2

q;k; 0Þ�

þ 1

12
ð4 − ηq;kÞ½FBð2;2Þðm̃2

q;k; 0Þ

− 2m̄2
q;kFBð3;2Þðm̃2

q;k; 0Þ�
	
; ðL1Þ

Here, the arguments T, μq, and p0;ex for threshold functions
are not shown explicitly. The right-hand side of (L1) is

obtained as follows: It contains expressions such as ðq ·
qFÞðγ · qÞðγ · qFÞ=q2 with loop momentum q. Here, qFμ ≡
ðq0; ð1þ rFÞqÞ with rF in (N1a). This expression arises
from the quark propagator with the 3d regulator as shown
in Eq. (N1a), contracted with the transverse magnetic
tensor of the gluon in Eq. (105). In order to simplify
the flow in Eq. (L1) as well as numerical calculations,
we approximate the expression above as qF · qF, which
is exact for the 4d regulator. We have also investigated
the reliability of this approximation through the compari-
son to the relevant four-quark flow in [28]. There a 4d
regulator has been used, and we find that the difference is
negligible.

The meson exchange diagrams have the form

Flowð4Þ;ϕ
ðq̄qÞðq̄qÞ ¼

1

32π2
N2

f − 2

NfNc
h̄4k

�
2

15
ð5 − ηϕ;kÞ½ðFBBð1;1;2Þðm̃2

q;k; m̃
2
π;k; m̃

2
σ;kÞ þ FBBð1;1;2Þðm̃2

q;k; m̃
2
σ;k; m̃

2
π;kÞ

− 2FBð1;3Þðm̃2
q;k; m̃

2
π;kÞÞ − m̃2

q;kðFBBð2;1;2Þðm̃2
q;k; m̃

2
π;k; m̃

2
σ;kÞ þ FBBð2;2;1Þðm̃2

q;k; m̃
2
π;k; m̃

2
σ;kÞ

− 2FBð2;3Þðm̃2
q;k; m̃

2
π;kÞÞ� þ

1

6
ð4 − ηq;kÞ½ðFBBð2;1;1Þðm̃2

q;k; m̃
2
π;k; m̃

2
σ;kÞ − FBð2;2Þðm̃2

q;k; m̃
2
π;kÞÞ

− 2m̃2
q;kðFBBð3;1;1Þðm̃2

q;k; m̃
2
π;k; m̃

2
σ;kÞ − FBð3;2Þðm̃2

q;k; m̃
2
π;kÞÞ�

	
: ðL2Þ

In Fig. 30 we compare (L1) and (L2) at T ¼ 0 and μB ¼ 0

for the purpose of illustration. The flow divided by k2 is
shown in the left plot of Fig. 30, and the ratio between the
respective flow and their sum in the right plot. Note that the
peak in the right plot corresponds to the position where the
sum of (L1) and (L2) is vanishing, thus resulting in a

divergent ratio there. This is because in the low k region
meson exchange dominates, and this contribution changes
sign at about k ≈ 75 MeV, as shown by the blue vertical
line in both plots. One observes that gluon exchange, i.e.,
the diagrams in the first line in Fig. 4, is the dominant
process for k≳ 300 MeV. Therefore, it is reasonable to

FIG. 30. Left panel: comparison between the flow of the Nf ¼ 2þ 1 four–light-quark coupling arising from the gluon exchange in
(L1), Φi ¼ A, and that from the meson exchange in (L2), Φi ¼ ϕ, as a function of k at T ¼ μB ¼ 0. Right panel: the ratio of their
respective flow over the total flow, i.e., the summation of (L1) and (L2), where the absolute value for the ratio is chosen. The blue vertical
line in both plots shows the position where the flow resulting from the meson exchange changes sign.
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expect that the mixed diagrams in the third line of Fig. 4
play a subleading rôle for dynamical hadronization. It is
interesting to observe that gluon exchange becomes dom-
inant already in (and below) the phase transition region at
k ≈ 400 MeV, which can be read-off, e.g., from Fig. 8. This
gives an implicit upper bound on the validity of low-energy
models, namely k≲ 300 MeV. For first discussions in
this direction, see [129,137]. Note that this bound is in
quantitative agreement with the results in these references.

APPENDIX M: FLOW OF THE QUARK-GLUON
COUPLING

The running of the strong quark-gluon coupling is
governed by (106), where the term in the second line is

divided into two parts, i.e., Flowð3Þ;A
ðq̄AqÞ and Flowð3Þ;ϕ

ðq̄AqÞ,
which correspond to the relevant contributions from
the quark-gluon and quark-meson couplings, respectively.
The subscript ðq̄AqÞ indicates that these expressions are the
projections of the quark-gluon flows on the running
coupling, see (106). With this notation, the flow of the
light-quark–gluon coupling is:

∂tgl̄Al¼
�
1

2
ηAþηq

�
gl̄AlþðNfFlow

ð3Þ;A
ðl̄AlÞ þFlowð3Þ;ϕ

ðq̄AqÞÞjNf¼2:

ðM1Þ
The explicit form of the flow of the strange-quark–gluon
coupling is given in (C2). The gluonic contribution reads

Flowð3Þ;A
ðq̄AqÞ ¼

3

8π2Nc
g3q̄Aqm̃

2
q;k

�
2

15
ð5 − ηA;kÞFBð2;2Þðm̃2

q;k; 0Þ þ
1

3
ð4 − ηq;kÞFBð3;1Þðm̃2

q;k; 0Þ
	

þ 3Nc

8π2
g2q̄AqgA3

�
1

20
ð5 − ηq;kÞFBð1;2Þðm̃2

q;k; 0Þ −
1

6
ð4 − ηq;kÞFBð2;1Þðm̃2

q;k; 0Þ þ
1

30
ð5 − 2ηq;kÞ

× FBð2;2Þðm̃2
q;k; 0Þ −

4

15
ð5 − ηA;kÞFBð1;2Þðm̃2

q;k; 0Þ þ
1

30
ð10 − 3ηA;kÞFBð1;3Þðm̃2

q;k; 0Þ
	
: ðM2Þ

The contribution of the mesons reads

Flowð3Þ;ϕ
ðq̄AqÞ ¼ −

1

8π2Nf
gq̄Aqh̄2k

�
1

6
ð4 − ηq;kÞ½FBð2;1Þðm̃2

q;k; m̃
2
σ;kÞ þ 2m̃2

q;kFBð3;1Þðm̃2
q;k; m̃

2
σ;kÞ� þ

2

15
ð5 − ηϕ;kÞ

× ½FBð1;2Þðm̃2
q;k; m̃

2
σ;kÞ þ m̃2

q;kFBð2;2Þðm̃2
q;k; m̃

2
σ;kÞ�

	
−
N2

f − 1

8π2Nf
gq̄Aqh̄2k

�
1

6
ð4 − ηq;kÞ

× ½FBð2;1Þðm̃2
q;k; m̃

2
π;kÞ þ 2m̃2

q;kFBð3;1Þðm̃2
q;k; m̃

2
π;kÞ�

þ 2

15
ð5 − ηϕ;kÞ½FBð1;2Þðm̃2

q;k; m̃
2
π;kÞ þ m̃2

q;kFBð2;2Þðm̃2
q;k; m̃

2
π;kÞ�

	
: ðM3Þ

For the light and strange quarks we use the corresponding
masses defined in (45) and set Nf ¼ 2 and Nf ¼ 1, respec-
tively, above. Note that, as discussed in Appendix C, we only
take (M2) into account for the strange-quark–gluon coupling.

APPENDIX N: REGULATORS AND THRESHOLD
FUNCTIONS

We employ 3d optimized regulators, [242,243], through-
out this work, which read

Rq
kðq0; qÞ ¼ Zq;kiγ · qrFðq2=k2Þ; ðN1aÞ

Rϕ
k ðq0; qÞ ¼ Zϕ;kq2rBðq2=k2Þ; ðN1bÞ

for the quarks and mesons, and we choose

ðRA
k Þμνðq0; qÞ ¼ ZA;kq2rBðq2=k2Þ

�
δμν −

qμqν
q2

�

þ q2

ξ
rBðq2=k2Þ

�
qμqν
q2

�
; ðN1cÞ

for the gluons, where the Landau gauge ξ ¼ 0 is adopted,
and Zq;k, Zϕ;k, ZA;k are the wave function renormalizations
for the three different fields, respectively. The shapes of the
regulators are determined by the functions

rFðxÞ ¼
�

1ffiffiffi
x

p − 1

�
Θð1 − xÞ; ðN1dÞ

rBðxÞ ¼
�
1

x
− 1

�
Θð1 − xÞ; ðN1eÞ
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whereΘðxÞ is the Heaviside step function. We note that, for
the regulator of the gluon propagator, we do not distinguish
the 3d transverse part, i.e., ΠM

μν in (105), from its comple-
mentary part longitudinal to the heat bath, viz. the electric
componentΠE

μν ¼ Π⊥
μν − ΠM

μν, with the 4d transverse tensor:

Π⊥
μνðqÞ ¼ δμν −

qμqν
q2

: ðN2Þ

In the threshold functions in this work, the scalar parts of
the propagators typically enter in the form

Gbðq;m2Þ ¼ 1

q̃20 þ 1þm2
; ðN3Þ

Gfðq;m2Þ ¼ 1

ðq̃0 þ iμ̃qÞ2 þ 1þm2
; ðN4Þ

for bosons and fermions, whose Matsubara frequencies are
q0 ¼ 2nπT (n ∈ Z) and ð2nþ 1ÞπT, respectively. Here q0
and the chemical potential are rescaled by the RG scale k,
i.e., q̃0 ¼ q0=k and μ̃q ¼ μq=k. The gluon propagator is just
(N3) with vanishing mass m2 ¼ 0, since the gluon mass
gap is encoded in the momentum dependence of its wave
function renormalization.
To proceed, we define

F ðnÞðm2;T; μqÞ ¼
T
k

X
nq

ðGfðq;m2ÞÞn

BðnÞðm2;TÞ ¼ T
k

X
nq

ðGbðq;m2ÞÞn: ðN5aÞ

Upon inserting Eqs. (N3) and (N4), one observes

F ðnþ1Þðm2;T; μqÞ ¼ −
1

n
∂

∂m2
F ðnÞðm2;T; μqÞ;

Bðnþ1Þðm2;TÞ ¼ −
1

n
∂

∂m2
BðnÞðm2;TÞ:ðGbðq;m2ÞÞn:

ðN5bÞ

Thus, one only needs to sum up the Matsubara frequencies
for the lowest-order threshold functions F ð1Þ and Bð1Þ,
which yields

F ð1Þðm2;T;μqÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p

× ð1−nFðm2;T;μqÞ−nFðm2;T;−μqÞÞ;
ðN5cÞ

and

Bð1Þðm2;TÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
�
1

2
þ nBðm2;TÞ

�
; ðN5dÞ

where the distribution functions read

nFðm2;T; μqÞ ¼
1

expf1T ½kð1þm2Þ1=2 − μq�g þ 1
; ðN6Þ

and

nBðm2;TÞ ¼ 1

expfkT ð1þm2Þ1=2g − 1
: ðN7Þ

So far we have discussed the flows in the absence of a
nontrivial Polyakov loop expectation value, that is
L; L̄ ¼ 1. For general Polyakov loop expectation values
the quark distribution function in (N6) in the threshold
functions (N5) turns into,

nFðm2;T; μq; L; L̄Þ ¼
1þ 2L̄ex=T þ Le2x=T

1þ 3L̄ex=T þ 3Le2x=T þ e3x=T
;

ðN8Þ

with x ¼ kð1þm2Þ1=2 − μq. For antiquarks, the distribu-
tion nFðm2;T;−μÞ turns into nFðm2;T;−μ; L̄; LÞ. We
remark that the simple substitution nFðm2;T; μqÞ →
nFðm2;T; μq; L; L̄Þ in the flows is part of the current
approximation. There are additional contributions from
the nontrivial color trace in threshold functions that mix
bosonic and fermionic contributions, see (N16) and (N19),
which we neglect here.
For L; L̄ ¼ 1 (N8) reduces to the Fermi-Dirac distribu-

tion of quarks, (N6). In turn, for L; L̄ ¼ 0, (N8) is the
Fermi-Dirac distribution of baryons, that is (N6) with
x → 3x. Note however, that this limit is not achieved for
low temperatures as the Polyakov loop expectation value
decays with L expð2mq=TÞ → ∞ for T → 0. Nonetheless,
baryon number fluctuations show a baryonic regime for
low temperatures as they should, for more details, see [76].
For the sake of brevity we drop the variables L and L̄ in the
quark distribution function.
In the flow equation (F1) of the effective potential for the

mesons, relevant threshold functions read

lðB;dÞ0 ðm2; η;TÞ ¼ 2

d − 1

�
1 −

η

dþ 1

�
Bð1Þðm2;TÞ; ðN9Þ

and

lðF;dÞ0 ðm2;η;T;μqÞ¼
2

d−1

�
1−

η

d

�
F ð1Þðm2;T;μqÞ: ðN10Þ
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BothF ðnÞ and BðnÞ only contain either fermionic or bosonic
propagators of a single species. Other threshold functions,
which describe a mixture of species, are also needed. For
instance BBð2;2Þ appearing in (I1) for the mesonic anoma-
lous dimension, which consists of two kinds of bosonic
propagators of different masses. To this end, we define

BBðn1;n2Þðm2
1; m

2
2;TÞ ¼

T
k

X
nq

ðGbðq;m2
1ÞÞn1ðGbðq;m2

2ÞÞn2 :

ðN11Þ

It is easy to obtain the analytic expression for the lowest-
order function, i.e.,

BBð1;1Þðm2
1;m

2
2;TÞ

¼−
��

1

2
þnBðm2

1;TÞ
�

1

ð1þm2
1Þ1=2

1

ðm2
1 −m2

2Þ

þ
�
1

2
þnBðm2

2;TÞ
�

1

ð1þm2
2Þ1=2

1

ðm2
2−m2

1Þ
	
: ðN12Þ

Higher-order functions are obtained as follows:

BBðn1þ1;n2Þðm2
1; m

2
2;TÞ ¼ −

1

n1

∂
∂m2

1

BBðn1;n2Þðm2
1; m

2
2;TÞ;

ðN13Þ

and analogously for derivatives with respect to m2
b.

We proceed with threshold functions mixing bosonic and
fermionic propagators,

FBðnf;nbÞðm2
f; m

2
b;T; μq; p0Þ

¼ T
k

X
nq

ðGfðq;m2
fÞÞnfðGbðq − p;m2

bÞÞnb :

In the same way, higher-order threshold functions can be
obtained from lower-order ones, i.e.,

FBðnfþ1;nbÞðm2
f; m

2
b;T; μq; p0Þ

¼ −
1

nf

∂
∂m2

f

FBðnf;nbÞðm2
f; m

2
b;T; μq; p0Þ; ðN14Þ

and

FBðnf;nbþ1Þðm2
f; m

2
b;T; μq; p0Þ

¼ −
1

nb

∂
∂m2

b

FBðnf;nbÞðm2
f; m

2
b;T; μq; p0Þ: ðN15Þ

Note that threshold functions FB’s are complex valued,
when the chemical potential is nonvanishing, see, e.g.,
[30,76] for relevant discussions. Here, only the real parts of
these complex functions are kept. The validity of this
procedure has been discussed in [30,75]. The external
momentum p0 þ iμq has been chosen to be p0;ex, as
discussed in Appendix J. It is left to specify the relevant
threshold function of lowest-order, which reads

FBð1;1Þðm2
f; m

2
b;T; μq; p0Þ ¼

k2

2

�
−nBðm2

b;TÞ
1

ð1þm2
bÞ1=2

1

ðip0 − μq þ kð1þm2
bÞ1=2Þ2 − k2ð1þm2

fÞ

− ðnBðm2
b;TÞ þ 1Þ 1

ð1þm2
bÞ1=2

1

ðip0 − μq − kð1þm2
bÞ1=2Þ2 − k2ð1þm2

fÞ

þ nFðm2
f;T;−μqÞ

1

ð1þm2
fÞ1=2

1

ðip0 − μq − kð1þm2
fÞ1=2Þ2 − k2ð1þm2

bÞ

þ ðnFðm2
f;T; μqÞ − 1Þ 1

ð1þm2
fÞ1=2

1

ðip0 − μq þ kð1þm2
fÞ1=2Þ2 − k2ð1þm2

bÞ
	
: ðN16Þ

The threshold function L in the flow equation of the Yukawa coupling in (K1) is given by

LðdÞ
ð1;1Þðm2

f;m
2
b; ηf; ηb;T;μq; p0Þ ¼

2

d− 1

��
1−

ηb
dþ 1

�
FBð1;2Þðm2

f;m
2
b;T;μq; p0Þ þ

�
1−

ηf
d

�
FBð2;1Þðm2

f;m
2
b;T;μq; p0Þ

�
;

ðN17Þ

Furthermore, we also need another class of threshold functions, appearing in the flow equation of the four-fermion coupling
induced by the meson exchange in (L2). This leads us to define

FBBðnf;nb1;nb2Þðm2
f; m

2
b1; m

2
b2Þ ¼

T
k

X
nq

ðGfðq;m2
fÞÞnfðGbðq − p;m2

b1ÞÞnb1ðGbðq − p;m2
b2ÞÞnb2 : ðN18Þ
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Again, all the functions FBB’s in (L2) can be easily obtained from FBBð1;1;1Þ, whose analytic expression reads

FBBð1;1;1Þðm2
f;m

2
b1;m

2
b2Þ¼

k2

2

�
nBðm2

b1;TÞ
1

ð1þm2
b1Þ1=2

1

ðm2
b1−m2

b2Þ
1

ðμq− ip0þkð1þm2
b1Þ1=2Þ2−k2ð1þm2

fÞ

þðnBðm2
b1;TÞþ1Þ 1

ð1þm2
b1Þ1=2

1

ðm2
b1−m2

b2Þ
1

ðμq− ip0−kð1þm2
b1Þ1=2Þ2−k2ð1þm2

fÞ

þnBðm2
b2;TÞ

1

ð1þm2
b2Þ1=2

1

ðm2
b2−m2

b1Þ
1

ðμq− ip0þkð1þm2
b2Þ1=2Þ2−k2ð1þm2

fÞ

þðnBðm2
b2;TÞþ1Þ 1

ð1þm2
b2Þ1=2

1

ðm2
b2−m2

b1Þ
1

ðμq− ip0−kð1þm2
b2Þ1=2Þ2−k2ð1þm2

fÞ

−nFðm2
f;T;μqÞ

k2

ð1þm2
fÞ1=2

1

ðip0−μqþkð1þm2
fÞ1=2Þ2−k2ð1þm2

b1Þ

×
1

ðip0−μqþkð1þm2
fÞ1=2Þ2−k2ð1þm2

b2Þ
−ðnFðm2

f;T;−μqÞ−1Þ k2

ð1þm2
fÞ1=2

×
1

ðip0−μq−kð1þm2
fÞ1=2Þ2−k2ð1þm2

b1Þ
1

ðip0−μq−kð1þm2
fÞ1=2Þ2−k2ð1þm2

b2Þ
	
: ðN19Þ

Finally, we would like to present the threshold functions in (H1), which is somewhat different from those mentioned
above, since the external momentum p in the following is nonvanishing, and the definition reads

FF ðnf1 ;nf2 Þðm2
f1
; m2

f2
;T; μq; p0; pÞ ¼

T
k

X
nq

ðGfðq;m2
f1
ÞÞnfðG0

fðq − p;m2
f2
ÞÞnb ; ðN20Þ

with Gf given in (N4) and G0
f by

G0
fðq − p;m2

f2
Þ ¼ 1

ðq̃0 − p̃0 þ iμ̃qÞ2 þ ðq̃ − p̃Þ2ð1þ rFððq̃ − p̃Þ2ÞÞ2 þm2
f2

; ðN21Þ

with q̃ ¼ q=k and p̃ ¼ p=k. In the same way we get,

FF ð2;1Þðm2
f1
; m2

f2
Þ ¼ −

∂
∂m2

f1

FF ð1;1Þðm2
f1
; m2

f2
Þ; ðN22Þ

and the explicit expression for FF ð1;1Þ is given as follows

FF ð1;1Þðm2
f1
; m2

f2
Þ ¼ k3

4EqEq−p

�
ð−1þ nFðEq−p;T; μqÞ þ nFðEq;T;−μqÞÞ

×
1

ip0 − Eq − Eq−p
þ ðnFðEq−p;T;−μqÞ − nFðEq;T;−μqÞÞ

×
1

ip0 − Eq þ Eq−p
þ ðnFðEq;T; μqÞ − nFðEq−p;T; μqÞÞ

×
1

ip0 þ Eq − Eq−p
þ ð1 − nFðEq;T; μqÞ − nFðEq−p;T;−μqÞÞ

1

ip0 þ Eq þ Eq−p

	
; ðN23Þ

with

Eq ¼ kð1þm2
f1
Þ1=2; ðN24Þ

Eq−p ¼ k½ðq̃ − p̃Þ2ð1þ rFððq̃ − p̃Þ2ÞÞ2 þm2
f2
�1=2; ðN25Þ

and the modified quark distribution function nF defined in (N8) with x ¼ Eq.
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