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The vacuum expectation value (VEV) of the fermionic current density is investigated in the geometry of
two parallel branes in locally AdS spacetime with a part of spatial dimensions compactified to a torus.
Along the toral dimensions quasiperiodicity conditions are imposed with general phases and the presence
of a constant gauge field is assumed. The influence of the latter on the VEV is of the Aharonov-Bohm type.
Different types of boundary conditions are discussed on the branes, including the bag boundary condition
and the conditions arising in Z2-symmetric braneworld models. Nonzero vacuum currents appear along the
compact dimensions only. In the region between the branes they are decomposed into the brane-free and
brane-induced contributions. Both these contributions are periodic functions of the magnetic flux enclosed
by compact dimensions with the period equal to the flux quantum. Depending on the boundary conditions,
the presence of the branes can either increase or decrease the vacuum current density. For a part of boundary
conditions, a memory effect is present in the limit when one of the branes tends to the AdS boundary.
Unlike to the fermion condensate and the VEV of the energy-momentum tensor, the VEV of the current
density is finite on the branes. Applications are given to higher-dimensional generalizations of the Randall-
Sundrum models with two branes and with toroidally compact subspace. The features of the fermionic
current are discussed in odd-dimensional parity and time-reversal symmetric models. The corresponding
results for three-dimensional spacetime are applied to finite length curved graphene tubes threaded by a
magnetic flux. It is shown that a nonzero current density can also appear in the absence of the magnetic flux
if the fields corresponding to two different points of the Brillouin zone obey different boundary conditions
on the tube edges.
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I. INTRODUCTION

In quantum field theory the vacuum is defined as a state
of quantum fields with the zero number of quanta. It
depends on the choice of the complete set of mode
functions in terms of which the quantization of fields is
done (see, for instance, [1]). The mode functions and, as a
consequence of that, the properties of the vacuum are
sensitive to both the local and global characteristics of the
background geometry. In particular, the vacuum expect-
ation values (VEVs) of physical observables depend on the

boundary conditions imposed on fields. This dependence is
manifested in the Casimir effect [2] and has been inves-
tigated for large number of bulk and boundary geometries.
The boundary conditions may have different physical
origins. They can be induced by the presence of boundaries
(material boundaries in quantum electrodynamics, domain
walls separating different phases, horizons in gravitational
physics, branes in braneworld scenarios) or as a conse-
quence of nontrivial spatial topology. In some models
formulated in background of manifolds with edges, the
imposition of boundary conditions on those edges is
required to prevent the unitarity of the theory. In the
present paper we consider a physical problem with different
sources for the polarization of vacuum. They include the
background gravitational field, gauge field, boundaries, and
nontrivial spatial topology.
The background geometry we are going to discuss is

locally anti–de Sitter (AdS) one. Being the maximally
symmetric solution of the vacuum Einstein equations with a
negative cosmological constant, AdS spacetime is among
the most popular geometries in quantum field theory on
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curved backgrounds. First of all, because of high symmetry,
a large number of physical problems are exactly solvable on
that background. These solutions may help to shed light on
the influence of gravitational field on quantum matter in
less symmetric geometries. The lack of global hyperbol-
icity and the presence of the modes regular and irregular on
the AdS boundary give rise to new principal questions in
the quantization procedure of fields having no analogs in
quantum field theory on the Minkowski bulk. The impor-
tance of the corresponding investigations is also related to
the fact that the AdS spacetime naturally appears as a
ground state in extended supergravity and in string theories
and also as the near horizon geometry of the extremal black
holes and domain walls.
The further increase of the interest to the AdS based field

theories is motivated by a crucial role of the corresponding
geometry in two exciting developments of theoretical
physics in the past decade. The first one is the braneworld
scenario with large extra dimensions which provides a
geometrical solution to the hierarchy problem between
the gravitational and electroweak energy scales [3]. The
corresponding models are usually formulated on higher-
dimensional AdS bulk with branes parallel to the AdS
boundary and theweak coupling of 4-dimensional gravity is
generated by the large physical volume of extra dimensions.
Braneworlds naturally appear in the string/M theory context
and present a novel setting for the discussion of phenom-
enological and cosmological issues related to extra dimen-
sions. The second development is related to the AdS=CFT
correspondence (for reviews see [4]) that relates string
theories or supergravity in the AdS bulk with a conformal
field theory living on its boundary. This duality between two
different theories has many interesting consequences and
provides a powerful tool for the investigation of gauge
field theories. Among the recent developments of the
AdS=CFT correspondence is the application to strong-
coupling problems in condensed matter physics (familiar
examples include holographic superconductors, quantum
phase transitions, and topological insulators) [5].
In the present paper the global properties of the back-

ground geometry will be different from those for AdS
spacetime. It will be assumed that a part of the Poincaré
coordinates in the AdS line element are compactified on a
torus. In addition, we assume the presence of two branes
parallel to the AdS boundary. As a consequence, two types
of conditions are imposed on the operators of quantum
fields: periodicity conditions along compact dimensions
and boundary conditions on the branes. In the Randall-
Sundrum type branewrolds the latter are dictated by the
Z2-symmetry with respect to the branes. Both these
conditions modify the spectrum of vacuum fluctuations
and give rise to the Casimir type contributions in the
physical characteristics of the vacuum state. In particular,
motivated by the problem of radion stabilization in brane-
world scenario, the brane-induced quantum effects have

been intensively investigated for scalar [6], fermionic [7–10]
and vector fields [11]. The models with de Sitter branes
have been considered in [12]. The Casimir effect in AdS
spacetime with additional compact subspaces is discussed in
[13]. The expectation value of the surface energy-momentum
tensor for a scalar field, induced on branes, and related
cosmological constant are studied in [14].
The papers cited above consider mainly the vacuum

energy or the VEV of the energy-momentum tensor. For
charged fields, an important local characteristics are the
expectation values of the charge and current densities. For
scalar and fermionic fields in flat backgrounds with a part
of spatial dimensions compactified to a torus, these expect-
ation values at zero and finite temperatures were considered
in Refs. [15–17]. The results for fermionic fields in a
special case of two spatial dimensions have been applied to
cylindrical and toroidal carbon nanotubes described in
terms of the long-wavelength effective Dirac model. The
boundary-induced effects of the Casimir type on the
vacuum charges and currents are discussed in [18,19].
The fermionic current density induced by a magnetic flux
in planar rings with concentric circular boundaries has been
investigated in [20]. The persistent currents in normal metal
rings having a similar physical origin have been exper-
imentally observed in [21]. The effects of edges on the
fermion condensate and the currents in two-dimensional
conical spaces are discussed in [22]. More complicated
problems for the vacuum currents in locally de Sitter and
AdS background geometries with toroidally compactified
spatial dimensions are considered in [23] and [24,25].
Induced current in AdS spacetime in the presence of a
cosmic string and compactified spatial dimension is studied
in [26]. The brane-induced effects on the current density for
a charged scalar field with Robin boundary conditions in
locally AdS bulk are investigated in [27,28]. The corre-
sponding problem for a fermionic field in the geometry of a
single brane with bag boundary condition has been con-
sidered in [29]. Continuing in this line of investigations,
here we consider the fermionic vacuum currents for
two-brane geometry in background of locally AdS space-
time with compact dimensions and for different combina-
tions of the boundary conditions on them.
The organization of the paper is as follows. In the next

section we specify the bulk and boundary geometries, the
topology and the boundary conditions imposed on the field.
In Sec. III, a complete set of the positive and negative
energy solutions to the Dirac equation is presented in the
region between two branes and the eigenvalues of the radial
quantum number are specified. The VEV of the current
density for the bag boundary condition on the branes is
investigated in Sec. IV. Two alternative representations are
provided and the asymptotic behavior is discussed in
various limiting regions of the parameters. In Sec. V we
consider the VEVof the current density for another type of
boundary condition that differs from the bag boundary
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condition by the sign of the term containing the normal
to the boundary. In Sec. VI, the fermionic current in
Z2-symmetric braneworld models with two branes is
investigated. Various combinations of the boundary con-
ditions, dictated by the Z2-symmetry with respect to the
branes, are discussed. The features of the fermionic current
in odd-dimensional parity and time-reversal symmetric
models are considered in Sec. VII and applications are
given to the Dirac model describing the long wavelength
properties of curved graphene tubes. The main results are
summarized in Sec. VIII. In Appendix, by using the
generalized Abel-Plana formula, a summation formula is
derived for series over the eigenmodes of the fermionic
field in the region between the branes for boundary
conditions on the field operator discussed in the main text.

II. PROBLEM SETUP

In this section we describe the bulk and boundary
geometries, the field and the periodicity and boundary
conditions.

A. Background geometry

Consider a (Dþ 1)-dimensional spacetime with the line
element

ds2 ¼ e−2y=aηikdxidxk − dy2 ¼ ða=zÞ2ημνdxμdxν; ð2:1Þ

where a is a constant having the dimension of length, the
Latin and Greek indices run over 0; 1;…; D − 1 and
0; 1;…; D, respectively, ημν ¼ diagð1;−1;…;−1Þ is the
metric tensor for the Minkowski spacetime in the Cartesian
coordinates. The conformal coordinate z ¼ xD is expressed
in terms of the coordinate y, −∞ < y < þ∞, by the
relation z ¼ aey=a with the range 0 ≤ z < ∞. The line
element (2.1) coincides with the one for the (Dþ 1)-
dimensional AdS spacetime, described in Poincaré coor-
dinates. In the case of AdS spacetime, for the coordinates
xi, i ¼ 1;…; D, one has −∞ < xi < þ∞. The global
properties of the geometry we are going to consider here
will be different. Namely, we assume that the subspace with
the coordinates xðqÞ ¼ ðxpþ1;…; xD−1Þ, q ¼ D − p − 1, is
compactified to a q-dimensional torus Tq ¼ ðS1Þq with the
lengths of the compact dimensions Ll, 0 ≤ xl ≤ Ll,
l ¼ pþ 1;…; D − 1. In what follows we will denote by
Vq ¼ Lpþ1 � � �LD−1 the volume of the compact subspace.
For the coordinates xðpÞ ¼ ðx1;…; xpÞ, as usual, one has
−∞ < xi < þ∞, i ¼ 1;…; p, and, hence, the subspace
covered by the set of coordinates ðxðpÞ;xðqÞÞ ¼
ðx1;…; xD−1Þ has topology Rp × Tq. Note that the constant
Ll is the coordinate length of the lth compact dimension.
The physical (or proper) length LðpÞl of that dimension,
measured by an observer having a fixed z coordinate, is
given by LðpÞl ¼ ða=zÞLl and it decreases with increasing z

(see Fig. 5 below for theD ¼ 2 spatial geometry embedded
in a three-dimensional Euclidean space).
The last relation in (2.1) shows that the geometry

under consideration is conformally related to the half
(with 0 ≤ xD < ∞) of the locally Minkowskian (Dþ 1)-
dimensional spacetime with spatial topology Rpþ1 × Tq.
The Minkowskian counterpart contains a boundary xD ¼ 0
the boundary condition on which is determined by the
boundary condition imposed on the AdS boundary z ¼ 0.
The AdS horizon is presented by the hypersurface z ¼ ∞.
The toroidal compactification under consideration does not
change the local geometry and the Ricci tensor Rν

μ ¼
−Dδνμ=a2 is the same as that for AdS spacetime.
As a boundary geometry we will assume the presence of

two codimension one branes located at y ¼ y1 and y ¼ y2,
y1 < y2. For the corresponding values of the conformal
coordinate z one has zj ¼ aeyj=a, j ¼ 1, 2. Note that the
physical distance between the branes is given by y2 − y1 ¼
a lnðz2=z1Þ and they have spatial topology Rp × Tq. For the
extrinsic curvature tensor of the brane at z ¼ zj one has

KðjÞ
ik ¼ �gik=a, where the upper and lower signs corre-

spond to the regions z ≤ zj and z ≥ zj. As a consequence of
the nonzero extrinsic curvature, the physical effects of the
brane on the properties of the quantum vacuum are different
in those regions. In the generalized Randall-Sundrum type
models with additional compact dimensions, the hyper-
surfaces y ¼ y1 and y ¼ y2 correspond to the hidden and
visible branes, respectively. Higher dimensional general-
izations of the braneworld models with compact dimen-
sions are, in particular, important from the viewpoint of
underlying fundamental theories in higher dimensions such
as superstring/M theories. The consideration of more
general spacetimes may provide interesting extensions of
the Randall-Sundrum mechanism for the geometric origin
of the hierarchy.
The term “brane” for the boundary, used in the paper, is

in some sense, conditional. The role of the branes is just to
impose boundary conditions on a quantum field and the
braneworlds are one of the motivations for the problem.
The boundary conditions on fermionic fields imposed by
the branes in Z2-symmetric models of Randall-Sundrum
type and the corresponding current densities will be
discussed in Sec. VI. However, the boundary conditions
on quantum fields may rise by other physical reasons and
the applications of the results given below are wider. As
another example, in Sec. VII we consider an application to
curved graphene tubes described by an effective Dirac
model. In that example the boundaries correspond to the
edges of the tube.

B. Field and boundary conditions

Having specified the bulk and boundary geometries, now
we pass to the field content. We consider a charged
fermionic field ψðxÞ with the mass parameter m in the
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presence of an external classical Abelian gauge field AμðxÞ.
Here and in what follows the shorthand notation x ¼ ðx0 ¼
t; x1;…; xDÞ is used for the spacetime coordinates. The
coupling parameter between the fermionic and gauge fields
will be denoted by e. For a fermionic field realizing the
irreducible representation of the Clifford algebra the
number of components of the spinor ψðxÞ is equal to
N ¼ 2½ðDþ1Þ=2�, where the square brackets mean the integer
part. Introducing the gauge extended covariant derivative
operator Dμ ¼ ∂μ þ Γμ þ ieAμ, with Γμ being the spin
connection, the field equation is written as

ðiγμDμ −mÞψðxÞ ¼ 0: ð2:2Þ

The curved spacetime N × N Dirac matrices are expressed
in terms of the corresponding flat spacetime matrices γðbÞ

by the relation γμ ¼ eμðbÞγ
ðbÞ, where eμðbÞ are the vierbein

fields. In the conformal coordinates xμ, with xD ¼ z, the
vierbein fields can be taken in the form eμðbÞ ¼ ðz=aÞδμb.
With this choice, for the components of the spin connec-
tion one gets ΓD ¼ 0 and Γk ¼ ηklγ

ðDÞγðlÞ=ð2zÞ for
k ¼ 0;…; D − 1. The field equation (2.2) is invariant under
the gauge transformation ψðxÞ ¼ ψ 0ðxÞe−ieχðxÞ, AμðxÞ ¼
A0
μðxÞ þ ∂μχðxÞ.
The background geometry is not simply connected and,

in addition to the field equation, the periodicity conditions
on the field operator should be specified along compact
dimensions for the theory to be defined. For the lth compact
dimension we will impose the condition

ψðt;xðpÞ;xðqÞ þLleðlÞ;xDÞ¼ eiαlψðt;xðpÞ;xðqÞ;xDÞ; ð2:3Þ

where eðlÞ is the unit vector along the dimension xl with the
components eiðlÞ ¼ δil and αl, l ¼ pþ 1;…; D − 1, are

constant phases. The special cases, most frequently con-
sidered in the literature, correspond to untwisted (αl ¼ 0)
and twisted (αl ¼ π) fields. The periodicity conditions
with αl ≠ 0 have been used in the literature to exclude
the zero mode of the fermionic field. For the gauge field the
simplest configuration will be assumed with Aμ ¼ const.
Only the components Al, l ¼ pþ 1;…; D − 1, along
compact dimensions are physically relevant. Their effects
on physical observables are of the Aharonov-Bohm type
and they are induced by the nontrivial topology of the
background geometry. By the gauge transformation
fψðxÞ; Aμg → fψ 0ðxÞ; A0

μg, with the transformation func-
tion χ ¼ bμxμ and constant bμ, one gets a new set of fields
fψ 0ðxÞ; A0

μg ¼ fψðxÞeiebμxμ ; Aμ − bμg. The periodicity con-
ditions for the field ψ 0ðxÞ are of the form (2.3) with new
phases α0l ¼ αl þ eblLl. Hence, by the gauge transforma-
tion the set of parameters fαl; Alg is transformed to a new
set fα0l; A0

lg ¼ fαl þ eblLl; Al − blg. In what follows, it is
convenient for us to work in the gauge with bμ ¼ Aμ with

the zero vector potential A0
μ. The corresponding phases in

the periodicity conditions for the field operator ψ 0ðxÞ (in the
following we will omit the primes) will be denoted by α̃l:

α̃l ¼ αl þ eAlLl: ð2:4Þ

This shows that the physics depends on the parameters αl
and Al in the form of the combination (2.4). The phase shift
induced by the vector potential can be presented as
eAlLl ¼ −eAlLl ¼ −2πΦl=Φ0, whereΦl is formally inter-
preted in terms of the magnetic flux enclosed by the lth
compact dimension and Φ0 ¼ 2π=e is the flux quantum.
In the presence of the branes at z ¼ zj, j ¼ 1, 2, for the

theory to be defined one needs to specify the boundary
conditions on them. In this section we will assume that the
field operator obeys the bag boundary conditions

ð1þ iγμnðjÞμ ÞψðxÞ ¼ 0; z ¼ zj; ð2:5Þ

with nðjÞμ being the inward pointing normal (with respect to
the region under consideration) to the brane at z ¼ zj. Other
types of boundary conditions on the branes will be
discussed in the following sections. The branes divide
the background space into three regions: 0 ≤ z ≤ z1,
z1 ≤ z ≤ z2, and z ≥ z2. The current densities in the regions
0 ≤ z ≤ z1 and z ≥ z2 are the same as those for a single
brane located at z ¼ z1 and z ¼ z2, respectively, and they
are investigated in [29]. Here we will be mainly concerned
with the region between the branes, z1 ≤ z ≤ z2. For that

region in (2.5) one has nðjÞμ ¼ ð−1ÞjδDμ a=zj.

III. FERMIONIC MODES IN THE REGION
BETWEEN THE BRANES

In this section we consider a complete set of positive and

negative energy modes fψ ðþÞ
β ;ψ ð−Þ

β g for the fermionic field
ψðxÞ. The collective set β of quantum numbers will be
specified below. In order to solve the field equation (2.2) we
need to choose the representation of the Dirac matrices. As
it already has been discussed in [29], it is convenient to take
the flat spacetime gamma matrices in the representation

γðbÞ ¼
�

0 χb

ð−1Þ1−δ0bχ†b 0

�
; b ¼ 0; 1;…; D − 1; ð3:1Þ

and γðDÞ ¼ sidiagð1;−1Þ with s ¼ �1. In odd-dimensional
spacetimes there exist two inequivalent irreducible repre-
sentations of the Clifford algebra and the values s ¼ þ1
and s ¼ −1 correspond to those representations. In even
spacetime dimensions the irreducible representation of the
Clifford algebra is unique, up to a similarity transforma-
tion, and we can put s ¼ 1. For D ¼ 2 we can take χ0 ¼
χ1 ¼ 1 and the matrices γðbÞ are expressed in terms of the
Pauli matrices σPμ as γð0Þ ¼ σP1, γð1Þ ¼ iσP2, γð2Þ ¼ siσP3.
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The commutation relations for the N=2 × N=2 matrices χb
are obtained from those for the Dirac matrices γðbÞ. They
are reduced to χ†0χ0 ¼ 1, χ0χ

†
b ¼ χbχ

†
0, χ

†
0χb ¼ χ†bχ0, and

χbχ
†
c þ χcχ

†
b ¼ 2δbc;

χ†bχc þ χ†cχb ¼ 2δbc; ð3:2Þ

where b; c ¼ 1; 2;…; D − 1.
With the curved spacetime gamma matrices γμ ¼

ðz=aÞδμbγðbÞ, the complete set of solutions of the field
equation (2.2) (with Aμ ¼ 0 in the gauge under consid-
eration) can be found in a way similar to that given in [29].
Introducing the one-column matrices wðσÞ, σ ¼ 1;…; N=2,

with N=2 rows and with the elements wðσÞ
l ¼ δlσ, for the

positive and negative energy mode functions one gets

ψ ðþÞ
β ðxÞ ¼ z

Dþ1
2 eikx−iωt

� kχχ†
0
þiλ−ω
ω Zmaþs=2ðλzÞwðσÞ

iχ†0
kχχ†

0
þiλþω
ω Zma−s=2ðλzÞwðσÞ

�
;

ψ ð−Þ
β ðxÞ ¼ z

Dþ1
2 eikxþiωt

� iχ0
kχ†χ0−iλþω

ω Zmaþs=2ðλzÞwðσÞ

kχ†χ0−iλ−ω
ω Zma−s=2ðλzÞwðσÞ

�
;

ð3:3Þ

where k ¼ ðk1;…; kD−1Þ, ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ k2

p
, k ¼ jkj, kx ¼P

D−1
l¼1 kixi, and kχ ¼ P

D−1
l¼1 klχl. In (3.3), ZμðλzÞ, with

μ ¼ ma� s=2, is a cylinder function. We present it in the
form of a linear combination of the Bessel and Neumann
functions JμðλzÞ and YμðλzÞ:

ZμðλzÞ ¼ c1JμðλzÞ þ c2YμðλzÞ; ð3:4Þ

where the coefficients are determined by the normalization
and boundary conditions.
The momentum k in the mode functions (3.3) can be

decomposed as k ¼ ðkðpÞ;kðqÞÞ, where kðpÞ ¼ ðk1;…; kpÞ
and kðqÞ ¼ ðkpþ1;…; kD−1Þ correspond to the uncompact
and compact subspaces. For the components in the
uncompact subspace, as usual, one has −∞ < ki < þ∞,
i ¼ 1;…; p, whereas the components in the compact sub-
space are discretized by the periodicity conditions (2.3)
(with the replacement αl → α̃l in the gauge under consid-
eration) with the eigenvalues

kl ¼
2πnl þ α̃l

Ll
; nl ¼ 0;�1;�2;…; ð3:5Þ

and l ¼ pþ 1;…; D − 1. In (3.5), the integer part of the
ratio α̃l=2π can be absorbed by the redefinition of nl and
only the fractional part of that ratio is physically relevant.
Now let us consider the boundary conditions on the

branes. From (2.5) it follows that Zmaþ1=2ðλz1Þ ¼ 0 and

Zma−1=2ðλz2Þ ¼ 0 in both the cases s ¼ �1. For the ratio of
the coefficients in (3.4) the first condition gives

c2
c1

¼ −
Jmaþ1=2ðλz1Þ
Ymaþ1=2ðλz1Þ

: ð3:6Þ

From the second condition we obtain that the allowed
values of λ are roots of the equation

gmaþ1=2;ma−1=2ðλz1; λz2Þ ¼ 0; ð3:7Þ

where we have introduced the function

gμ;νðx; uÞ ¼ JμðxÞYνðuÞ − JνðuÞYμðxÞ: ð3:8Þ

It can be seen that the Eq. (3.7) has no solutions corre-
sponding to bound states with λ ¼ iξ, ξ > 0.1 We denote
the positive roots of (3.7) with respect to λz1 by
λn ¼ λnðma; z2=z1Þ ¼ λz1, n ¼ 1; 2;…, assuming that they
are numerated in the ascending order, λnþ1 > λn. Note that
the roots λn depend on the locations of the branes in the
form of the ratio z2=z1. For a massless field the Eq. (3.7) is
reduced to cos½λðz2 − z1Þ� ¼ 0 with the solutions λz1 ¼
λn ¼ πðn − 1=2Þ=ðz2=z1 − 1Þ, n ¼ 1;…;∞. These eigen-
values coincide with those for parallel plates in the locally
Minkowski bulk located at z ¼ z1 and z ¼ z2. For large
values of λz1 and for a massive field, in (3.7) we can
use the asymptotic expressions for the cylinder func-
tions for large arguments. To the leading order the left-
hand side of (3.7) is reduced to cos½λðz2 − z1Þ�. Hence, for
large n one has λn ≈ πðn − 1=2Þ=ðz2=z1 − 1Þ. The mode
functions are specified by the set β ¼ ðkðpÞ;nq; n; σÞ
with nq ¼ ðnpþ1;…; nD−1Þ.
The function ZνðλzÞ is expressed in terms of the function

(3.8) in two equivalent ways:

ZμðλzÞ ¼ −
c1gmaþ1=2;μðλz1; λzÞ

Ymaþ1=2ðλz1Þ
¼ −

c1gma−1=2;μðλz2; λzÞ
Yma−1=2ðλz2Þ

:

ð3:9Þ
By using the first of these relations, and introducing the
notation

ν ¼ maþ 1=2 ð3:10Þ

for the further convenience, the mode functions are
presented in the form

1In the geometry of a single brane at z ¼ zj and in the region
zj < z < ∞ the corresponding normalizable mode functions
would be given by (3.3) with the functions Zma�s=2ðλzÞ replaced
by the Macdonald functions Kma�s=2ðξzÞ (up to the normalization
constant). They exponentially decay at large distances from the
brane and correspond to bound states.
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ψ ðþÞ
β ðxÞ¼CðþÞ

β z
Dþ1
2 eikx−iωt

×

0
B@

kχχ†
0
þiλ−ω
ω gν;maþs=2ðλz1;λzÞwðσÞ

iχ†0
kχχ†

0
þiλþω
ω gν;ma−s=2ðλz1;λzÞwðσÞ

1
CA;

ψ ð−Þ
β ðxÞ¼Cð−Þ

β z
Dþ1
2 eikxþiωt

×

0
B@iχ0

kχ†χ0−iλþω
ω gν;maþs=2ðλz1;λzÞwðσÞ

kχ†χ0−iλ−ω
ω gν;ma−s=2ðλz1;λzÞwðσÞ

1
CA; ð3:11Þ

with λ ¼ λn=z1 and new normalization coefficients Cð�Þ
β .

The latter are found from the normalization condition

Z
dDxða=zÞDψ ð�Þ†

β ψ ð�Þ
β0 ¼ δββ0 ; ð3:12Þ

where the z-integration goes over the range ½z1; z2�, δββ0 is
understood as Kronecker delta for the discrete components
of the collective index β and as Dirac delta function for the
continuous ones. The normalization integral over z contains
the squares of the functions gν;ma�1=2ðλz1; λzÞ. By taking
into account that these functions are cylinder functions with
respect to both the arguments, the integrals are evaluated by
using the corresponding formula from [30]. Using the fact
that λ is a root of the Eq. (3.7), it can be shown that

Z
z2

z1

dz zg2ν;ma�1=2ðλz1; λzÞ ¼
2π−2z1=λ

Tνðz2=z1; λz1Þ
; ð3:13Þ

where we have defined

Tνðη; xÞ ¼ x

�
J2νðxÞ

J2ν−1ðηxÞ
− 1

�−1
; η ¼ z2=z1: ð3:14Þ

On the base (3.13) it can be seen that

jCð�Þ
β j2 ≡ jCβj2 ¼

λTνðη; λz1Þ
32ð2πÞp−2VqaDz1

: ð3:15Þ

As seen the normalization constants are the same (up to a
phase) for the positive and negative energy solutions and
they do not depend on the parameter s.
In the absence of branes, in AdS spacetime two classes of

field modes are present: normalizable and non-normalizable.
The non-normalizability of the second class of modes
comes from their diverging behavior on the AdS boundary
at z ¼ 0. In the field quantization procedure the normal-
izable modes are used to built up the Hilbert space. The
non-normalizable modes are not part of the Hilbert space
and they are considered as defining background. In
AdS=CFT correspondence the non-normalizable modes
correspond to classical sources in the theory on the AdS

boundary. In the problem under consideration the field is
causally separated from the AdS boundary by the brane at
z ¼ z1 > 0. As a consequence of that all the modes of the
fermionic field in the region z1 ≤ z ≤ z2 are regular and
there are no non-normalizable modes. A similar situation is
realized in Randall-Sundrum braneworld models with two
branes where a slice of the AdS spacetime is employed.

IV. CURRENT DENSITY IN THE REGION
BETWEEN THE BRANES

Having the complete set of normalized mode functions
(3.11), we can evaluate the VEV of the current density
jμ ¼ eψ̄γμψ , where ψ̄ ¼ ψ†γð0Þ is the Dirac conjugate (for
a recent discussion of the renormalized fermion expectation
values on AdS spacetime in the absence of branes see, for
example, [31]). That is done by using the mode-sum
formula

hjμðxÞi ¼ e
2

X
β

½ψ̄ ð−Þ
β ðxÞγμψ ð−Þ

β ðxÞ − ψ̄ ðþÞ
β ðxÞγμψ ðþÞ

β ðxÞ�;

ð4:1Þ
where hjμðxÞi ¼ h0jjμðxÞj0i with j0i being the vacuum
state, and

X
β

¼
X
nq

Z
dkðpÞ

X∞
n¼1

XN=2

σ¼1

: ð4:2Þ

We consider the charge density and the spatial components
separately.
The component with μ ¼ 0 in (4.1) corresponds to the

VEVof the charge density. Inserting the mode functions it
is presented in the form

hj0i ¼ ð2πÞ2−pezDþ2

16aDþ1Vqz1

X
β

λ

ω
Tνðη; λz1Þ

×
X
j¼�1

jg2ν;maþjs=2ðλz1; λzÞwðσÞ†kχ†χ0wðσÞ: ð4:3Þ

From the definition of the one-column matrices wðσÞ it
follows that

PN=2
σ¼1 w

ðσÞ†χ†χ0wðσÞ ¼ trðχ†χ0Þ. Now, by tak-
ing into account the commutation relations for the matrices
χ0 and χb, we can show that trðχ†bχ0Þ ¼ 0 and consequentlyPN=2

σ¼1 w
ðσÞ†χ†χ0wðσÞ ¼ 0. Hence, we conclude that the

VEV of the charge density vanishes.
Next we consider the spatial components of the VEV

(4.1). With the mode functions (3.11) we get

hjli ¼ −
ð2πÞ2−peNzDþ2

32VqaDþ1z1

X
nq

Z
dkðpÞkl

X∞
n¼1

λ

ω
Tνðη; λz1Þ

×
X
j¼�1

g2ν;maþjs=2ðλz1; λzÞ: ð4:4Þ
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For the components along uncompact dimensions,
l ¼ 1;…; p, in (4.4) one has −∞ < kl < þ∞ and in the
integral

Rþ∞
−∞ dkl the integrand is an odd function of

the integration variable. From here we conclude that the
components of the current density along uncompact dimen-
sions vanish: hjli ¼ 0 for l ¼ 1;…; p. This result could also
be directly obtained on the base of the problem symmetry
under the reflections xl → −xl of the uncompact directions.
Hence, a nonzero vacuum currents may appear along the
compact dimensions only andwe pass to the investigation of
their properties.

A. Integral representation for the currents
in the compact subspace

First of all, from (4.4) it follows that the current density
does not depend on the parameter s. This means that in odd-
dimensional spacetimes the current densities are the same
for fermionic fields realizing two inequivalent irreducible
representations of the Clifford algebra. In the following
discussion we put s ¼ 1. After integrating over the angular
part of kðpÞ, the current density along the lth compact
dimension is presented in the form

hjli ¼ −
π2−p=2eNzDþ2

2pþ2Γðp=2ÞVqaDþ1z1

X
nq

kl

Z
∞

0

dkðpÞk
p−1
ðpÞ

×
X∞
n¼1

λnTνðη; λnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ z21k

2
p X

j¼�1

g2ν;maþj=2ðλn; λnz=z1Þ; ð4:5Þ

where l¼pþ1;…;D−1, k2 ¼ k2ðpÞ þ k2ðqÞ, k
2
ðpÞ ¼ jkðpÞj2

and

k2ðqÞ ¼
XD−1

i¼pþ1

ð2πni þ α̃iÞ2
L2
i

: ð4:6Þ

From (4.5) it follows that hjli is an odd periodic function of
α̃l with the period 2π and an even periodic function of α̃i,
i ≠ l, with the same period. In terms of the magnetic fluxes
Φi this means that the current density is a periodic function
of the magnetic fluxes with the period equal to the flux
quantum. In particular, hjli vanishes for integer values
of α̃l=ð2πÞ. The charge flux density through the hypersur-

face xl ¼ const is given by nðlÞl hjli, where nðlÞi ¼ δlia=z is

the normal to that hypersurface. The product aDnðlÞl hjli
depends on the variables having the dimension of length in
the form of the dimensionless combinations zj=z, Li=z,ma.
This feature is a consequence of the maximal symmetry of
the AdS spacetime. In figures below we plot the quan-

tity aDnðlÞl hjli.
In the representation (4.5) the eigenvalues λn are given

implicitly, as roots of the Eq. (3.7). Another disadvantage is
that the terms with large n are highly oscillatory. A more

convenient representation is obtained applying a variant
of the generalized Abel-Plana formula (A1), derived in

Appendix, with μ ¼ ν − 1 and δ ¼ 1. Note that λð1Þν−1;n ¼ λn

and Tð1Þ
ν−1ðη; xÞ ¼ Tνðη; xÞ. For the series over n in (4.5) the

function hðuÞ has the form

hðxÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z21k

2
p X

j¼�1

g2ν;maþj=2ðx; xz=z1Þ; ð4:7Þ

and has branch points x ¼ �iz1k on the imaginary axis. By
using the properties of the Bessel functions it can be seen
that hðixÞ þ hð−ixÞ ¼ 0 for 0 ≤ x < z1k. With the help of
(A1) the current density is presented as

hjli¼hjlið1Þ−4ð4πÞ−p=2−1eNzDþ2

Γðp=2ÞVqaDþ1z1

X
nq

kl

Z
∞

0

dkðpÞk
p−1
ðpÞ

×
Z

∞

z1k
dxx

Kν−1ðηxÞ
KνðxÞ

P
j¼�1jG

2
ν;maþj=2ðx;xz=z1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−z21k
2

p
Gν;ν−1ðx;ηxÞ

;

ð4:8Þ

where we have defined

Gμ;νðx; uÞ ¼ IμðxÞKνðuÞ − ð−1Þμ−νKμðxÞIνðuÞ: ð4:9Þ

with the modified Bessel functions IμðxÞ and KμðxÞ. The
first term in the right-hand side of (4.8) is given by

hjlið1Þ ¼−
ð4πÞ−p=2eNzDþ2

2Γðp=2ÞVqaDþ1z1

X
nq

kl

Z
∞

0

dkðpÞk
p−1
ðpÞ

×
Z

∞

0

dx
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ z21k
2

p
P

j¼�1g
2
ν;maþj=2ðx;xz=z1Þ

J2νðxÞþY2
νðxÞ

;

ð4:10Þ

and it corresponds to the current density in the region z1 ≤
z < ∞ for the geometry of a single brane located at z ¼ z1.
The single brane part (4.10) has been investigated in

[29]. It is decomposed as

hjlið1Þ ¼ hjli0 þ hjlið1Þb ; ð4:11Þ

where the term hjli0 is the current density in the absence of
the branes and

hjlið1Þb ¼ NeApzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
du uðu2 − k2ðqÞÞ

p−1
2

×
Iνðz1uÞ
Kνðz1uÞ

X
j¼�1

jK2
maþj=2ðzuÞ; ð4:12Þ

with
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Ap ¼ ð4πÞ−ðpþ1Þ=2

Γððpþ 1Þ=2Þ ; ð4:13Þ

is the part induced in the region z ≥ z1 by a single brane at
z ¼ z1. The part hjli0 is investigated in [25]. It is expressed
in terms of the function

qðDþ1Þ=2
μ ðuÞ ¼

ffiffiffi
π

2

r Z
∞

0

dx xD=2e−uxIμþ1=2ðxÞ; ð4:14Þ

and is presented in the form

hjli0 ¼ −
eNa−D−1Ll

ð2πÞðDþ1Þ=2
X∞
nl¼1

nl sinðα̃lnlÞ
X
nq−1

cos

� XD−1

i¼1;≠l
α̃ini

�

×
X
j¼0;1

qðDþ1Þ=2
ma−j

�
1þ

XD−1

i¼pþ1

n2i L
2
i

2z2

�
; ð4:15Þ

where nq−1 ¼ ðnpþ1;…; nl−1; nlþ1;…nD−1Þ. An alterna-
tive expression for the function (4.14) in terms of the
hypergeometric function is given in [25].
The last term in (4.8) is induced in the region z1 ≤ z ≤ z2

if we add to the geometry of a single brane at z ¼ z1 the
second brane at z ¼ z2. It can be further transformed by
introducing a new integration variable w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − z21k

2
p

and passing to polar coordinates ðr; θÞ in the plane
ðz1kðpÞ; wÞ. After integrating over θ and introducing instead
of r the integration variable u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=z21 þ k2ðqÞ

q
, we find

hjli¼ hjli0þhjlið1Þb −
NeApzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
duu

Kν−1ðz2uÞ
Kνðz1uÞ

×
ðu2−k2ðqÞÞ

p−1
2

Gν;ν−1ðz1u;z2uÞ
X
j¼�1

jG2
ν;maþj=2ðz1u;zuÞ: ð4:16Þ

By taking into account the representation (4.11) for a single
brane part, the current density is presented as

hjli¼hjli0þ
NeApzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
duuðu2−k2ðqÞÞ

p−1
2

×

�
Kνðz1uÞIν−1ðz2uÞ
Iνðz1uÞKν−1ðz2uÞ

þ1

�
−1

×
X
j¼�1

j

�
Iν−1ðz2uÞ
Kν−1ðz2uÞ

K2
maþj=2ðzuÞ−

Kνðz1uÞ
Iνðz1uÞ

I2maþj=2ðzuÞ

þ2jKmaþj=2ðzuÞImaþj=2ðzuÞ
�
: ð4:17Þ

An alternative representation is given by the formula

hjli¼ hjli0þhjlið2Þb þNeApzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
duu

Iνðz1uÞ
Iν−1ðz2uÞ

×
ðu2−k2ðqÞÞ

p−1
2

Gν;ν−1ðz1u;z2uÞ
X
j¼�1

jG2
ν−1;maþj=2ðz2u;zuÞ; ð4:18Þ

where

hjlið2Þb ¼ −
NeApzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
du uðu2 − k2ðqÞÞ

p−1
2

×
Kν−1ðuz2Þ
Iν−1ðuz2Þ

X
j¼�1

jI2maþj=2ðuzÞ; ð4:19Þ

is the current density induced by a single brane at z ¼ z2 in
the region 0 ≤ z ≤ z2 (see [29]). The last term in (4.18) is
induced by the brane at z ¼ z1 if we add it to the problem
with a single brane at z ¼ z2. As it will be seen in the next
subsection, the VEV of the current density is finite on the
branes. However, in the representations (4.12) and (4.19)
for single brane-induced parts we cannot directly put in the
integrands z ¼ z1 and z ¼ z2, respectively. This can be
done in the second brane-induced contributions [last terms
in (4.16) and (4.18)].
In order to see the interference effects between the branes

we can present the total current density as

hjli ¼ hjli0 þ hjlið1Þb þ hjlið2Þb þ hjliint: ð4:20Þ

By taking into account the expressions for the single brane
parts, for the interference part we can get the expression

hjliint ¼
NeApzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
du uðu2 − k2ðqÞÞ

p−1
2

×

�
Kνðz1uÞIν−1ðz2uÞ
Iνðz1uÞKν−1ðz2uÞ

þ 1

�
−1

×
X
j¼�1

j

�
Kν−1ðz2uÞ
Iν−1ðz2uÞ

I2maþj=2ðzuÞ

−
Iνðz1uÞ
Kνðz1uÞ

K2
maþj=2ðzuÞ

þ 2jKmaþj=2ðzuÞImaþj=2ðzuÞ
�
: ð4:21Þ

Note that in the evaluation of the interference part on the
branes we can directly put in the integrand z ¼ zj.
The current densities in the regions z ≤ z1 and z ≥ z2

coincide with those in the corresponding geometries with
single branes. In these regions the VEV is presented as
hjli ¼ hjli0 þ hjlib, where the brane-induced contribution
hjlib is given by (4.19) in the region z ≤ z1, with the
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replacement z2 → z1, and by (4.12) in the region z ≥ z2,
with the replacement z1 → z2.

B. Alternative representation and the
currents on the branes

Here we provide another representation for the VEV of
the current density that is more adapted for the investigation
of the near-brane asymptotics. It is obtained from the initial
expression (4.5) by using the summation formula [16]

2π

Ll

X∞
nl¼−∞

gðklÞfðjkljÞ ¼
Z

∞

0

du½gðuÞ þ gð−uÞ�fðuÞ

þ i
Z

∞

0

du½fðiuÞ − fð−iuÞ�

×
X
j¼�1

gðijuÞ
euLlþijα̃l − 1

; ð4:22Þ

where kl is given by (3.5). In the special case gðxÞ ¼ 1,
α̃l ¼ 0 the standard Abel-Plana formula is obtained from
(4.22). For the series over nl in (4.5) we have gðuÞ ¼ u and
the first integral in the right-hand side of (4.22) vanishes.
Physically this corresponds to the fact that the part in the
current density with that integral presents the current in the
model where the dimension xl is decompactified and,
hence, as it has been shown above, the corresponding
current is zero. With gðuÞ ¼ u, by using the expansion
1=ðey − 1Þ ¼ P∞

r¼1 e
−ry, after evaluating the integrals over

u and kðpÞ, one gets

hjli¼−
ð2πÞ1−p=2eNzDþ2

8VqL
p
l a

Dþ1z21

X∞
r¼1

sinðrα̃lÞ
rpþ1

X
nq−1

X∞
n¼1

λnTνðη;λnÞ

×gp=2þ1ðrLl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n=z21þk2ðq−1Þ

q
Þ
X
j¼�1

g2ν;maþj=2ðλn;λnz=z1Þ:

ð4:23Þ

where k2ðq−1Þ ¼
P

D−1
i¼pþ1;≠l ð2πni þ α̃iÞ2=L2

i and we have
defined the function

gμðxÞ ¼ xμKμðxÞ: ð4:24Þ

Unlike to the series over n in (4.5) the corresponding series
in (4.23) is exponentially convergent.
The representation (4.23) is well adapted for the inves-

tigation of the currents on the branes. They are obtained
putting z ¼ zj directly in the right-hand side of (4.23). By
taking into account that gν;ν−1ðλn; ηλnÞ ¼ 0, and

gν;ν−1ðλn; λnÞ ¼
2

πλn
;

gν;νðλn; ηλnÞ ¼ −
2

πηλn

JνðλnÞ
Jν−1ðηλnÞ

; ð4:25Þ

one gets

hjliz¼zj ¼ −
2eNL−p

l zDj
ð2πÞp=2þ1VqaDþ1

X∞
r¼1

sinðrα̃lÞ
rpþ1

×
X∞
n¼1

�
JνðλnÞ

Jν−1ðηλnÞ
�
2ðj−1Þ

×
X
nq−1

gp=2þ1ðrLl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n=z21 þ k2ðq−1Þ

q
Þ

J2νðλnÞ=J2ν−1ðηλnÞ − 1
: ð4:26Þ

Finiteness of the vacuum current density on the branes is in
clear contrast with the corresponding behavior of the
fermionic condensate and of the VEV of the energy-
momentum tensor. The latter VEVs diverge on the boun-
daries. This kind of surface divergences have been widely
discussed in the Casimir effect for fields with different
spins and for different boundary geometries. The absence
of the surface divergences for the current density in the
problem under consideration can be understood from
general arguments. In the problem with two branes and
without compact dimensions the VEVof the current density
vanishes. The compactification scheme we have considered
does not change the local bulk and boundary geometries.
By taking into account that the divergences are completely
determined by those local geometries, we conclude that the
toral compactification will not induce additional divergen-
ces in the VEVs. In particular, the VEV of the current
density becomes finite everywhere.
We can also use the representation (4.23) for the

evaluation of the total current, per unit surface along
the uncompact dimensions. By using the integrals (3.13)
we get

Vq

Z
z2

z1

dz
ffiffiffiffiffi
jgj

p
hjli¼−

2Ne

ð2πÞp=2þ1Lp
l

X∞
r¼1

sinðrα̃lÞ
rpþ1

×
X
nq−1

X∞
n¼1

gp=2þ1ðrLl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n=z21þk2ðq−1Þ

q
Þ;

ð4:27Þ

where g is the determinant of the metric tensor. In (4.27),
the information on the curvature and on the boundary
geometry is encoded through the ratio λn=z1. For a given
distance between the branes the ratio z2=z1 is fixed and the
roots λn do not depend on the location of the left brane z1.
In particular, from here it follows that, for fixed z2=z1, the
quantity (4.27) goes to zero in the limit z1 → 0. Comparing
the integrated current (4.27) with the current densities
(4.26) on the branes, the following simple relation between
them is obtained.
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Z
z2

z1

dz
ffiffiffiffiffi
jgj

p
hjli ¼

�
aDþ1

zD
hjli

�
z¼z2

z¼z1

: ð4:28Þ

In the model with a single compact dimension xl with the
lengthLl (q ¼ 1, p ¼ D − 2, l ¼ D − 1) the formula (4.23)
is specified to

hjli ¼ −
ð2πÞ−D=2eNzDþ2

8LD−1
l aDþ1z21

X∞
r¼1

sinðrα̃lÞ
rD−1

X∞
n¼1

λnTνðη; λnÞ

× gD=2ðrLlλn=z1Þ
X
j¼�1

g2ν;maþj=2ðλn; λnz=z1Þ: ð4:29Þ

An alternative expression in this special case is obtained
from (4.17). In this and in the next sections, for numerical
investigations of the current density we consider the special
case D ¼ 4 with a single compact dimension of the length
Ll ¼ L and with the phase in the periodicity condition
α̃l ¼ α̃. For this model the corresponding formulas are
obtained from (4.17) and (4.29) taking p ¼ 2 and q ¼ 1.

C. Asymptotics and numerical examples

In this subsection we consider the behavior of the current
density in asymptotic regions of the parameters. The
Minkowskian limit corresponds to a → ∞ for fixed y
and yj. In this limit the conformal coordinates z and zj
are large, z ≈ aþ y, z − zj ≈ y − yj, and, consequently,
both the order and the argument of the modified Bessel
functions in (4.17) are large. By using the corresponding
uniform asymptotic expansions [32], for the brane-induced

part, to the leading order, we get hjli − hjli0 ≈ hjliðMÞ
b ,

where

hjliðMÞ
b ¼2NeAp

Vq

X
nq

kl

Z
∞

mðqÞ
dx

ðx2−m2
ðqÞÞ

p−1
2

xþm
x−me

2xðy2−y1Þ þ1

×

�
1þmexðy2−y1Þ

x−m
cosh ½xð2y−y2−y1Þ�

�
; ð4:30Þ

with the notation mðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2ðqÞ

q
. This expression

coincides with the result from [18] for two boundaries in
a flat bulk with topology Rpþ1 × Tq (with the sign differ-
ence related to definition of the parameters α̃i).
For a massless fermionic field the modified Bessel

functions in (4.16) are expressed in terms of the elementary
functions. By taking into account the expressions

G1=2;1=2ðx; yÞ ¼
sinhðx − yÞffiffiffiffiffi

xy
p ;

G1=2;−1=2ðx; yÞ ¼
coshðx − yÞffiffiffiffiffi

xy
p ; ð4:31Þ

we can see that

hjli ¼ hjli0 þ
NeAp

Vq
ðz=aÞDþ1

X
nq

kl

Z
∞

kðqÞ
du

ðu2 − k2ðqÞÞ
p−1
2

e2uðz2−z1Þ þ 1
:

ð4:32Þ

The massless fermionic field is conformally invariant and,
as we could expect, the brane-induced contribution in
(4.32) is conformally related to the corresponding expres-
sion for two parallel boundaries in the Minkowski bulk.
The latter is obtained from (4.30) taking m ¼ 0.
Now let us consider the asymtotics for limiting cases of

the brane locations. In the limit z2 → ∞, for fixed z1 and z,
the right brane tends to the AdS horizon. In this limit, it is
expected that from the results given above the current
density will be obtained in the region z1 ≤ z < ∞ for the
geometry of a single brane at z ¼ z1. In order to show
that we use the representation (4.16). The part with hjlið1Þ
does not depend on z2 and it is sufficient to consider the
limiting transition for the last term. The latter presents
the contribution induced by the right brane. The dominant
contribution comes from the region of the integration
near the lower limit and from the mode in the summation
over nq with the smallest value of kðqÞ. Under the
assumption jα̃ij < π that mode corresponds to ni ¼ 0 for
i ¼ pþ 1;…; D − 1, and the corresponding value for kðqÞ
is given by

kð0Þ2ðqÞ ¼
XD−1

i¼pþ1

α̃2i =L
2
i : ð4:33Þ

Hence, to the leading order, we get

hjli ≈ hjlið1Þ −
πNekð0Þðpþ1Þ=2

ðqÞ α̃lzDþ2e−2z2k
ð0Þ
ðqÞ

2VqLlaDþ1ð4πz2Þðpþ1Þ=2

×
X
j¼�1

j
G2

ν;νjðz1kð0ÞðqÞ; zk
ð0Þ
ðqÞÞ

K2
νðz1kð0ÞðqÞÞ

: ð4:34Þ

This shows that when the right brane tends to the AdS
horizon the corresponding contribution in the VEV of the

current density is suppressed by the factor e−2z2k
ð0Þ
ðqÞ=zðpþ1Þ=2

2 .
In the limit z1 → 0, for fixed z2 and z, the left brane tends

to the AdS boundary. We use the representation (4.18),
where the contribution of the left brane is given by the last
term. To the leading order, that contribution is obtained by
using the asymptotic expressions of the modified Bessel
functions for small values of the arguments. In this way it
can be seen that in the limit when the left brane tends to the
AdS boundary the corresponding contribution to the
current density vanishes as z2maþ1

1 .
Now let us consider the asymptotics with respect to the

lengths of compact dimensions. First let us discuss the case
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Ll ≪ Li, i ≠ l. In this limit the contribution of the modes
with large jnij, i ≠ l, dominates in the VEV (4.17) and, to
the leading order, the corresponding summations over nq−1
can be replaced by the integration:

X
nq−1

fðkðq−1ÞÞ →
2ð4πÞð1−qÞ=2Vq

Γððq − 1Þ=2ÞLl

Z
dx xq−2fðxÞ: ð4:35Þ

Next, we introduce a new integration variable

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − x2 − k2l

q
and then pass to polar coordinates

in the ðx; wÞ-plane. After integrating over the angular part
one can see that, in the leading order, the current density is
obtained in a (Dþ 1)-dimensional model with a single
compact dimension xl: hjli ≈ hjlijq¼1. If additionally one
has Ll ≪ z1, we can replace the modified Bessel functions
by the corresponding asymptotic expressions for large
arguments:

hjli ≈ hjli0 þ
2ð4πÞð1−DÞ=2Neðz=aÞDþ1

ΓððD − 1Þ=2ÞLl

×
Xþ∞

nl¼−∞
kl

Z
∞

jklj
du

ðu2 − k2l Þ
D−3
2

e2ðz2−z1Þu þ 1
: ð4:36Þ

Comparing with (4.30), we see that the brane-induced
contribution in (4.36) is conformally related to the corre-
sponding current density for a massless fermionic field in
(Dþ 1)-dimensional Minkowski spacetime with a single
compact dimension and with two planar boundaries having
the distance z2 − z1. In this limit the effects of the
gravitational field are weak. Under the additional constraint
Ll ≪ ðz2 − z1Þ, the exponent in (4.36) is large and we can
further simplify the corresponding expression. By taking
into account that the dominant contribution comes from kl
with the minimal value jklj, we get

hjli ≈ hjli0 þ
πð1−DÞ=2Neðz=aÞDþ1α̃ljα̃ljD−3

2

2D−1LðDþ1Þ=2
l ðz2 − z1ÞðD−1Þ=2 e

−2ðz2−z1Þjα̃lj=Ll ;

ð4:37Þ

where it is assumed that jα̃lj < π. As seen, the brane-
induced contribution is exponentially small. Note that in
the same limit, Ll ≪ Li, i ≠ l, and Ll ≪ z, for the brane-
free contribution one has [25]

hjli0 ≈ −
eNLlΓððDþ 1Þ=2Þ
πðDþ1Þ=2ðaLl=zÞDþ1

X∞
nl¼1

sinðα̃lnlÞ
nDl

: ð4:38Þ

and it dominates in the total current density.
For large values of Ll ≫ Li; z1, i ≠ l, it is more

convenient to use the representation (4.23). The current
density is dominated by the lowest mode for λn and by the

mode for which k2ðq−1Þ takes its minimal value. For jα̃ij < π

the latter corresponds to the mode with ni ¼ 0, i ≠ l, with

the minimal value kð0Þ2ðq−1Þ ¼
P

D−1
i¼pþ1;≠l α̃

2
i =L

2
i . By using the

asymptotic expression of the Macdonald function for
large arguments, we can see that in the limit under
consideration the current density is suppressed by the

factor exp½−Ll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21=z

2
1 þ kð0Þ2ðq−1Þ

q
�.

If the one of the lengths Li, i ≠ l, is large compared to
the other length scales in the model, the expression
(4.17) for the current density is dominated by the terms
with large values of jnij. To the leading order, we replace
the corresponding summation by the integration and the
VEV hjli coincides with the current density in the same
model with decompactified ith coordinate xi. In the
opposite limit of small Li, i ≠ l, assuming that jα̃ij < π,
the behavior of the lth component of the current density
crucially depends on that wether α̃i is zero or not. For
α̃i ¼ 0 there is a zero mode along the ith compact
dimension with ni ¼ 0 and it dominates in the current
density hjli. The leading term is obtained from (4.17)
taking the contribution with ni ¼ 0 and we get
hjli ≈ NzhjliD=ðNDaLiÞ, where hjliD is the current density
in the D-dimensional model with the absence of the ith
compact dimension, ND is the number of spinor compo-
nents in that model. For α̃i ≠ 0, again, the dominant
contribution comes from the mode with ni ¼ 0. The
corresponding estimates can be done in a way similar to
that for small values of Ll and we can see that the brane-
induced VEV is suppressed by the factor e−2ðz2−z1Þjα̃ij=Li.
In the numerical examples of this section we will

consider the modelD ¼ 4with a single compact dimension
xD. For the corresponding values of the parameters one has
p ¼ 2 and q ¼ 1. The length of the compact dimension
will be denoted by L and the corresponding phase by α̃.
Four different types of boundary conditions on the branes
will be discussed (corresponding to roman numerals near
the graphs). Graphs with I correspond to the bag boundary
condition (2.5) and the graphs with II correspond to the
condition (5.1) below. As it has been discussed in Sec. VI,
depending on the parity of the field under the reflec-
tions with respect to the branes, two other classes of
boundary condition may arise in Z2-symmetric braneworld
models. They correspond to the boundary conditions
Zmaþ1=2ðλzjÞ ¼ 0 (the graphs will be designated by III)
and Zma−1=2ðλzjÞ ¼ 0 (the graphs designated by IV) on
both the branes z ¼ zj, j ¼ 1, 2.
In Fig. 1 we have displayed the dependence of the

current density on the phase α̃. The current density is a
periodic function of α̃ and graphs are plotted for one
period. For the parameters we have taken the values
corresponding to ma¼1, z1=L¼0.5, z2=L¼1, z=L¼0.75.
The dashed line corresponds to the current density in the
geometry without branes. As seen, depending on the
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boundary conditions imposed on the field, the presence of
the branes can either increase or decrease thevacuumcurrent
density. In particular, the bag boundary condition reduces
the current density.
The dependence of the current density on the field mass

for different types of boundary conditions is presented in
Fig. 2. For the phase in the periodicity condition we have
taken α̃ ¼ π=2. The values of the remaining parameters are
the same as those for Fig. 1. From the data in Fig. 2 we see
that in the range of the mass ma > 1 the brane-induced
currents can be essentially larger compared with the cur-
rents in the branefree geometry. Of course, for ma ≫ 1
both these contributions are suppressed. The coincidence of
the current densities for a massless field in the cases of
boundary conditions I,II and III,IV will be explained below
on the base of the corresponding analytic expressions.

The behavior of the current density versus the coordinate
z is shown in Fig. 3 for α̃ ¼ π=2, ma ¼ 1 and for the
locations of the branes we have taken z1=L ¼ 0.5,
z2=L ¼ 1. As seen, the current density is mainly located
near the right brane.
It is also of interest to consider the dependence of the

current density on the length of the compact dimension.
As it has been shown by the asymptotic analysis that
dependence is essentially different for the branefree and
brane-induced contributions. For small values of L the
branefree part behaves as hjli0 ∝ 1=ðaL=zÞDþ1 and the
brane-induced part is suppressed by the factor e−2ðz2−z1Þjα̃j=L
[see (4.37)]. This feature is seen in Fig. 4, where we
have plotted the brane-induced current density, hjlib ¼
hjli − hjli0, versus the ratio L=z1 for α̃ ¼ π=2, ma ¼ 1,
z2=z1 ¼ 2, z=z1 ¼ 1.5.

FIG. 2. The current density as a function of the field mass for
α̃ ¼ π=2. The other parameters are the same as those for figure 1.

FIG. 3. The current density in the region between the branes as
a function of the coordinate z in units of the length of the compact
dimension. The dashed curve presents the current density in the
absence of the branes.

FIG. 4. The brane-induced contribution in the current density as
a function of the length of the compact dimension. The graphs are
plotted for α̃ ¼ π=2, ma ¼ 1, z2=z1 ¼ 2, z=z1 ¼ 1.5.

FIG. 1. Fermionic current along the compact dimension as a
function of the phase in the periodicity condition in the model
D ¼ 4, p ¼ 2, q ¼ 1. The roman numerals near the curves
correspond to different classes of boundary conditions on the
branes. The graphs are plotted for z1=L ¼ 0.5, z2=L ¼ 1,
z=L ¼ 0.75, and ma ¼ 1.
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V. SECOND CLASS OF BOUNDARY CONDITIONS

For the normal nðjÞμ to the brane at z ¼ zj and for the

Dirac matrices we have the relation ðiγμnðjÞμ Þ2 ¼ 1. This

means that iγμnðjÞμ has eigenvalues�1. If we assume that on

the brane iγμnðjÞμ ψ ¼ �ψ then for both the signs one gets

nðjÞμ jμ ¼ 0 for z ¼ zj and quantum numbers are not lost
through the brane. In the discussion above we have
considered the boundary condition with the lower sign.
Equally well acceptable boundary condition is the one with
the upper sign:

ð1 − iγμnðjÞμ Þψ ¼ 0; z ¼ zj; ð5:1Þ

with j ¼ 1, 2. Both the boundary conditions (2.5) and (5.1)
are compatible with self-adjointness of the Hamiltonian
given by the Dirac operator. They are obtained considering
a fermionic field interacting with a scalar potential outside
the bounded region under consideration in the limit when
the potential tends to infinity (see, for instance, Ref. [33]).
The condition (2.5) has been employed in a phenomeno-
logical model, called the MIT bag model, to describe the
confinement of quarks inside hadrons. Another physical
realization of fermionic models with boundary conditions
(2.5) and (5.1) is provided by electronic subsystems of
graphene ribbons with zigzag types of cuts (see, e.g., [34]).
As it will be discussed in Sec. VI, the boundary conditions
of the type (2.5) and (5.1) appear also in Z2-symmetric
brane models. Note that the conditions (2.5) and (5.1)
contain no additional parameters. More general boundary
conditions for fermionic fields, ensuring the self-adjoint-
ness of the Hamiltonian and the zero normal projection
of the current density at the boundary, have been discussed
in Refs. [34,35]. Those boundary conditions involve addi-
tional parameters that encode the properties of the boun-
dary. The corresponding applications include graphene
ribbons with general cuts and chiral bag models of
nucleons.
The positive and negative energy mode functions

for the conditions (5.1) are still presented in the form
(3.3). The boundary conditions on the left and right branes
are reduced to the equations Zma−1=2ðλz1Þ ¼ 0 and
Zmaþ1=2ðλz2Þ ¼ 0, respectively. Now the eigenvalues of
the quantum number λ are determined from the equation

gν−1;νðλz1; λz2Þ ¼ 0: ð5:2Þ

The corresponding positive roots with respect to λz1
will be denoted by λð−Þn ¼ λz1. For large values of λ, by
using the asymptotic expressions for the Bessel functions,
to the leading order the equation (5.2) is reduced to
cos ½λðz2 − z1Þ� ¼ 0. For a massless field this equation
is exact. Hence, for large values of n one has the

asymptotic expression λð−Þn ≈ πðn − 1=2Þ=ðz2=z1 − 1Þ. In

the Minkowski bulk two problems with boundary con-
ditions (2.5) and (5.1) differ by rearrangement of two planar
boundaries and the VEVs in the region between the plates
are the same. For the AdS bulk the boundaries have
nonzero extrinsic curvature and that is not the case.
In a way similar to that we have described for the

boundary conditions (2.5), for the mode functions one gets

ψ ðþÞ
β ¼BðþÞ

β z
Dþ1
2 eikx−iωt

×

0
B@

kχχ†
0
þiλ−ω
ω gma−1=2;maþs=2ðλz1;λzÞwðσÞ

iχ†0
kχχ†

0
þiλþω
ω gma−1=2;ma−s=2ðλz1;λzÞwðσÞ

1
CA;

ψ ð−Þ
β ¼Bð−Þ

β z
Dþ1
2 eikxþiωt

×

0
B@ iχ0

kχ†χ0−iλþω
ω gma−1=2;maþs=2ðλz1;λzÞwðσÞ

kχ†χ0−iλ−ω
ω gma−1=2;ma−s=2ðλz1;λzÞwðσÞ

1
CA;

ð5:3Þ

with the normalization coefficients

jBð�Þ
β j2 ¼ ð2πÞ2−pλ

32VqaDz1
Tð−Þ
ma−1=2ðη; λð−Þn Þ; ð5:4Þ

where

Tð−Þ
ma−1=2ðη; xÞ ¼ x

�
J2ma−1=2ðxÞ
J2maþ1=2ðηxÞ

− 1

�−1
: ð5:5Þ

Likewise in the previous case the charge density and the
components of the current density along uncompact
dimensions vanish. The components along compact dimen-
sions do not depend on the value of the parameter s and are
given by

hjli ¼ −
π2ð4πÞ−p=2eNzDþ2

4Γðp=2ÞVqaDþ1z1

X
nq

kl

Z
∞

0

dkðpÞk
p−1
ðpÞ

×
X∞
n¼1

λð−Þn Tð−Þ
ma−1=2ðη; λð−Þn Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð−Þ2n þ z21k

2

q

×
X
j¼�1

g2ma−1=2;maþj=2ðλð−Þn ; λð−Þn z=z1Þ: ð5:6Þ

For a massless field the equation for the eigenvalues λð−Þn

coincides with that for λn in the case of the bag boundary
condition and the current densities coincide as well. The

summation over the eigenmodes λð−Þn can be done by using
the formula (A1) with μ ¼ maþ 1=2 and δ ¼ −1. The part
with the first term in the right-hand side of (A1) gives the
contribution to the VEV from the left brane when the right
one is absent. It is given by the expression
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hjlið1Þ ¼ hjlið0Þ − ApeNzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
duuðu2 − k2ðqÞÞ

p−1
2

Ima−1=2ðz1uÞ
Kma−1=2ðz1uÞ

X
j¼�1

jK2
maþj=2ðzuÞ: ð5:7Þ

The current density in the region between the branes is presented in the form

hjli ¼ hjlið0Þ þ ApeNzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
du uðu2 − k2ðqÞÞ

p−1
2

�
Kν−1ðz1uÞIνðz2uÞ
Iν−1ðz1uÞKνðz2uÞ

þ 1

�
−1

×
X
j¼�1

j

�
Kν−1ðz1uÞ
Iν−1ðz1uÞ

I2maþj=2ðzuÞ −
Iνðz2uÞ
Kνðz2uÞ

K2
maþj=2ðzuÞ þ 2jImaþj=2ðzuÞKmaþj=2ðzuÞ

�
: ð5:8Þ

An equivalent representations, similar to (4.16), (4.18), and (4.23), can also be obtained for the boundary condition (5.1).

For the integrated current one gets the formula that is obtained from (4.27) with the replacement λn → λð−Þn and the relation
(4.28) remains the same.
Similar to (4.34), in the limit z2 → ∞ the contribution of the second brane in the VEVof the current density is suppressed

by the factor e−2z2k
ð0Þ
ðqÞ. For the limit z1 → 0 two cases should be considered separately. In the case ma > 1=2 one gets

hjli ≈ hjlið2Þ − 2ApeNðz1=2Þ2ma−1zDþ2

VqaDþ1Γðν − 1ÞΓðνÞ
X
nq

kl

Z
∞

kðqÞ
du u2maðu2 − k2ðqÞÞ

p−1
2

X
j¼�1

j
G2

ν;maþj=2ðz2u; zuÞ
I2νðz2uÞ

; ð5:9Þ

where

hjlið2Þ ¼ hjlið0Þ þ ApeNzDþ2

VqaDþ1

X
nq

kl

Z
∞

kðqÞ
du uðu2 − k2ðqÞÞ

p−1
2

X
j¼�1

j
Kνðz2uÞ
Iνðz2uÞ

I2maþj=2ðzuÞ: ð5:10Þ

In this case the contribution induced by the first brane tends to zero as z2ma−1
1 . For ma ¼ 1=2 the corresponding decay is

logarithmic, as 1= lnðz1=z2Þ. For ma < 1=2, to the leading order one gets

hjli ≈ hjlið2Þ − 2ApeNzDþ2

πVqaDþ1
cos ðmaπÞ

X
nq

kl

Z
∞

kðqÞ
du u

ðu2 − k2ðqÞÞ
p−1
2

Iνðz2uÞI−νðz2uÞ
X
j¼�1

jG2
ν;maþj=2ðz2u; zuÞ: ð5:11Þ

This leading term is different from that in the first case
[see (5.9)]. Note that if we consider a problem with the
boundary condition (5.1) on the right brane but with the
condition (2.5) on the left one, the limiting transition
z1 → 0 in the range of the fieldmassma < 1=2 is completely
different, the left brane induced contribution behaves as
z2maþ1
1 . The last term in (5.11) for the boundary condition
(5.1), in some sense, can be considered as a memory from the
left brane when its location tends to the AdS boundary. This
kind of memory is absent for the condition (2.5).
In Figs. 1–4, the curves corresponding to the boundary

condition (5.1) are designated by II. As it has been
mentioned above, in the case of a massless field the current
densities for the boundary conditions (2.5) and (5.1)
coincide. That is seen from Fig. 2. For a massive field
the brane-induced contributions to the current density for
the boundary condition (5.1) can be essentially larger when
compared with the branefree part and the brane-induced
part in the case of the condition (2.5).

VI. CURRENTS IN Z2-SYMMETRIC MODELS
WITH TWO BRANES

With the results given above we can investigate the
current density in higher dimensional generalizations of
Randall-Sundrum type braneworlds [36] with two branes
and with a compact subspace. In these models the coor-
dinate y is compactified on an orbifold S1=Z2 of length b,
with−b ≤ y ≤ b. The branes are located at the points y ¼ 0
and y ¼ b and the line element is given by (2.1) where the
warp factor e−2y=a must be replaced by e−2jyj=a. The original
Randall-Sundrum model has a single extra dimension,
corresponding to D ¼ 4, and only the gravitational field
propagates on the bulk. However, in braneworld models
motivated from string theories we expect the presence of
extra compact dimensions and also extra bulk fields. Here
we consider more general setup with the locations of the
branes at y ¼ yj, j ¼ 1, 2.
Among the motivations to consider bulk fields other than

the graviton is related to the need for stabilization of the
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interbrane distance (radion field). The variations of the latter
would imply thevariations in physical constants on thevisible
brane. An example is the Goldberger-Wise stabilization
mechanism [37], where the potential for the radion field is
generated by a bulk scalar with quartic interactions localized
on the branes. An alternative mechanism for the radion
stabilization is based on the Casimir effect for bulk quantum
fields. Another idea to consider bulk fields has been that the
standard model fields are not strictly confined to branes, but
merely localized around them. This approach to the brane-
world concept is more universal and attractive from the point
of view that gravitational field is not separated from other
fields. However, it should be noted that even though we
consider bulk fields other than the graviton, itwill be assumed
that the locally AdS geometry is not modified by those fields.
Thismeans thatweneglect the backreactionof the bulk fields.
Exact backreacted solutions are not available and the previous
investigations of quantum effects in Randall-Sundrumbrane-
worlds have been done under that assumption.
In braneworld models, the boundary conditions on the

branes for bulk fields are obtained from the Z2-symmetry.
For a brane at y ¼ yj and for a fermionic field ψðxÞ one has
ψðxi; yj − yÞ ¼ Mjψðxi; y − yjÞ, where Mj is a N × N
matrix. From the invariance of the fermionic action under
the Z2 identification it can be seen that (see [8,29]) this
matrix have the form

Mj ¼ −ujsdiagð1;−1Þ; ð6:1Þ
where uj ¼ �1 and we have extracted the factor s for
convenience. With this transformation matrix, the boundary
condition for the modes (3.3) on the brane y ¼ yj is
reduced to Zmaþuj=2ðλzjÞ ¼ 0 for both the positive and
negative energy solutions. We also see that with the choice
(6.1) (opposite signs of the matrix M for s ¼ 1 and
s ¼ −1), the boundary condition is the same for s ¼ �1.
As a result, in the geometry of two branes one has four
different combinations of the boundary conditions corre-
sponding to different choices of uj in the set ðu1; u2Þ (for
different combinations of boundary conditions imposed on
fermionic fields in two-brane models see also [38]).
For given ðu1; u2Þ, the mode functions obeying the

boundary condition on the brane y ¼ y1 are presented as

ψ ðþÞ
β ðxÞ¼DðþÞ

β z
Dþ1
2 eikx−iωt

×

0
@ kχχ†

0
þiλ−ω
ω gmaþu1=2;maþs=2ðλz1;λzÞwðσÞ

iχ†0
kχχ†

0
þiλþω
ω gmaþu1=2;ma−s=2ðλz1;λzÞwðσÞ

1
A;

ψ ð−Þ
β ðxÞ¼Dð−Þ

β z
Dþ1
2 eikxþiωt

×

0
@ iχ0

kχ†χ0−iλþω
ω gmaþu1=2;maþs=2ðλz1;λzÞwðσÞ

kχ†χ0−iλ−ω
ω gmaþu1=2;ma−s=2ðλz1;λzÞwðσÞ

1
A:

ð6:2Þ

From the boundary condition on the brane y ¼ y2 it follows
that now the eigenvalues for λ are roots of the equation

gmaþu1=2;maþu2=2ðλz1; λz2Þ ¼ 0: ð6:3Þ

For the normalization coefficients we get

jDð�Þ
β j2 ¼ λTðu1;u2Þ

maþu1=2
ðz2=z1; λz1Þ

32N0z1ð2πÞp−2VqaD
: ð6:4Þ

where

Tðu1;u2Þ
maþu1=2

ðη; xÞ ¼ x

�
J2maþu1=2

ðxÞ
J2maþu2=2

ðηxÞ − 1

�−1
: ð6:5Þ

Note that the Eq. (6.3) corresponds to the boundary
conditions

ð1 − ð−1ÞjiujγμnðjÞμ ÞψðxÞ ¼ 0; z ¼ zj; ð6:6Þ

on the branes.
In Z2-symmetric braneworld models the normalization

integral goes over the two copies of the region y1 ≤ y ≤ y2
and in (6.4) N0 ¼ 2. In the analog of the problem we have
considered in the previous sections with two branes y ¼ yj
and with the boundary conditions Zmaþuj=2ðλzjÞ ¼ 0 on
them, in the region y1 ≤ y ≤ y2 one should take N0 ¼ 1 in
(6.4). Note that for u1 ¼ u2 and for large values of λ the
Eq. (6.3) is reduced to sin ½λðz2 − z1Þ� ¼ 0 and for the
corresponding modes one has asymptotic expression

λz1 ¼ λð0Þmaþu1=2;n
≈ πn=ðz2=z1 − 1Þ with large n. For mass-

less fields this expression is exact.
Now we see that the current densities in Z2-symmetric

braneworlds with the combination of the boundary con-
ditions on the branes corresponding to ðu1; u2Þ ¼ ðþ1;−1Þ
are obtained from the results in Sec. IV with an additional
coefficient 1=2. For the set of boundary conditions with
ðu1; u2Þ ¼ ð−1;þ1Þ the corresponding current density is
obtained from the formulas in Sec. V (again, with the factor
1=2). The current densities for the combinations of the
boundary conditions corresponding to ðu1; u2Þ ¼ ðþ1;þ1Þ
and ðu1; u2Þ ¼ ð−1;−1Þ can be considered in a similar
way we have described in Sec. IV for the case
ðu1; u2Þ ¼ ðþ1;−1Þ. The VEVof the current density along
the lth compact dimension is presented in the form similar
to (4.5), where now λ is the root of the Eq. (6.3) with
u2 ¼ u1. The summation formula for the series over these
roots is obtained from (A1) with δ ¼ 0 and μ ¼ maþ u1=2
and the further transformation for the VEV is similar to that
in Sec. IV. The final expression for the current density in the
region between the branes takes the form
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hjli ¼ hjlið0Þ þ u1ApeNzDþ2

N0VqaDþ1

X
nq

kl

Z
∞

kðqÞ
du uðu2 − k2ðqÞÞ

p−1
2

�
Kμðz1uÞIμðz2uÞ
Kμðz2uÞIμðz1uÞ

− 1

�−1

×
X
j¼�1

j

�
Iμðz2uÞ
Kμðz2uÞ

K2
maþj=2ðzuÞ þ

Kμðz1uÞ
Iμðz1uÞ

I2maþj=2ðzuÞ − 2ju1Imaþj=2ðzuÞKmaþj=2ðzuÞ
�
; ð6:7Þ

where μ ¼ maþ u1=2 and u1 ¼ �1. The single brane
contribution to the vacuum current density for the brane
at y ¼ y1 is given by (4.12) for u1 ¼ 1 and by the last term
in (5.7) for u1 ¼ −1 (with additional factors 1=N0 for
Z2-symmetric braneworlds). We can also obtain an alter-
native representation similar to (4.23).
In Figs. 1–4, the graphs for the current densities (6.7)

(with N0 ¼ 1) in the cases u1 ¼ u2 ¼ þ1 and u1 ¼ u2 ¼
−1 are designated by roman numerals III and IV, respec-
tively. Note that one has the relation g−μ;−μðx; uÞ ¼
gμ;μðx; uÞ and the eigenmodes for λ in these cases coincide
for a massless field. From here it follows that the current
densities corresponding to III and IV are the same in the
limit m → 0. This is seen from Fig. 2.
In the Randall-Sundrum scenario the standard model

fields are localized on the brane z ¼ z2 (visible or infrared
brane). The current density on that brane is a source of
magnetic fields having components in the uncompact
subspace as well. It is of interest to separate the parts in
the current density on the visible brane induced by the
presence of the hidden (or ultraviolet) brane with the
location z ¼ z1. By using the expressions given above,
we can combine the hidden brane-induced contributions for
different combinations of the boundary conditions, speci-
fied by the set ðu1; u2Þ, in a single expression

½hjli−hjlið2Þ�z¼z2 ¼
ApeNzD2
N0VqaDþ1

X
nq

kl

Z
∞

kðqÞ
du

Imaþu1=2ðz1uÞ
uImaþu2=2ðz2uÞ

×
ðu2−k2ðqÞÞ

p−1
2

Gmaþu1=2;maþu2=2ðz1u;z2uÞ
: ð6:8Þ

In braneworldmodels of the Randall-Sundrum type, in order
to solve the hierarchy problem between the Planck and
electroweak energy scales, it is assumed that ðy2 − y1Þ ≫ a.
Under this condition one has z2=z1 ≫ 1 and the asymptotic
behavior of (6.8) depends on the lengths of compact
dimensions. For z1=Li ≳ 1, in the integration range of
(6.8) one has z2x=z1 ≫ 1. In a way similar to that we have
used for (4.34), it can be seen that to the leading order one has

½hjli − hjlið2Þ�z¼z2 ≈ −
eNzqþ2

2 α̃lðz2kð0ÞðqÞÞ
ðp−1Þ=2

2pþ1πðp−1Þ=2N0VqLlaDþ1

×
Imaþu1=2ðz1kð0ÞðqÞÞ
Kmaþu1=2ðz1kð0ÞðqÞÞ

e−2z2k
ð0Þ
ðqÞ ; ð6:9Þ

where kð0ÞðqÞ is defined by (4.33). For z2=Li ≲ 1 and z2=z1 ≫ 1

the asymptotic expression of (6.8) is found in away similar to
that used above for the limit z1 → 0. Formaþ u1=2 > 0we
can see that the hidden brane contribution in the current
density on the visible brane behaves like ðz1=z2Þ2maþu1 . In
the case maþ u1=2 < 0 (for non-negative m this implies
u1 ¼ −1) one gets

½hjli − hjlið2Þ�z¼z2

≈
2u2ApeNzqþ2

2

πN0VqaDþ1

X
nq

kl

Z
∞

z2kðqÞ
dx

cos ðπmaÞðx2 − z2k2ðqÞÞ
p−1
2

xImaþu2=2ðxÞI−ma−u2=2ðxÞ
;

ð6:10Þ

and the leading term does not depend on z1.
The discussion given above shows that the physical

characteristics of the vacuum state, such as the VEVs of
the charge and current densities, crucially depend on the
phases α̃l. Another interesting physical effect related to
these phases is the dynamical mass generation by compact
extra dimensions (the so called Hosotani mechanism) [39].
In the setup we consider, the phases α̃l are external
parameters and their values are not fixed. Those values
can be fixed dynamically by taking into account that the
vacuum energy will also depend on the parameters α̃l and
the equilibrium values will correspond to the minimum of
the effective potential. This issue has been discussed in the
literature for the Minkowskian spacetime as the uncompact
subspace (see, e.g., [40] and references therein). Having the
complete set of fermionic modes, the evaluation of
the vacuum energy density and the effective potential in
the problem at hand can be done by applying the
formula (A1) to the corresponding mode sums, in a way
similar to that we have described for the charge and current
densities. This requires a separate consideration and will be
presented elsewhere.

VII. P- AND T-REVERSAL SYMMETRIC
ODD-DIMENSIONAL MODELS AND

APPLICATIONS TO CURVED GRAPHENE TUBES

In this section we consider features of fermionic models
in odd-dimensional spacetimes. As it has been already
mentioned, for even D there are two inequivalent irreduc-
ible representations of the Clifford algebra. For flat space-
time Dirac matrices γðbÞ with b ¼ 0;…; D − 1, we intro-
duce the 2D=2 × 2D=2 matrix γ ¼ Q

D−1
b¼0 γ

ðbÞ. Then we can
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take the matrix γðDÞ in the form γðDÞ
ðsÞ ¼ sγ for D ¼ 4n and

in the form γðDÞ
ðsÞ ¼ siγ for D ¼ 4n − 2, where n ¼ 1; 2;….

Here, s ¼ þ1 and s ¼ −1 correspond to two irreducible
representations of the Clifford algebra. For the curved
spacetime matrix γDðsÞ, corresponding to the geometry descri-

bed by (2.1), one can take γDðsÞ ¼ ðz=aÞγðDÞ
ðsÞ . Let us denote by

ψ ðsÞ the fermioinc field realizing the representations with
given s. The mass term in the corresponding Lagrangian

densityLðsÞ ¼ ψ̄ ðsÞ½iγμðsÞð∂μ þ ΓðsÞ
μ Þ −m�ψ ðsÞ, with the set of

Dirac matrices γμðsÞ ¼ ðγ0; γ1;…γD−1; γDðsÞÞ and the related

spin connection ΓðsÞ
μ , is not invariant under the charge

conjugation (C) and parity transformation (P) in spatial
dimensionsD ¼ 4n, and under the P-transformation and the
time reversal (T) in D ¼ 4nþ 2.
We can construct fermionic models in odd-dimensional

spacetimes, invariant under theC-,P- andT-transformations,
combining two fields ψ ðsÞ with the Lagrangian density L ¼P

s¼�1 LðsÞ. By appropriate transformations of the fields
one can make this combined Lagrangian density invariant
under the C-, P-, and T-transformations. Introducing 2N ×
2N matrices γð2NÞμ ¼ diagðγμðþ1Þ; γ

μ
ð−1ÞÞ, with N ¼ 2D=2,

and the corresponding spin connection Γð2NÞ
μ , we can com-

bine two fields ψ ðsÞ in a single 2N-component field Ψ ¼
ðψ ðþ1Þ;ψ ð−1ÞÞT with the Lagrangian density

L ¼ Ψ̄½iγð2NÞμð∂μ þ Γð2NÞ
μ Þ −m�Ψ ð7:1Þ

and the current density operator Jμ ¼ eΨ̄γð2NÞμΨ. An
alternative representation of the model with two fields is
obtained by making the field transformations ψ 0

ðþ1Þ ¼
ψ ðþ1Þ, ψ 0

ð−1Þ ¼ γψ ð−1Þ. The combined Lagrangian density

is presented as L ¼ P
s¼�1 ψ̄

0
ðsÞ½iγμð∂μ þ ΓμÞ − sm�ψ 0

ðsÞ,
where Γμ is the spin connection for the set of Dirac
matrices γμ ¼ γμðþ1Þ. In this representation the Lagrangian

densities for the fields with s ¼ þ1 and s ¼ −1 differ by
the sign of the mass term.
In the system of two fermionic fields ψ ðsÞ the VEVof the

current density is the sum of the VEVs coming from the
separate fields hJμi ¼ P

s¼�1hjμðsÞi. As we have seen

above, if the boundary and periodicity conditions for the
fields ψ ðsÞ are the same, then the separate contributions
hjμðsÞi are the same as well and the total current density is

obtained from the expressions given above with an addi-
tional factor 2. However, both the boundary conditions and
the phases in the periodicity conditions can be different for
s ¼ þ1 and s ¼ −1. In particular, we can combine various
boundary conditions of the form (6.6) with different values
of the parameters uj for separate fields. The corresponding
VEVs for the current density for s ¼ þ1 and s ¼ −1 are

obtained from the formulas given above. An example of a
condensed matter realization of the problem with different
phases in the periodicity conditions for the fields ψ ðþ1Þ and
ψ ð−1Þ is provided by semiconducting carbon nanotubes
(see below).
Among the most important applications of D ¼ 2

fermionic models are the so called Dirac materials. They
include graphene, topological insulators and Weyl semi-
metals. For these materials the long-wavelength excitations
of the electronic subsystem are well described by the
Dirac equation with the velocity of light replaced by the
Fermi velocity vF. Here we specify the consideration for
graphene. For a given quantum number S ¼ �1, cor-
responding to spin degrees of freedom, the analog of
the Lagrangian density (7.1) with N ¼ 2 is written for a
4-component spinor field ΨS ¼ ðψþ;AS;ψþ;BS;ψ−;AS;
ψ−;BSÞT . Here, the indices þ and − correspond to two
inequivalent Fermi points at the corners of the Brillouin
zone (points Kþ and K−) and the indices A and B
correspond to the triangular sublattices of the graphene
hexagonal lattice. The separate components of ΨS present
the corresponding amplitude of the electron wave function
(see, for example, [41]). For the fields we have introduced
before one has ψ ð�1Þ ¼ ðψ�;AS;ψ�;BSÞT . The mass term in
the Dirac equation is expressed in terms of the energy gap
Δ by the relation m ¼ Δ=v2F. This gap can be generated by
a number of mechanisms. For the corresponding Compton
wavelength one has aC ¼ ℏvF=Δ.
The graphene is an interesting arena for investigation of

various kinds of topological effects in field theory (for
topological effects in condensed matter physics see, for
example, [42]). The graphene made structures with non-
trivial topology include fullerens, carbon nanotubes and
nanoloops, and graphitic cones. They all have been
experimentally observed. The spatial topology of the
problem with D ¼ 2, we have considered above, corre-
sponds to that for carbon nanotubes (topology S1 × R1). In
graphene nanotubes the phases in the periodicity conditions
(2.3) for the fields ψ ðsÞ depend on the chirality of the tube.
For metallic nanotubes one has α1 ≡ α ¼ 0 for both the
fields s ¼ þ1 and s ¼ −1. For semiconducting nanotubes
the phases have opposite signs for spinors corresponding to
the points K� and α ¼ �2π=3.
For a cylindrical nanotube rolled-up from a planar

graphene sheet the spacetime geometry is flat. The corre-
sponding VEVof the fermionic current density induced by
the threading magnetic flux has been discussed in [16] for
infinite length tubes and in [18] for finite length tubes. For
the problem under consideration in the present paper, the
spatial geometry, written in terms of the angular coordinate
φ ¼ 2πx1=L, 0 ≤ φ ≤ 2π, is given by the line element
dl2 ¼ dy2 þ ðL=2πÞ2e−2y=adφ2 with y1 ≤ y ≤ y2. This
describes a finite length curved circular tube with the
radius r ¼ Le−y=a=2π depending on the coordinate along
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the tube axis (for the curvature effects in graphene structures
see also [43,44]). The corresponding 2-dimensional surface
with two edges, embedded in 3-dimensional Euclidean
space, is depicted in Fig. 5. In the figure we have also
shown the magnetic flux enclosed by the curved tube.
The graphene tubes with spatial geometry described by
the line element dl2 have been discussed in [44]. The
geometry corresponds to Beltrami pseudosphere with
Gaussian curvature −1=a2. The generation of a pseudo-
sphere configurations from a planar graphene sheet has been
recently discussed in [45] (see also the references therein).
The corresponding curvature radius varies in the range
1.5 nm < a < 74 nm. Examples of wormhole geometries
realized by curved graphene sheets have been considered
in [46]. An important difference in the geometry we con-
sider is that g00 ¼ e−2y=a ≠ 1. A number of mechanisms
have been discussed recently for generation of the nontrivial
g00-component of the metric tensor for the low-energy
effective field theory describing the dynamics of electrons
in graphene. This can be done by various types of external
fields, by deformations of graphene lattice (strains), and by
the local variations in the Fermi velocity (for reviews
see [47]).
In graphene tubes with the geometry under consideration

the current density for a given spin S is obtained by

summing the contributions hjμðsÞi coming from the fields

ψ ðsÞ corresponding to the points K�. In the expression for
the corresponding operator for spatial components an
additional factor vF should be added, jμðsÞ ¼ evFψ̄γ

μ
ðsÞψ

(with e ¼ −jej for electrons). The expressions for hjμðsÞi are
obtained from the formulas given above taking D ¼ 2,
p ¼ 0, q ¼ 1. We can also express the productma in terms
of the Compton wavelength corresponding to the energy
gap asma ¼ a=aC. In the absence of the magnetic flux, the
VEV of the current density vanishes in both metallic and
semiconducting graphene tubes. In metallic tubes the
separate contributions hjμðsÞi are zero, whereas in semi-

conducting tubes hjμð−1Þi ¼ −hjμðþ1Þi (assuming that the

boundary conditions on the edges of the tube are the same
for separate fields) because of the opposite signs of the
phases in the periodicity conditions. Nonzero net currents
may appear in the presence of the magnetic flux enclosed
by the tube. In the absence of the magnetic flux, nonzero
ground state currents in semiconducting tubes can be
alternatively generated by imposing different boundary
conditions on the edges for separate fields ψ ðþ1Þ and ψ ð−1Þ.
In Fig. 6 we have plotted the edge contribution in the

fermionic current density, hJμib ¼ hJμi − hJμi0, in semi-
conducting tubes as a function of the enclosed magnetic
flux (in units of flux quantum). The total current density
(for a given S) is obtained summing the current densities for
the fields ψ ðþ1Þ and ψ ð−1Þ with the phases in the periodicity
condition 2π=3 and −2π=3, respectively. The left and right
panels correspond to the boundary conditions (2.5) and
(5.1), respectively. The graphs are plotted for L=z1 ¼ 0.5,
0.75, 1 (the numbers near the curves) and for fixed
a=aC ¼ 1, z2=z1 ¼ 2, z=z1 ¼ 1.5.
In Fig. 7 the edge-induced current density is displayed as

a function of the tube coordinate circumference for semi-
conducting nanotube. The curves I and II correspond to the
boundary conditions (2.5) and (5.1), respectively, for both

FIG. 6. The edge-induced current density as a function of the magnetic flux for semiconducting nanotubes. The left and right panels
correspond to the boundary conditions (2.5) and (5.1). The graphs are plotted for a=aC ¼ 1, z2=z1 ¼ 2, z=z1 ¼ 1.5 and the numbers near
the curves are the values of the ratio L=z1.

FIG. 5. The D ¼ 2 spatial geometry with two edges
embedded in R3.
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the fields ψ ðþ1Þ and ψ ð−1Þ. The curve Iþ II and the dashed
curve correspond to the situation when the boundary
condition (2.5) is imposed for the field ψ ðþ1Þ and the
boundary condition (5.1) for the field ψ ð−1Þ. The graphs I,
II, Iþ II are plotted for the magnetic flux Φ ¼ 0.4Φ0 and
the dashed graph corresponds to Φ ¼ 0. For the values of
the remaining parameters we have taken a=aC ¼ 1,
z2=z1 ¼ 2, z=z1 ¼ 1.5. The dashed curve in Fig. 7 presents
an example where a nonzero current density is generated in
the absence of magnetic flux by imposing different
boundary conditions on separate fields corresponding to
different Fermi points.
Note that we have considered a model where the only

interaction of the fermionic field is with background
classical gravitational and electromagnetic fields. The
effects of geometry, topology and boundaries in models
with four-fermion interactions have been discussed in [48].
The geometrical and topological aspects of electronic
interactions in graphene and related materials are reviewed
in [49].

VIII. CONCLUSION

Among the most important local characteristics of the
vacuum state for charged fields is the VEV of the current
density. We have studied the effects of two parallel branes
on the current density in locally AdS spacetime with a part
of spatial dimensions (in Poincaré coordinates) compacti-
fied to a torus. Along compact dimensions quasiperiodicity
conditions were imposed with general values of the phases
and the presence of a constant gauge field is assumed. The
influence of the latter on the physical properties of the
vacuum state is of Aharonov-Bohm type and is related to
the nontrivial topology of the background geometry. On the
branes we have considered several types of boundary
conditions including the ones arising in Z2-symmetric

braneworld models. In the region between the branes,
the eigenvalues of the radial quantum number are zeros
of the combinations of the Bessel and Neumann functions.
The mode sum for the VEVof the current density contains
series over those eigenvalues. In order to find an integral
representation, convenient in numerical calculations, we
have used a variant of the generalized Abel-Plana formula
that allowed to extract explicitly the brane-induced con-
tributions. For all the boundary conditions discussed, the
VEVs of the charge density and of the components of the
current density along uncompact dimensions vanish.
In the investigation of the current density along compact

dimensions, first we have considered the case of the bag
boundary condition that is the most frequently one used for
confinement of fermionic fields. In the region between the
branes the lth component is presented as (4.17) where
the brane-induced contribution is explicitly extracted. The
vacuum currents in the absence of the branes were inves-
tigated in [25] and here we were mainly concerned about
the brane-induced effects. We have also provided repre-
sentations, given by (4.8) and (4.18), with the separated
contribution of the second brane when one adds it to the
configuration with a single brane. The effects of the phases
in the periodicity conditions and of the gauge field are
encoded in the parameters α̃i. All the contributions to the
lth component of the current density are odd periodic
functions of α̃l and even periodic functions of α̃i, i ≠ l, with
the period 2π. In terms of the magnetic flux enclosed by the
compact dimension, this correspond to the periodicity with
the period equal to the flux quantum. An alternative
representation of the current density, well adapted for
the investigation of the near-brane asymptotic, is given
by (4.23). Unlike to the initial representation (4.5), the
series over the eigenvalues of the radial quantum number is
exponentially convergent. The new representation also
explicitly shows the finiteness of the current density on
the branes. The latter feature is in clear contrast to the on-
brane behavior of the fermion condensate and of the VEV
of the energy-momentum tensor having surface divergen-
ces. The current density, integrated over the region between
the branes, is connected to the on-brane values of the
current density by a simple relation (4.28).
The general expression for the current density is rather

complicated and, in order to clarify its behavior as a
function of the parameters, we have considered various
asymptotic limits. First of all, in the limit of large curvature
radius the result is obtained for the geometry of two parallel
plates in a locally Minkowski spacetime with a toroidal
subspace, previously discussed in [18]. For a massless
fermionic field, the problem under consideration is con-
formally related to the corresponding problem in locally
Minkowski bulk and the current density is given by a
simple expression (4.32). In the limit when the right
brane tends to the AdS horizon, for fixed location of the
left brane and of the observation point, the corresponding

FIG. 7. The edge-induced current density as a function of the
tube coordinate circumference for curved semiconducting nano-
tubes. The graphs are plotted for different choices of the boundary
conditions on the tube edges. For the values of the related
parameters see the text.
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contribution to the current density is exponentially sup-

pressed by the factor e−2z2k
ð0Þ
ðqÞ, with kð0ÞðqÞ defined by (4.33).

When the location of the left brane tends to the AdS
boundary, the corresponding contribution to the vacuum
current decays like z2maþ1

1 .
If the length of the lth compact dimension Ll is much

smaller than the other length scales in the problem,
including the difference z2 − z1, the brane-induced con-
tribution to the current density along that direction is
suppressed by the factor exp½−2ðz2 − z1Þjα̃lj=Ll� and the
total current is dominated by the brane-free part. For large
values of Ll, the current density is dominated by the mode
with the lowest value λ ¼ λ1=z1 of the radial quantum
number and the current density is suppressed by the factor

exp½−Ll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21=z

2
1 þ kð0Þ2ðq−1Þ

q
�. The behavior of the lth compo-

nent of the current density for small values of the length Li,
i ≠ l, crucially depends whether the phase α̃i, jα̃ij < π, is
zero or not. For α̃i ¼ 0 the dominant contribution
comes from the zero mode along the ith dimensions
and, to the leading order, the current density hjli is
expressed in terms of the corresponding current density
in D-dimensional spacetime with excluded ith dimension.
In the case α̃i ≠ 0, the VEV hjli is suppressed by the
factor e−2ðz2−z1Þjα̃ij=Li.
The investigation of the current density for the boundary

condition (5.1) is done in a way similar to that in the case of
the bag boundary condition. The corresponding current
density in the region between the branes is decomposed as
(5.8). For the mass range ma < 1=2, an important differ-
ence when compared to the bag boundary conditions
appears in the limit when the left brane goes to the AdS
boundary (z1 → 0). An additional contribution survives
(last term in (5.11)) that can be interpreted as some kind of
memory from the boundary condition we have imposed on
the brane at z ¼ z1. Yet another two classes of boundary
conditions arise in Z2-symmetric braneworld models. They
correspond to the sets ðu1; u2Þ with u1 ¼ u2 in the con-
ditions (6.6). The corresponding current densities are given
by (6.7) with μ ¼ maþ u1=2. The memory effect in the
limit z1 → 0 is present for the boundary condition with
u1 ¼ −1. Depending on the boundary conditions imposed,
the presence of the branes can either increase or decrease
the current density. In braneworld models of the Randall-
Sundrum type the observers are localized on the right brane
and it is of interest to investigate the effects of the hidden
brane on the current density on the visible brane. The part
of the vacuum current induced by the hidden brane is given
by (6.8). For the solution of the hierarchy problem between
the electroweak and Planck energy scales it is required to
have z2=z1 ≫ 1. In this limit the behavior of the hidden
brane-induced current essentially depends on the lengths of
compact dimensions and is different for z1=Li ≳ 1
and z2=Li ≲ 1.
In odd-dimensional spacetimes, the models with massive

fermionic fields realizing irreducible representations of the

Clifford algebra are not parity and time-reversal
invariant. Fermionic models with parity and time-reversal
symmetry are constructed combining two fields corre-
sponding to inequivalent representations. If the periodic-
ity conditions along compact dimensions and the
boundary conditions on the branes are the same for
separate fields, when the current densities for those fields
are the same as well and the expressions for the total
current density is obtained from those presented with an
additional factor two. However, both the periodicity and
boundary conditions can be different for fields realizing
inequivalent representations of the Clifford algebra. An
example of D ¼ 2 fermionic system with that type of
situation is provided by semiconducting carbon nano-
tubes, with the electronic subsystem described by the
Dirac model. In the corresponding setup the phases for
separate fields have opposite signs and, in the absence of
the magnetic flux, the corresponding current densities
cancel each other if the boundary conditions for the
fields are the same. In the case of different boundary
conditions on the tube edges for separate fields, a
nonzero current can be generated in the absence of
magnetic flux. Curved graphene structures provide an
important laboratory for the investigation of curvature
and topological effects in quantum field theory. The
special case D ¼ 2 of our model presents an exactly
solvable problem of that kind.
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APPENDIX: SUMMATION FORMULA
OVER THE ZEROS OF COMBINATIONS OF

CYLINDER FUNCTIONS

In this Appendix we derive a summation formula over
the positive zeros x ¼ λðδÞμ;n, n ¼ 1; 2;…, of the function
gμþδ;μðx; ηxÞ, with δ ¼ 0;�1 and η > 1, by using the more
general result from [50,51]. Note that the equation
gμþδ;μðx; ηxÞ ¼ 0 includes the equations for the eigenvalues
of the radial quantum number λ for the boundary conditions
on a fermionic field we have discussed above. Namely, one
should take μ ¼ ma − 1=2, δ ¼ 1 for the condition (2.5),
μ ¼ maþ 1=2, δ ¼ −1 for the condition (5.1), and
μ ¼ ma� 1=2, δ ¼ 0 for the remaining two boundary
conditions discussed in Sec. VI. In [50,51], on the base
of the generalized Abel-Plana formula, a summation
formula is derived for the series over zeros of the
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function J̄ðaÞμ ðxÞȲðbÞ
μ ðηxÞ − ȲðaÞ

μ ðxÞJ̄ðbÞμ ðηxÞ with the nota-

tions f̄ðjÞμ ðzÞ ¼ AjfðzÞ þ Bjzf0ðzÞ, where j ¼ a, b, and Aj,
Bj are constants. We take in that formula special values

Ab ¼ 1, Bb ¼ 0, Aa ¼ μjδj, Ba ¼ −δ. By using the recur-
rence relations for the modified Bessel functions the
following formula is obtained

X∞
n¼1

hðλðδÞμ;nÞTðδÞ
μ ðη; λðδÞμ;nÞ ¼ 2

π2

Z
∞

0

hðxÞdx
J2μþδðxÞ þ Y2

μþδðxÞ
þ 1

2π

Z
∞

0

dx
½hðxeπi=2Þ þ hðxe−πi=2Þ�KμðηxÞ=KμþδðxÞ
IμþδðxÞKμðηxÞ − ð−1ÞδKμþδðxÞIμðηxÞ

; ðA1Þ

where hðzÞ is an analytic function in the right half-plane of
the complex variable z, IμðxÞ, KμðxÞ are the modified
Bessel functions and

TðδÞ
μ ðη; xÞ ¼ x

J2μþδðxÞ=J2μðηxÞ − 1
: ðA2Þ

Note that the function in the denominator of the second
integral in (A1) is equal to Gμþδ;μðx; ηxÞ [see (4.9)].
The function hðzÞ may have branch points on the

imaginary axis that should be avoided by small semicircles
in the right half-plane. Depending on the behavior of the

function hðzÞ near the origin, a residue term at z ¼ 0 may
be present in the right-hand side of (A1) (see [51]). The
corresponding contribution to the current density is can-
celled by the contribution of the fermionic zero mode (for
the case of a scalar field see [28]). By using the relation
between the functions I�μðxÞ and KμðxÞ, it can bee seen
that for δ ¼ 0 one getsGμ;μðx; ηxÞ ¼ Gjμj;jμjðx; ηxÞ < 0. For
δ ¼ �1 and μ ≥ 0 one has Gμþδ;μðx; ηxÞ > 0. In particular,
from here it follows that for the boundary conditions we
have discussed above and for ma ≥ 0 there are no
fermionic modes with purely imaginary λ.
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