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We study the gauge-covariance of the massless fermion propagator in reduced quantum electrodynamics
(QED). Starting from its value in some gauge, we evaluate an all order expression for it in another gauge by
means of the Landau-Khalatnikov-Fradkin transformation. We find that the weak-coupling expansions thus
derived are in perfect agreement with the exact calculations. We also prove that the fermion anomalous
dimension of reduced QED is gauge invariant to all orders of perturbation theory except for the first one.
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I. INTRODUCTION

The Landau-Khalatnikov-Fradkin (LKF) transformation
[1] (see also [2,3]) is an elegant and powerful transformation
allowing one to study the gauge-covariance of Green’s
functions in gauge theories. In the latter, gauge freedom
is implemented by a covariant gauge fixing procedure that
introduces an explicit dependence of Green’s functions on a
gauge fixing parameter £ The LKF transformation then
relates the Green’s functions in two different £ gauges. Of
course, physical quantities should not depend on &. But
important information can be obtained by studying the ¢
dependence of various correlation functions.

In its original form, the LKF transformation was applied
to the fermion propagator (and also to the fermion-photon
vertex that will not be discussed here) of four-dimensional
quantum electrodynamics (QED,), which is the primary
example of an Abelian gauge field theory. Since then, it has
been extensively used in studies of QED in various
dimensions, see, e.g., [4—11] and, more recently, in their
generalization to brane worlds [12] that we shall come back
to in the following and also to non-Abelian SU(N) gauge
field theories [13,14].

As awell-known application, let us first mention its crucial
role within the study of QED Schwinger-Dyson equations;
see, e.g., [4—6], where any viable charged-particle-photon
vertex ansatz has to satisfy the LKF transformation, both for
scalar [7] and spinor QED [8]. Another notable application
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[9,10] that will be closer to our present concerns is devoted to
estimating the large order behavior of perturbative expan-
sions. Namely, the nonperturbative nature of the LKF trans-
formation fixes certain coefficients appearing in the all-order
expansion of the fermion propagator. Given a perturbative
propagator written for some fixed gauge parameter, say #, all
the coefficients depending on the difference between the
gauge fixing parameters of the two propagators, i.e., £ — #, get
fixed by the weak-coupling expansion of the LKF-trans-
formed initial propagator. Recently, such a procedure allowed
to prove [11] the so-called “no-z theorem” [15-19], e.g.,
cancellations involving ¢,, (or equivalently 7%") values in the
perturbative expansion of Euclidean fermion propagator in
massless QED,, thereby clarifying the transcendental struc-
ture of the latter.

In the present paper, we apply the LKF transformation
to the fermion propagator of massless reduced QED or
RQEDdV’de; see Refs. [20-22] and references therein. The

latter is an Abelian gauge theory where the photon and
fermion fields live in different space-time dimensionalities,
namely, the photon is in d, dimensions whereas the fermion
fields are confined to d, dimensions, where we take d, < d,.
We shall focus on the special case of RQED, 5 which is an
effective field theory for the so-called planar Dirac liquids,
i.e., condensed matter physics systems whose low-energy
excitations have a gapless linear, relativisticlike linear dis-
persion relation and where electrons are confined to a plane
(d, = 2 + 1) while interacting via the exchange of photons
that can travel through a d, = (3 + 1)-dimensional bulk. A
prototypical example includes graphene [23-25]. Nowadays,
planar Dirac liquids are well-observed experimentally and
are under active study in, e.g., (artificial) graphenelike
materials [26], surface states of topological insulators
[27], and half-filled fractional quantum Hall systems [28].
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Interest in RQED, 3 also comes from its connections to
QED; [29], which is quite often used as an effective field
theory of high temperature superconductors [30-32].

More specifically, we will focus on the case of massless
RQED, ;. Within the condensed matter context, a vanishing
fermion mass implies long-ranged (unscreened) inter-
actions among the electrons in the absence of doping
(the so-called intrinsic case). These interactions in turn
enforce the flow of the Fermi velocity, e.g., v~ ¢/300 at
experimentally accessible scales for graphene, to the
velocity of light, ¢, deep in the infrared (IR) with a
corresponding flow of the fine structure constant, €.g., @, =
e?/4mehv ~ 2.2 for graphene, to the usual fine structure
constant, a., ~ 1/137. Within this context, it is this IR
Lorentz invariant fixed point [33] that can be described by
massless RQED, 5 [22]. A thorough understanding of this
fixed point is a prerequisite to set on a firm ground the study
of the physics away from the fixed point which is closer to
the experimental reality. But this is more difficult to study
theoretically; see, e.g., [34], the interesting new work [35],
and also the recent reviews in Refs. [36,37].

The gauge-covariance of the fermion propagator of
massless reduced QED has already been considered in
[12]. Here, we carefully reconsider this problem using the
LKF transformation in the framework of dimensional
regularization. We not only focus on the bare propagator
but also on the renormalized one and provide a detailed
comparison between the weak-coupling expansion of LKF-
transformed quantities and earlier exact perturbative cal-
culations [21,22].

This paper is organized as follows. In Sec. II, we start by
introducing the position space LKF transformation for the
general case of reduced QED theories and then derive its
momentum space representation for QED, 5 that will be the
main subject of focus from there on. In Sec. III, a weak-
coupling expansion of this transformation is performed up
to two loops in the MS scheme and its matching with
existing perturbative results are discussed. A similar task is
carried out in Sec. IV for the renormalization constant and
the renormalized propagator. Additionally, we present a
proof of the purely one-loop gauge dependence of the
fermion anomalous dimension in reduced QED. Finally, in
Sec. V, we summarize our results and conclude. For
completeness, various other choices of scales are presented
in Appendix A and in Appendix B the LKF transformation
for reduced scalar QED is derived.

II. LKF TRANSFORMATION FOR REDUCED QED

We have the following action for reduced QEDd,,dei
SRQED = / d%xip,iD,y" y°

1 1
+/d‘lrx[—ZFWF”’“—2—§(8ﬂA”)2 , (1)

where ¢ is the gauge fixing parameter and the flavor index ¢
runs from 1 to Ng. In Eq. (1), the volume elements show
that the fermion fields y, are confined to d, dimensions
whereas the gauge field mediates the interaction through d,
space-time dimensions. In explicit form, the (Euclidean
space) photon propagator in reduced QEDs reads [20], [38]

U PO —e) (g 594
s (095 @

D (q) =

where &=¢, + (1 —¢,)¢ is the reduced gauge fixing
parameter while we may refer to the original gauge fixing
parameter £ as the bulk one. In the following, all results will
be presented in Euclidean space (d, =4 -2, d. =
d, — 2¢,) for QEDdy_de by analogy with the case of QED;,.

A. LKF transformation in position space

We assume that the fermion propagator Sy (p, ) in some
gauge ¢ takes the following general form:

Sp(p.&) = —%P@,a, 3)

where p = y¥p,, which contains Dirac y matrices, has been
factored out and P(p,¢) is a scalar function, i.e., its
momentum dependence is only via p?. By analogy, the
position-space representation Sp(x,£) of the fermion
propagator can be written as

Sp(x. &) = 3X(x.§), (4)

where Sg(x, &) and Sg(p, &) are related to each other with
the help of the Fourier transform

d9x

Sr(p.¢) :/WEWSF(X’@)’ (5a)

d
Sp(x, &) = / %e—wsﬂp,@. (5b)

In position space, the LKF transformation [1,2] connects
in a very simple way the representations of fermion
propagators written for different gauge parameters ¢
and 7. In dimensional regularization, it takes the following
form:

Sk(x.8) = Sp(x,n)eP=PO, (6)
where [12]

ddep e—ipx

(2z)% (p?)*7e’

A=¢—n,

(7)

D(x) = fleo) At /
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and the prefactor is given by

F(Z - 8e)
f(ge) - (4”)ge (8)
and follows from the longitudinal part of the photon
propagator in Eq. (2) above. As in the case of QED,,
see [11], D(0) is proportional to the massless tadpole and
therefore vanishes in dimensional regularization. Hence,
Eq. (6) takes the simpler form

Sp(x. &) = Sp(x,n)ePt, 9)

and the remaining task is to compute D(x). This can be
achieved using the following simple formulas for the
Fourier transform of massless propagators (see, for exam-
ple, Ref. [39]):

ipx 22& d/2 (& d
/ddx€2 :w, a(a):ﬂ, d==—a,
X p® I'(a) 2
(10a)
e—ipx 22dﬂ.d/2a a
/ddp 2a T 2 ( ) (IOb)
p X

We would like to note that the use of the Euclidean metric
simplifies the Fourier transforms, thereby illuminating the
appearance of additional factors such as i¥, where i is the

imaginary unit and the factor k is & independent.
So, for RQEDdV.de, we have

D) = acixp-ir D
= AAL(d, /2 = 2)(npPx?)?=%/2, (11)

2

— %m __ _e
where A = 72 = G

Making the dependence on the parameter ¢ explicit (here
and below we shall set g, =¢€ and dy = d), we finally arrive
at the expression

D(x) = -A—:‘r(l — ) (). (12)

Remarkably, the parameter ¢, has completely disappeared
and Eq. (12) has exactly the same form as in QED, with a
common factor AA, accompanied by the singularity &,
contributing to D(x).

Hereafter, we shall only consider the case d. = 3, i.e.,
RQEDdyﬁ, which corresponds (as d, — 4) to the ultra-

relativistic limit of graphene (see Ref. [20]). Note that, as it
was shown in [34], an application of dimensional regu-
larization is very convenient in the nonrelativistic limit as
well, i.e., where the particles interact via the (instantaneous)
Coulomb interaction.

B. LKF transformation in momentum space

Let Sp(p,n), the fermion propagator for some gauge
parameter # and external momentum p, take the form (3)
with P(p,n) having an expansion

Pp) =S anina ()"

m=0

which is appropriate for the massless case relevant to the
present study (as explained in the Introduction, it corre-
sponds to the ultrarelativistic limit of planar Dirac liquids)
[40]. In Eq. (13), the a,,(n) are coefficients of the loop
expansion and /i the renormalization scale,

B = 4m®, (14)

which lies somewhere between the MS scale u and MS
scale 1. Then, the LKF transformation shows that for
another gauge parameter £, the result has the form

P(p.&) = an(E)A” (‘;) "y
m=0

where now

'(3/2—=(m+ 1)e)

© (1 + (m+ De)T'(1 - €) (AA) [
XZ IT(3/2 = (m+1+1)e) (_8)1( > .

A (é) =

=0
(16)

In order to derive Eq. (16), we used the fermion propagator
Se(p,n) with P(p,n) given by Eq. (13) took the inverse
Fourier transform to Sg(x,#) and applied the LKF trans-
formation (9) in position space. As a final step, we took the
Fourier transform back to momentum space and obtained
Sg(p, &) with P(p,&) in (15). Let us also note that
expansions similar to (13) and (16) can also be expressed
in Minkowski space with the help of the replacement

p* = —p*.

C. MS scheme

Now let us focus on the MS scale ji, which is equal (in
the most standard definition) to

B = pre, (17)

where yr is the Euler-Mascheroni constant. As is well
known, the MS scale completely subtracts out the universal
factors of y from the e-expansions.

In the MS scheme, we can rewrite the result (16) in the
following form:
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e + 1))
=Y S T e

l=0

w d(m, 1,e) 24

= < )k’ 18)

where we have purposefully extracted the factor (1 —
2(m+1)e)/(1 =2(m + 1+ 1)) from ®(m, 1, ) in order
to have equal transcendental level, i.e., the same s values of
¢, in the e-expansion of ®(m, 1, €) (see below). As will be
shown below, the factor &)(m I, &) reading

r(1/2 = (m+ De)T(1 +
T(1+ me)l(1/2 -

(m + DT(1 =)
(m+ 1+ 1)e)elree
(19)

®(m,l,e) =

can be written as an expansion in the {; (i > 2) Euler
constants. Note that the yz-dependent term arises from the
redefinition (17) of the scale i — ji.

At this point, it is convenient to reexpress the I functions
with arguments close to half-integer ones using the stan-
dard property (Legendre duplication formula)

2a-1

T(a)(a+ 1/2), (20)

which leads to the following relation:

L(1/2—(m+1)e) 1 T(1-2(m+ 1))
F(1/2—=(m+1+1)e) 22 T(1—(m+ 1)e)
I(1—(m+1+ 1))

“TU—2m+it e 2V
Then, we may write
®(m, 1, €) :Ecb(m,l, €), (22)
with
CT(1=2(m + De)T(1 + (m + I)e)
®lm. 1 e) = T(1 = (m + 1)e)T(1 + me)
(L= (m+ 14 De)r'(1 —e) 23)

C(1=2(m+ 1+ 1)e)elree

and Eq. (18) can be represented as

© A 1 =2\ le
thmlg f)‘[)l!<”—2>, (24)

=0

with

1-2(m+1)e
1-2(m+1+1)e

®(m,le) = ®(m,l,e). (25)

We would like to draw the attention of the reader to
the redefinition of the argument in the rh.s. of (24):
i#?/p* — i?/(4p?). Such a redefinition amounts to sub-
tracting factors of In2. As we shall see below, it agrees
with the exact perturbative calculations done with the MS
scale (see [22]). Note that the latter include an additional
negative sign for momentum squared in the denominator
because the results of [22] were given in Minkowski space.
Therefore, p% = —p?, under Wick rotations in the mostly
minus signature that was used in that paper.

D. g-expansion

Let us recall that the I'-function I'(1 + fe) has the
following expansion around 1:

1+ ) = exp| e+ S_(-mpre|. =S
s=2

So, the factor ®(m, 1, ¢) can be written as

®(m,l, &) = exp

imps(m, l)ss} : (27)

s=2

where (but now including s > 1)

=2°=D{(m+1)=(m+1+1)"}
+ (1 + )+ (=) {(m+ 1) —m*} (28)

(8} is the Kronecker symbol) and indeed,

ps(m,1)

pi(m, 1) =0, —1(dm+5+2I), (29)

pa(m, 1) =
i.e., the MS scale takes out the Euler constant y; from
consideration.

As can be seen from Eq. (27), the factor ®(m, 1, ¢)
contains ¢, values with the same weight s in front of &°.
This is rather similar to what was found in Ref. [41].
In some cases, such a property allows to derive results
without any detailed calculations (as in Ref. [42]). In other
cases, it simplifies the structure of the results, which can
be predicted as an ansatz in a very simple way (see
Refs. [43,44]). For recent applications of this property to
QCD and super Yang-Mills, see the papers [45] and
references and discussions therein.

Recently, this property was also applied to the LKF
transformation of QED, in [11] by some of the present
authors. Combined with an appropriate choice of scale, it
led to an all-order proof [11] that the perturbative series can
be exactly expressed in terms of a hatted transcendental
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basis that eliminates all even { values, i.e., the no-z theorem
[15-19]. In the case of QED,j3, the situation is not so
simple. As can be seen from Eq. (29), the fact that
pa(m,l) # 0 means that {, values cannot be subtracted
out, unlike in the even-dimensional case [11]. As shown in
Appendix A, other choices of scale are possible but do not
further simplify the transcendental structure of this (parti-
ally) odd dimensional theory; see also Ref. [46] for an
early study.

Thus, in this section, we have obtained a series repre-
sentation, Eq. (24), for the LKF transformation of the
fermion propagator of reduced QED,3; in the MS
scheme (see Appendix A for other choices of scales and
Appendix B for an analogous expression in the case of
reduced scalar QED). We now need to verify that the gauge
dependence produced by this transformation agrees with
exact perturbative results (known in the literature up to the
two-loop order). The next two sections are devoted to
this task.

III. LKF TRANSFORMATION FOR THE BARE
FERMION PROPAGATOR

A. Bare fermion propagator

The calculations of the photon and fermion propagators
in the framework of the reduced QED have been done in
Refs. [20-22], respectively (see also the recent reviews
in [36,37]).

The fermion propagator (3) can be represented in the
following form:

1
P(p.¢&) = 1

- z:v(Pz’ f) 7 (30)

where the fermion self-energy =, (p?, &) can be written
with next-to-leading order (NLO) accuracy as

Zy(p? &) = Ziy(p?, &) + oy (P, &). (31)

Here, X,y (p?, &) and 2,y (p?, £) are the one- and two-loop
contributions to the self-energy. Their bare contributions
can be represented in the following simple form [47]:

=72 e
LMﬁ@—AiwaG;y, (32)

where the coefficients X;,(£) are now just expressions
without z or p dependence anymore.
The one-loop term Xy, (£) takes the following form [22]:

— 1-3 10
Ze) =g — 2
112 7(1 -
+(—27 —-8¢— ( g 5)c:2>e+0(62) (33)

The two-loop term, X,y (&), can be represented as a
sum of three contributions corresponding to three distinct
Feynman diagrams [22],

oy (&) = Zoav (&) + Zopv (&) + Zaev (&), (34)

with
Zav(€) = —4Ng$, <l+ 21n4> + 0(e), (35a)
_ 1-382 /11 7\ 1-3¢& 206
Zw@:L@¥*G?3>g T8
22

r20e-6e -0 Lo, @)
- 1382 [ 37 (34-39¢)8\ 1
Zoev(€) = —(9%+ (_ﬁ+(97®§>g

1390 5328, T1421638-2)
81 27 228+ 9 &
+0(e). (35¢)

We note that the part X,y (£) is & independent and, thus,
the full result can be represented in the form

oy (&) = Zoav + Zopev (&), (36)

where the contribution

Zopev(€) = Zapy (€) 4+ Zoev (6) (37)

has the following expression:

Zaer(®) =~ 2 (13- 3608 - )
- 8—81 (148 — 36(26 — 27¢))
+f—§(128+5(1—3§)2)+0(e). (38)

As for the propagator itself, at the NLO approximation,
Eq. (30) can be rewritten as

P(pvé) = 1 +21V<p2"§) +Z%V(p2’ 5) +Z2V(p27§) + T
(39)

where X, (p?) has the form (32) with /=1 and the
contribution X2,,(p?) + Z,,(p?) can be represented as

~ 2\ 2
Zhy (P &) + Ty (p?. &) = A (Zaay + Zapev (€)) <4ﬂPﬂ> ’

(40)
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with

Zopev(€) = Tapev (&) + 22 (8)
C(1-3g2 12 16,
ES VN

18¢2 €
64 1 ,
+§2<?—§(1 - 3¢) )

4

op (215 +36(70-818) + 0(e).  (41)

Let us note that the last term iz,,cv(f) contains all the &
dependence at the NLO level of accuracy.

B. LKF transformation

With the help of the results of Secs. I C and IIT A above,
we can deduce that the one- and two-loop results for the
fermion propagator in two different gauges are related to
each other in the following way:

0(6) =fw<n>+fw<n><i><o,1,e>(f—8),

v (E) + 2ty (&) =Zoy () + 23y () +Z1v (1) (1.1, €)

(42a)

A _ _
X ——+Zgy (17)P(0.2,¢)

& -

(42b)

Taking # = 0, i.e., starting from the Landau gauge and
the fact that the contribution X,,, is gauge invariant, we
have that

Ziy(€) =Ziy(E=0) + (0. 1,¢) % (43a)
Topev(€) = Zoper (€ = 0) + Zpy (€ = 0)D(1, 1, ¢) (_ig)
- &
FB(0.2.) 5% 5. (43b)

where the results for X, (£ = 0) and izbcv(f =0) can
be obtained from Egs. (33) and (41) after setting & = 0.
This yields

_ 1 10 112 7
Zy(E=0)=r+5+ <27_6

PR g“z)s—l— O(e*), (44a)

1 2 119 860

74’2_7

Taev(§=0) = 255, T T3 81

+ O(e). (44b)
With the help of Egs. (25), (27), and (28), we find that the

expansions of <i>(m, 1, €) for the cases of interest read

- 7
®(0,1,¢) =1 +2e+ <8 —552>52, (45a)

11
D(1,1,e) =1+2¢+ (12—2C2>52, (45b)

®(0,2,€) = 1 +4e+ (24 —98,)e. (45c¢)

Then Eq. (43), together with the expressions of X,y (£ = 0)

and i%cv(i =0) in (44a) and (44b) as well as the
e-expansions of Eq. (45), immediately allows to reproduce

the full results for (&) and .y (£) presented in the
previous sections, Egs. (33) and (41).

Thus, we have verified that the bare results for X,y (£)
and 3.y (&) are exactly in agreement with the LKF
transformation (using dimensional regularization, our der-
ivations proceed without any replacements involving a cut-
off parameter A and the scale u as in the case of Ref. [12]).

IV. LKF TRANSFORMATION AND
RENORMALIZATION

A. Renormalized fermion propagator
in momentum space

Since all renormalized results are constructed from
the bare ones through the Bogoliubov-Parasiuk-Hepp-
Zimmermann (BPHZ) procedure (for a definition of the
procedure, see, for example, Refs. [22,37]), all results
including the renormalized ones must be in agreement with
the LKF transformation too.

In order to show this explicitly to the two-loop order, let
us first note that the fermion propagator given by Eq. (3) is
the unrenormalized one. It can be conveniently factored as

P(p.§) =Z,(A, 5P, (p.$), (46)

where we have taken into account the fact that A and &
are not renormalized in QED, 3, i.e., A, =A and £, =¢.
In Eq. (46), the renormalization constant Z, (A, &) and
the renormalized fermion propagator P,(p,&) can be
expanded as

+0o0 . )
Z,(A.8=1+Y 2,045 Z,©) =Y zy" (e,
=1

(47a)
+o0o
P,(p.&) =1+ Pu(p.&)A";
=1
+o L )
Pi(p.&) =Y P (p.&)el, (47b)
j=0

The renormalization constant and renormalized propagator
have been computed [22] up to two loops in reduced QED,
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for arbitrary e at one loop and to O(&) for the propagator.
The one-loop expressions read [22]

1-3
2, =%, (48
10 1-3
Plr(p’§>:3_T§Lp_2§
112 7¢, 10L, Lj
27 6 9 6
7 L2
—f(S—%—2LP+7p)>8+O(€2),
(48b)

where L, = In(4p?/ii*). The two-loop expressions are
given by [22]

Zyy () =123 4 (NFcz T i) ,

T 27 (492)

22
P2r(p’§> = 8NFC2(LP - 211’12) - 12 +7CZ +_Lp

27
L2
+1—§—g(32 — 68, — 16L, 4+ 3L3)

2
+ £ (4—C2 -2L, —&—%) + O(e). (49b)

Let us further note that these expressions allow one to
compute the fermion anomalous dimension up to two loops
with the help of the relation,

7048 =3 1 (OAL 1,8 =22y (). (50)
=1

yielding [22]

7y(A &) = ZA% — 16A2 <NF§2 + 24—7) +0(A%).

(51)

B. LKF transformation in momentum space

We shall now determine the LKF transformations of
Z,(&) and P;,(p.&) up to two loops and compare the
obtained results with those of the last subsection. In order
to proceed, we first note that, at NLO, Eq. (46) can be
written as

P(p, é:) =1 +A(Zh//(§) + Plr<pv ‘f))
+ A (Zy, (&) + Z1y, (O)P1,(p. )
+ Py (p.§)) +O(A%). (52)

Comparing (52) with (39) and using the notations of (32)
then yields

=72 €
Z1y(&) + Py (p28) = T1y(©) (ﬁ) |
(53a)

_ =2\ 2¢
25, () + 21, (E)P1,(p.&) + Py (p.E) =Zov () <4M_p2> )
Zoy =Zoy +3iy,
(53b)

where X,/ (&) has the following e-expansion:

S(E) =Y S (@6l (54)

=

The LKF transformations of Z,,,(£) and P, (p. &) can then
be obtained by identifying identical powers of ¢ on both
sides of Eq. (53).

At one loop, this straightforwardly yields

Z1,(8) = 2, (0) - .

8 (55a)

Plr(pvf) = Plr(p’o) + (Lp _2)5

2
- 5(3 - % oL, 4 %>e +0(e2), (55D)

where

< (1,—1
IR
€ 9

Zly/<0) =
P, (p.0) =27 (0) — L,y 7V (0)
_ _ L2
+ (29'1)(0) —1,59(0) + 225 1)(0)>s
+0(€?).

As for the two-loop case, we first note that

i2v<<f) = (8) + iZch(Zj)’ (57)

which in component form can be written as

=0 = 2570, (58a)
S0 = AN + 20 (), (58b)
S20(8) = —16NsLIn2 + E20(&).  (58¢)

where we restricted to ig,z'j)

Eq. (43b) yields

with j < 0. Then, using
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_ - ,
7O =570 + S -0, (592)
5200 = £207(0) +282 - 200 (0) - 26207 (0),
(59b)
$(20) gy _ 5(20) 5 9g2
Sy (6) =X, (0) + & 12 _ s (o)
—2£5190) - §<12 - %) =(0).
(59c¢)

We are now in a position to use (53b) and first focus on the
renormalization constant. In component form, we obtain

2
2876 = 28 720) - 2070 + 5 (00
Zf,,2‘_1>(§) _ ZIE,Z'_I)(O) I Lp((zl(”l,—l)(o))z _ 2Zl(,/2~—2)(0))
_ Z[([/Z,—l)(o)’ (60b)
where
7372(0) = £27(0). (612)

2y 7(0) = —aNpg, + 2070 (@) - 20V 020 0(0).
(61b)

In Eq. (60b), we used a renormalization constraint arising
from the finiteness of the fermion anomalous dimension in
the limit € — O whereby the coefficients Zl(,,l’_k) for [ > 1
and k = 2, ..., [ may be expressed in terms of coefficients
of lower [ and k. At two loops, there is only one constraint
Z372(8) = (2471 (#))2/2 which, when applied to (60b),
ensures that the renormalization constant does not depend
on L,. This agrees with the fact that renormalization
constants should not depend on masses and external
momenta in the MS scheme [48].

We may proceed in a similar way with the two-loop
renormalized fermion propagator. To leading order in the
e-expansion, it has the form

= Py, (p.0) +&(L, - 2)7(0)
— &4 -28 —2L, + L2)E7V(0)

P2r(p’ 5)

L2
iy <4 ¢ =2L,+ 7p> (62a)

P2y(p.0) = £y(0) = 2L,E77"(0) + 2L3E7 ) (0)
-2V 0)Zh Y (0)

<=1 j=(10) ey LB (1m1) 12

+ L2y T O 0) - (7 0)

(62b)

We are now in a position to compare the above derived
LKF expressions with the exact results presented in
Sec. IVA. At one loop, we find a perfect agreement for
the terms proportional to & between Egs. (55) and (48). At
two loops, we also find a perfect agreement for the terms
proportional to & between Egs. (60) and (49a) on the one
hand and between Eqgs. (62a) and (49b) on the other hand.
These results are in accordance with the fact that at I-loops,
the LKF transformation allows to fix exactly all terms
proportional to &.

Moreover, by extracting the values of the coefficients
fi,] ) (0) from Egs. (44a) and (44b) and substituting them in
Egs. (56), (61), and (62b), we immediately recover from
(55), (60), and (62a) the full results of Eqs. (48) and (49).

Finally, we note the remarkable fact that Eq. (60b) does
not depend on the gauge fixing parameter. From Eq. (50),
this implies that the two-loop fermion anomalous dimen-
sion is gauge invariant and is in agreement with (51).
Actually, we may extend such a remark to three loops
though no exact result is available yet at this order. All
calculations done, this yields (in the MS scheme) [49]

25y = L2 (634)
282 = - i, 4 9), (630)
2,70 =%70)
% <8NF(5 4 6In2) - 21425) + %,
(63¢)

where the first two terms are easily derived from renorm-
alization constraints [50], while in the third term the
Landau gauge coefficient f§,3 '_1)(0) is not known at the
time of writing. Nevertheless, Eq. (63c) is clearly gauge
invariant and so is the three-loop fermion anomalous

dimension.

C. Gauge dependence of y,,

In the last subsection, the LKF transformation revealed
that both the two- and three-loop fermion anomalous
dimensions are gauge invariant in reduced QED. We will
now show that this gauge invariance extends to all higher
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orders, see Refs. [51,52], for similar proofs in the case
of QED4

We proceed in x-space starting from the unrenormalized
fermion propagator of Eq. (9). Similar to the p-space case,
it is conveniently factored as

SF(x» ‘};) = Zx//(Av f)SFr(x’ é:) (64)

Taking the logarithm of Eq. (9) with D(x) given by Eq. (12)
and identifying powers of 1/¢ straightforwardly yields

AA
logZ,(A.¢) =logZ,(A.n) - o (65)

which simply translates an exponentiation of the gauge
dependence at the level of the renormalization constant. At
this point, let us recall that

dlogZ,(A. &)

ryw(A, &) = —p(A) By &r(A)

dlogZ, (A, €)
0& ’
(66)

where (A) is the beta function and y(A) is the gauge-field
anomalous dimension. The latter can be expressed as

BA) = —2A LS pAR. A =D pAl (67
=1 =1

where the coefficients satisfy #; = —y; (actually, they even
vanish in the case of RQED, ). Substituting Eq. (65) in
(66) and using (67) yield

ru(A.€) =7, (A,n) = 244, (68)

showing that all the gauge dependence is contained in the
one-loop contribution while all higher order corrections are
indeed gauge invariant.

V. SUMMARY AND CONCLUSION

In this paper, we have studied the gauge-covariance of
the fermion propagator of reduced QED with the help of
the LKF transformation in dimensional regularization. The
x-space transformation has been derived in the general case
of QEDdy,de and its structure, Eq. (12), was found to be
similar to QED,. Focusing on the odd-dimensional case,
d. =3 (together with d, = 4 — 2¢), we have then derived
the p-space LKF transformation in the form of a series
representation for the coefficients of the loop expansion of
the propagator in the MS scheme, Eq. (24) (see also
Appendix A for other choices of scales and Appendix B
for an analogous expression in the case of reduced scalar
QED). The series has been expressed in terms of a uniform
transcendental factor ®(m, 1, ), Eq. (23). The {-structure
of the latter [see Eq. (28) and discussion below it] is

transcendentally more complicated than in the four-
dimensional case [11] as expected from an odd-
dimensional theory [46]. We then performed a two-loop
expansion of the transformation for the bare fermion
propagator, Eq. (42), and also for the renormalization
constant and renormalized propagator, Eqgs. (55), (60),
and (62). Starting from the Landau gauge (£ =0) to a
general £-gauge, all these weak-coupling expansions were
found to fully agree with previously known exact perturba-
tive results up to the two-loop order. In particular, we have
checked that the LKF predicted coefficients of the form
(A&)! match with the perturbative results. Additionally, we
have presented a proof of the purely one-loop gauge
dependence of the fermion anomalous dimension in reduced
QED, Eq. (68). In conclusion, our analysis and in particular
our all order series representations, Eq. (24) and equivalent
ones in Appendix A, can of course be used beyond the
present two-loop accuracy of perturbative results. They
should provide some stringent constraints on future higher
order calculations in reduced QED.
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APPENDIX A: OTHER CHOICES OF SCALE

The calculations in the main text were all performed in
the MS scheme on the basis of Egs. (24) and (25).
Following [11], in this appendix we present three other
choices of scale which may be more convenient for future
higher loop computations: the g-scale, the reduced g- (or
gg-) scale and the MV-scale. We therefore define

S AA)! 2\ le
n(©) = an) @ mte) i (45 ) L (D

with

(1=2(m+ 1)e)

®@,(m,l.e) = (1=2(m+1+ 1e)

<I>p(m, le), (A2)

where p = g, gr, MV, and the following subsections will
focus on the computation of @ ,(m, [, €) for these scales. In
the four-dimensional case, these scales are particularly
efficient as they allow a complete subtraction of both the
Euler constant y and the {,-value [48,53]; see also [11] for
a recent application to QED,. As will be shown below, in
the present (d,, d,) = (4,3) case, only the Euler constant is
completely subtracted and one cannot avoid the prolifer-
ation of £, (as well as In 2) in accordance with the greater
transcendental complexity of odd dimensional field theo-
ries with respect to even ones [46].
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1. g-scale

First, let us consider the so-called G-scale [53] which
subtracts the coefficient in factor of the singularity 1/¢ in
the one-loop scalar p-type integral G(1, 1). Recalling that

a(a)a(p)

D) = e - apy

(A3)

where a(a) was defined in Eq. (10); the G-scale amounts to
the following substitution:

(1 —&)l(1 +é)
(2 - 2e)

W = feG(1.1) = fi (A4)

Following [15], a slight modification of this scale that was
referred to as the g-scale in [11] subtracts an additional
factor 1/(1 — 2¢) from the one-loop result, i.e.,

~2£F2(1 — E)F(l + E) )

2 — A5
ﬂ!] /,l 1—\(1 _ 28) ( )
With this choice of scale, we have
(1 - 2¢)
(D ) l? - (D l l’ _[}/Eg )
g(m €) (m,l,e) x e (1 - eT'(1 +e)
(A6)

where ®(m, [, €) is given by Eq. (23). Hence, we obtain

@,(m1.e) =exp| S mpe | (a7
where (for s > 1)
P (m, 1) = (20 = D){l+ (m+ 1) = (m+ 1+ 1)}
+(=D){(m+ 1) —m* =1} (A8)
and

P m,0) =0, p\% (m, 1) = 1(2° =2 = (=1)*) + p,(m, 1),

(A9)

i.e., the Euler constant yr is completely subtracted as
in (28).

2. Reduced g-scale

For reduced QED, it is more natural to consider the G
function G(1,1 —¢,) to define a scale, because it corre-
sponds to the one-loop master integral entering the fermion
self-energy in this theory. Thus, we write instead

ﬂgz _ ﬁ2£8(1 — 28)G(17 1 - Se)
~2¢ F(l — & — S)F(l _ S)F(l + 8)

= , A10
# [(1—e, - 2e) (A10)
which for RQED, 5 becomes
a2 T2 (1 —2e)(1
e =1 (1= 2¢)T(1 +¢) (A1)
IR 4e (1 —4e)
This leads to a @, function,
(1 —4e)
@, (m,l,e) = ®(m,l, ~lreegle .
(.1 £) = ®(m. 1) x e T2(1 = 26)0(1 + ¢)
(A12)
Hence,

@, (m,l €)= 4"exp [Zp 9r) (m, D)n,e ] (A13)
s=2

where
P (m, 1) = (25 = 1){(m + 1)* = (m + [ +1)*}
+ (2 =12+ (1) H{(m A+ 1) = m* =1,
(A14)
such that
pit(m.1) =0,
P (m, D) = 12% =271 — (=1)*) + ps(m, 1), (AlS)

i.e., the Euler constant yy is completely subtracted as
in (28).

3. MV-scale

Yet another convenient choice of scale is the minimal
Vladimirov-scale [11] which is defined via the relation

e
Hmv = T(1-e) (Al6)
With this choice of scale, we have
Oyy(m, 1, e) = ®(m, 1, e)e 7T 1 — g), (A17)
where ®(m, [, €) is given by Eq. (23). Hence,
Dy (m, 1, e) = exp [i r/spgvMV)(m, l)ss} , (A18)
s=2

where (for s > 1)
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+ (=) {(m+ 1)’ —m*} (A19)

and

P m =0, pI(m D) =1+ p(m.D).  (A20)
i.e., the Euler constant yr is completely subtracted as
in (28).

We can see that in all cases considered, i.e., in g, reduced
g and MV-scales, we cannot put the values pQQ (m, 1) to be
zero as it was before in the case of the spinor and scalar
QED (see Ref. [11]). Indeed, p,_,(m,[) has the exact
m-dependence as is shown in (29). So, contrary to the
QED, case, the coefficients of e-expansion in the case of
QED, 3 contain exactly these {, values. However, let us

note that p_(yl\:/[;/)(m, l):pg‘(i)z(m, ) as it was in the
QED, case.

APPENDIX B: REDUCED SCALAR QED,;

For completeness, we shall consider here the case of
reduced scalar (spin-0) QED which is similar to reduced
spinor QED that has been considered throughout the rest of
the paper.

These (massless) models have the Lagrangian (in
Minkowski space)

Lo~ L (9,02

A
= D7 = g P =5 0,407 + 3 (4P (BY)

to be integrated over the appropriate volume element for the
theory under consideration. As before, we only focus on the
gauge-covariance of the scalar propagator.

The general expression of a scalar propagator, Sc-(p,7),
of external momentum p and gauge fixing parameter 7
reads

(B2)

1°°L mﬂ2me
Sc(p.n) —2Zm )A )

where a$,(n7) are the coefficients of the loop expansion of
the propagator and /i is the renormalization scale (14).

Proceeding in a way similar to the spinor case, the scalar
propagator in another gauge & is obtained from the
following LKF transformation:

) ~2\ me
Sc(l?f)Z%Zd%(éM’"(%) L ®)
m=0
where
a5 (6) = ayln) T )

(14 (m+ De)l'(1—e) (AA) (F2\%
Zlvrl—se (m+1+1)e) (—e) (?) ’

(B4)
which is valid for arbitrary &.. The only difference with
respect to the spinorial case is that, in the latter, there is

an additional factor of (1—¢e, —(m+ 1)e)/(l —¢, —
(m+ 1+ 1)¢e) as can be seen from

an(6) = anly) " )

o 1+ (m+De)'(1—e) (AA)' (*\"*
Z 2—¢e.— (m+1+41)e) (—e)! <P2> ’
(B5)

which simply generalizes (16) to arbitrary &..
In the case of scalar QED, 3 (e, = 1/2), Eq. (B4) can
then be written as

where @ ,(m, [, ¢) is given by Eq. (23) for the MS scale and
by Eqgs. (A7), (A13), and (A18) for the g-, gg-, and MV-
scales, respectively. So, the only difference between
(Al) and (B6) is in the factor (1 —2(m + 1)e)/(1 = 2(m +
[+ 1)¢e) which is absent in the scalar QED, ; case.
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