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Color charge correlations in the proton at moderately small x ~ 0.1 are extracted from its light-cone wave
function. The charge fluctuations are far from Gaussian and they exhibit interesting dependence on the

impact parameter and on the relative transverse momentum (or distance) of the gluon probes. We provide
initial conditions for small-x Balitsky-Kovchegov evolution of the dipole scattering amplitude with impact

parameter and 7 - b dependence, and with a nonzero C-odd component due to three-gluon exchange. Lastly,
we compute the (forward) Weizsicker-Williams gluon distributions, including the distribution of linearly
polarized gluons, up to fourth order in A™. The correction due to the quartic correlator provides a transverse
momentum scale, g 2 0.5 GeV, for nearly maximal polarization.
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I. INTRODUCTION

The planned high luminosity Electron Ion Collider (EIC)
is designed to perform “imaging” of the proton (and of
heavy ions) with unprecedented accuracy [I]. It will
provide detailed multidimensional parton distributions
and insight into the light-front wave function (LFWF) of
the proton via high-energy y*) — p scattering. The purpose
of this paper is to expose the color charge correlations
obtained from the LFWF of the proton.

The concept of color charge density fluctuations in the
transverse impact parameter plane emerges naturally in high-
energy (small-x) scattering. The projectile charge traverses
without recoil the (color) field produced coherently by all
“valence” charges in the target, and its propagator is given by
a path ordered exponential of that field, cf. Sec. III below.
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For scattering of a (virtual) photon from a proton target, this
regime of coherent eikonal scattering may set in at x < 0.1
where the longitudinal coherence length ~1/(xM,) of the
process in the rest frame of the proton begins to exceed
its radius. Nuclear targets, on the other hand, require
x <0.1/AY3, where A denotes the atomic number.

The scale separation in soft coherent fields sourced by
random, “frozen” valence charges was introduced by
McLerran and Venugopalan (MV) in Ref. [2]. Their model,
devised for a very large nucleus, describes Gaussian fluc-
tuations of classical color charge densities at vanishing
momentum  transfer:  (p%(§1)p"(G2) )y ~ 1*8(qi1 + G2).
However, when the density of valence charges in the
target is not very large, one would rather take the two-
dimensional color charge density as an operator acting on the
LFWEF of the target [3]. We shall see that in the regime of
moderate x ~ 0.1 color charge fluctuations in the proton are
not Gaussian, and are dependent on the impact parameter
and on the transverse distance scale they are probed at.

After analyzing color charge correlations in the proton
we proceed to specify initial conditions for small-x
Balitsky-Kovchegov (BK) evolution [4] of the dipole
scattering amplitude. Detailed fits of BK evolution with
running coupling corrections to the y* — p cross section
measured at Hadron-Electron Ring Accelerator (HERA)
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have been performed by Albacete et al. in Ref. [5]. More
recent fits improve the accuracy of the theory by employing
a collinearly improved BK evolution equation (Ref. [6] and
references therein). However, such fits of small-x QCD
evolution to HERA deep inelastic scattering (DIS) data
typically impose simplified, ad hoc initial conditions for
the dipole scattering amplitude on the proton, starting at
x = 1072, We attempt to construct initial conditions based
on the LFWF of the proton so that one may take advantage
of “proton imaging” performed at a future EIC [1]. We use
a model LFWF to show that interesting, nontrivial trans-
verse momentum and impact parameter dependent color
charge correlations in the proton should be expected.
Furthermore, these initial conditions include a nonzero
C-odd “odderon” contribution to the dipole scattering
amplitude which may be evolved to smaller x [7] in order
to address high-energy exclusive processes involving C-
odd exchanges or some spin dependent transverse momen-
tum dependent (TMD) distributions such as the (dipole)
gluon Sivers function of a transversely polarized proton [8].

Our final objective is to compute the Weizsicker-
Williams (WW) (forward) gluon distributions, in particular
the distribution of linearly polarized gluons, at next-to-
leading (fourth) order in A™ (Sec. IV). At this order the
conventional and linearly polarized distributions no longer
coincide, and they involve the correlator of four color
charge density operators in the proton. This is an inde-
pendent correlation function which cannot be reduced to
products of quadratic color charge correlators like in an
effective theory of Gaussian color charge fluctuations.
The WW gluon distribution is a TMD; its general operator
definition has been provided in Refs. [9]. The WW gluon
TMDs appear in a variety of processes such as production
of a dijet or heavy quark pair in hadronic collisions [10]
or DIS at moderate [11] or high energies [12—14], photo-
production of three jets [15], and photon pair [16],
quarkonium [17], quarkonium pair [18], or quarkonium
plus dilepton [19] production in hadronic collisions. These
gluon distributions also determine the fluctuations of the
divergence of the Chern-Simons current at the initial time
of a relativistic heavy-ion collision [20].

II. SETUP

The light-cone (L.C.) state of an unpolarized on-shell
proton with four-momentum P* = (P*, P~, P, ) is written

as [21]
- 1 dxldxzdx35
V6 VX1X2X3
/d2k1d2k2d2k3
(1673)3
Xyr(xy,ky5%0,kp3x3,k3) z €iriris | 12113 D2, 123 P34 13).

iy,0p,03

|P)

1—X1 —Xz—X3>

16736(k) + ks + k3)

()

The n-parton Fock space amplitudes are universal and
process independent. They encode the nonperturbative
structure of hadrons. Here, we have restricted our discussion
to the valence quark Fock state, assuming that the process
probes parton momentum fractions of order x ~ 0.1, and
moderately high transverse momenta. In this regime, the
above should be a reasonable first approximation.

The three on-shell quark momenta are specified by their
light-cone momentum components p;” = x;P" and their
transverse components p; = x,-f’ L+ l_c',». The colors of the
quarks are denoted by i;,3; We omit helicity quantum
numbers (and flavor indices) as they play no role in our
analysis. y is symmetric under exchange of any two of the
quarks, and is normalized according to

/d.xld)C2dX35(1 —X] —XZ—X3)

/d2k1d2k2d2k3

(162)3 (16”3)5(1:1 ‘sz +’€3) wl*=1. (2)

This corresponds to the proton state normalization
(K|P) = 162°P*8(PT —K")8(P,. —K,). (3)

Below, we neglect plus momentum transfer so that
&= (K" —=P")/P" — 0. This approximation is valid at
high energies.

For numerical estimates we employ a model wave function

w(xy, ks %0, ks X3, l_c'3) described in the Appendix A.

III. DIPOLE SCATTERING AMPLITUDE

The S-matrix for scattering of a quark-antiquark dipole
off the fields in the target proton can be expressed as (see,
e.g., Ref. [22])

S(7.b) = N%tr<U(13+§> UT<5—§>>- (4)

Following the standard convention in the small-x literature
we define the scattering amplitude

T(7.b) =1-8(7.b), (5)

without a factor of i.

When integrated over impact parameters l;, Eq. () is
related to the so-called dipole gluon distribution [23]. Here,
U (U") are (anti)path ordered Wilson lines representing
the eikonal scattering of the dipole of size 7 at impact
parameter b:

U()_C)T) _ ,Peig fdx'A*“(x',?cT)l“

’

UT ()—ET) _ ﬁe—igfdx’A“(x’,fT)t“‘ (6)
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FIG. 1. Left: one of the diagrams for the correlator {p®(g,)p’(g,)) (once Coulomb propagators are amputated); this
contribution dominates at large relative gluon momenta but small total momentum transfer I?T = —q, — ¢»- Right: one of the
diagrams for the correlator (p®(g;)p”(§,)p°(g3)); this contribution dominates when the three gluons share a large momentum

transfer, K;/3 ~ —§, ~ -G, ~ —§s.

S(F.b) and T (7.b) are invariant under the simultaneous
P < P, 7= —F gAT = —gA*. We now expand T(7, D)
to third order in gA™, neglecting exchanges of more than
three gluons, and write it in terms of correlators of the field
integrated over the longitudinal coordinate:

A*a(Zy) = /dx—A+tl()_C'T’x—)’
AT (Zp) AT (r) + AP () AT ()
—p / dx— / dy~ At (Xp, x7)A (7, y7)
+P / dx” / dy=A* (X x7)A (r.y7). (7)
This field is related to the 2d color charge density through
—V2A*(3%) = p*(%r). (8)

allowing us to express the dipole scattering amplitude in
terms of color charge density correlators. Some of the
diagrams that contribute to the two- and three-gluon
exchange amplitudes are shown in Fig. 1. The general
relation of correlators of Wilson lines at small x to
generalized parton distributions has been elucidated in
Ref. [24], to all twists.

C-even two gluon exchange corresponds to the scattering
amplitude [3]

[We use the shorthand notation [, = [d*q/(2%)*.] Here,
we introduced the color charge correlator

-

(p(41)p"(42)) = 1t ¢G5 (4. 4o (10)

see Appendix B for details. It is symmetric under a
simultaneous sign flip of both arguments and so
T ,,(7. b) is real. The integral in Eq. (9) is free of infrared
divergences since G, satisfies a Ward identity and vanishes
when either one of the gluon momenta goes to zero [25,26]:
Gy(G—5Kr.—G—53Kr) ~(G+£5K7)? as §— £5K;.
In Fig. 2 we show a numerical estimate for G, as a
function of impact parameter b or relative momentum

di» = 41— 4> = 2G; + Ky

e (Tu—Kr Gn+K
e—zh~KTG2<q122 T’_Chzz T>' (11)

62(171275)_/

Kr

We also average over the relative directions of ¢, and b.
For numerical estimates we used the model wave function
by Brodsky and Schlumpf [27] described briefly in
Appendix A.

G, measures charge correlations seen by two gluon
probes of the same color. There is a color charge anti-
correlation (“repulsion”) at small relative momentum of the
gluon probes in the center of the proton which turns into a
positive correlation (“attraction”) towards the periphery, or
at high relative momentum. The integral of G, over the 2d
impact parameter plane at vanishing relative momentum is
Zero:

/dszQ(Zju =0,b) =0. (12)

A similar relation holds for the cubic charge correlators
discussed below.

054004-3



DUMITRU, SKOKOV, and STEBEL

PHYS. REV. D 101, 054004 (2020)

004 T T T T T T T T T T
002} EERREE _ -
0.00 —
_ 002} .
N> L
o -0.04 B
S
' -0.06 -
0 I averaged over Z(b, q,,)
-0.08 | .
[ — ¢,,=0
0107 ---- q,=05GeV |
R A q=1GeV |
_0-14 n 1 n 1 n 1 n 1 n 1 n
0 1 2 3 4 5 6

b [GeV']

0.06
0.04
0.02
0.00
% 002
(QD_) L
. — -
= 0.04 i averaged over Z(b, (_j,z)
O 0.06 .
- —— b=0GeV!
-0.08 a7
L ---- b=1GeV
ot0F /0 L b=2GeV'| ]
012 R b=5GeV!| T
-0.14 N 1 N 1 N 1 N 1 N 1 N
0.0 0.5 1.0 1.5 2.0 2.5 3.0

q,, [GeV]

FIG.2. The quadratic color charge density correlator G, (g, b) in the proton as a function of impact parameter and relative transverse

momentum of the two gluon probes.

At third order in A™* we have the following scattering
amplitude for C-odd three gluon exchange [3]:

Here, K; = —(g\ + g» + g3)- We denote the C-odd part of
the correlator of three color charges as

(P (@) (@2)p°(@3)) c—— = =d* PG5 (G1. G2. 43)-  (14)

| =

N T T T T T T
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o
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This correlator, too, is symmetric under a simultaneous
sign flip of all three gluon momenta and so 7 (7, l;) is
imaginary. Also, it vanishes quadratically in any of the
transverse momentum arguments so that 7
of infrared divergences.

The fact that G5 does not vanish shows that color charge
fluctuations in the proton state (1) are not Gaussian.
A numerical estimate of G5 is shown in Fig. 3. At small
relative momentum we observe a positive correlation at
the center of the proton; G5 (b) diverges logarithmically at
b — 0 due to contributions from large momentum transfer
—t=K2. This turns into an anticorrelation around
b~1 GeV~!, and then vanishes for large impact param-
eters. At high relative momentum the correlator is large and

9997 b) is free

0-04 T T T T T T T T T T

0.02

0.00

-0.02

averaged over

G; [GeV?]

-0.04 oy S ]
L Z(b, q,,) and Z(b, ?])23)
-0.06 —— b=1GeV! |]
_ -1
-0.08 ---- b=2GeV i
F q12= q23= qg [t b = 5 GCV 1
_0.10 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

q [GeV]

FIG. 3. The C-odd part of the cubic color charge density correlator G; in the proton as a function of impact parameter and relative

transverse momentum.
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FIG. 4. The C-even part of the cubic color charge density correlator G; in the proton as a function of impact parameter and relative

transverse momentum.

positive at small b. For generic impact parameters and
momenta G, and G5 are of similar numerical magnitude.

For completeness, we finally show the C-even part of the
correlator of three color charges,

- - R i oo S
<p“(ql)pb(qz)pc(q3)>C=+Ezf“bch?(ql,qz,%L (15)

even though it does not contribute to the dipole scattering
amplitude. This correlator is negative near the center, and
for small relative momenta, then turns into a positive
correlation at large momenta, c.f. Fig. 4.

All three color charge correlators decay with increasing
impact parameter, just as expected intuitively. Observing
the correlations at small b involves large momentum
transfer to the proton to zoom in on its center. The regime
where the exchanged gluons share a large momentum
transfer —¢ = K% is dominated by n-body diagrams such
as the one shown in Fig. 1(right), where the static gluons
attach to as many sources as possible1 [29]. This leads to
the greatest overlap of the wave functions of incoming and
scattered protons.

We now show the behavior of the dipole scattering

amplitude T(l;, 7). For all figures we assumed a fixed
a, = 0.35 [29,30] and we align the impact parameter and
dipole vectors. However, the scattering amplitude does

depend on the relative orientation of » and 72

The two gluon exchange amplitude 7° gg(l; , 7) is shown in
Fig. 5. It displays the expected roughly exponential falloff

"This was first noted by Donnachie and Landshoff who argued
that three gluon exchange should dominate over two-gluon
exchange in elastic proton-proton scattering at high energy
and large —1 (<s) [28].

This would give rise to azimuthal correlations in double
parton scattering in hadronic collisions [31].

at large impact parameters. The amplitude is significantly
smaller than 1 even at the center of the proton, albeit not
by several orders of magnitude, e.g., 7, ~0.1 at b =

1 GeV™! and r=2 GeV~!. Matching this to 7, =
%rZQ%(b) would correspond to a saturation momentum
of about Q,(h)~0.3 GeV at b =1 GeV~! and x ~0.1.
For comparison, we recall Q; ~ 0.4-0.5 GeV at x = 0.01,
on average over impact parameters, extracted from sys-
tematic fits of BK evolution with running coupling cor-
rections to HERA data for F, [5].

As expected, 7 ,,(7) at fixed b first increases with
the size of the dipole; the slope is less steep at larger
impact parameters where the target is more “dilute.” The
scattering amplitude eventually reaches a maximum value
for 7 = 5 GeV~! beyond which it decreases again as the
projectile dipole “misses” the target.3 However, this behav-
ior occurs in a regime of large dipoles where the analysis of
the scattering amplitude (and of y*) — ¢g) in perturbation
theory is not valid.

The C-odd three gluon exchange amplitude (odderon®)

=i Tyyg (

sign under b — -b (negative parity) and vanishes at b = 0.
Its magnitude is maximal at b ~ 0.5-1.2 GeV~!, approx-
imately where the gradient of the two-gluon exchange
amplitude is greatest [34]. For impact parameters b <
3 GeV~! and small dipoles, r <4 GeV~', we find that
T, is smaller than 7, by at least one order of

b, 7) is shown in Fig. 6. This amplitude changes

999

This behavior also emerges as a consequence of impact
parameter dependent small-x BK evolution, even when the dipole
amplitude at the initial x, increases monotonically with r [32].

We should mention that we restrict our discussion to the
odderon associated with (relatively large) transverse momentum
transfer K. For nearly forward scattering another odderon
exchange associated with a spin flip of the proton may appear [33].
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FIG. 6. The C-odd three gluon exchange amplitude Im ngg(l;, 7).

magnitude.’ This is not because color charge fluctuations in
the proton are nearly Gaussian, as the magnitudes of G, and
G5 (shown above) are similar. Rather, it appears to
originate mostly from the parity odd nature of 7, which
gives rise to large cancellations in the integral in Eq. (13).
As a consequence, semihard processes requiring C-odd
three gluon exchange have small cross sections [29].
Alternatively, one may search for the perturbative odderon
via charge asymmetries in diffractive electroproduction of a
ata~ pair [35].

The magnitude of Im 7, obtained from the present LEWF is
one order of magnitude smaller than the one used as the initial
condition for small-x evolution in Ref. [8], where the authors
compute the dipole gluon Sivers function in a transversely
polarized proton.

IV. WEIZSACKER-WILLIAMS GLUON
DISTRIBUTIONS

In this section we relate the color charge correlators to
the (forward) WW gluon distribution. It is given, at small-x,
by the correlator of two light-cone gauge fields [23,36]

P .
xGyw (x,G) = EE”xG(l) (x,q)

1 g .
+ 3 (22—3 - 5’/)xh<ll)(x, q)

U

= 53 A @A (=q)). (16)
va

The trace of xG{{,w defines the conventional WW gluon

distribution xG() (x, §) while the traceless part corresponds

to the distribution of linearly polarized gluons xh(j)(x, q).
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FIG. 7. The conventional and linearly polarized WW gluon distributions in the proton (at x ~ 0.1) to order (A*)*.

Both are integrated over impact parameters since we
consider the forward limit. In the nonforward case the
general decomposition of the WW generalized transverse
momentum dependent distribution (GTMD) involves addi-
tional independent functions on the right-hand side of
Eq. (16); see, e.g., Ref. [37].

The field in light-cone gauge is obtained from A" by a
gauge transformation,

. i NN
Al(Xr) = QUT(XT)aIU(xT)v (17)
such that in this gauge A" (X;) =0. At linear order
in p, A(g) ~ ¢'p(g) is longitudinal so that xG()(x, §) =

xh(j)(x, q), corresponding to maximal polarization:

7

AxGD(x,§) = —Axh\) (x, §) = s
p

fabefcde

The explicit expression for fabe fede(pa(g — k)pb (k)
p¢(=G — p)p?(p)) in terms of the proton LFWF is given
in Eq. (C7) of Appendix C. Hence, at this order there is a
splitting of xG'!) and xh$> which are no longer equal.
Figure 7 shows numerical results for the two WW gluon
distributions in the proton. For g 2 0.5 GeV the higher
twist correction is very small and the “polarization” is
nearly maximal. This confirms that a measurement of

th)(x, q) at an EIC appears promising, for example via
dijet azimuthal asymmetries [12]. The higher twist correc-
tion overwhelms the leading contribution below ¢ ~
0.2 GeV where a resummation to all orders in AT would
be required. For the Gaussian MV model of classical color

NZ-1 ,
< G,(q.—q). (18
87[3q2 g 2(q Q) ( )

xG(x,§) = xh' (x.§) =

Beyond leading order in p (or A") the L.C. gauge field
is no longer purely longitudinal and one finds that
xGW(x,q) > xh(ll)(x,a). See Refs. [13,38] for computa-
tions of these distributions to all orders in AT, in the
Gaussian MV model of classical color charges. Resummed
WW gluon distributions for Gaussian color charge fluctu-
ations with a more general two-point correlator have been
derived in Ref. [39]; also see Appendix C.

Here, we express the correction to xG!(x,g) and

xh(j)(x, q) at fourth order in A" in terms of the quartic
color charge correlator:

11 1 1

Wk (G-k2 @G+ \ ¢
x (p(G = K)p? (K)p* (= — B)p™(B)).-

(19)

[

charge fluctuations this has been done in Refs. [13,38] (and
its evolution to small x in Refs. [14,40]) but here higher
order correlators are independent functions and a resum-
mation appears difficult.

V. SUMMARY AND DISCUSSION

In this paper we have computed 2d color charge density
correlations in the proton at moderate x ~ 0.1. The corre-
lators of two, three, and four color charge density operators
p¢ have been related explicitly to the light-front wave
function of the proton. These correlators exhibit interesting
dependence on the relative momenta of the probes, and on
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impact parameter. The two-point correlator G,(q;, g,) ~
{p*(q1)p*(q»)), for example, is positive at large relative
momentum g, = ¢, — ¢,, indicating “attraction” of like
charges. It turns negative (“repulsion”) at smaller relative
momentum, for central impact parameters. The correlation
function satisfies a sum rule such that at g, =0 its
|

integral over the impact parameter plane vanishes:
fdzbéz(l_;,qlz = O) = 0. We note that 62(5,612) is a
two-body generalized parton distribution (GPD) which
depends not only on impact parameter but also on the

relative transverse momentum (or distance) of the two
gluon probesé:

- &pidprdips . L L
G,(b.q15) :[( e"”'KT/dx]dxzdx35(1—xl —xz—xs)/#&l’l + P2+ P3)

(167)?

X [W*(ﬁl + (1 = x1)K7, pr — XK1, p3 — x3K7)

-

(- dn—Kr 2 Z112+f(r > > 5 o o
4 <P1 _T_XIKTaPZ+#_XZKT7173_X3KT W(P1,P27P3)-

y denotes the amplitude of the three-quark Fock state of the
proton. The first, one-body term is dominant for large b and
q1> while the second, two-body contribution dominates for
small b and ¢,. To illustrate the importance of n-body
contributions to the color charge correlators, in Fig. 8 we
compare G,(b, g1 = 0) and G5 (b, g1, = g»3 = 0) to the
one-body quark density’ in impact parameter space,
ie., to the proton “thickness function” 7,(b). Even at
vanishing relative momenta these coincide only at rather
large b. The color charge correlators (p®(q;)p’(g,)) and
{p*(41)p"(G2)p°(G3))c—_ can be probed in exclusive pro-
duction of various charmonium states in (virtual) photon-
proton scattering [29,42] or via charge asymmetries in pion
pair production [35].

Another main result of the paper is that color charge
fluctuations in the proton are far from Gaussian. The
magnitudes of the C-even and C-odd components of
the cubic correlator (p?p?p)/g® are comparable to that
of the two-point correlator {p?p”)/g¢?. In particular, C-odd
correlations of cubic fluctuations near the center of the
proton are large and positive, for sufficiently small relative
momenta of the gluon probes.

Subfemto-scale color charge correlations in the proton
determine the dipole scattering amplitude. Relating them to
the proton LFWEF, which could in principle be determined
via “imaging” of the proton at a future electron-ion collider,
could help constrain and improve initial conditions for
small-x evolution. In particular, our analysis provides initial
conditions which account for the above-mentioned non-
trivial structure of two- and three-point correlators as
functions of the transverse momentum (g;,) or distance

scale (¥), impact parameter b, and their relative angular

For the proton wave function considered here, there is no
dependence on x. We refer to Ref. [41] for a review on GPDs.

"The quark density is given by three times the first term in
Eq. (20).

(20)

[

orientation. Hence, they may be useful for checking the
consistency of BK evolution with the impact parameter
dependence of the dipole S-matrix extracted from data at
small x [43].

The scattering amplitude derived here also includes a
nonzero C-odd odderon contribution to the dipole scatter-
ing amplitude which may be evolved to smaller x [7] to
predict cross sections for exclusive processes involving
C-odd exchanges, or the dipole gluon Sivers function of a
transversely polarized proton [8]. Somewhat surprisingly,
perhaps, our numerical analysis indicates that the C-odd

amplitude for three-gluon exchange 7,/ (

smaller in magnitude than the C-even amplitude 7 (7, b)
for two-gluon exchange. As already mentioned, this is not
because color charge fluctuations in the proton are nearly
Gaussian. Neither is it due to the additional power of «;

7,b) is much

in T, (7, l;) which is compensated by other numerical

030 -\
* ~
0.25 4.' \ — bG,, q,,=0 ]
! > -
0.20 1'- ' - bG3 s q15= g23= 0
|
. 0.15 1 R S b*(quark density)
°'> 1
©010F . 1
O y .
= A .. _
X 005F - ! 1
< K S -
. IS I
0.00 K- —— L
\ _- - ]
-0.05 | = e 1
AN averaged over ]
-0.10 | -- R R
£(b, q,,) and £(b, q,;)
-0.15 - L L 1 . L X | ) ) i
0 1 2 3 4 5 6
b[GeV!]
FIG. 8. Quadratic and C-odd cubic color charge correlators, and

the one-body quark density, as functions of impact parameter.
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factors. Rather, it is mainly a consequence of the fact that
this amplitude is odd under parity. This leads to large
cancellations in the three gluon exchange diagram (for
central impact parameters) when their transverse momenta

9997 l;) must vanish, also, for large impact
parameters or large dipoles as the density of color charge if
the periphery of the proton is low. Consequently, we expect
that cross sections for semihard exclusive processes involv-
ing C-odd three-gluon exchange are small and require high
luminosity.

We have also computed the conventional and linearly
polarized Weizsicker-Williams gluon TMDs xG(x, g)

are reversed. 7

and xhil) (x, g) in the proton at moderately low x ~ 0.1. At
leading twist [order (A*)?] the field in light-cone gauge is
purely longitudinal and there is maximal polarization,
xG(x,q) = xhil)(x, q). The first power correction intro-
duces a transverse part to A so that these gluon distri-
butions are no longer equal. The correction to xG(l)(x, q)

and xhil)(x, q) involves a correlator of four A* in the
proton. This is an independent function when color charge
fluctuations are not Gaussian, and we have related it
explicitly to overlap integrals of the LFWF of the proton.
Numerically, we find that for ¢ 2 0.5 GeV the higher twist
correction is small and ‘polarization is close to maximal.
Hence, a measurement of xhﬁ)(x,q) at an EIC appears
promising.

Throughout the paper we have approximated the proton
in terms of its valence quark Fock state. It will be important
to include the |ggqg) Fock state, too, where the gluon is not
necessarily soft. This may affect color charge correlations
which probe high parton transverse momenta, and should
improve the matching to small-x BK evolution. Work in
that direction is in progress.
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APPENDIX A: SIMPLE MODEL WAVE
FUNCTION

For numerical estimates we employ the “harmonic
oscillator” model wave function of Brodsky and
Schlumpf [27],

wio. (X1, ki3 X2, ko3 X3, k3) = N o exp(—M?/2f%). (Al)

The invariant mass M of the configuration is given by

3

MZZZ]_(?"—WIZ

(A2)

f determines the typical transverse momentum of quarks in
the proton. The parameters  and m?> were determined in
Ref. [27] as m = 0.26 GeV, f = 0.55 GeV. The normali-
zation constant Ny o is obtained from the normalization
condition (2).

The above simple model wave function allows us to
perform analytically parts of the evaluation of the corre-
lators of + color currents in the proton; cf. Eqs. (B3),
(B10), (B11), (B13). This simplifies the numerical com-
putations significantly. Other models and parameter sets
can be found in Refs. [45].

APPENDIX B: COLOR CHARGE CORRELATORS

Following Ref. [3] we introduce the color charge density
operators corresponding to the light cone plus a component
of the quark currents

- dx d’q
“(x, < 1,k) = =4 Lyt bpo . (19)..
i 0 =03 [ 5 [ b
(B1)

by
for quarks with plus momentum ¢* = x,P*, transverse
momentum ¢, and color i. Note that this neglects contri-
butions from antiquarks and gluons which we assume are
small at x; ~ 0.1. We also neglect longitudinal momentum
transfer to the quarks and use the kinematic approximation
where x; ~ 0.1 < 1. This allows us to simplify the color
charge operators as indicated above.

and b,; denote creation and annihilation operators
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The expectation value of a single color charge operator in the proton is given by8

- d?p,&p,d?ps R o
(p*(=Kr)) = gtrt"/dxldxzdx35(l — X =X = X3) /172235(191 + P>+ D3)

(1673)
w (pr+ (1 —xl)f(%f’z —x2f(7,['53 —xaf(r)l//(ﬁhﬁz»fh)
d2
_gtrt”/dx / 2:)12VV< (1. B1 + Kp). (B2)

For brevity we omit the momentum fractions x;, x,, x3 from the list of arguments of y and y* since we employ the eikonal

(1)

approximation. Here, W~ (x1, P1 + K ) is the one-body quark GTMD/Wigner distribution for momentum transfer K ;; one

may Fourier transform it from K r-space to l;-space. Of course, (p“(—l? r)) vanishes due to color neutrality.
The correlator of two color charge density operators is given by [3]

d2P1d2P2d2P3
(167°)?
X [w*(P1 — q1 — G2 — x1 K7, py — X,K7, p3 — x3K7)

(p*(41)p"(42)) = g* tr1*s” / dx;dxydxs6(1 = xp — xp — x3) /

8(py + P2+ P3)

—y* (P — 41 — 1K1, P2 — G2 — %,K7, p3 — x3K7) [y (P1, P2 P3) (B3)
— 1 ab 2 - >
=§5 9°G2(41: G2)- (B4)
K r 1s the total momentum transfer to the proton by conservation of transverse momentum we have that K r=—(q1 + q2)-

Similarly, in all charge correlators below K r+>.:G; = 0. Up to a conventional factor of (—i)?> which we write explicitly
in the exponent of the Wilson lines (6), this result coincides with the two-gluon exchange proton impact factor given
in Refs. [46,47].

In the limit where all g; far exceed the typical transverse momentum of quarks in the proton, while K < ¢;, this
correlator, as well as higher correlators introduced below, approach a universal limit given by a one-body GPD:

d2p1d2p2d2p3

G»(q1.42) = /dxldxzdx35(l — X — X —Xs)/ 8(p1 + P2+ P3)

(167°)
~ Gy —x1K7, Py — %K1, p3 — x:K 1)y (P1, Bas B3)
d Pl W
KT (x1. 51 + Kr). (K1 < q1,92)- (B5)

The term “one-body GPD” refers to the fact that both color charge operators act on one and the same quark and one may

integrate out the spectator quarks. On the other hand, when the probes share a large momentum transfer K the dominant
contribution is due to the diagram where the two gluons attach to different quarks in the proton, i.e., to the two-body
representation of p?(g,)p’(g,) which gives the second term in Eq. (B3) [29]:

d’p,d?p,d*p
W&Pl + P2+ D3)

| —x1K7, By — Go — x2K7, p3 — x3K7)w(p1. bas P3)

-q
d’p d’p
/ / 1 / / 2 WS(T(XNPI 41, %2, P2 — G) (ql,q2~—KT/2) (B6)

G>(q1.42) = /dx dxpdx35(1 = xp — x, — xs)/

8(...) corresponds to (K| ---|P) stripped of the 5-functions expressing conservation of transverse and plus momentum, e.g.,
(K|p?(q)|P) = 167> P+6(P* — KT)6(Kr + q){(p*(q)), where we set P = 0 for the incoming proton.

054004-10



SUBFEMTOMETER SCALE COLOR CHARGE CORRELATIONS IN ... PHYS. REV. D 101, 054004 (2020)

This involves a two-body GTMD or Wigner distribution. The n-body diagrams are important for exclusive photoproduction
of charmonium at large —¢ [29].

We now proceed with cubic and quartic color charge correlators. The fact that (p?(g,)p”(§»)p°(g3)) is not zero shows
that color charge fluctuations are not Gaussian. The C-odd part of the cubic correlator is given by [3]

- o 1 &p,d?p,d?ps . L
(p“(G1)P" (@2)p"(@3)) e = 4d”bL93/dx1dx2dx35(1 — X — X — X3) /(11671732)235(171 + P2 + P3)

X (P1—q1—G2—Gs —x1K . pr — XK |, p3 —x3K )
- (Pr—q1—x1K . pr—Gy— G3 — 2K |, p3 — x3K )
- (Pr—q1—G3—x1K,,Dr—Go — 2K |, p3 — x3K )
- (Pr—q1—G—x1K,,Dr—G3 — 2K |, p3 — x3K )
+2u*(p1 — ¢ — 1K 1. Po — G2 — 2K | . p3 — G5 — x3K ) |w(p1. P2. P3) (B7)
1 abc 3—(7. 7. 7

Ezd g°G;3 (61176127%)- (BS)

Again, this expression agrees with the C-odd three-gluon exchange proton impact factor E5,, by Bartels and Motyka [46]

(also see Refs. [48]) up to a conventional factor of (—i)3.
G5 can be expressed in terms of two-gluon exchange correlators G,, where two of the three gluons are “paired up,” plus a
genuine three-body contribution which enforces the Ward identity (vanishing of G5) when either one g; — 0:

G5 (41,92 G3) = G2(G1 + G2, G3) + Ga2(G1 + G35 G2) + G2(G2 + G3. G1)
d?p,d?p,d> N N .
—Z/dxldxzdx35(1 — X =Xy — X3) /ngzmﬂpl + P2+ P3)
(167°)
X (Pr—q1—Gr— 43— 1K . pr— K|, p3 —x3K )
- (Pr—q1 —x1K 1. Py —Go — XK, p3 — G5 — X3K ) lw(P1, D2, P3)- (B9)

For completeness we also give the C-even (or negative signature) part of the cubic correlator although it is not needed for
the dipole scattering amplitude:

N N N i d>p,d*p,d*ps . N N
(p*(G1)p"(G2)p (43)) o=y = Zf“bcg3/dxldx2dx35(1 — X =Xy — X3) /Wé(m + P2+ P3)

2 [W*(ﬁl - ;11 - ;12 - ;13 —leL];z —x2K¢,133 —X3Kl)

-y (P1—G2— 43— 1K1, pr — g1 —xK |, p3 —x3K))
+w (Pr—q1—Gs —x1K 1, Dy —Go — 2K |, p3 — x3K )
- W*(ﬁl - 61 - qz _leivﬁZ - 213 _szivﬁ3 _X3KL)]W(ﬁl’ﬁ2153) (BIO)
i
4

fabcg3G;r(Zh’;12’f?3)‘ (B11)
G5 can be fully decomposed into twp-gluon exchanges, similar to Reggeized gluon exchanges at small-x [26,46]:

G3(G1-492-G3) = G241 + G2.43) — Ga2(G1 + G3.G2) + G2(G1- @ + G3)- (B12)

This vanishes when the transverse momentum of the first or last gluon (g, resp. g5) is taken to zero but not for g, — 0 [26].
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Lastly, the correlator of four color charge operators is given by

(p(G1)p"(G2)p (G3)p" (Ga))

d’p,d?p,d*p .o
= 94/dxl dx, doe3d(1 — x; — x5 — x3) /ﬁé(m + P2+ P3)w (D1, Pas P3)
x {1t (P — §1 — G — G5 — Ga — X1 K1, P2 — 2K, P3 — x3K7)
+ (tre et — ety (B — G, — Gy — 1K, P2 — G — Gy — 2K7. B3 — 13K7)

+ (et 1! =ttt Yy (By — G, — Gy — 1K1, P2 — G — Gs — %2K7. B3 — 1:3K7)
+ (tre* 1”1 — e )y (py — Gy —x1K7. P2 — G2 — Gs — x2K7. p3 — 13K7)

—> —>

—wt?? ety (B — Gy — 42 — 43 —le%Pz Gs — X, K7, p3 — x3K7)

-

b d - - s d - =
=ttty (py — ¢y — leT,Pz 4> — 43 — 41 — X,K7, p3 — x3K7)
—trt’tP 1y (py

614 - leT,Pz 53 - K7, ﬁs - x3KT)
— 'ty (B — Gy — G3 — Ga — x\Kp, By — Gy — x,K7, p3 — x3K7)

+ (rttP 1t + wttP 1 — 'ttt )yt (P — Gy — 52 —x1K7. Py — §3 — x2K7. Py — G4 — x3K7)
+ (tre 1+ el — eyt (B — Gy — Gs — x1K 1 Pa — Go — X2K g, By — Ga — x3K 1)
+ (e + et — w1yt (B — Gy — Gy — 51K 7 Pa — Go — X2K 1, Py — G5 — x3K7)
+ (P + o — i et )yt (By — Gy — X1 K s Py — Go — G5 — XK 7, Py — Ga — x3K7)
+ (P + w1 — i Pt 1Yyt (By — Gy — X1 Ky Py — Go — oK1, By — G3 — Ga — x3K7)
+ (P11 + o1 — et 1yt (By — Gy — X1 Kpo Pr — Go — Gy — XK1, Py — G5 — x3K7)}. (B13)

where Ky = —(§, + G» + 43 + Ga). Note that it is not equal to a sum over all permutations of pairwise contractions,
confirming that color charge fluctuations are not Gaussian.

We can decompose this correlator into C-even and odd parts. Charge conjugation transforms ¢ — —t*T so that
et 1t — 1Pt = treP1*1?1¢ which corresponds to the permutations a <> b, ¢ <> d. Hence, using trt?t¢1? =
(1/12)5954 + (1/8)(d¢ + ifb¢)(dd¢ + if<d¢) we see that the C-even pieces of trt“t’1°t? correspond to the color
structures 6254, dP¢dcde, and feb¢ fed¢, while the C-odd pieces correspond to id®¢fede.

Therefore, the C-even parts of (p*) are

- R . 1 d?p,d?p,d?p- .
<ﬂa(511)Pb(512)PL(Q3)Pd(fI4)>ff = —§94/dx1 dxy dxz6(1 = x; — x5 — x3) /#5(1’91 + P2+ P3)w(P1, P2, P3)

(167°)?
x { fabe fedey (B — Gy — Go — G3 — Gu — X1 K7, Po — X2K 7, p3 — x3K7)

(p
P — q1 — 42—X1KT’P2—Q3 54—X2KT’133—X3KT)

_fubefcde ( "

— face frdey*(py — Gy — 43 —x1K7, Py = o — G4 — X2K 7, P3 - x3K7)

—fadefb“ (131 5 - —lepPz 212—213 _XZKT’]_;S —X3KT)

—f“bedee (ﬁl q % —le%Pz Ei4 —szT’ﬁ,% _x3KT)

— fabefedey (py — Gy — K7, Py =G> — 43 — Gy — %K1, 3 — x3K7)

— fabefdeey (B — Gy — G — 614—X1KT’P2—Q3—X2KT1P3—x3KT)

— facefdbey* (py — G, — 43 — Ga —x1K7, Py — s — K1, B3 _x3KT)}v (B14)
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d*p,d*p,d*p N
(1672)35(191 + P2+ p3)y(P1, Pas P3)

x {db¢d°dy* (b — G, — 42 — G3 — G4 — X1 K1, Py — X2K 71, 3 — x3K7)

0@ @ @ (@) = g9 [ drideadrs ot —xi —x =) [

_ dabedcdel//*(pl _ C]] — 21'2 _leT,ﬁz - 673 - 674 - XK, ﬁ3 —x3K7
—d**d"y*(py — G, — 43 — x1 K7, D2 — G — §a — %2K7. p3 — x3K7
—d"“d"y* (P — 1 — G4 — X1 K1, P2 — G — G3 = K7, p3 — 3K

)
)
)
— dd ey () - Gy — G, — §3 — XK. P2 — Gy — XK1 B3y — 1;K7)
— dedy* (B — Gy — K1, Py — G2 — G5 — G4 — XK1, P3 — x3K7)
— d™¢d%y (py — G — Go — Gu — x1Kp, Py — g3 — Ky, P3— X3f<T)
—ded"y (B — Gy — 3 — Ga — X, K7, 132 —G> — x,K7. 3 — 13K )
+2dPed ey (By = Gy = G = x1 K7 P = G3 = 2K, Py = Gu = 13K
+2decedvey (By — Gy — Gs — x K7, pr — G — 2K, B3 — Ga — XKy
+2d9%edveey* (By — G, — Ga — x1Kr. po — Go — 2K 1. p3 — §3 — x3K 1

+ 2dPeddey (py — G, — leT, P2 =G — XKy, p3 — §3 — §s — 3K7

)
)
)
+ 2dbeed*ey* (p, — g, — X1 Kr. Py — G2 — G3 — x2Kp. 3 — G - XSET)
)
+2dece dbley (B) — Gy — x, Ky, Ba — G — Ga — x2K 7. P3 — G3 — x3K7) 1. (B15)

and

1

- - - 1 d’p,d*p,d’p . - o
(P (@) (@2)r (@3)p"(Ga))ss = — ¢* | dxydxydxs 8(1 — x; — x5 — x3) 71 28(By + B+ Ba)w(Br Pas P3)
12 (1677)2

2 {5ab56dl//*(131 2= 53 - 54 - x K7, l_"z - %Kz, p3 = x3K7

'Ql

1=

)
» = X1K7. Py — G3 — G4 — x,K7. p3 — x3K7)
| =43 —X1K7. P2y — G2 — G4 — 2K 7, p3 — X3K7)

)

l'Ql Ql

q
—q1 -
-q
-q

| =G4 —x 1Ky, Py — G — Gz — K7, p3 — x3K7

S
Q
Nl

>,
[}
U
<
*

S

|

51

42 - 43 - XIKTv P2 — Q4 - szT’P3 - X3KT)

| —

—

- leTa P2 — QZ - Q3 - Q4 - XZKT7P3 - x3K )
~Gs—x1K1, Py — G3 — x2K7. P3 —X3KT)

Ql
¥

44 -x1K7r. p P2 — 612 - XZKT’ P3 — X%KT)

IS T T S T 1
|

QR QL QL
|
Q1
(9%}

1~ 1—21)2—)‘11?%1_52—673—)‘21%%173 614—X3KT)
= 56"y (p1 — 41 — 43 _XIETvﬁZ_é)Z_XZET7p3 614—X3KT)
— 8"y (P — 41 — G — xll?Tv Pr—Gr— XZI%T7P3 g3 - X3KT)
= 86"y (p1 — 41 — XII%T’ Pr—Gr—qs— xszT,P3 s = X3KT)
— 88y (py — Gy — xlI%Tv Pr=Gr— lezr, P3—q3—qs— X%KT)
— 56"y (p1 — G, —xll?rvﬁz—zlz—zh—xzf(%m Q%—xsKT)} (B16)
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The C-odd part of (p*) is

d2p1d2p2d2p3

o i
<p”(ql)p”(Qz)p‘(qs)ﬂ"(Q4)>fd=894/dx] doy dor3 6(1 — xy —xz—X3)/

(1673

B 8(P1 + P2+ P3)w(P1. P2. P3)

x {(dbe fede 4 fabededeyy*(py — Gy — Go — s — 4 —x,Kr, Py — :K7, 3 —X3ET)
_ (gebe pede - pabe gedeyy (B G, — G, — leT’ Pr—Gs— G4 — xzf(T, Ps— x3f(7)
— (gacebde y fpacegbdeyy (5 — G — Gu —x,Kp. By — Gy — Ga — XoK 7, B3 — 13K7)
— (@%de fbee  fadegbeeyy (B — G, — G —x1K7, Py — Gy — G3 — K7, B3 — X3I%T)
— (debefede 4 fabededey (B — Gy — Gy — §3 — 11K, Py — Ga — x2K7. p3 — x3K7)
— (dabe fede - fabeqedeyyt (By — Gy — x, Ky, pr — G2 — s — s — XK1, p3 — x3K7)
— (@%be fdce  fabeqdeeyy (B — Gy — Gy — Ga — xKr, Py — Gs — x,K7, p3 — x3I?T)
— (doce fabe 4 pace qdbeyy (51— G, — Gs — Gu — X1 K12 By — Gr — X2 K7 Py — x3K7)
+ 2fededey (By — Gy — gr — xll_fT, Pr— 43— xZI}T’ P3—qa— x3f<T)

+ 2fa°edbde (Pl 67 - 673 - XII?T7 172 - Eiz - XZI_('TJ_;S - 54 - x3I_fT)

+ 2fadegbeey (B — Gy — Ga — X1 K. Pa — Go — XK 7. Py — G — x3K7)

+2fed ey (B — G, — x,Kr. pr — G2 — §3 — oK. p3 — G4 — x3K7)

+ 2 fede gabey, *Pr1—q) — leT, Do —qo — XZKT’ P3—43—qs — X3I?T)

+ 2fbdegacey (B — Gy — x Ky, Py — Go — G4 — X2K 7. Py — G5 — 3K 1)} (B17)

Using SU(3) identities,9 we verified that Eqs. (B14)-(B17)
agree with the expressions in Sec. 4.4 of Ref. [46].

APPENDIX C: WEIZSACKER-WILLIAMS
GLUON DISTRIBUTION

To leading order in A™ the field in L.C. gauge is given by

Al(g) = —ig'A™ (q). This leads to the WW gluon distri-
butions
51’/ Aia —’Aja _2 — qq 51] Aia —'Aja _>
(A(q)A(-q)) = p (A(q)A(=q))
_NZI-1

At this order the conventlonal and linearly polarized gluon
distributions are equal, and there is maximal polarization.
Due to “color neutrality” of the proton, G, (g, —g)/q* does
not diverge as g — 0.

Solving Eq. (17) to quadratic order in A* one has [50,51]

. 4 j i .
Aza(ﬁ) — _ith—Hz(ZI’) _~_%fabc <qq_g_5t])

« / KA (G — DA+ (R). (€2)
k

°See Ref. [49], in particular Eq. (2.22).

I
This corresponds to the soft, “quasiclassical” field of recoil
less valence quark sources. It is assumed that the contribution
from diagrams corresponding to the internal exchange of a
gluon over a large longitudinal distance x~ is suppressed; see
the detailed discussion by Kovchegov in Ref. [51].

The contribution to A’ at quadratic order in A* leads to a
correction to the WW gluon distributions at fourth order in
At (fig. 9) [52]

FIG. 9. One of the diagrams for the WW gluon distribution at
fourth order in gA™.
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P = lgzaece Izzjﬁzj P a(z 7 7 c = 4 4
AxGW(x, ) = —Ath)(x, q) = sz be fed A (T— k-p |(A*(g = k)ATP(k)AT (=G - p)AT(p)) (C3)
P

1
~ 1.3

abe fcde
47 £

) T o5 o

g 11 1 1 <k-qp-q > q> S o g
A ——— —k-p ) (p(G—k)p"(k)p* (=g — B)p*(P)).  (C4)
4 kP (G-k2@G+pP\ ¢

There is no contribution from cubic order in A™ as this is proportional to the product of the longitudinal L.C. gauge field A’
at leading order with the transverse part of A’ at quadratic order (or vice versa), contracted with either 67 or (2% — &),

which gives zero. Note that the parentheses in Eqs. (C3) and (C4) can also be written in terms of the 2d cross product

as [(§— k) x 3)[(G+ P) x 4/ 4>
With (p*) from eq. (B13) and

- Ep dpodpy oL L
f(@) = | dx;dx,dx3o(1 — x; — x; — x3) Wé(m + P>+ b3)w* (P1 — G. P2 + 4. P3)w(pi1. P2, P3).  (C5)

.o dpd®podipy . oL
9(q1,42) = /dxldxzdx35(1 —X| — X — X3) /(1167132)235(171 + P>+ P3)
Xy (p1 = q1. P2 — 2. P3 + 41 + @)w(P1. P2, P3)s (Co)

we can write the correction in the form

- _ 3 11 1 1 k-Gp-g - .
AxG(x.g) = ~Axh!! (x.9) = 7 / 27 - ( 2 —""’>
k.p ) q

). (C7)

The bracket vanishes if any two momenta (5, § or k, G or j, k) are taken to zero. At finite G the integral is free of infrared
divergences and can be evaluated by Monte Carlo integration.

The correction at order (A™)* increases with decreasing transverse momentum and eventually overwhelms the leading
contribution ~(A*)2. At such low g the result can no longer be trusted, and a resummation to all powers of A™ would be
required. However, it is interesting to note that at very small x some configurations of the proton correspond to negative

xh(ll)(x, q) at g of order the saturation scale, even when the function is resummed to all orders in AT [52].
If the four-charge correlator of Eq. (C4) is replaced by a sum over pairwise contractions,

(p*(G = k)" (K)p (=G — )P (B)) = (p*(G — K)p (k) (p° (=G — B)p(B)) + (p°(G — k)p* (=G — P)) (p" (k) ()
+(p*(G = P () (" (K)p (=G — P)). (C8)
then the correction to the WW gluon distribution becomes

AxGU)(x’ Z]>)|Gauss = _AXhS_l)(x’ a)|GaUSS

_ g6Nc(Ng - ])
3273

111 1 k-Gp-q - ﬁ> o a7 o
—— — —k-p|Gyk—q,q+ p)Gy(k, p). C9
A,pkzpz(ﬁ—k)z(q-Fp)z( 7 2 GalkP)- - (C9)

Note that the {p?) correlators in (C8) are nonforward matrix elements. The dominant contribution to the integral in Eq. (C9)

is from |1? + p| on the order of the transverse momentum of the quarks in the proton so that both G, correlators are evaluated
for small momentum transfer; their one-body GPD limit suffices for high g.
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FIG. 10. The next-to-leading twist correction to the WW gluon
distributions. The complete correlator of four A™ is compared to
the sum over pairwise quadratic correlators.

Figure 10 shows a numerical comparison of Eq. (C9) to
the complete result (C7). They agree at high transverse
momentum where, however, the correction due to the
transverse part of A is much smaller than the leading
contribution. At g ~ 0.2 GeV the Gaussian approximation
we described underestimates the true correction to the WW
gluon distributions by about one order of magnitude.

Finally, we present expressions for the resummed form

of xG(x,g) and xh(ll)(x, g) in a (large-N.) Gaussian
approximation for the general correlator (p%(g,)p”(g,)) =
16¢*G5(gy. ). Relaxing the assumption of translational

invariance in the transverse plane, Eqgs. (30) and (31) of
Ref. [39] become

(1) o _NC dzr d2b _ia 7
xhy’(x,q) _a_s/(ZzzY/(Zﬂ)ze 7(1-5?)

<1 9,2 - vr

= (C10)

N, [ d&r [ &b _._. 1
G(x,g :_C/ / —igT(]1 = §2) = VT
(C11)
Here,
-7 1 -7
S(7,b) = exp <—§CFF(r, b)) (C12)

denotes the dipole scattering matrix, and

oi(P=)b

[(F.b) = (4ra,)* / (1= P3Gy (5, ~3).

va PG
(C13)

The MV model correlator is recovered if one averages b
over a large transverse area S| and replaces G,(p, —p) by a
constant proportional to 4>S, (which also requires one to
introduce an IR cutoff Ap).

We refrain from a numerical evaluation of Egs. (C10)—
(C13) here which is rather tedious. Given that the saturation
scale for nonlinear dynamics in the proton at x ~ 0.1 is rather
small, we expect that for ¢ = 0.5 GeV the resummation does
not give a significant correction to Eq. (C1) either.
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