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Weyl conformal geometry may play a role in early cosmology where effective theory at short distances
becomes conformal. Weyl conformal geometry also has a built-in geometric Stueckelberg mechanism: it is
broken spontaneously to Riemannian geometry after a particular Weyl gauge transformation (of gauge
fixing) while the Stueckelberg mechanism rearranges the degrees of freedom, conserving their number
(ndf). The Weyl gauge field (ωμ) of local scale transformations acquires a mass after absorbing a
compensator (dilaton), decouples, and Weyl connection becomes Riemannian. Mass generation has thus a
dynamic origin, corresponding to a transition fromWeyl to Riemannian geometry. In applications, we show
that a gauge fixing symmetry transformation of the original Weyl’s quadratic gravity action immediately
gives the Einstein-Proca action for the Weyl gauge field and a positive cosmological constant, plus matter
action (if present). As a result, the Planck scale is an emergent scale, where Weyl gauge symmetry is
spontaneously broken and Einstein action is a broken phase of Weyl action. This is in contrast to local scale
invariant models (no gauging) where a negative kinetic term (ghost dilaton) remains present and ndf is not
conserved when this symmetry is broken. The mass of ωμ, setting the nonmetricity scale, can be much
smaller than MPlanck, for ultraweak values of the coupling (q), with implications for phenomenology. If
matter is present, a positive contribution to the Planck scale from a scalar field (ϕ1) VEV(vacuum
expectation value) induces a negative ðmassÞ2 term for ϕ1 and spontaneous breaking of the symmetry under
which it is charged. These results are immediate when using Weyl-covariant (invariant) scalar (tensor)
curvatures, respectively, instead of their Riemannian form. Briefly, Weyl gauge symmetry is physically
relevant and its role in high scale physics should be reconsidered.
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I. WEYL GAUGE TRANSFORMATIONS AND
STUECKELBERG MECHANISM

In 1918 Weyl introduced his vector-tensor theory of
quadratic gravity [1–3] built on what is now known as Weyl
conformal geometry. Weyl’s idea was that the action should
be invariant under a most general symmetry: a Weyl scaling
gauge symmetry [4]. Weyl also thought of identifying this
gauge field (ωμ) with electromagnetism, which inevitably
failed since electromagnetic gauge transformations are
“internal” symmetry (not spacetime geometry) transforma-
tions. Weyl quadratic gravity was disregarded after
Einstein’s early criticism [1] that the spacing of atomic
spectral lines changes in such a theory, in contrast with
experience. This happens because in Weyl geometry a

vector parallel transported around a curve changes not only
the direction (as in Riemannian geometry) but also its
length. Then clock’s rates and rod’s lengths depend on their
path history. This is caused by the massless Weyl gauge
field ωμ responsible for the nonmetric connection of Weyl

geometry, ∇̃μgαβ ¼ −ωμgαβ. This is in contrast to the
Riemannian case (of ωμ ¼ 0) and Einstein gravity where
∇μgαβ ¼ 0 with ∇μ the Levi-Civita connection. Eventually
(gauged) local scale transformations were abandoned and
replaced by phase transformations [5] setting the founda-
tion of modern gauge theories.
Dirac revived Weyl gravity by introducing a different

version of it [6] linear in Weyl scalar curvature (R̃) of the
form ϕ2R̃ with an additional matter scalar ϕ [7–18]. This
term recovers Einstein gravity, and the Weyl field becomes
massive (mass ∼ qMPlanck) and decouples (ωμ ¼ 0); as a
result, the Weyl connection becomes Riemannian and
Einstein’s criticism is avoided.
Recently it was shown [19] that even the original Weyl

quadratic gravity without matter [1–3] avoids Einstein’s
criticism since ωμ again becomes massive and decouples.
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Here we explore further the consequences of this work. The
result in [19] underlines the less known fact that some
theories based on Weyl geometry have a built-in geometric
Stueckelberg mass mechanism [20–22]. To see this more
easily, we use the curvature scalar and tensors of Weyl
geometry (hereafter “Weyl formulation”) instead of their
Riemannian expression.
The main results of this work show the following:

(a) In Weyl formulation, a simple Weyl symmetry trans-
formation (of “gauge fixing”) applied to an action in
Weyl geometry gives an action directly in the Rie-
mannian geometry with a Stueckelberg breaking of the
Weyl gauge symmetry. For example, the original Weyl
quadratic gravity action is “gauge transformed” into
Einstein-Proca action for ωμ, a cosmological constant
plus matter action (if present). As a result, Einstein
action is simply a spontaneously broken phase ofWeyl
quadratic gravity action.

(b) We stress that only gauge transformations are used in
step (a), with no field re-definitions.

(c) Note that no ghost is generated and the number ndf of
degrees of freedom (d.o.f.) (other than graviton) is
conserved: the real dilaton (spin 0 mode in the R̃2

term) is absorbed by ωμ which becomes massive; so
ndf ¼ 3 is unchanged, as expected for a spontaneous
breaking. This is different from gauge fixing in
conformal models (e.g., [23]) where the Stueckelberg
mechanism is not available (since there is no ωμ) so
ndf is not conserved and a ghost dilaton is present.

(d) The Planck scale is an emergent scale where the Weyl
gauge symmetry is broken.

The nonmetricity scale is set by the Weyl “photon” mass
(∼qMPlanck), naively expected to be large. Interestingly,
small values of this mass are allowed (demanding ultra-
weak values of its coupling q) because the lower bound on
the nonmetricity scale is OðTeVÞ [24]. Then the Weyl field
could even be a (TeV) dark matter candidate [25]. The
phenomenology of the StandardModel (SM) endowed with
the Weyl gauge symmetry [14,17] deserves careful study.

A. Weyl gauge transformations

Consider a Weyl scaling gauge transformation ΩðxÞ of
the metric gμν and of scalar field ϕ,

ĝμν ¼ Ωgμν; ϕ̂ ¼ 1ffiffiffiffi
Ω

p ϕ; ω̂μ ¼ ωμ − ∂μ lnΩ: ð1Þ

Here ωμ is the Weyl gauge field; we also have
ffiffiffî
g

p ¼ Ω2 ffiffiffi
g

p
,

g≡ jdet gμνj, and metric ðþ;−;−;−Þ and conventions as in
[26]. The Weyl-covariant derivative of ϕ is

D̃μϕ ¼ ð∂μ − 1=2ωμÞϕ ð2Þ

¼ ð−1=2Þϕ½ωμ − ∂μ lnϕ2�: ð3Þ

ΩðxÞ is real, and there is no complex factor “i” in (1) or in
D̃μϕ. The gauge symmetry is a dilatation group that is
isomorphic to Rþ. D̃μϕ transforms under (1) as a scalar

field ˆ̃Dμϕ̂ ¼ ð1= ffiffiffiffi
Ω

p ÞD̃μϕ. Given (1), ωμ has a geometric
origin while Eq. (3) has an obvious resemblance to the
Stueckelberg mechanism; see later.
In Weyl geometry ð∇̃μ þ ωμÞgαβ ¼ 0, with ∇̃μ defined

by the Weyl connection coefficients denoted Γ̃ρ
μν.

This differs from Riemannian geometry where ∇μgαβ ¼ 0

with ∇μ defined by the Levi-Civita connection Γρ
μν ¼

ð1=2Þgρβð∂νgβμ þ ∂μgβν − ∂βgμνÞ. Γ̃ρ
μν can be found from

Γρ
μν by replacing ∂μ → ∂μ þ ωμ and giving Γ̃ρ

μν ¼ Γρ
μνþ

ð1=2Þ½δρμων þ δρνωμ − gμνωρ�.
Γ̃ρ
μν are symmetric (Γ̃ρ

μν ¼ Γ̃ρ
νμ) (no torsion) and are

invariant under (1) since their variation induced by the
metric is compensated by that of ωμ. The Riemann and
Ricci tensors in Weyl geometry are defined as in
Riemannian geometry but in terms of new Γ̃ρ

μν, and are
also invariant under (1).1 One can then show that the Weyl
scalar curvature (R̃)

R̃ ¼ R − 3Dμω
μ −

3

2
ωμωμ; ð4Þ

where R is the Riemannian scalar curvature and Dμω
μ is

defined by the Levi-Civita connection.
Using the curvature tensors and scalar of Weyl geometry

has an advantage: unlike in the Riemannian case, R̃
transforms covariantly under (1) similar to gμν entering
its definition:

ˆ̃R ¼ 1

Ω
R̃: ð5Þ

This simplifies our calculations and helps build Weyl gauge
invariant individual operators. Then this symmetry and
internal gauge symmetries are on an equal footing in the
action.
The criticisms of Weyl gravity based on Weyl geometry

(such as the change of a vector length under parallel
displacement or of atomic spectral lines spacing) are
avoided if ωμ ¼ 0 because from above Γ̃ρ

μν ¼ Γρ
μν,

R̃ ¼ R, Weyl connection becomes Levi-Civita, the geom-
etry becomes Riemannian, and these criticisms do not
apply. This happens if we do not introduce ωμ in (1); i.e.,
we go back to Riemannian geometry gravity (e.g., Brans-
Dicke). Alternatively, ωμ ¼ 0 after this field acquires a
large mass and decouples. This is the idea we study below.

1These are R̃λ
μνσ ¼ ∂νΓ̃λ

μσ − ∂σΓ̃λ
μν þ Γ̃λ

νρΓ̃
ρ
μσ − Γ̃λ

σρΓ̃
ρ
μν and

R̃μσ ¼ R̃λ
μλσ . Also we have R̃ ¼ gμσR̃μσ .
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B. Weyl gauge transformation and Proca action

Consider L of a real scalar field ϕ with coupling q to a
Weyl gauge field ωμ, invariant under (1)

L ¼ ffiffiffi
g

p �
−

1

4q2
F2
μν þ

1

2
ðD̃μϕÞ2

�
: ð6Þ

To simplify notation, we do not show appropriate indices
contractions which are implicit, e.g., F2

μν ¼ gμνgρσFμρFνσ

and ðD̃μϕÞ2 ¼ gμνD̃μϕD̃νϕ. Since there is no torsion, the
field strength Fμν does not feel the connection. From Fμν ¼
D̃μων− D̃νωμ with D̃μων¼∂μων−Γ̃

ρ
μνωρ then Fμν¼∂μων−

∂νωμ, which coincides with its Riemannian expression and
is invariant under (1). A gauge transformation (1) with
Ω ¼ ϕ2=M2 gives

L ¼
ffiffiffî
g

p �
−

1

4q2
F̂2
μν þ

1

8
M2ω̂μω̂

μ

�
; ð7Þ

where M is an arbitrary scale and all indices contractions
are made with a new metric (ĝμν).
The Weyl “photon” has become massive and no trace of

ϕ is left; see [22] for a more general discussion. This is a
geometric version of the Stueckelberg mechanism [20,21]
that is naturally built-in Weyl conformal geometry due to
the definition of Weyl-covariant derivative D̃μ. The pres-
ence of

ffiffiffi
g

p
is essential as it ensures invariance of L. The

(charged) scalar and Weyl kinetic term are gauge trans-
formed into an equivalent Proca action with spontaneous
breaking of the Weyl gauge symmetry. If we do the inverse
gauge transformation, Proca action of a massive theory can
be written in a Weyl gauge invariant way as a sum of
kinetic terms.
The gauge transformation we did is essentially gauge

fixing ϕ ¼ M (constant) but what is most important here is
the conservation of the number of dynamical d.o.f., ndf
(ndf ¼ 3): initially we had a massless scalar and a massless
vector field and finally amassivevector field.qM is regarded
as the scale where Weyl gauge symmetry is broken.
If in (6) there are more (n) scalar fields kinetic terms,

consider a gauge transformation Ω ¼ ρ2=M2, with ρ the
radial direction ρ2 ¼ P

j ϕ
2
j , absorbed by the only vector

field present ω̂μ ¼ ωμ − ∂μ ln ρ2 under (1). One recovers
(7) with n − 1 additional kinetic terms for the angular
variables fields. To conclude, the Weyl boson is massive
and can decouple.

C. Weyl linear gravity as Einstein-Proca action

Consider a linear version ofWeyl gravity [6] coupled to a
scalar ϕ1, invariant under (1),

L¼ ffiffiffi
g

p �
−
ξ1
12

ϕ2
1R̃þ

1

2
gμνD̃μϕ1D̃νϕ1−

λ1
4!
ϕ4
1−

1

4q2
F2
μν

�
; ð8Þ

where R̃ is the scalar curvature in Weyl geometry, Eq. (4),
and D̃μϕ1 ¼ ð∂μ − 1=2ωμÞϕ1.
After a Weyl gauge transformation (1), (5), with

Ω ¼ ξ1ϕ
2
1=ð6M2Þ, and then using Eq. (4),

L ¼
ffiffiffî
g

p �
−
1

2
M2R̂ −

1

4q2
F̂2
μν þ

3

4
M2ð1þ 1=ξ1Þω̂μω̂

μ

−
3λ1M4

2ξ21

�
; ð9Þ

up to a total derivative term. Here Riemannian scalar
curvature R̂ and indices contractions are computed with
new ĝμν, as indicated by the presence of

ffiffiffî
g

p
.

The gauge transformation considered sets ϕ̂1 to a
constant (6M2=ξ1), and the Einstein frame results from
gauge fixing Weyl gauge symmetry. The Stueckelberg
mechanism ensures the number of dynamical d.o.f. ndf
is conserved when going from (8) to (9) as expected for
spontaneous breaking (and which does not require a
potential for ϕ1). Here ϕ1 was “eaten” by the Weyl gauge
field, which is now massive. What survives of the scalar
kinetic term is the ξ-dependent mass term for ω̂μ, but there
is an additional mass correction to ω̂μ beyond (7), due to the
R̃-dependent term.
This situation is in contrast with the (ungauged) local

conformal symmetry case recovered from (8) for ωμ ¼ 0;
then there is no gauge field to “absorb” the scalar
“compensator” and the action would be invariant under
the first two transformations in (1) only if ξ1 ¼ −1.
To conclude, the Weyl photon again became massive by

“absorbing” a compensator field ϕ1. But what happens in
Weyl quadratic gravity with no matter fields present?

D. Weyl quadratic gravity as Einstein-Proca action

The original action of Weyl (quadratic) gravity without
matter [2] invariant under (1) is

L1 ¼
ffiffiffi
g

p �
ξ0
4!
R̃2 −

1

4q2
F2
μν

�
; ξ0 > 0: ð10Þ

Each term is Weyl gauge invariant [R̃ transforms
covariantly, Eq. (5)]. We can replace R̃2 → −2ϕ2

0R̃ − ϕ4
0,

since integrating the auxiliary field ϕ0 via its equation of
motion, of solution ϕ2

0 ¼ −R̃, recovers the R̃2 term in the
action; so ϕ0 transforms as any scalar field and lnϕ0 is the
Goldstone of the scale symmetry (1), lnϕ2

0 → lnϕ2
0 −Ω.

Then

L1 ¼
ffiffiffi
g

p �
ξ0
4!
ð−2ϕ2

0R̃ − ϕ4
0Þ −

1

4q2
F2
μν

�
: ð11Þ

Using gauge transformation (1), (5) with Ω¼ ξ0ϕ
2
0=

ð6M2Þ, and then using relation (4) we find
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L1¼
ffiffiffî
g

p �
−
1

2
M2R̂−

3M4

2ξ0
þ3

4
M2ω̂μω̂

μ−
1

4q2
F̂2
μν

�
; ð12Þ

which is in the Einstein frame. Here we choseM ¼ MPlanck

(R̂ is the Riemannian scalar curvature evaluated from new
metric ĝμν also used for index contractions).
These simple steps show an interesting result: a Weyl

gauge fixing symmetry transformation (not fields redefi-
nition) applied to the original Weyl quadratic gravity
without matter Eq. (10) gives the Einstein-Proca action
for the Weyl gauge field; this became massive via the
Stueckelberg mechanism (spontaneous breaking). There is
also a positive cosmological constant. Conversely, the
inverse gauge transformation of Einstein-Proca action takes
one to Weyl quadratic gravity action. Note again the
conservation of the number of d.o.f., impossible in the
absence of the Weyl gauge field.
To illustrate better the Stueckelberg mechanism, write

first Eq. (11) in a Riemannian language using Eq. (4)
followed by an integration by parts, which gives

L1 ¼
ffiffiffi
g

p �
−
ξ0
2

�
1

6
ϕ2
0Rþ ð∂μϕ0Þ2

�
−
ξ0
4!
ϕ4
0

þ 1

8
ξ0ϕ

2
0ðωμ − ∂μ lnϕ2

0Þ2 −
1

4q2
F2
μν

�
; ð13Þ

where we used that
ffiffiffi
g

p
Dμω

μ ¼ ∂μð ffiffiffi
g

p
ωμÞ. Then using

gauge transformation (1) with Ω ¼ ξ0ϕ
2
0=ð6M2Þ, one finds

again Eq. (12). It is then obvious how the first term
becomes the Einstein term in (12) and how the term of
coefficient 1=8 gives the mass term for ω̂μ (Stueckelberg
mechanism) in (12). Note there is no negative kinetic term
(ghost) in Eq. (13).
The mass of the Weyl gauge boson is near the Planck

scale (
ffiffiffiffiffiffiffiffi
3=2

p
qM) for a coupling q not too small and comes

from the R̃2 term alone. Below this mass scale this field
decouples, the Weyl connection becomes Riemannian
(ωμ ¼ 0), and the Weyl quadratic action becomes
Einstein-Hilbert action. So Einstein gravity is just a “low
energy” limit (broken phase) of Weyl gravity. Then
previous, long-held criticisms of Weyl quadratic gravity
are avoided; the effects mentioned earlier, associated with
Weyl geometry, are suppressed by a large value of the Weyl
“photon” mass ∝ Planck scale. Then any change of the
spacing of the atomic spectral lines is suppressed by this
high scale and can be safely ignored.
The result in (12) is in the Einstein gauge of constant

ϕ2
0 ¼ 6M2=ξ0 which coincides with the Weyl gauge (of

constant Weyl scalar curvature) since we saw hϕ0i2 ¼ −R̃,
so on the ground state ϕ2

0 ¼ ð−R̃Þ ¼ 6M2=ξ0; see also [10]
for a discussion. Actually, for a Friedmann-Robertson-
Walker universe, the scalar field naturally evolves in
time to ϕ0 ¼ const because of a conserved current
Jμ ¼ ϕ0∂μϕ0 [27]. The Planck scale thus emerges naturally

as the scale where Weyl gauge symmetry is spontaneously
broken.

E. A more general case

In a most general case, Weyl quadratic gravity can
contain another independent term2,3

L0
1 ¼

ffiffiffi
g

p �
1

η
C̃μνρσC̃

muνρσ þ ξ0
4!
R̃2

�

¼ ffiffiffi
g

p �
1

η

�
CμνρσCμνρσ þ 3

2
F2
μν

�
þ ξ0

4!
R̃2

�
; ð14Þ

where C̃μνρσ and (Cμνρσ) is the Weyl tensor in Weyl
geometry (Riemannian geometry), respectively; these ten-
sors are related as shown above [16] with Fμν the field
strength of the Weyl gauge boson. Notice that in this case
the F2

μν term is automatically present, so there is no need to
add it “by hand” [on symmetry grounds as in (10)];
however, for a canonical gauge kinetic term one has in
this case q2 ¼ −η=6 (η < 0). The result of Eq. (12) is still
valid since both Weyl tensors are invariant under Weyl
gauge transformations; then the final Lagrangian contains
an additional term C2

μνρσ; this is needed anyway at the
quantum level when trying to renormalize SM in the
presence of gravity in (ungauged) local conformal models
[23]. In this case and in the absence of a separate kinetic
term for ωμ in the first line of (14) (allowed by the
symmetry), the mass of the Weyl gauge fieldm2

ω ∼ q2M2 ∼
ð−ηÞM2 is thus related to the mass of the spin-two ghost
contained in C2

μνρσ. At this scale the nonmetricity of Weyl
geometry steps in to modify the Levi-Civita connection.

F. Adding matter

Consider now Weyl quadratic gravity, Eq. (10), coupled
to a matter scalar ϕ1,

L2 ¼
ffiffiffi
g

p �
ξ0
4!
R̃2 −

1

4q2
F2
μν

�
−

ffiffiffi
g

p
12

ξ1ϕ
2
1R̃

þ ffiffiffi
g

p �
1

2
gμνD̃μϕ1D̃νϕ1 −

λ1
4!
ϕ4
1

�
; ð15Þ

which is invariant under (1) and the potential for ϕ1 is the
only one allowed by this symmetry.
As in Eq. (11), replace R̃2 → −2ϕ2

0R̃ − ϕ4
0, to obtain a

classically equivalent action

2A Gauss-Bonnet (total derivative) term of Weyl geometry can
also be present [16], but is not relevant here.

3The Weyl tensor squared term we included here is usually
required at the quantum level.
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L2¼
ffiffiffi
g

p �
−
1

2
ρ2R̃−

1

4q2
F2
μνþ

1

2
gμνD̃μϕ1D̃νϕ1−Vðϕ1;ρÞ

�
;

ð16Þ

with

Vðϕ1; ρÞ ¼
1

4!

�
1

ξ0
ð6ρ2 − ξ1ϕ

2
1Þ2 þ λ1ϕ

4
1

�
; with

ρ2 ¼ 1

6
ðξ1ϕ2

1 þ ξ0ϕ
2
0Þ; ð17Þ

where we replaced ϕ0 by ρ. Using Eq. (5), a Weyl gauge
transformation (1) with Ω ¼ ρ2=M2 followed by (4) that
introduces Riemannian R̂ gives

L2 ¼
ffiffiffî
g

p �
−
1

2
M2

�
R̂ −

3

2
ω̂μω̂

μ

�
−

1

4q2
F̂2
μν

þ ĝμν

2
ˆ̃Dμϕ̂1

ˆ̃Dνϕ̂1 − Vðϕ̂1;MÞ
��

; ð18Þ

with ˆ̃Dμϕ̂1 ¼ ð∂μ − 1=2ω̂μÞϕ̂1 and M identified with
MPlanck. As in the case without matter, we obtained the
Einstein-Proca action of a gauge field that became massive
after the Stueckelberg mechanism of absorbing the dilaton
ln ρ. The mass of ωμ is m2

ω ¼ ð3=2Þq2M2 [after rescaling
ω̂μ → qω̂μ in (18)]. A canonical kinetic term of ϕ1 remains,
since only 1 d.o.f. (radial direction ρ) is eaten by the vector
field; see Sec. I B.
Under the same gauge transformation (gauge fixing) the

initial potential ϕ4
1 becomes

V ¼ 3M4

2ξ0

�
1 −

ξ1ϕ̂
2
1

6M2

�2
þ λ1

4!
ϕ̂4
1: ð19Þ

We have a negative mass term (m2
ϕ̂1

¼ −ξ1M2=ξ0) if
ξ1 > 0. This originates in (17) due to the initial dilaton
contribution to the potential ∝ ϕ4

0 (coming from R̃2), with
ϕ0 replaced by (6ρ2 − ξ1ϕ

2
1) and ρ “gauge fixed” to M.

Then, if massless ϕ1 gives a positive contribution ξ1ϕ
2
1 to

the Planck scale (M) (ξ1 > 0) this effect is “compensated”
by a negative contribution to its mass term in the potential
(and vice versa) in (17). The original dilaton (in R̃2) plays
a mediator role in bringing this negative contribution.
It is then interesting that both mass scales of the theory,
the Planck scale and the scale hϕ̂1i, are simultaneously
generated by the same gauge fixing transformation (1).
If ϕ1 is the Higgs field and hϕ1i is the electroweak (EW)

scale, then the Stueckelberg mechanism also triggers EW
breaking. This discussion remains valid for more matter
fields ϕj, and in Eqs. (15)–(19) simply replace ξ1ϕ

2
1 →P

j ξjϕ
2
j and ðD̃μϕ1Þ2 →

P
jðD̃μϕjÞ2.

G. Additional effects, more scalar fields,
and SM in Weyl geometry

The Weyl-covariant derivative acting on ϕ̂1 in (18) is a
remnant of Weyl gauge symmetry, now broken. To have a
“standard” kinetic term for ϕ1, i.e., remove couplings
ω̂μ∂μϕ̂1 (similar to electroweak “unitary gauge”) one can
now do a field redefinition

ω̂0
μ¼ ŵμ−∂μ lnðϕ̂2

1þ6M2Þ; ϕ̂1¼M
ffiffiffi
6

p
sinh

�
σ

M
ffiffiffi
6

p
�

ð20Þ

to find4

L2 ¼
ffiffiffî
g

p �
−
1

2
M2R̂þ 3

4
M2cosh2

�
σ

M
ffiffiffi
6

p
�
ω̂0
μω̂

0μ

−
1

4q2
F̂02
μν þ

ĝμν

2
∂μσ∂νσ − V̂

�
ð21Þ

with

V̂¼ 3

2

M4

ξ0

�
1−ξ1sinh2

σ

M
ffiffiffi
6

p
�
2

þ3

2
M4λ1sinh4

σ

M
ffiffiffi
6

p : ð22Þ

In (21) one finally rescales ω̂0
μ → qω̂0

μ for a canonical
gauge kinetic term.
Taylor expanding the mass term of the Weyl gauge field

for small σ < M shows there are additional corrections to
this mass beyond those due to the Stueckelberg mechanism,
since hσi ≠ 0. Note there is no restriction in the action
regarding the relative values of σ versusM. For σ > M, V̂ is
always positive if ξ21=ξ0 þ λ1 > 0 which can be true even
for λ1 < 0.
This potential is relevant for models of inflation, assum-

ing σ is the inflaton. Since Planck scale emerged as the
scale where Weyl gauge symmetry is spontaneously bro-
ken, Eq. (18), field values above this scale are natural,
which is relevant for inflation. For λ1 and ξ1 very small,
e.g., λ1ξ1 ∼ 5 × 10−10 and ξ1 ∼ 10−5–10−3, the potential is
nearly flat and one has inflation similar to the Starobinsky
model [28] for suitable ξ0 ≈ 1010; see [29] for the analysis
of this potential. The larger quoted values of ξ1 mark a
departure from the Starobinsky inflation. But unlike in [29]
where no Stueckelberg mechanism takes place since there
is no gauge kinetic term, here there is no flat direction
left—this was “absorbed” by the gauge field that became

4In terms of the initial fieldsωμ and ϕ0;1 Eq. (20) can be written
as ω̂0

μ ¼ ωμ − ∂μ lnK where we denoted K ≡ ξ0ϕ
2
0 þ ð1þ ξ1Þϕ2

1

and there is a current Jμ¼ð−1=4Þgμν∇νK¼ð−1=4Þgμνð∂ν−ωνÞK,
which is a total derivative and is conserved ∇μJμ ¼ 0. This is
shown by applying ∂μ on the equation of motion for ωμ:
q

ffiffiffi
g

p
Jμ þ ∂ρð ffiffiffi

g
p

FρμÞ ¼ 0. Notice that one can also write the
current as Jμ ¼ ð1=4ÞKω̂0

μ.
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massive. This issue and inflation are discussed in detail
elsewhere [30].
The situation here is also different from the common

models of inflation of no matter field present with inflation
driven by

ffiffiffi
g

p ðR2 þM2RÞ. Here the “scalaron” mode is
actually a compensator eaten by ωμ, while the matter field σ
is the inflaton. Further, if there is no Weyl gauge field in
(15) (set ωμ ¼ 0), inflation is still possible and was already
studied in [31]. The scenario is again similar to that in
Starobinsky models. Finally, in the absence of the quadratic
term, with only a linear term in scalar curvature and global
scale invariance, inflation is again possible and was
discussed in [27,32].
The analysis in Sec. I F can be extended to more scalar

fields present in a Weyl gauge invariant action. For
example, for two scalar fields in Eq. (15) with nonminimal
couplings ξ1, ξ2, and with an initial potential Vðϕ1;ϕ2Þ
replacing that in (15), one obtains the following canonical
action, similar to that in (21):

L2 ¼
ffiffiffî
g

p �
−1
2
M2R̂ −

1

4q2
F̂0
μνF̂

0μν þ 1

2
m2ðσÞω̂0

μω̂
0μ

þ 1

2

�
sinh2

σ

M
ffiffiffi
6

p ð∂μθ̃Þ2 þ ð∂μσÞ2
�
− V̂

�
ð23Þ

with the notation m2ðσÞ ¼ ð3=4ÞM2 cosh2ðσ=ðM ffiffiffi
6

p ÞÞ and
with new polar coordinates fields, tanθ¼ϕ1=ϕ2, ϕ2

1þϕ2
2 ¼

6M2 sinh2 σ=ðM ffiffiffi
6

p Þ, and θ̃ ¼ M
ffiffiffi
6

p
θ. Finally, the

potential is

V̂ ¼ 3M4

2ξ0

�
1 − ξ12sinh2

σ

M
ffiffiffi
6

p
�
2

þ 3

2
M4ð24Vðsθ; cθÞÞsinh4

σ

M
ffiffiffi
6

p ; ð24Þ

where ξ12¼ðξ1sin2θþξ2cos2θÞ and sθ ¼ sin θ, cθ ¼ cos θ.
For an Oð2Þ symmetry, θ dependence in the potential
disappears so one can introduce Vðsθ; cθÞ ¼ λ=4! but
kinetic mixing remains. Compare (22) and (24) to notice
the similar structure of the potential.
These results make it attractive to consider the Weyl

gauge symmetry for model building beyond SM and
Einstein gravity. With Einstein gravity as a low energy
broken phase of Weyl quadratic gravity, then Weyl gauge
symmetry andWeyl gravity are “freed” from past criticisms
based on the (wrong) assumption that the Weyl gauge field
is massless. One can consider the SM with a Higgs mass
parameter set to zero and extend it with Weyl gauge
symmetry. In such a case note that, interestingly, only
the SMHiggs/scalars couple to the Weyl gauge boson, as in
(15) or equivalently (21). The SM fermions do not couple
to ωμ [14,17,33]. The SM gauge fields kinetic terms
are also invariant under Weyl gauge symmetry; see, e.g.,
[17]. Therefore, the SM Lagrangian formulated in Weyl
conformal geometry is

L ¼ L2 þ LSM
fþg ð25Þ

with L2 as in (15) adapted for the Higgs sector and other
scalar fields (e.g., inflaton), as above. LSM

fþg denotes the SM
Lagrangian for the fermionic and gauge sectors. Note,
however, that a kinetic mixing of ωμ with Uð1ÞY is allowed
by the SM and by Weyl gauge symmetry. This has
implications for phenomenology not yet explored.5

H. Related models

There is a difference between the Weyl gauge invariant
model discussed here and the case of local conformal
extensions of the Standard Model (see, e.g., [23,34,35])
when generating the Planck scale spontaneously (by dilaton
VEV (vacuum expectation value)). As we saw, a Weyl
gauge invariant model conserves the number of d.o.f. ndf
during the breaking of this symmetry. Moreover, there is no
ghost field in Sec. I D when gauge fixing the Planck scale in
Eqs. (12) and (13). This is to be compared to these local
conformal extensions of the SM where the Einstein term
ð− ffiffiffi

g
p

=2ÞM2R is written in a local conformal invariant way
as

LE ¼ ffiffiffi
g

p �
−
ξ0
2

�
1

6
ϕ2
0Rþ ð∂μϕ0Þ2

��
; ð26Þ

to be compared to (13). We see here that trying to
generate a Planck scale as a VEV of ϕ0, by gauge fixing
ϕ2
0 ¼ 6M2=ξ0, demands the notorious negative kinetic term

(ghost dilaton) be present (see [15,17] for a discussion).
Also, in this local conformal case, when gauge fixingϕ0 to a
constant (unitary gauge) and this symmetry is broken, there
is no gauge field to “absorb” this scalar (dilaton) mode; see,
e.g., [23]. Therefore ndf is not conserved and shows the need
for the Weyl gauge symmetry, for self-consistency.
Models with Weyl gauge symmetry seem to be allowed

by black-hole physics. This is not true for models with
global symmetries, in particular global scale symmetry
(e.g., Agravity [36]) since global charges can be eaten by
black holes that subsequently evaporate [37]. Further, in
models with Weyl gauge symmetry higher dimensional/
curvature operators (beyond quadratic ones of dimension
d ¼ 4 in the Weyl action) cannot be present since they
should be suppressed by some high scale not present in the
theory (forbidden by this symmetry). Also, the dilaton is
eaten by the Weyl photon which becomes massive, so
dilaton powers cannot be present to suppress such effective
operators either. This may remain true at the quantum level,
assuming quantum calculations respect this symmetry. This
requires an ultraviolet regularization that preserves the
Weyl gauge symmetry [38] (see also [39]).

5This mixing can be neglected for a large enough nonmetricity
scale (mass mω).
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This analysis can be extended to other nonmetric
theories, with torsion, etc. Our result is in agreement with
more general approaches [22] that consider that at a
fundamental level gravity is a theory of connections as
dynamical objects. Some of these connections become
massive (via Stueckelberg mechanism), as we saw for the
Weyl connection, while the Levi-Civita connection remains
massless. In our case the Weyl connection departed from
the (fixed) Levi-Civita by a correction ωμ which was a
dynamical field. More generally, one can write any
dynamical connection as a Levi-Civita connection plus a
tensor field contribution which is a sum of a nonmetricity
tensor (here due to ωμ) and a contorsion tensor, and then
redo this analysis. From a particle physics perspective, this
tensor field, being massive, should decouple and leave in
the low energy limit only the Levi-Civita connection.
For high scale physics and early cosmology, nonme-

tricity effects cannot be ignored. In fact, current lower
bounds on the nonmetricity scale, which is set by the mass
of the Weyl field, are very low, in the region of a few TeV
[24]. With the mass of Weyl field ωμ of

ffiffiffiffiffiffiffiffi
3=2

p
qMPlanck, this

region would correspond to ultraweak values of the
coupling q. One may also explore the possibility that ωμ

is a dark matter candidate. In Weyl invariant models of
vector dark matter (DM), the mass of the DM vector field is
again in the region of a few TeV [25] (also [40]). This is
interesting for phenomenology and deserves careful study.
The aforementioned separation of the connection into

metric and nonmetric contributions is also useful for studies
of asymptotic safety. These are using the metric formalism
(with a Levi-Civita connection), so they do not take into
account nonmetricity effects, etc. Their results could,
however, be extended by simply taking into account the
new d.o.f. (fields) which are corrections to the Levi-Civita
connection. Then asymptotic safety in a nonmetric theory is
that of a theory with the Levi-Civita connection plus the
dynamical effects of these fields.

II. CONCLUSIONS

In this work we studied the effect of Weyl gauge
symmetry beyond SM and Einstein gravity, in the context
of Weyl conformal geometry. This geometry is of interest
since it may play a role in early cosmology or at high scales
when effective field theory becomes nearly conformal. To
take advantage of its symmetry we used the action
expressed in terms of tensors and scalar curvatures of
Weyl geometry (instead of their Riemannian expressions)
since these are Weyl invariant and covariant, respectively.
In this (Weyl) formulation, individual operators in the
action are invariant under Weyl gauge symmetry. Then this
symmetry and internal gauge symmetries are on an equal
footing in the action.
Weyl conformal geometry has a built-in geometric

Stueckelberg mass mechanism. By using this Weyl formu-
lation we showed the following: (a) a simple Weyl gauge

fixing symmetry transformation easily transforms an action
in Weyl geometry directly into an action in Riemannian
geometry, due to Stueckelberg breaking of the Weyl gauge
symmetry; (b) in this step no fields redefinitions are used,
only gauge transformations; (c) no negative kinetic term
(ghost) is generated, and the number of d.o.f. is conserved;
(d) the Planck scale is an emergent scale where Weyl gauge
symmetry is spontaneously broken; hence field values
above the Planck scale are natural; and (e) calculations
simplify dramatically compared to a Riemannian formu-
lation of this symmetry.
To detail, there is a conservation of the number of

dynamical d.o.f. (ndf ¼ 3) in step (a) above, as required for
spontaneous breaking: the initial massless gauge field ωμ

(defining the Weyl connection) absorbs the dilaton (com-
pensator), becomes massive, and then decouples; hence the
Weyl connection becomes the Levi-Civita connection.
Thus mass generation has a geometric interpretation as a
transition from Weyl geometry to the Riemannian one.
Note that in the (ungauged) local conformal models, a
similar gauge fixing (of the dilaton to a constant VEV) does
not conserve ndf when the symmetry breaking takes place,
since there is no vector field to “absorb” the Goldstone
mode of the symmetry.
Using this idea for the original Weyl quadratic gravity,

one finds that this action is immediately transformed by a
gauge fixing symmetry transformation, into Einstein-Proca
action for the Weyl gauge field plus a (positive) cosmo-
logical constant and matter action (if initially present); the
Weyl gauge field undergoes a Stueckelberg mechanism.
Below its mass (∼qMPlanck) this field decouples; hence
Einstein gravity is simply a low energy broken phase of
Weyl quadratic gravity. No ghost field is present, in contrast
with the (ungauged) local conformal models.
Past criticisms of Weyl gravity, related to nonmetricity,

assumed the Weyl gauge field to be massless; these
criticisms are avoided since such effects induced by the
Weyl gauge field are actually strongly suppressed by its
mass expected to be high (for q not too small). However,
note that current lower bounds on the nonmetricity scale
(mω) are low (TeV region). This suggests that the Weyl
field could in principle be lighter, if one considers ultra-
weak values of the coupling q, and even act as a dark matter
candidate. This would be a “geometric” solution to dark
matter since ωμ is part of the original Weyl geometry. This
is interesting and deserves careful study.
When building Lagrangians with Weyl gauge symmetry,

only scalar fields (e.g., the Higgs sector of the SM) couple
to the Weyl field ωμ. Following the same gauge fixing
transformation, there exists a “compensating” mechanism
for matter scalars with nonminimal couplings to R̃: if a
massless scalar gives a positive (negative) contribution to
the generation of the Planck scale, this is “compensated” by
a simultaneous negative (positive) mass squared term, i.e.,
a spontaneous breaking of the symmetry under which it is
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charged. This is due to a dilaton term in the potential
induced when “linearizing” the quadratic Weyl scalar
curvature term.
ModelswithWeyl gauge symmetry seem to be allowedby

black-hole physics, unlike models with global scale sym-
metry (e.g., Agravity). Further, models with Weyl gauge
symmetry higher dimensional/curvature operators, beyond
the quadratic ones of d ¼ 4 of theWeyl action, are forbidden
since they should be suppressed by some high scale not
present in the theory and forbidden by this symmetry. Also,
the dilaton (compensator) is eaten by the Weyl photon,
which becomes massive, so such effective operators could
not be suppressed by powers of the dilaton either. This may
remain true at the quantum level, assuming quantum
calculations respect this symmetry. This is relevant for
attempts to prove renormalizability of Weyl gravity action.
Our results may also be of interest to asymptotic safety

theories; these are using the metric formalism (Levi-Civita
connection) and miss the effects discussed in this work.

However, these studies can be extended to apply here by
taking into account the dynamics of the new fields (ωμ) that
are corrections to the Levi-Civita connection. So the
asymptotic safety in the nonmetric case is that for the
Levi-Civita connection plus the additional fields dynamics.
These results indicate that the original Weyl quadratic

gravity is physically relevant and its role should be
reconsidered, together with its implications for other areas:
SM extended with Weyl gauge symmetry/gravity, black-
hole physics, cosmology, and supersymmetric version. As
stated by Weyl long ago [2]: “The action […] that was
implemented in the previous sections is constituted as […]
a linear combination of R̃2 and F2

μν. I believe that one can
assert that this action principle implies everything that
Einstein’s theory has implied up to now, but in the more far-
reaching questions of cosmology and the constitution of
matter, it exhibits a clear superiority. Nevertheless, I do not
believe that the laws of nature that are exactly applicable in
reality are resolved by it”
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