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We present results for the charged kaon-box contributions to the hadronic light-by-light (HLBL)
correction of the muon’s anomalous magnetic moment. To this end we determine the kaon electromagnetic
form factor within the functional approach to QCD using Dyson-Schwinger and Bethe-Salpeter equations
and evaluate the kaon-box contribution as defined in the dispersive approach to HLBL. As an update to
previous work we also reevaluate the charged pion-box contribution taking effects due to isospin breaking
into account. Our results are aπ

�−box
μ ¼ −15.7ð2Þð3Þ × 10−11 and aK

�−box
μ ¼ −0.48ð2Þð4Þ × 10−11 thus

confirming the large suppression of box contributions beyond the leading pion box.
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I. INTRODUCTION

With a persistent discrepancy of about 3–4 standard
deviations between the theoretical Standard Model (SM)
predictions and experimental determinations [1], the
anomalous magnetic moment aμ ¼ 1

2
ðg − 2Þμ of the muon

is a highly interesting quantity. In order to clarify whether
this discrepancy includes contributions beyond the SM,
both theory and experiment strive to improve accuracy and
precision. Two new experiments at Fermilab [2] and
J-PARC [3] aim at reducing the experimental error by a factor
of 4 compared to the Brookhaven experiment E821 [4,5].
In the theoretical SM calculations the error budget is

dominated by QCD corrections, i.e., hadronic vacuum
polarization and hadronic light-by-light (HLBL) scattering
effects. The latter is shown diagrammatically in Fig. 1.
Currently there are great efforts both from lattice QCD
[6–17] as well as dispersion theory [18–27] to improve the
“Glasgow-consensus” estimate of Ref. [28].
Additional insights may be gained via the functional

approach of Dyson-Schwinger and Bethe-Salpeter equa-
tions (DSEs and BSEs). While in all practical calculations a
complete error estimate in this approach is very hard due to
unknown systematic truncation errors, it may serve as an
important cross-check for results in other frameworks.

In addition, for contributions which cannot be accessed
by the data-driven dispersive framework alone (e.g., due to
lack of precision data), it has the potential to provide
quantitative estimates.
In a recent work [29], the functional framework has been

used to determine the leading pseudoscalar contributions to
HLBL in the dispersive framework, i.e., contributions due
to the (on-shell) exchange of a (neutral) pion and the η and
η0 mesons. In contrast to a purely data-driven dispersive
framework, the necessary pseudoscalar transition form
factors have not been extracted from experiment but
calculated using DSEs and BSEs. The central values of
the pseudoscalar pole contributions to aμ obtained in
Ref. [29] agree well within error bars with corresponding
ones from data-driven dispersion theory [26,27] and a
related approach using Canterbury approximants [30]. In
addition, the pion-box contribution to HLBL has been
determined in the functional approach [29] using the pion
electromagnetic form factor calculated from the underlying

FIG. 1. The hadronic light-by-light scattering contribution to
aμ. The main ingredient is the hadronic photon four-point
function Πμναβ.
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quark-gluon dynamics. Again the result agrees with the
corresponding one from data-driven dispersion theory [24]
within error bars.
In this work we generalize our treatment of the meson-

box contributions in two directions. First, we provide an
updated number for the pion box, taking into account
isospin-breaking effects in the pion mass and, second, we
determine the contribution from the kaon box. In model
calculations using form factors from vector-meson domi-
nance (VMD) considerations [31] or hidden local sym-
metry (HLS) [32,33] this contribution has been estimated to
be suppressed by more than 1 order of magnitude as
compared to the pion box. As we will see in the course of
this work, this is confirmed by our approach.
In the following we briefly summarize the technical

elements of our calculation followed by a discussion of the
results. We use a Euclidean notation throughout this work;
see e.g., Appendix A of Ref. [34] for conventions.

II. ANOMALOUS MAGNETIC MOMENT

The anomalous magnetic moment aμ of the muon,
defined by

aμ ¼
g − 2

2
¼ F2ð0Þ; ð1Þ

is obtained from the zero-momentum limit of the muon-
photon vertex shown in Fig. 1 and decomposed on the
muon mass shell according to

ð2Þ
Here p and p0 are the muon momenta, Q is the photon
momentum and σαβ ¼ − i

2
½γα; γβ�. In order to extract aμ we

use the technique advocated in Ref. [35]; see also
Refs. [29,36] for details.
Within the dispersive approach to aμ, the photon four-

point vertex in Fig. 1 is decomposed into contributions
involving one, two or more on-shell mesons coupling
electromagnetically to the photon legs. The leading con-
tributions in this representation are given by the on-shell
exchange of neutral pseudoscalar mesons (π0; η; η0) involv-
ing fully dressed transition form factors. These have been
dealt with in a number of previous works; see e.g.,
Refs. [17,26,27,29,30,37].
Here we are interested in the subleading contributions

from meson-box diagrams. As has been demonstrated in
Ref. [20], the meson-box topology of the dispersive
approach coincides with the one-loop amplitude of scalar
QED when coupled with meson form factors at each
photon leg. In the approach of Ref. [38], which we also
follow here, this requires the evaluation of the six classes of
diagrams shown in Fig. 2 supplemented by the form
factors. For the pion- and kaon-box contributions the only

nontrivial inputs are thus the pion and kaon electromagnetic
form factors, which we discuss in the next section.

III. ELECTROMAGNETIC FORM
FACTOR OF THE KAON

While we described the various steps needed to calculate
the electromagnetic form factor of the pion in Ref. [29],
here we detail the changes that arise for the kaon electro-
magnetic form factor (EMFF) in the functional DSE
approach. Further details can be found in Refs. [36,39–44]
and the review articles [34,45,46]. Diagrammatically, these
form factors are calculated as shown in Fig. 3.
The kaon EMFF FKðQ2Þ is extracted from the on-shell

γKK current in Fig. 3 via

JμðP;QÞ ¼ 2PμFKðQ2Þ

¼ Tr
Z
p
Slðpþ

þÞqlΓμ
l ðpþ; QÞSlðp−þÞ

× ΓKðpþ
i ; PiÞSsðp−ÞΓ̄Kðpþ

f ; PfÞ

þ Tr
Z
k
Γ̄Kðp−

f ; PfÞSlðpþÞΓKðp−
i ; PiÞ

× Ssðpþ
−ÞqsΓμ

sðp−; QÞSsðp−
−Þ; ð3Þ

where the index l stands for a light quark l ∈ u; d and s
stands for a strange quark. Furthermore, Q is the photon

FIG. 2. Meson-box contributions to the muon g − 2 in the
framework of scalar QED.
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momentum, Pf;i ¼ P�Q=2 are the final and initial kaon
momenta, the relative momenta are p�

i ¼ pþ ϵ∓1
4
Q, p�

f ¼
p − ϵ∓1

4
Q and the quark momenta are p� ¼ pþ ϵ�1

2
P and

p�
ω ¼ pω �Q=2 with ω ¼ �. The momentum partitioning

parameter ϵ can take values between −1 and 1. The
electromagnetic quark charges are denoted by ql;s. Also
the quark propagators Sl;s correspond to light or strange
(anti)quarks. Charge conjugation of the Bethe-Salpeter
amplitudes is defined by Γ̄ðp;PÞ ¼ CΓð−p;−PÞTCT with
C ¼ γ4γ2 and CT ¼ C† ¼ C−1 ¼ −C, cf. Appendix A of
Ref. [34].
We determine the necessary input to Eq. (3) from a

combination of DSEs and BSEs. The Bethe-Salpeter
amplitude of a pseudoscalar meson and the quark-photon
vertex satisfy (in)homogeneous BSEs

½ΓMðp; PÞ�αβ ¼
Z
q
½Kðp; q; PÞ�αγ;δβ

× ½SqðqþÞΓMðq; PÞSqðq−Þ�γδ; ð4Þ

½Γμ
qðp;PÞ�αβ ¼ Z2iγ

μ
αβ þ

Z
q
½Kðp; q; PÞ�αγ;δβ

× ½SqðqþÞΓμ
qðq; PÞSqðq−Þ�γδ; ð5Þ

where K is the Bethe-Salpeter kernel, Z2 is the quark
renormalization constant, q ∈ fl; sg and in both equations
q� ¼ qþ ϵ�1

2
P. All results are independent of the momen-

tum partitioning parameter ϵ up to numerical artifacts. In a
heavy-light system it turns out to be convenient to adapt ϵ
such that the complex quark momenta tested by the BSE for
both light and heavy quarks are equally far away from the
nearest nonanalyticities of the respective quark propagators

defined by m̃q ¼ Im
ffiffiffiffiffiffiffiffiffi
p2
sing

q
. For the kaon this amounts

to ϵ ¼ ðm̃l − m̃sÞ=ðm̃l þ m̃sÞ ≈ −0.15.
The quark propagators Sq are given by their respective

DSE,

S−1q ðpÞ ¼ Z2ðipþ ZmmqÞ

− Z1fg2CF

Z
q
iγμSqðqÞΓν

qgðq; pÞDμνðkÞ; ð6Þ

where mq are the current-quark masses, k ¼ q − p,
CF ¼ 4=3, Dμν is the dressed gluon propagator, Γν

qg is
the dressed quark-gluon vertex and Z2, Zm and Z1f are
renormalization constants. The gluon propagator and
quark-gluon vertex satisfy their own DSEs which include
further n-point functions, so that in all practical applica-
tions the tower of DSEs needs to be truncated.
In the following we work in Landau gauge and use the

rainbow-ladder truncation. Together with more advanced
schemes this truncation has been reviewed recently in
Ref. [34]. One defines an effective running coupling
αðk2Þ that incorporates all dressing effects of the gluon
propagator and the quark-gluon vertex. One then replaces
in the quark DSE

Z1fg2Γν
qgðq; pÞDμνðkÞ → Z2

2

4παðk2Þ
k2

Tμν
k iγν ð7Þ

with transverse projector Tμν
k ¼ δμν − kμkν=k2. The BSE

kernel K in Eqs. (4)–(5) is uniquely related to the quark
self-energy by the axial-vector Ward-Takahashi identity. In
rainbow-ladder truncation it is given by

½Kðp; q; PÞ�αγ;δβ → Z2
2

4παðk2Þ
k2

iγμαγT
μν
k iγνδβ: ð8Þ

This construction satisfies chiral constraints such as theGell-
Mann–Oakes–Renner relation and ensures the (pseudo)
Goldstone boson nature of the pseudoscalar mesons.
Once the effective interaction αðk2Þ is specified, all

elements of the calculation of the form factors follow
without additional adjustments. Similar to our previous
work on the pion EMFF [29] we use the Maris-Tandy
model, Eq. (10) of Ref. [47], with a convenient redefinition
of their parameters fω; Dg to fΛ; ηg via ωD ¼ Λ3 and
ω ¼ Λ=η. The scale Λ ¼ 0.74 GeV is fixed to reproduce

FIG. 3. The Kþ electromagnetic form factor in rainbow-ladder truncation. The nonperturbative ingredients are the meson Bethe-
Salpeter amplitude ΓM (yellow large half circles), the dressed quark propagators (straight lines) and the dressed quark-photon vertices Γμ

q

(blue circles). The internal momenta are defined in the main text.
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the experimental pion decay constant fπ ¼ 92.4ð2Þ MeV.
The variation of η ¼ 1.85� 0.2 changes the shape of the
quark-gluon interaction at small momenta, cf. Fig. 3.13 in
Ref. [34], and we use it as a rough estimate of the truncation
error similar to Ref. [29]. In the DSE and BSE we work in
the isospin-symmetric limit of equal up/down quark
masses. With a current light quark mass of mq ¼
3.57 MeV at a renormalization point μ ¼ 19 GeV we
obtain a pion mass of mπ0 ¼ 135.0ð2Þ MeV. With the
strange-quark mass fixed at ms ¼ 85 MeV we obtain a
kaon mass of mK ¼ 495.0ð5Þ MeV.

IV. RESULTS

A. Kaon electromagnetic form factor

The EMFF of the kaon FKþðQ2Þ in the rainbow-ladder
truncation described above has been determined previously
in Refs. [48,49]. Technical differences occur in the treat-
ment of the quark-photon vertex: whereas in Ref. [48] only
the leading five of eight tensor structures in the vertex have
been taken into account, in Ref. [49] the vertex has been
represented by an ansatz in terms of quark dressing
functions. Here (as in our previous work [29,44,50]) we
solve the BSE for the vertex including all tensor structures
but neglecting the (weak) dependence of the dressing
functions on the angle k ·Q=ð

ffiffiffiffiffi
k2

p ffiffiffiffiffiffi
Q2

p
Þ between the

photon momentum and the relative momenta of the quarks.
In the momentum range relevant for aμ all three approaches
lead to very similar results rendering the technical
differences marginal.
In Fig. 4 we show our results as a function of the squared

photon momentum. The error band includes two types of
systematic errors: (i) the variation of the parameter η in the
effective coupling and (ii) an estimate of the accumulating
error due to neglecting the angular dependence in the
quark-photon vertex. While the first error is straightforward

to calculate, we estimated the second one by enforcing that
the vertex should become bare if one quark momentum
vanishes and the other becomes large, which introduces an
angular dependence and leads to nontrivial relations
between its dressing functions. Our results are compared
to the experimental data extracted from Refs. [51–53]; the
agreement is quite satisfactory, although the large error bars
on the experimental data do not allow a stringent test of our
approach. In the domain Q2 ∼ 0…6 GeV2, the numerical
results are well described by a monopole ansatz supple-
mented with an additional contribution which only
becomes important at intermediate and large momenta,

FKþðQ2Þ ¼ 1

1þQ2=L2

1þ cQ4=L04

1þQ4=L04 ð9Þ

with c ¼ 0.1 and the scales L ¼ 0.81ð2Þ GeV and
L0 ¼ 2.9ð3Þ GeV. The corresponding squared charge
radius of the kaon is given by

hr2iKþ ¼ 0.36ð2Þ fm2: ð10Þ

The calculation of the kaon EMFF beyond the Q2 range
displayed in Fig. 4 faces a number of technical difficulties,
which have been discussed in Ref. [29]. For the large Q2

contributions to the kaon box in aμ we extrapolate the fit
outside the Q2 ∼ 0…6 GeV2 domain.
Compared to the pion EMFF, which follows a monopole

behavior for a large range ofQ2 values [29], the kaon EMFF
deviates from a monopole already at comparably small
momenta: first deviations become visible at about Q2 ¼
1 GeV2 and are sizeable from Q2 ¼ 2 GeV2 on. These
deviations have been discussed in detail in Ref. [49] and
attributed to the differences in the distribution of light and
strange quarks inside light mesons. Future high-precision

FIG. 4. The kaon electromagnetic form factor as a function of the squared photon momentum. The experimental data have been
extracted from Refs. [51–53]. Previous results from DSEs have been obtained in Refs. [48,49].
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data at JLABwill be able to test this prediction from theDSE
approach.
For the purpose of this work, the deviations from the

monopole behavior are not very relevant. The integrations
involved in the calculation of the kaon-box diagram are
strongly dominated by momenta below Q2 ≤ 1 GeV2 such
that the monopole scale L in Eq. (9) is the most important
quantity for aμ.Wewill quantify and discuss this issue below.

B. Box contributions to the anomalous
magnetic moment of the muon

Before we study the kaon-box contribution to aμ we
report on an improved calculation of the pion-box con-
tribution as compared to the previous work [29]. There the
primary focus was on the meson-exchange contributions to
HLBL, which include the leading contribution from neutral
π0 exchange. Since we are working in the isospin-sym-
metric limit of QCD all our pions have the same mass fixed
by the experimental mass of the neutral pion, i.e.,
mπ0 ¼ 135.0ð2Þ MeV. This is also the mass that was used
in Ref. [29] for the charged pion in the pion-box diagram,
leading to aπ

�−box
μ ¼ −16.3ð2Þð4Þ × 10−11, where the first

error was due to the variation of the model parameter η ¼
1.85� 0.2 and the second accounted for the numerical
error.
The leading-order effects of isospin breaking for that

diagram is the mass difference between the neutral and the
charged pion mπ� ¼ 139.57 MeV [54]. Using the same
pion form factor as in Ref. [29] but taking into account the
experimental mass for the charged pion we obtain for the
pion-box contribution to HLBL

aπ
�−box

μ ¼ −15.7ð2Þð3Þ × 10−11; ð11Þ

where again the first error is due to the variation of the
model parameter and the second reflects the slightly
increased numerical precision as compared to Ref. [29].
As a result of the adjustment of the charged pion mass, the
central value of our result moves closer to the result of the
data-driven dispersive one aπ

�−box
μ ¼ −15.9ð2Þ × 10−11

[24] and agrees very well within error bars. Furthermore
we now accurately reproduce their control calculation with
a VMD-type form factor; we obtain aπ

�−box-VMD
μ ¼

−16.4ð2Þ × 10−11. Thus we identified the pion mass as
the main source of the (slight) previous discrepancy
between the value given in Ref. [29] and the dispersive
approach. The different numerical procedures (we use a
nine-dimensional Monte Carlo integration similar to
Ref. [38], whereas the authors of Ref. [24] used algebraic
methods to simplify the numerical problem) seem not to
affect the central value. The comments in Ref. [29]
regarding the size of the numerical error of our calculation,
however, remain valid.

Finally we present our results for the kaon-box contri-
bution using the physical charged kaon mass mK� ¼
493.68 MeV [54]. We obtain

aK
�−box

μ ¼ −0.48ð2Þð4Þ × 10−11; ð12Þ

where the first error is due to the variation of the model
parameter and the second accounts for the numerical error
of our Monte Carlo integration. We find that the contri-
bution due to the kaon box is only about 3% of the value of
the pion-box diagram and therefore truly subleading. This
is in qualitative agreement with previous determinations of
the kaon box using form factors from VMD considerations
[31] or HLS [32,33].
In order to quantify the impact of the deviations from the

pure monopole at large Q2, i.e., c ≠ 1 in Eq. (9), we also
determined the pure monopole contribution, c ¼ 1, and

obtained: aK
�−box-pure monopole

μ ¼ −0.49ð2Þð4Þ × 10−11. As
expected, the impact is very small.
We also compare to a control calculation using a VMD-

type form factor given by

FVMD
Kþ ðQ2Þ¼1−

Q2

2

�
1

M2
ρþQ2

þ1

3

1

M2
ωþQ2

þ2

3

1

M2
ϕþQ2

�
:

ð13Þ

This form factor is slightly larger than our result from
DSEs/BSEs and consequently leads to a slightly larger
absolute value for the contribution to aμ: aK

�−box-VMD
μ ¼

−0.54ð4Þ × 10−11. The corresponding calculation using the
very sameVMD-type form factor but the integrationmethod
of Ref. [24] leads to aK

�−box-VMD
μ ¼ −0.50 × 10−11 [55].

Thus although our central value is a little larger we find
agreement within error bars.
Finally, we wish to note that besides the charged meson

loop contributions, there is also a contribution from the
neutral kaon. This is because the corresponding form factor
is only zero at vanishing momentum but has nontrivial
momentum dependence at finite space-like momenta, see
e.g., Ref. [48]. Given that this contribution is certainly
highly suppressed, we do not attempt here to determine
its size.

V. SUMMARY

In this work we have presented a calculation of the
charged kaon-box contributions to hadronic light-by-light
scattering based on a functional approach to QCD via
Dyson-Schwinger and Bethe-Salpeter equations. We
employed the same rainbow-ladder truncation for the
quark-gluon interaction as in our previous work on the
pseudoscalar meson pole contributions to HLBL, aPS-poleμ ¼
91.6ð1.9Þ × 10−11 [29]. We updated and improved our

KAON-BOX CONTRIBUTION TO THE ANOMALOUS MAGNETIC … PHYS. REV. D 101, 054015 (2020)

054015-5



previous result on the pion-box contribution by taking into
account isospin-breaking effects in the pion masses. Our
result, Eq. (11), is in excellent agreement with the most
recent dispersive result of Ref. [24]. Based on this agree-
ment we consider our result for the kaon-box contribution,
Eq. (12), quantitatively meaningful. Its value is only about
3% of the one for the pion box and thus only gives a very
small contribution to aμ. Note again that the error bar given
in our final result does not contain all systematic errors:
there is an additional error due to truncation effects, which
is very hard to quantify and consequently has been left out.
Since the kaon-box contribution, however, is very small we
expect this omission to have only a very marginal if not
negligible effect on the total error of HLBL.
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