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We discuss the different Kimber-Martin-Ryskin (KMR) prescriptions for unintegrated parton distribu-
tion functions (uPDFs). We show that the strong-ordering (SO) and the angular-ordering (AO) cutoffs lead
to strong discrepancies between the obtained cross sections. While the result obtained with the AO cutoff
overestimates the heavy-flavor cross section by about a factor of 3, the SO cutoff gives the correct answer.
We also solve the issue of the KMR uPDF definitions mentioned by Golec-Biernat and Staśto [Phys. Lett.
B 781, 633 (2018)] and show that, in the case of the AO cutoff, the KMR uPDFs are ill defined.

DOI: 10.1103/PhysRevD.101.054006

I. INTRODUCTION

Understanding transverse-momentum-dependent parton
distribution functions has been a topic of increasing
theoretical and experimental interest. Compared to the
collinear PDFs, they provide additional information on
the transverse dynamics of a parton inside the hadron.
Depending on the kinematical range, several formalisms
exist. The TMD factorization [1–4] is valid for small kt=Q,
where kt is the parton transverse momentum and Q is the
hard scale of the process. The TMD PDFs, mainly studied
in semi-inclusive deep inelastic scattering and Drell-Yan
experiments, provide three-dimensional information on the
hadron structure and could help to solve the proton-spin
crisis. The kt factorization, first developed in Refs. [5–8], is
used at small x. In this case, kt is not restricted to small
values. It finds applications at the LHC, where the trans-
verse momentum of incoming spacelike partons can indeed
be large, due to partonic evolutions.
In the context of kt factorization, where the transverse

momentum PDFs are generally refereed as unintegrated
PDFs (uPDFs), a popular construction of these functions is
given by the Kimber-Martin-Ryskin (KMR) and Watt-
Martin-Ryskin (WMR) prescriptions [9,10]. The KMR/
WMR uPDFs are usually used with the angular-ordering
cutoff (see Sec. IV for a more detailed discussion on the
different cutoffs) and give a satisfying description of the D
meson pt distribution, taking into account only the gg → cc̄
process.

However, calculations using a variable-flavor-number
scheme1 should by definition include the other processes, in
particular the flavor excitation process Qg → Qg, where Q
is a heavy quark. It has been shown that, at leading order,
the latter gives the main contribution to the pt distribution
of one heavy quark [11]. Consequently, there is necessarily
something wrong with calculations that use this scheme,
include only the gg contribution, and show a good agree-
ment with data on heavy-quark production. The explan-
ation given in Ref. [11] was that these calculations
effectively include a large K factor. Naturally, the issue
is that after the inclusion of the Qg contribution, the result
overestimates the data (an example is shown in Fig. 2).
In this paper, we present a detailed analysis of the KMR/

WMR prescriptions. The angular-ordering WMR uPDFs
are used to exemplify the conclusions reached in Ref. [11].
We will see that in this case, the effective large K factor is
due to the too large kt tail of the distribution, at kt > μ,
where μ is the factorization scale. We will discuss several
theoretical issues related to the angular-ordering cutoff, and
see that the KMR/WMR uPDFs built with the strong-
ordering cutoff are free of some of them. Another objective
of this paper is to present a solution to the issue of the
KMR/WMR uPDFs definitions addressed in Ref. [12]. The
outline of the paper is as following. After a short review of
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation in Sec. II, we present the KMR and WMR
prescriptions in Sec. III. We will see that they are not
equivalent, and that the former does not obey the correct
DGLAP equation. In Sec. IV we discuss in detail the issue
of the KMR/WMR uPDF definitions, related to the fact that
apparently mathematically equivalent definitions give
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different numerical results. Finally, in Sec. V we further
study the KMR/WMR prescriptions, by discussing the
angular-ordering (AO) and the strong-ordering (SO) cut-
offs. Using different cutoffs leads to significant differences
for the cross section, and we will see that the SO cutoff
should be preferred. In particular, we show by performing
explicit calculations that the SO cutoff gives results
compatible with those obtained in Ref. [11].

II. THE DOKSHITZER-GRIBOV-LIPATOV-
ALTARELLI-PARISI EQUATION WITH

UNREGULARIZED SPLITTING FUNCTIONS

In this section, following Ref. [13], we quickly review a
form of the DGLAP equation that is useful for numerical
treatments. For small δx and δt, centered on x and t, the
variation of the parton density with t is given by

δfðx; tÞ ¼ δfinðx; tÞ − δfoutðx; tÞ: ð1Þ

The variable t has the dimension of energy squared.
Equation (1) simply expresses that the change of a quantity
in a volume (here δtδx) is given by what goes in minus what
goes out. Working with one parton flavor, δfinðx; tÞ
receives a contribution from the splitting of partons at
x0 > x:

δfinðx; tÞ ¼
δt
t

Z
1

x
dx0

Z
1

0

dz
αs
2π

P̂ðzÞfðx0; tÞδðx − zx0Þ

¼ δt
t

Z
1

0

dz
z
αs
2π

P̂ðzÞfðx=z; tÞ: ð2Þ

It is proportional to the parton density at x0 multiplied by
the probability for a splitting at t, with the daughter parton
having a fraction z (generally the light-cone momentum
fraction) of its mother particle. The delta function ensures
that after the splitting the parton arrives in the volume δtδx.
P̂ðzÞ is the unregularized splitting function. Similarly, the
outgoing part is given by

δfoutðx; tÞ ¼
δt
t
fðx; tÞ

Z
1

0

dz
αs
2π

P̂ðzÞ: ð3Þ

One of the differences with Eq. (2) is that the parton density
is outside of the integral. Indeed, for partons inside the
volume δtδx, any splitting will bring them out. So the
contribution is simply given by the parton density at x
multiplied by the total splitting probability (for fixed t).
We now consider the realistic case of QCD. The variation

of the quark density at leading order reads

δqðx; tÞ ¼ δt
t

Z
1

0

dz
z
αs
2π

�
P̂qqðzÞq

�
x
z
; t

�
þ P̂qgðzÞg

�
x
z
; t

��

−
δt
t
qðx; tÞ

Z
1

0

dz
αs
2π

P̂qqðzÞ: ð4Þ

The case of the gluon density is more complicated. One can
arrive in the volume from either g → gg or q → gq, and one
leaves the volume from either g → gg or g → qq̄. As
explained in Ref. [13], one subtlety is that both gluons
produced in the splitting g → gg can participate, giving

δginðx; tÞ ¼
δt
t

Z
1

0

dz
z
αs
2π

�
2P̂ggðzÞg

�
x
z
; t

�

þ P̂gqðzÞ
�
q

�
x
z
; t

�
þ q̄

�
x
z
; t

���
: ð5Þ

The unregularized splitting functions are given in Ref. [13]
[Eqs. (5.10) and (5.20)]:

P̂ggðzÞ ¼ CA

�
1 − z
z

þ z
1 − z

þ zð1 − zÞ
�
; ð6Þ

P̂gqðzÞ ¼ P̂gqð1 − zÞ ¼ CF
1þ ð1 − zÞ2

z
: ð7Þ

The outgoing part is given by

δgoutðx; tÞ ¼
δt
t
gðx; tÞ

Z
1

0

dz
αs
2π

½P̂ggðzÞ þ nfP̂qg�: ð8Þ

Note the factors of 2 and 1 in front of P̂gg in Eqs. (5) and
(8). The regularized splitting functions are obtained after
applying the plus prescription [13]:

PðzÞ ¼ P̂ðzÞþ: ð9Þ

In the case of the gluon-gluon splitting function the result is

PggðzÞ ¼ 2CA

�
z

ð1 − zÞþ
þ 1 − z

z
þ zð1 − zÞ

�

þ 1

6
ð11CA − 4NfTRÞδð1 − zÞ; ð10Þ

with TR ¼ 1=2. Note the factor of 2 in front of CA,
compared to the unregularized case. In the following, we
will use the unregularized splitting function P̂gg [Eq. (6)]
with a factor of 2CA, for reasons explained in the next
section. In the rest of the paper, all of the mentioned
splitting functions are unregularized, and they will be
written without the “hat” in order to fit with the literature
on KMR uPDFs.

III. THE KMR UNINTEGRATED PDFS

We first start by discussing some ambiguities related to
the fact that in the literature “KMR formalism” can refer to
both Refs. [9] and [10]. However, the equations given in
these papers are not equivalent and we will refer to the
second one as the WMR formalism. In Ref. [9], the
DGLAP equation was written as
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∂aðx; μ2Þ
∂ ln μ2 ¼

X
a0

αs
2π

�Z
1−Δ

x
Paa0 ðzÞa0

�
x
z
; μ2

�
dz

− aðx; μ2Þ
Z

1−Δ

0

Pa0aðzÞdz
�
; ð11Þ

where aðx; μ2Þ ¼ xfaðx; μ2Þ and faðx; μ2Þ is the number
density. The sum on a0 runs over all possible parton flavors:
quarks, antiquarks, and gluons. Note that in the KMR/
WMR prescriptions the gluon-gluon splitting function is
defined with a factor of 2CA. Comparing Eq. (11) with
Eqs. (5) and (8), we can see that Eq. (11) does not
reproduce the correct DGLAP equation for the gluon
density. Indeed, the coefficients in front of Pgg should
not be the same. A similar remark also applies for the quark
distribution function since, in the last term of Eq. (11), the
sum over a0 implies the contribution of both PqqðzÞ and
PgqðzÞ, in disagreement with Eq. (4).
In the WMR case, the DGLAP equation is written with

an additional z factor in the last term [see Eq. (17) of
Ref. [10] ]:

∂aðx; μ2Þ
∂ ln μ2 ¼

X
a0

αs
2π

�Z
1−Δ

x
Paa0 ðzÞa0

�
x
z
; kt

�
dz

− aðx; μ2Þ
Z

1−Δ

0

zPa0aðzÞdz
�
: ð12Þ

Consequently, Eqs. (12) and (11) are not equivalent. This
difference can be traced back to the definition of the
Sudakov factor [Eq. (18) in Ref. [10] and Eq. (3) in
Ref. [9] ]. The extra z factor was justified by saying that it
“avoids double-counting the s- and t-channel partons”. It
was also mentioned that, after integrating over z and
summing over a0, it gives a factor of 1=2. In that case,
and using Pgg with a factor of 2CA, Eq. (12) with a ¼ g is
equivalent to Eqs. (5) and (8). It also gives the correct
DGLAP equation for the quark, since

−
1

2
qðx; tÞ

Z
1

0

dz
αs
2π

½PqqðzÞ þ PgqðzÞ�

¼ −qðx; tÞ
Z

1

0

dz
αs
2π

PqqðzÞ: ð13Þ

Here we used that fact that Pqq and Pgq are related
by z → 1 − z.
An advantage of the WMR prescription is that the z

factor regularizes the divergence of the splitting function
Pgg when z goes to zero. In recent papers the KMR
prescription used was in fact the WMR one, as was the
case in Ref. [12], which we discuss now.
As explained in the Introduction, the present work has

been motivated by Ref. [12]. One of our goals is to discuss
the analysis given in that paper. It is then useful to give a

short and similar presentation of the WMR formalism,
insisting on important details.
The goal is to build an unintegrated parton density that

obeys (at least approximately)

faðx;Q2Þ ¼
Z

Q2

0

Faðx; k2t ;Q2Þdk2t ; ð14Þ

with Q2 having the dimension of energy squared.2 This
equation is sometimes written with a factor of x on the lhs.
In this case, the function Faðx; k2t ;Q2Þ is the momentum
density. However, the factor 1=z in Eq. (2) Ref. [12]
indicates that the authors were working with the parton
densities, so we use the relation (14).
The derivation starts with the DGLAP equation. The

main trick in the WMR prescription is the observation that
by using the Sudakov factor

TaðQ;ktÞ¼ exp

�
−
Z

Q2

k2t

dp2
t

p2
t

X
a0

Z
1−ΔðptÞ

0

dzzPa0aðz;ptÞ
�
;

ð15Þ
with Pa0aðz; μÞ defined by

Pa0aðz; μÞ ¼
αsðμ2Þ
2π

PLO
a0aðzÞ; ð16Þ

the DGLAP equation3 can be rewritten as

∂
∂ ln k2t ½TaðQ; ktÞfaðx; ktÞ�

¼ TaðQ; ktÞ
X
a0

Z
1−Δ

x

dz
z
Paa0 ðz; ktÞfa0

�
x
z
; kt

�
: ð17Þ

However, for this to be correct, one should be careful with
the kt dependence of the Sudakov factor. In particular, as
mentioned in Ref. [12], the cutoff Δ should not be a
function of kt when used in the definition of Ta [Eq. (15)].
In this case, we have

∂TaðQ; ktÞ
∂ ln k2t ¼ TaðQ; ktÞ

X
a0

Z
1−ΔðktÞ

0

dzzPa0aðz; ktÞ; ð18Þ

and after a straightforward calculation Eq. (17) can be
written as

TaðQ; ktÞ
∂faðx; k2t Þ
∂ ln k2t

¼ TaðQ; ktÞ
X
a0

�Z
1−Δ

x

dz
z
Paa0 ðz; ktÞfa0

�
x
z
; kt

�

− faðx; k2t Þ
Z

1−Δ

0

zPa0aðz; ktÞdz
�
; ð19Þ

2We chose this notation in order to agree with Ref. [12].
3Strictly speaking, this is not the DGLAP equation since there

is an extra z factor in the WMR prescription.
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which is the “DGLAP equation” multiplied by Ta. The
WMR uPDFs are defined as

Faðx; k2t ; Q2Þ ¼ 1

k2t
faðx; k2t ; Q2Þ

¼ 1

k2t

∂
∂ ln k2t ½TaðQ; ktÞfaðx; ktÞ�: ð20Þ

Collinear and unintegrated PDFs can be distinguished by
the number of their arguments. In the following, uPDFs
will refer indistinctly to Faðx; k2t ; Q2Þ or faðx; k2t ; Q2Þ.
Integrating Faðx; k2t ; Q2Þ over k2t gives

Z
Q2

Q2
0

dk2t Faðx;k2t ;Q2Þ¼ faðx;Q2Þ−TaðQ2;Q2
0Þfaðx;Q2

0Þ;

ð21Þ

which, for Q2 ≫ Q2
0, is numerically close to Eq. (14).

Using Eq. (17), the WMR unintegrated PDFs can also be
defined by

faðx;k2t ;QÞ¼TaðQ;ktÞ
X
a0

Z
1−Δ

x

dz
z
Paa0 ðz;ktÞfa0

�
x
z
;kt

�
:

ð22Þ
The main concern of Ref. [12] was the fact that the
definitions (20) and (22) do not give the same numerical
result.

IV. DISCUSSION OF THE KMR/WMR uPDF
DEFINITIONS

As explained in Ref. [12], two cutoffs are usually used:
the SO cutoff

Δ ¼ kt
Q

ð23Þ

and the AO cutoff

Δ ¼ kt
kt þQ

: ð24Þ

By using a cutoff-dependent parton density [Daðx; μ2;ΔÞ]
instead of the usual one, the authors have shown that
Eqs. (20) and (22) give the same numerical result. This
implies that the unintegrated PDFs also depend on the
cutoff, Daðx; k2t ; μ2;ΔÞ. However, this is not really satis-
factory since we started with Eq. (14). Moreover, it is not
clear how this new object should be used in practice in the
phenomenology.
In fact, the reason why the two definitions give different

results is because Eq. (17) is not always true. Let us
consider the case of the AO cutoff. In this case, kt > Q is
not forbidden and the Sudakov factor can be larger than 1.
In order to avoid this situation, the authors defined

TaðQ; ktÞ ¼ 1; kt > Q: ð25Þ

This equation can be written as

T̃aðQ; ktÞ ¼ ΘðQ2 − k2t ÞTaðQ; ktÞ þ Θðk2t −Q2Þ; ð26Þ

where Θ is the Heaviside function. In the previous section,
we mentioned that one has to be careful with the kt
dependence of the Sudakov factor. With the new
Sudakov factor, the lhs of Eq. (17) gives

∂
∂ ln k2t ½T̃aðQ; ktÞfaðx; ktÞ� ¼

�
k2t TaðQ; ktÞ

∂
∂k2t ΘðQ

2 − k2t Þ þ ΘðQ2 − k2t Þ
∂

∂ ln k2t TaðQ; ktÞ þ k2t
∂
∂k2t Θðk

2
t −Q2Þ

�

× faðx; ktÞ þ T̃aðQ; ktÞ
∂

∂ ln k2t faðx; ktÞ: ð27Þ

Having in mind that h ddxΘðx − yÞ;ϕi ¼ −h ddxΘðy − xÞ;ϕi ¼ hδðx − yÞ;ϕi and that TaðQ;QÞ ¼ 1, we see that the first and
third terms in the bracket will cancel. Taking the derivative of the second term in the bracket and rewriting it in terms of T̃a,
we have

∂
∂ ln k2t ½T̃aðQ; ktÞfaðx; ktÞ� ¼ T̃aðQ; ktÞfaðx; ktÞ

X
a0

Z
1−Δ

0

dz zPa0aðz; ktÞ

− Θðk2t −Q2Þfaðx; ktÞ
X
a0

Z
1−Δ

0

dz zPa0aðz; ktÞ þ T̃aðQ; ktÞ
∂

∂ ln k2t faðx; ktÞ: ð28Þ

Finally, using the DGLAP equation for the last term, we get

∂
∂ lnk2t ½T̃aðQ;ktÞfaðx; ktÞ� ¼ T̃aðQ;ktÞ

X
a0

Z
1−Δ

x

dz
z
Paa0 ðz; ktÞfa0

�
x
z
; kt

�
−Θðk2t −Q2Þfaðx; ktÞ

X
a0

Z
1−Δ

0

dz zPa0aðz; ktÞ;

ð29Þ
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showing that the definitions (20) and (22) (with Ta replaced
by T̃a) are not equivalent. There is then no need for these
definitions to give the same numerical result, and no need
for the cutoff-dependent distribution functions.4

V. THE kt DEPENDENCE OF WMR uPDFs

In this section we want to insist on the conclusion
reached in Ref. [11], that is, that the main contribution to
the pt distribution of one heavy flavor is given by
Qg → Qg, not gg → QQ̄ (for variable-flavor-number
schemes). Using the KMR/WMR parametrization and
the AO cutoff, one gets a satisfying result with gg →
QQ̄ alone, because of the too large kt tail of the distribu-
tion. Of course, there is no reason to stop the calculation at
this point, and the Qg → Qg contribution should also be
computed. Doing this, the cross section for heavy-quark
production will completely overshoot the data (or next-to-
leading-order (NLO) calculations [14] for a bare heavy
quark), as we will demonstrate below.
In the opposite case, artificially cutting the WMR uPDFs

at kt > Q and adding up the Qg and gg contributions gives
an excellent result (see Fig. 11 of Ref. [11]). The present
work has been motivated by the fact that the kt distribution
of the WMR uPDFs presented in Ref. [12] (the red curve in
the left panel of their Fig. 1 for the SO cutoff) is very similar
to the cut-WMR uPDFs used in Ref. [11]. This implies that,
using the SO cutoff, the gg → QQ̄ contribution will not be
sufficient, and taking into account Qg → Qg will be
necessary to bring agreement with data, as it should be.
Leaving this discussion for later, we continue with the
analysis of Eq. (29) and the AO cutoff.
We first note that T̃aðQ;QÞ ¼ 1. Then, integrating the

lhs of Eq. (29) gives a result that is numerically close to
Eq. (14). Consequently, a possible correct definition of the
WMR uPDFs is

faðx;k2t ;QÞ¼ T̃aðQ;ktÞ
X
a0

Z
1−Δ

x

dz
z
Paa0 ðz;ktÞfa0

�
x
z
;kt

�

−Θðk2t −Q2Þfaðx;ktÞ
X
a0

Z
1−Δ

0

dzzPa0aðz;ktÞ:

ð30Þ

This distribution is displayed in Fig. 1, for x ¼ 10−3 and
Q2 ¼ 10 GeV2. Compared to Eq. (22), it receives a
negative contribution at kt > Q. Then, it exhibits a dis-
continuity at kt ¼ Q, identical to the result shown in
Ref. [12] (the dashed blue line in the right panel of their
Fig. 1) obtained from the definition (20). This shows the
equivalence of Eqs. (20) and (30), without the need for a

cutoff-dependent parton density; the issue was that Eq. (17)
is incorrect for the Sudakov factor defined in Eq. (26).
The main theoretical issue with the AO cutoff is that

there is an infinite number of nonequivalent definitions of
the uPDFs which do agree with Eq. (14). Indeed, we can
always add Θðk2t −Q2ÞAðx; k2t ; Q2Þ to the definition (30),
where Aðx; k2t ; Q2Þ is any function.5 In particular, another
correct definition is

faðx;k2t ;QÞ¼ T̃aðQ;ktÞ
X
a0

Z
1−Δ

x

dz
z
Paa0 ðz;ktÞfa0

�
x
z
;kt

�

¼ ∂
∂ lnk2t ½T̃aðQ;ktÞfaðx;ktÞ�þΘðk2t −Q2Þfaðx;ktÞ

×
X
a0

Z
1−Δ

0

dzzPa0aðz;ktÞ: ð31Þ

These definitions differ for kt > Q, and lead to significant
differences for the heavy-quark cross section, as shown in
Fig. 2. The consequence is a loss of predictability for
observables sensitive to the region kt > Q. Note that we
can also choose the function Aðx; k2t ; Q2Þ such that
faðx; k2t ; QÞ ¼ 0 for kt > Q. It is clear that, with the AO
cutoff, Eq. (14) is not enough to fix the definition of the
KMR/WMR uPDFs. An extra condition could be that we
want the distribution and its first derivative to be continuous
at large kt.

6 This corresponds to the definition given in
Eq. (31). A better condition is that numerical calculations
should be in agreement with data once all contributions
have been taken into account at a given order.

FIG. 1. WMR unintegrated gluon density as a function of k2t ,

showing a discontinuity at k2t ¼ Q2. Here G ¼ fg
k2t
, with fg given

by Eq. (30). It is compared to the parton-branching (PB) uPDFs
[15], which give an accurate result for the heavy-quark pt
distribution [11].

4This does not mean that this object is devoid of interest. In any
case, a cutoff will appear in the numerical implementation of
unintegrated PDFs based on Eq. (14).

5This is due to the fact that in Eq. (14) the uPDFs are only
integrated up to Q2. In the parton model, as defined in Ref. [4],
the relation is fðξÞ ¼ R

∞
0 d2ktfðξ; k2t Þ.

6In any case, the distribution has a discontinuity at small kt.
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However, these two conditions are not compatible. The
distributions obtained from Eq. (31) or Eq. (30) are too
large for kt > Q. The contribution gg → QQ̄þQg → Qg
overestimates the next-to-leading-order (NLO) calculations
[14] for the heavy-quark pt distribution, as shown in Fig. 2.
These results have been obtained with the KaTie event
generator [16], which is designed for kt-factorization
calculations with off-shell matrix elements. The setup is
identical to the one described in Ref. [11]. In particular, we
use the conventional factorization scale μ ¼ ðpc

t þ pX
t Þ=2,

with c referring to the outgoing charm and X to the other
particle. The charm mass has been set to 0 in the process
cg → cg. “WMR old” and “WMR” refer to the definitions
(22) [or equivalently to Eq. (31)] and (30), respectively. As
expected, the latter gives a smaller gg contribution due to

the smaller unintegrated gluon density at kt > Q. However,
we can see that the ggþ cg contribution still overestimates
NLO calculations. In fact, the cg → cg contribution alone
already overshoots the NLO result, showing that the
overestimation is not due to a double counting between
gg → cc̄ and cg → cg; rather, it is a consequence of the fact
that the AO uPDFs are ill defined. In Ref. [11] it was shown
that the same calculations done with the PB uPDFs [15] do
a good job.
We now discuss the KMR/WMR prescription with the

SO cutoff, and we will see that it solves all of these issues.
In this case, the condition x < 1 − Δ implies that

kt ≤ Qð1 − xÞ ≤ Q; ð32Þ

giving a Sudakov factor smaller than 1. The condition x <
1 − Δ is true regardless of the uPDF definition, and it can
be maintained explicitly by a factor of ΘðQ2 − k2t Þ in
Eqs. (20) and (22). In this case, Eq. (17) is true and both
definitions give the same result, namely, a distribution with
a sharp cutoff for kt > Q. Consequently, the SO cutoff
eliminates the issue of the multiple uPDF definitions.
In Fig. 3 we show the kt dependence of the WMR uPDFs

computed with this cutoff. For kt > 1 GeV, these distri-
butions are quite similar to the PB uPDFs, and we can
anticipate that they will give similar results. This is indeed
the case, as shown in Fig. 4. As expected, the gg
contribution undershoots the NLO calculations for the
charm pt distribution. It is only after including the cg
contribution (the main one) that we obtain agreement
between them. Note that we still have to include the qq̄ →
QQ̄ and cq → cq processes, which are negligible and
small, respectively [11] (at least in this kinematical range).
Note the small difference between the slope of the ggþ

cg contribution (Fig. 4, green line) and the slope of the gg
contribution (Fig. 2, purple line) obtained with the AO

FIG. 3. Charm and gluon uPDFs obtained with the WMR
prescription and the SO cutoff, compared to the PB uPDFs.

FIG. 4. Charm distribution obtained with KaTie and the WMR
uPDFs presented in Fig. 3.

FIG. 2. NLO calculations [14] for the charm pt distribution,
compared to results obtained with KaTie [16] and the WMR
uPDFs. “WMR old” refers to Eq. (22) [or equivalently to
Eq. (31)], while “WMR” is for Eq. (30).
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cutoff. The former is harder and exactly follows NLO
calculations. However, this small difference should not be
overinterpreted. As explained before, we have neglected
small contributions and the full calculation could exhibit a
slightly modified slope. Moreover, the slope also depends
on the choice made for the factorization scale.

VI. REMARKS AND DISCUSSIONS

A. Double counting

The result obtained with the AO KMR uPDFs, which
shows an overestimation of the heavy-quark production (as
illustrated in Fig. 2), may look suspicious. In this section
we demonstrate that this overestimation is not due to a
double counting. As discussed earlier, it is simply a
consequence of the fact that the AO KMR uPDFs are ill
defined.
One might suspect a double counting because of the

similarity between the diagrams shown in Fig. 5. The blue
squares indicate the 2 → 2 matrix elements for gg → cc̄
(left) and cg → cg (right). If one forgets about the blue
squares, these diagrams look exactly the same. However,
they are not the same because each blue square contains in
fact three Feynman diagrams (for the s, t, and u channels),
and because the phase space is not the same (but a partial
overlapping could be possible). Even though they look
similar, they correspond to two different physical proc-
esses: the collision of two gluons and the collision of a
gluon with a charm quark. Note also that the cg process
includes an infinite number of Feynman diagrams that are
not similar to the one for the leading-order gg → cc̄
process; an example is shown in Fig. 6.

A clear and simple argument showing that the overesti-
mation is not due to a double counting between the
diagrams shown in Fig. 5 is the observation that with
the AO KMR uPDFs the cg process alone already over-
estimates the charm cross section.

B. 2 → 1 vs 2 → 2 matrix elements

In kt factorization a 2 → 1 process is kinematically
allowed, and calculations for D meson production were
performed in this way 10 years ago [17]. A Feynman
diagram for this process is shown in Fig. 7. Even if the
cg → c process seems to be the true leading order for D
meson production, it is in fact approximately equivalent to
the 2 → 2 process. This can be seen by considering one of

FIG. 5. Example of Feynman diagrams for gg → cc̄ (left) and
cg → cg (right). The blue squares indicate the 2 → 2 interactions.

FIG. 6. Example of a Feynman diagram for cg → cg showing
no similarity with the gg → cc̄ diagrams.

FIG. 7. Example of Feynman diagrams for the off-shell matrix
element gc → c.
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the outgoing partons of the 2 → 2 process as being
part of the evolution (compare for instance Fig. 7 with
the left panel of Fig. 5). However, these two forma-
lisms are not completely equivalent, and calculations
performed in Ref. [17] did not include s-channel
Feynman diagrams (at high energies, these diagrams are
indeed negligible).
We believe that recent calculations using the 2 → 2

processes give a better result, but it would be interesting to
perform a precise comparison between these two points
of view.7

C. On the kt factorization

We have mentioned that the KMR/WMR uPDFs used
with the AO cutoff are ill defined. This issue is not
restricted to the KMR/WMR prescriptions, and any
uPDFs with such a large kt tail at kt > Q will encounter
the same problem. We believe that this issue could be
related to the fact that there is no proof of the kt
factorization. The consequence is the absence of a precise
definition for the unintegrated parton densities. In the kt-
factorization formalism, these functions should only
approximately respect the relation (14). If, for instance,
one instead chooses the relation

fðx;Q2Þ ¼
Z

∞

0

dk2t Fðx; k2t ; Q2Þ ð33Þ

the issue of ill-defined uPDFs would disappear because
the large-kt tail of the distribution would be constrained.
Blümlein’s uPDFs obey this relation; see, for instance,
Ref. [18].
Note also that the PB and WMR uPDFs were

recently compared in Ref. [19]. The authors have
shown that in the case of the PB uPDFs integrating up
to Q2 or up to infinity gives a result compatible
with collinear PDFs in both cases (see Fig. 6 in
Ref. [19]). In the opposite case, the WMR uPDFs used
with the angular-ordering cutoff give a numerical result
compatible with the collinear PDFs only if the integration is
stopped at Q2. Otherwise, the numerical result overesti-
mates the collinear PDFs, in particular at small x, showing
the non-negligible role played by the tail of the distribution
for kt > Q.

VII. CONCLUSION

In this paper we discussed the KMR and WMR pre-
scriptions for uPDFs, and we underlined the fact that
several recent studies that used the “KMR” prescription

in fact used the WMR one. We have seen that only the
WMR prescription gives the correct DGLAP equation.
Then, we addressed the issue of the apparently math-

ematically equivalent uPDF definitions giving different
numerical results, mentioned in Ref. [12]. We have dem-
onstrated that, with the Sudakov factor used in Ref. [12],
these definitions were in fact not equivalent, and we gave
the correct relation, Eq. (29).
We have seen that the WMR prescription leads to

significant differences for the charm cross sections,
depending on the choice made for the cutoff. With the
AO cutoff, the contribution ggþ cg completely overshoots
the NLO calculations (Fig. 2) and the uPDFs are not
uniquely defined by Eq. (14), leading to a loss of predict-
ability. However, despite the issue arising from the region
kt > μ, where μ is the factorization scale, observables
obtained after a kt integration in the region kt ∈ ½0; E�
(with E ∼ μ) are safe. This is the case, for instance, for
Drell-Yan production at large ŝ. In Sec. VI C we discussed
the potential relation between this issue and the lack of a
proper definition for unintegrated PDFs.
In the opposite case, the SO cutoff avoids these issues. It

gives satisfying numerical results (Fig. 4) that are in
agreement with those obtained in Ref. [11]. In particular,
using the (SO) WMR uPDFs, we confirmed that the main
contribution to heavy-quark production is given by
Qg → Qg, with the gg contribution alone being a factor
of ∼3 below NLO calculations. Compared to the AO cutoff,
the obtained kt distributions are closer to other uPDFs sets,
e.g., the PB uPDFs.
Unfortunately, the majority of phenomenological

papers use the AO cutoff. Calculations are done including
only the gg contribution [with the gluon unintegrated
density built from Eq. (31)], giving an (accidental)
reasonable agreement with data. The fact that the other
contributions are not included is not even mentioned. One
of the unpleasant consequences is to convince the reader
that the main contribution to heavy-quark production is
the gg contribution. Then, using another correct uPDF set,
e.g., the PB one [15], and including only the gg
contribution leads to the erroneous conclusion that this
set does not work. This was the case, for instance, in
Ref. [20], where the PB and KMR uPDFs were discussed.
In that paper, it was said that “a new Parton-Branching
(PB) uPDF strongly underestimates the same experimen-
tal data”. However, it was shown in Ref. [11] that, once
all contributions have been added up, the PB uPDFs in
fact give a good description of the heavy-quark pt
distribution.
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