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We present a model for the Universe in which quantum anomalies are argued to play an important dual
role: they are responsible for generating matter-antimatter asymmetry in the cosmos, but also provide time-
dependent contributions to the vacuum energy density of “running-vacuum” type, which drive the
Universe’s evolution. According to this scenario, during the inflationary phase of a string-inspired
Universe, and its subsequent exit, the existence of primordial gravitational waves induces gravitational
anomalies, which couple to the [Kalb-Ramond (KR)] axion field emerging from the antisymmetric tensor
field of the massless gravitational multiplet of the string. Such anomalous CP-violating interactions have
two important effects. First, they lead to contributions to the vacuum energy density of the form appearing
in the “running vacuum model” (RVM) framework, which are proportional to both, the square and the
fourth power of the effective Hubble parameter, H2 and H4 respectively. The H4 terms may lead to
inflation, in a dynamical scenario whereby the role of the inflaton is played by the effective scalar-field
(“vacuumon”) representation of the RVM. Second, there is an undiluted KR axion at the end of inflation,
which plays an important role in generating matter-antimatter asymmetry in the cosmos, through
baryogenesis via leptogenesis in models involving heavy right-handed neutrinos. As the Universe exits
inflation and enters a radiation-dominated era, the generation of chiral fermionic matter is responsible for
the cancellation of gravitational anomalies, thus restoring diffeomorphism invariance for the matter/
radiation (quantum) theory, as required for consistency. Chiral U(1) anomalies may remain uncompensated,
though, during matter/radiation dominance, providing RVM-like H2 and H4 contributions to the Universe
energy density. Finally, in the current era, when the Universe enters a de Sitter phase again, and matter is no
longer dominant, gravitational anomalies resurface, leading to RVM-like H2 contributions to the vacuum
energy density, which are however much more suppressed, as compared to their counterparts during
inflation, due to the smallness of the present era’s Hubble parameter H0. In turn, this feature endows the
observed dark energy with a dynamical character that follows the RVM pattern, a fact which has been
shown to improve the global fits to the current cosmological observations as compared to the concordance
ΛCDM model with its rigid cosmological constant, Λ > 0. Our model favors axionic dark matter, the
source of which can be the KR axion. The uncompensated chiral anomalies in late epochs of the Universe
are argued to play an important role in this, in the context of cosmological models characterized by the
presence of large-scale cosmic magnetic fields at late eras.
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I. INTRODUCTIONANDMOTIVATION: RUNNING
VACUUM MODEL FOR THE UNIVERSE

Over the last two decades, a plethora of cosmological
observations [1] have drastically changed our perception of
the Universe. Strong evidence points towards the fact that
the energy budget of the cosmos in the current epoch
consists mostly (∼69%) of an unknown form of energy
[termed “dark energy” (DE)], whose equation of state is
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close to that of a cosmological constant, w ≃ −1. In
addition, ∼26% consists of “dark matter” (DM), and thus
only about ∼5% of the Universe’s energy budget corre-
sponds to the known form of matter which we call baryonic
matter. The dominance of the DE component results in the
observed acceleration of the Universe at late eras, while its
equation of state w ≃ −1 points towards the fact that the
Universe enters again, for a second time (the first being
during inflation), a de Sitter–type phase.
Let us remark that most of the phenomenological

description of the cosmological data has been obtained
in the context of the cosmological constant cold dark
matter (ΛCDM) model, the standard or “concordance”
model of cosmology, which is characterized by a positive
cosmological constant Λ and its associated vacuum
energy density, ρΛ ¼ Λ=8πG (with G being Newton’s
gravitational constant). The latter plays the role of DE,
and in fact it is the canonical DE candidate. In most
cases the data is fitted to the spatially flat six-parameter
canonical version of the ΛCDM model, the so-called
“base ΛCDM” [1]. The simplicity of the ΛCDM model,
however, may be to the detriment of its ability to provide
a better description of the cosmological observations as a
whole. In fact, this could be at the root of the observed
discrepancies or “tensions” which are being persistently
observed in some observables, as we shall discuss
later on.
An important question is therefore whether the current de

Sitter phase of the Universe is due to the dominance of a
purely cosmological-constant type DE, with w ¼ −1
exactly, or if there is a time-dependent vacuum energy
density that resembles to a good approximation the de Sitter
phase. At a more fundamental level, the vacuum energy is
probably the result of quantum gravity effects, and in this
sense, understanding its microscopic nature might have to
wait for some time, until a satisfactory theory of quantum
gravity, supported by observations, becomes available. This
will also lead to a resolution of the longstanding cosmo-
logical constant problem [2]. Nonetheless, like with all
other fundamental interactions in nature, there might be an
effective field theory description that captures the essential
features and is in agreement with observations, even
providing further insights for them. Such an attempt has
been made by the development of the so-called “running
vacuum model” (RVM) [3–5] (see also Refs. [6,7] and
references therein for a detailed review). Numerous studies
of that model’s cosmological evolution from the early
Universe to the present day can be found in Refs. [8–13].
Furthermore, detailed confrontations with the recent cos-
mological data has been presented in Refs. [14–16], which
extend the analyses of Refs. [17–19] and of older
works [20].
An important feature of the RVM is the existence of a

“de Sitter–like” vacuum energy term in the total stress
tensor, with an equation of state wRVM ¼ −1, which

however is time dependent, ρΛRVMðtÞ ¼ ΛðtÞ=8πG.1 Let
us emphasize, however, that the time dependence of the
vacuum energy density in the RVM is only through the
Hubble rate (and its time derivatives), i.e., ρΛRVMðtÞ ¼
ρΛRVMðHðtÞ; _HðtÞ;…Þ, in contrast to the old phenomeno-
logical time-evolvingmodels [24]. This feature is connected
to the renormalization group (RG) in curved space-time, as
we shall see below. Ordinary matter and radiation are on top
of it. In this picture, the total stress-energy tensor reads

Tμν ¼ −gμνκ2ΛðtÞ þ Tm
μν ¼ −gμνρΛRVMðtÞ þ Tm

μν; ð1Þ

where the superscript “m” refers generically here to matter
(dust) and radiation contributions, where κ2 ¼ 8πG ¼ M−2

Pl
is the (four-space-time-dimensional) gravitational constant,
where G ¼ M−2

P is Newton’s constant, MP ¼ 1.22 ×
1019 GeV is the four-dimensional Planck mass scale, and
MPl ¼ MP=

ffiffiffiffiffiffi
8π

p ¼ 2.43 × 1018 GeV is the reduced Planck
mass (we work in units of ℏ ¼ c ¼ 1 throughout).
The total energy density ρtotal is therefore

ρtotal ¼ ρΛRVM þ ρdust þ ρradiation; ð2Þ

where we use the notation ρΛRVM to represent the RVM
contribution.
The following renormalization group equation (RGE)

was proposed for ρΛRVM in the context of the RVM as a
function of the Hubble rate [3–6]:

dρΛRVMðtÞ
dlnH2

¼ 1

ð4πÞ2
X
i

�
aiM2

i H
2þbiH4þci

H6

M2
i
þ���

�
: ð3Þ

Here H plays the role of the running scale μ of the RGE.
The coefficients ai; bi; ci… are dimensionless and they
receive contributions from loop corrections of fermion
(i ¼ F) and boson (i ¼ B) matter fields with different
massesMi. The missing term proportional toM4

i on the rhs
of the above equation is forbidden since there is no fully
active particle for the RGE, as all masses are larger than the
typical value of H at any epoch of the cosmological
evolution below the Planck mass. Therefore, the running
goes slowly thanks to the decoupling terms. However,

1We note at this point that such a model for the Universe’s
vacuum energy has also been advocated within the context of
string/brane universes in the presence of space-time brane defects
[21]; quantum fluctuations of the latter induce a noncriticality of
the string universe [22], manifested through the generation of a
target-space vacuum energy dependence on the Liouville mode,
which is identified with the cosmic time [23]. Given the
connection of the Liouville mode with a world-sheet local RG
scale, this picture provides an interpretation of the cosmic time as
some sort of RG scale. Such a RG-like picture also lies at the
heart of the RVM evolution, but from a rather different perspec-
tive [3–5], not associated with specific string models, as we shall
review below.
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because of the dimensionality of ρΛ, the first allowed term
is a “soft decoupling term” ∼M2

i H
2 [3], which increases

with the value of the masses and hence the effect need not
be negligible.2 For this reason the running is actually
dominated by the heaviest fields in the particular grand
unified theory (GUT) context where the considerations are
made [25]. This is in contrast to what happens in the usual
gauge theories, like QED or QCD, where the decoupling
terms are all suppressed. The next-to-leading terms ∼H4

are not suppressed by heavy masses, and although irrel-
evant for the current Universe, they can nonetheless play a
central role in the early Universe and can explain inflation
[7–10,26]. The conventional terms suppressed à la
Appelquist and Carazzone [27] appear only at the next-to-
next-to-leading order, i.e., the OðH6=M2

i Þ terms of the cos-
mological RGE [6,28], which are a factor of H4=M4

i ≪ 1

smaller than the soft decoupling (leading) ones. See
Ref. [3] for the original proposal and Ref. [29] for addi-
tional discussions.
It is important to note that, because of the general

covariance of the effective action, among the possible
terms emerging from the quantum effects one expects only
those carrying an even number of time derivatives of the
scale factor a. If expressed in terms of the Hubble rate,
H ¼ _a=a, this amounts to terms of the formH2, _H,H4, _H2,
H2 _H etc. Thus, the linear terms in H (and in general
any term with an odd number of derivatives of the scale
factor, such as H3, _HH, Ḧ etc.) are forbidden in the
RVM since they would be incompatible with the general
covariance of the effective action [6]. In particular, at
low energies only the H2 and _H terms are relevant for
the phenomenological confrontation with the data. The
higher-order ones can however be important for the early
Universe [8–13,26].
As indicated, in Eq. (3) we have identified the RG scale μ

as μ ∼H, and hence the Hubble rate plays the role of the
typical RG scale in cosmology. However, a more general
option would be to associate μ2 to a linear combination of
H2 and _H (both terms being dimensionally homogeneous).
Adopting this setting and integrating Eq. (3) up to the terms
ofOðH4Þ, or similar dimension, it is easy to see that we can
express the result as follows:

ρΛRVMðH; _HÞ ¼ a0 þ a1 _H þ a2H2 þ a3 _H
2 þ a4H4

þ a5 _HH2 þ � � � ð4Þ

where the coefficients ai have different dimensionalities in
natural units, and… denotes the possible decoupling terms
(suppressed by mass powers) which are irrelevant for our
discussion. Specifically, a0 has dimension four since this is
the dimension of ρΛ; a1 and a2 have dimension two; and,
finally, a3, a4 and a5 are dimensionless. The RVM is the
extension of the ΛCDM model based on a dynamical
vacuum energy density of the form (4), stemming from the
basic RG equation (3). Despite the fact that higher-order
terms are still possible in Eq. (4), the expression as written
contains the basic terms up to four derivatives of the scale
factor, and hence it encodes the basic ingredients of the
model both for the low- (i.e., the late) and the high-energy
(early and very early) Universe. In particular it encodes a
possible description of inflation.
For simplicity, let us hereafter stick to the simplest

association μ¼H. Taking into account that _H ¼
−ðqþ 1ÞH2, where q is the deceleration parameter,
which assumes the values q ¼ 1; 1=2;−1, as we move
from the radiation- into the matter- and DE-dominated
epochs, respectively, we can see that the modification
introduced by _H is not very important and we can pick
up the main effect already with the canonical association
μ ¼ H; this is indeed substantiated in the practical
analyses (see e.g., Refs. [14–17]). In this situation, we
have a1 ¼ a3 ¼ a5 ¼ 0 in Eq. (4). The remaining coef-
ficients can be related immediately to those in Eq. (3),
and the final result can be cast as [6]

ρΛRVMðHÞ ¼ ΛðHÞ
κ2

¼ 3

κ2

�
c0 þ νH2 þ α

H4

H2
I

�
; ð5Þ

where HI is the Hubble parameter close to the GUT
scale, c0 is an integration constant (with mass dimension
þ2 in natural units, i.e., energy squared), while the
coefficients ðν; αÞ are written as [6,9]

ν ¼ 1

48π2
X
i¼F;B

ai
M2

i

MPl
ð6Þ

and

α ¼ 1

96π2
H2

I

M2
Pl

X
i¼F;B

bi: ð7Þ

In fact ν and α can be viewed as the reduced (dimen-
sionless) beta functions of ρΛRVM at low and high energies
respectively [4–6]. Of course, due to the fact that all
known particles have M2

i ≪ M2
Pl, the above coefficients

are expected to be quite small in a typical GUT, namely
Oð10−6–10−3Þ; see Ref. [4].

2We note that, even if we consider the radiation-dominated
epoch of the Universe, at temperature T, the Friedmann equation
(with ρm ∼ T4) implies that the requirement of satisfying the
condition H > Mi roughly means T2=MPl > Mi, or equivalently
M4

i =T
4 < M2

i =M
2
Pl ≪ 1 for any particle of massMi. Hence, at the

time when the ∼M4
i contributions to the running of the vacuum

energy density start to become active, they are still negligible
compared to the radiation contribution ∼T4. We therefore
conclude that, within the RG formulation in which the RVM
is contextualized, the terms ∼M4

i remain RG decoupled through-
out the entire cosmic history [6].
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On considering a spatially flat Friedman-Lemaître-
Robertson-Walker (FLRW) space-time, favored by obser-
vations [1], which we restrict our attention to in this work,
one can show that the main cosmological equations in the
presence of the RVM vacuum energy density (5) acquire
the form [8,9]

_H þ 3

2
ð1þ ωÞH2

�
1 − ν −

c0
H2

− α
H2

H2
I

�
¼ 0; ð8Þ

where ω ¼ ρm=pm, with ρm (pm) being the matter/radiation
energy density (pressure), and the overdot denotes a
derivative with respect to the cosmic time t of the
FLRW universe. In the early universe we have relativistic
matter, ρm ¼ ρradiation with ω ¼ 1=3, while in the late
universe matter is dominated by dust, ρm ¼ ρdust with
ω ¼ 0. Unlike the standard ΛCDM model of cosmology
(Λ ¼ const) [1], here there is an exchange between matter
and vacuum, which implies

_ρm þ 3ð1þ ωÞHρm ¼ −_ρΛRVM: ð9Þ

The global dynamics of the RVM throughout the cosmic
history has been studied in detail in Refs. [8,9]. According
to it, the universe starts from a nonsingular state charac-
terized by an unstable initial de Sitter vacuum phase [11]. It
subsequently passes smoothly from an early inflationary
epoch to a radiation period (“graceful exit”) and, at the end,
it goes into the dark-matter- and dark-energy-dominated
epochs. The RVM evolution also provides an explanation
of the large entropy problem [7,11–13]. Below we briefly
present the main points, for concreteness. Focusing on the
early universe era, for which c0=H2 ≪ 1, the integrated
form of Eq. (8) admits the following solution in terms of the
scale factor (upon using d=dt ¼ Hd=da in it):

HðaÞ ¼
�
1 − ν

α

�
1=2 HIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Da3ð1−νÞð1þωmÞ þ 1
p ; ð10Þ

where D > 0 is a constant. It is easy to check that for
Da4ð1−νÞ ≪ 1 the universe starts from an unstable de Sitter
eraH2 ¼ ð1 − νÞH2

I =αwhich is powered by the huge value
of HI ∼

ffiffiffi
α

p
M2

X=MPl ≲ ð10−5–10−6ÞMPl [7], where MX ∼
1016 GeV is the typical value of the GUT scale. Note that
the previous relation is essential, since it is equivalent to the
condition that the fluctuations from the tensor modes do not
induce cosmic microwave background (CMB) temperature
anisotropies larger than the observed ones (H=MPl ≲ 10−5

in the early universe), and it is indeed satisfied for
α ∼ 10−3–10−4, which is in the expected range for this
small parameter. After the early inflationary epoch, spe-
cifically in the case of Da4ð1−νÞ ≫ 1, we find H2 ∼
a3ð1−νÞð1þωmÞ ∼ a−4 (for jνj ≪ 1, ω ¼ 1=3) and the universe
definitely enters the standard radiation phase, as expected.

On the other hand, in the late universe, when the term
c0=H2 in Eq. (8) begins to dominate over αH2=H2

I , the
corresponding integration leads to the solution

H2ðaÞ ¼ H2
0½Ω̃m0a−3ð1−νÞ þ Ω̃Λ0�; ð11Þ

where Ω̃m0 ¼ Ωm0

1−ν and Ω̃Λ0 ¼ 1 − Ω̃m0 ¼ ΩΛ0−ν
1−ν , withΩm0 þ

ΩΛ0 ¼ 1 being the standard sum rule (with the subscript
“0” denoting present-era quantities). The presence of the
parameter ν in the scaling of the matter contribution in
Eq. (11) is an important and characteristic prediction of the
RVM that allows comparison with the data.
In fact, the RVM agrees excellently with the current

cosmological data at large scales [1], but also makes
important predictions [14–17] that could alleviate current
tensions in the data, concerning, for instance, the so-called
σ8 tension and an associated improvement in describing
large-scale structure formation, compared to the ΛCDM
paradigm. The model also provides better insight into
the discrepancy with the (local) value of H0 between
measurements by the Hubble Space Telescope, based
on Cepheid observations [30], and those by the Planck
Collaboration, based on CMB studies [1]. In Refs. [14–16]
it was argued that the presence of the index ν in the RVM
evolution of the Hubble parameter (11), which affects the
scaling of the vacuum energy density (5) and, thus,
differentiates it from the standard ΛCDM case, leads to
combined fits to SnIAþ BAOþ HðzÞ þ CMB data that
favor a lower value of σ8.
Depending on whether one considers an interaction of

the dynamical DE with matter or assumes self-conservation
of the DE, one can favor the lower value ofH0 measured by
the Planck Collaboration [1] or push this value higher. This
feature has been demonstrated recently in Ref. [31], where
it was shown that, upon the assumptions that the DE adopts
the RVM form, and does not interact with matter, it is
possible to simultaneously decrease the value of σ8 and
increase the prediction on H0, such that the fitted value of
H0 definitely becomes much closer to the local value
determined by Riess et al. [30].
Remarkably, some microscopic models supporting the

RVM-type evolution (5)–(11) of the energy density of
the Universe have been presented in Ref. [26], based
on inflationary scenarios involving dynamical breaking
of minimal supergravity, or in Refs. [5,6] on the basis of the
conformal anomaly-induced effective action. One of the
main points of the current work is to demonstrate that RVM
contributions ofH2 type in the vacuum energy density arise
in more generic cosmological scenarios, inspired by string
theory, in which axion fields, coupled to gravitational
anomalies in de Sitter eras of the Universe, also result in
RVM H2 contributions.
However, our work will make an important further

step by presenting a consistent (albeit minimal, rather
toy) scenario, of a string Universe, in which primordial
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gravitational waves induce gravitational anomalies during
the inflationary phase, where only the inflaton and gravi-
tational degrees of freedom (d.o.f.), including the Kalb-
Ramond (KR) axion associated with the antisymmetric
tensor field of the massless gravitational string multiplet,
are present in the string low-energy effective action [32–
34]. The coupling of the KR axion to the gravitational
anomaly leads to undiluted KR background fields at the
end of inflation, which spontaneously violate Lorentz
and CPT symmetry. This, in turn, plays an important role
in generating lepton asymmetry in models involving
(heavy) right-handed neutrinos [35–38], through the decays
of the latter into Standard Model (SM) particles in the
presence of the KR background. The lepton asymmetry can
then be communicated to the baryon sector via standard
baryon- (B) and lepton- (L) number-violating, but B − L-
conserving, sphaleron processes in the SM sector of the
model [39].
The basic results of this approach have already appeared

in Ref. [40]. Here we discuss the details but also present
further developments, in particular concerning the potential
role of KR axions as dark matter in late eras of the
Universe.
Gravitational anomalies, when present, are known to

affect the diffeomorphism invariance of the quantum
theory, in the sense that the matter stress-energy tensor
is not conserved [41]. In the absence of matter/radiation
d.o.f., as is the case in our string effective model during
inflation, where we assume only d.o.f. from the gravita-
tional string multiplet to be present, this may not be a
catastrophe. The anomaly-induced nonconservation of the
stress tensor simply accounts for the exchange of energy
among the (quantum) gravitational d.o.f.
During the radiation and matter eras, however, gravita-

tional anomalies should be canceled for the consistency of
the matter quantum theory, which should be diffeomor-
phism invariant. In our model this is provided by the
generation of chiral fermion matter with anomalous
axial currents, such as chiral leptons in the SM sector
or other chiral fermions that might exist in beyond the
Standard Model physics models, which cancel the gravi-
tational anomalies during this epoch. The coupling of
the (undiluted) KR axion to right-handed massive neutrino
matter during the early radiation era succeeding inflation
is essential for leptogenesis via the mechanism of
Refs. [35–38].
In general, chiral anomalies survive in the radiation- and

matter-dominated eras, and this is crucial for providing a
link between the KR axion and the DM content of the
Universe at late epochs. The reader should recall that chiral
anomalies are harmless from a diffeomorphism-invariance
point of view, as they do not contribute to the stress tensor
of matter. As we shall discuss in this article, the KR axion
provides a source of (“stiff” [42]) axionic DM, and is
responsible for generating, through its coupling with the

chiral anomaly, a large-scale cosmic magnetic field at late
epochs, whose magnetic energy density contributes to the
late-era energy budget of the Universe, with terms of RVM
type, scaling asH2

0. There aremodels [43], however, inwhich
the KR axion couples to chiral matter (such as Majorana
right-handed neutrinos) via shift-symmetry-breaking inter-
actions, possibly generated by nonperturbative effects (string
instantons), and via shift-symmetry-preserving kinetic mix-
ing to other axions that are abundant in string theory [44]. In
fact, such a mixing allows for the generation of a Majorana
mass for the right-handedneutrinos,which is a crucial feature
for the aforementioned leptogenesis scenario [36–38]. These
string theory axions can then play the role of additional
components ofDM(in some of these scenarios, there is also a
nonperturbative generated potential for theKRaxion itself, at
late eras, which thus implies its potential role as a massive
DM candidate).
In the current era, where matter becomes subdominant,

and the Universe enters a de Sitter phase again, dominated
by dark energy, gravitational anomalies due to gravita-
tional-wave perturbations resurface, but they are much
more suppressed compared to their primordial counterparts,
since the current Hubble parameter H0 is much more
suppressed compared to the one during inflation,HI ≫ H0.
As a matter of fact, this is also what makes it possible for
the DE in our epoch to inherit a “relic” dynamical H2

component as part of the observed DE contribution to the
current energy budget of the cosmos. Therefore, in the
context of the scenario described in the present article, we
naturally predict dynamical DE, which, as argued above,
seems to be favored by current observations [14–17,45].
In the above scenario, therefore, the matter dominance

over antimatter is entirely attributed to the existence of
anomalies and the associated coupling of a gravitational
axion d.o.f. (the KR axion) to them. In this work we shall
discuss all such issues in detail, with the aim of demon-
strating the potential importance of gravitational anomalies
for the dominance of matter over antimatter in the cosmos
and thus for our “very existence.” The H2-RVM-type
vacuum energy, associated with the anomaly contributions,
plus the existence of (“stiff”) axion DM, might then
constitute smoking-gun evidence for such claims.
The structure of the article is as follows. In Sec. II A, we

discuss the (four-space-time-dimensional) primordial effec-
tive action of the model, based only on the gravitational
d.o.f. of the massless bosonic string multiplet. By imposing
the constraint on the modification of the Bianchi identity
due to the gravitational Chern-Simons (gCS) terms by
means of a pseudoscalar Lagrange multiplier field in the
path integral, we demonstrate how the latter acquires
dynamics and becomes equivalent to a fully fledged KR
axion field. Its CP-violating coupling to the anomaly term
is crucial in ensuring background solutions, which sponta-
neously break Lorentz and CPT symmetry, and remain
undiluted at the end of the inflationary era. This is
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demonstrated in Sec. II B, where it is also shown that
primordial gravitational waves are the primary source of
gravitational anomalies during that phase in the Universe’s
evolution. Moreover, the anomaly contributes to the energy
density of the cosmic fluid terms which have the form of
RVM contributions, proportional to the square of the
Hubble parameter, H2ðtÞ. In Sec. II C we discuss the
potential role of the gravitational anomaly term, averaged
over the inflationary space-time, as a provider of an
effective H4 term in the RVM energy density, which can
then be held responsible for inflation, without the need for
invoking an external inflaton field, the role of which is thus
played by the scalar-field (the “vacuumon”) effective
description of the RVM. In Sec. III A, we discuss the
cancellation of the gravitational anomalies during radia-
tion-/matter-dominated eras, as a result of the generation of
anomalous chiral leptonic matter at the end of inflation.
There remain, however, uncompensated chiral anomalies
during those eras, which also furnish the cosmic-fluid
energy density with RVM-like H2ðtÞ contributions. The
presence of the (undiluted by inflation) KR axion field,
plays an important role in generating leptogenesis during
the radiation era (and subsequently baryogenesis) in
models with heavy right-handed sterile neutrinos, which
is discussed in Sec. III B. In Sec. IV, we demonstrate how
the KR axion background, which couples to the uncom-
pensated chiral anomaly, plays a role analogous to the
chiral chemical potential in the electrodynamics of standard
axions, which has important implications for the genera-
tion of a cosmological magnetic field at late eras of the
Universe, whose energy density contributes to the axion-
DM energy budget. In Sec. V we speculate on extensions of
the model, involving mixing of the KR axion with other
axions, which exist abundantly in string theory [44] and
can play the role of additional axionic DM components.
We discuss the compatibility of the generation of a shift-
symmetry-breaking quintessence-like potential for the KR
field at late eras of the Universe with the (approximately)
constant background configurations that we studied in
Sec. IV. Finally, Sec. VI contains our conclusions.
Although in this work we consider the concrete case in
which the string mass scale is of the order of the (reduced)
Planck mass, our results are valid in the more general case
where these scales are different. A brief discussion on this
is given in the Appendix.

II. ANOMALOUS STRING EFFECTIVE ACTIONS,
INFLATION AND RUNNING VACUUM

A. The primordial effective action with
(gravitational) anomalies

The massless bosonic gravitational multiplet of a generic
string theory consists of three fields [32]: a traceless,
symmetric, dimensionless, spin-2 tensor field gμν, that is
uniquely identified with the graviton, a dimensionless

spin-0 scalar field, the dilaton Φ,3 where gs ¼ eΦ is the
string coupling, and the dimensionless spin-1 antisymmetric
tensor (Kalb-Ramond) field Bμν ¼ −Bνμ. In the closed-
string sector, to which we restrict ourselves for concreteness
for the purposes of this work, there is a Uð1Þ gauge
symmetry Bμν → Bμν þ ∂μθν − ∂νθμ which characterizes
the target-space low-energy string effective action. This
implies that the latter depends only on the field strength of
the field Bμν, which is a three-form with components

Hμνρ ¼ ∂ ½μBνρ�; ð12Þ

where the symbol ½…� denotes complete antisymmetrization
of the respective indices. The three-form Hμνρ satisfies the
Bianchi identity

∂ ½μHνρσ� ¼ 0; ð13Þ

by construction.
The bosonic part of the (four-space-time-dimensional)

effective action, SB, that reproduces the string scattering
amplitudes to lowest nontrivial order in an expansion in
powers of the string Regge slope α0 (i.e., quadratic order in
derivatives), to which we restrict our attention from now on,
reads in the Einstein frame [33,34]4

SB¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
½−Rþ2∂μΦ∂μΦ�−1

6
e−4ΦHλμνHλμν

−
2

3α0κ2
e2Φδcþ�� �

�
; ð14Þ

where Hμνρ ≡ κ−1Hμνρ has dimensions of ½mass�2, and the
… represents higher-derivative terms, which are of higher
order in α0, where α0 ¼ M−2

s is the Regge slope of the string
andMs is the string mass scale. The latter is not necessarily

3The dilaton is sometimes referred to as the trace part of the
graviton. This has the following meaning. If we apply the
equivalence principle, so that locally the target space-time, in
which a string propagates, is taken—through an appropriate
coordinate choice—to be the flat Minkowski space-time, then
the graviton fluctuations are defined through the linearization of
the metric tensor: gμν ¼ ημν þ κhμν, where hμν is a mass-dimen-
sion-one tensor with respect to the Lorentz symmetry, and κ2 ¼
8πG is the four-dimensional gravitational constant. The associated
group SO(D − 1, 1) of transformations in D target-space dimen-
sions of the string contains then a traceless spin-2 tensor repre-
sentation, corresponding to the graviton, the spin-1 antisymmetric
part, and a trace part, which refers to as the dilaton κ−1Φ, with Φ
dimensionless. In general relativity, one imposes a “gauge fixing,”
inwhich the graviton fluctuation tensor in the linearized formalism
is transverse and traceless, thus corresponding to the aforemen-
tioned spin-2 traceless part of the SOðD − 1; 1Þ representations.

4The conventions and definitions we use throughout this work
are as follows: the metric signature ðþ;−;−;−Þ, Riemann
curvature tensor Rλ

μνσ¼∂νΓλ
μσþΓρ

μσΓλ
ρν−ðν↔σÞ, Ricci tensor

Rμν ¼ Rλ
μλν, and Ricci scalar R ¼ Rμνgμν.
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the same as the four-dimensional gravitational con-
stant κ2 ¼ 8πG ¼ M−2

Pl .
The last term on the right-hand side of Eq. (14) repre-

sents a (four-space-time-dimensional) vacuum energy term.
In noncritical string models [22], such a term arises from a
positive δc > 0 central charge surplus of supercritical
strings, which owes its existence to σ-model conformal
anomaly contributions from “internal dimensions” of the
string, the “external dimensions” D ¼ 4 defining the four-
dimensional target space-time of our Universe. In brane-
universe scenarios, such vacuum energy contributions could
come from bulk-space terms, and they include anti–de
Sitter–type (negative) contributions [46]. For our purposes
in this work we shall assume δc ¼ 0. We shall also assume
that the dilatonvaries slowly or that it has stabilized (through
some appropriate nonperturbative string mechanism) to a
constant valueΦ0, so thatwemay approximate ∂μΦ∂μΦ ≃ 0

in Eq. (14) throughout the current work. This implies an

(approximately) constant string coupling gs ¼ gð0Þs eΦ0 .
Without loss of generality, then, we may set Φ0 ¼ 0.

The string coupling gð0Þs can be fixed by phenomenological
considerations of the four-dimensional effective field
theory [32].
We can then write the action SB as

SB ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ 1

6
HλμνHλμν þ � � �

�
: ð15Þ

It is known [32,33] that the KR field strength terms H2 in
Eq. (15) can be absorbed (up to an irrelevant total
divergence) into a contorted generalized curvature R̄ðΓ̄Þ,
with a “torsional connection” [47] Γ̄, corresponding to a
contorsion tensor proportional to the field strength Hρ

μν,

Γ̄ρ
μν ¼ Γρ

μν þ κffiffiffi
3

p Hρ
μν ≠ Γ̄ρ

νμ; ð16Þ

where Γρ
μν ¼ Γρ

νμ is the torsion-free Christoffel symbol.
Exploiting local field redefinition ambiguities [33,34],
which do not affect the perturbative scattering amplitudes,
one may extend the above conclusion to the quartic order
in derivatives, that is, to the Oðα0Þ effective low-energy
action, which includes Gauss-Bonnet quadratic curvature
invariants.
In string theory, in the presence of gauge and gravita-

tional fields, the cancellation of anomalies, requires the
modification of the right-hand side of Eq. (12) by appro-
priate gauge [Yang-Mills (Y)] and Lorentz (L) Chern-
Simons three-forms [32]

H ¼ dBþ α0

8κ
ðΩ3L −Ω3YÞ;

Ω3L ¼ ωa
c ∧ dωc

a þ
2

3
ωa

c ∧ ωc
d ∧ ωd

a;

Ω3Y ¼ A ∧ dAþA ∧ A ∧ A; ð17Þ

where we used differential-form language for brevity, with
∧ denoting the usual exterior (“wedge”) product among
differential forms, such that fðkÞ ∧gðlÞ ¼ ð−1ÞklgðlÞ ∧ fðkÞ,
where fðkÞ, and gðlÞ are k− and l− forms, respectively.
Above, A is the Yang-Mills potential (gauge field) one-
form, and ωa

b is the spin connection one-form [the latin
indices a, b, c, d are tangent space i.e., Lorentz group
SO(1,3) indices]. The addition of Eq. (17) leads to a
modification of the Bianchi identity (13) [32]

dH ¼ α0

8κ
TrðR ∧ R − F ∧ FÞ ð18Þ

where F ¼ dAþA ∧ A is the Yang-Mills field strength
two-form and Ra

b ¼ dωa
b þ ωa

c ∧ ωc
b is the curvature

two-form and the trace (Tr) is over gauge and Lorentz
group indices. The nonzero quantity on the right-hand side
of Eq. (18) is the “mixed (gauge and gravitational) quantum
anomaly”.5

The Bianchi identity constraint (18) in differential-form
language can be expressed in the usual tensor notation as
follows:

εabc
μHabc

;μ ¼
α0

32κ

ffiffiffiffiffiffi
−g

p ðRμνρσR̃μνρσ −FμνF̃μνÞ
≡ ffiffiffiffiffiffi

−g
p

Gðω;AÞ; ð19Þ
where the semicolon denotes a covariant derivative with
respect to the standard Christoffel connection, and

εμνρσ ¼
ffiffiffiffiffiffi
−g

p
ϵμνρσ; εμνρσ ¼ sgnðgÞffiffiffiffiffiffi−gp ϵμνρσ; ð20Þ

where ϵ0123 ¼ þ1, etc., are the gravitationally covariant
Levi-Civita tensor densities, totally antisymmetric in their

indices. The symbol gð…Þ over the curvature or gauge field-
strength tensors denotes the corresponding dual, defined as

R̃μνρσ ¼
1

2
εμνλπRλπ

ρσ; F̃μν ¼
1

2
εμνρσFρσ: ð21Þ

Since the anomaly Gðω;AÞ is an exact one-loop result,
one may implement the Bianchi identity (19) as a δ-
functional constraint in the quantum path integral of the
action (15) over the fields H, A, and gμν, and express the
latter in terms of a Lagrange multiplier (pseudoscalar) field
[34] bðxÞ= ffiffiffi

3
p

[where the normalization factor
ffiffiffi
3

p
is

inserted so that the field bðxÞ will acquire a canonical
kinetic term, as we shall see below]:

5Notice that the modifications (17) and the right-hand side of
the Bianchi identity (18) contain the torsion-free spin connection.
In fact, it can be shown [48,49] that any potential contributions
from the torsion H three-form in the anomaly equation can be
removed by adding to the string effective action appropriate
counterterms order by order in perturbation theory.
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ΠxδðεμνρσHνρσðxÞ;μ − Gðω;AÞÞ ⇒
Z

Db exp

�
i
Z

d4x
ffiffiffiffiffiffi
−g

p 1ffiffiffi
3

p bðxÞðεμνρσHνρσðxÞ;μ − Gðω;AÞÞ
�

¼
Z

Db exp

�
−i
Z

d4x
ffiffiffiffiffiffi
−g

p �
∂μbðxÞ 1ffiffiffi

3
p ϵμνρσHνρσ þ bðxÞffiffiffi

3
p Gðω;AÞ

��
ð22Þ

where the second equality has been obtained by partial integration, upon assuming that the KR field strength dies
out at spatial infinity. Inserting Eq. (22) into the path integral with respect to the action (15), and integrating over the H
field, one obtains an effective action in terms of the anomaly and a canonically normalized dynamical, massless, KR axion
field bðxÞ [34]

SeffB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ 1

2
∂μb∂μbþ

ffiffiffi
2

3

r
α0

96κ
bðxÞðRμνρσR̃μνρσ − FμνF̃μνÞ þ � � �

�
; ð23Þ

where the dots … denote gauge, as well as higher-
derivative, terms appearing in the string effective
action, which we ignore for our discussion here.6 We thus
observe that, in view of the anomaly, the KR axion field
couples to the gravitational and gauge fields. This inter-
action is P and T violating, and hence in view of the overall
CPT invariance of the quantum theory, alsoCP violating. It
will be quite important for our purposes in this work. In
fact, the term

ffiffiffiffiffiffi−gp ðRμνρσR̃μνρσ − FμνF̃μνÞ in Eq. (23) is the
well-known Hirzebruch-Pontryagin topological density
and is a total derivativeffiffiffiffiffiffi

−g
p ðRμνρσR̃μνρσ − FμνF̃μνÞ

¼ ffiffiffiffiffiffi
−g

p
Kμ

mixedðωÞ;μ ¼ ∂μð
ffiffiffiffiffiffi
−g

p
Kμ

mixedðωÞÞ

¼ 2∂μ

�
ϵμναβωab

ν

�
∂αωβab þ

2

3
ωc
αaωβcb

�
− 2ϵμναβ

�
Ai
ν∂αAi

β þ
2

3
fijkAi

νA
j
αAk

β

��
; ð24Þ

with latin letters i, j, k being gauge group indices, andffiffiffiffiffiffi−gp
Kμ

mixed denoting the mixed (gauge and gravitational)
anomaly current density.
In the early Universe, before and during inflation, we

assume that only fields from the gravitational multiplet of the
string exist, which implies that our effective action pertinent
to the dynamics of the inflationary period, is givenbyEq. (23)
uponsetting thegauge fields to zero,A ¼ 0. Thus, todescribe
the dynamics of the beginning and the inflationary period of
the Universe, we use the effective action

SeffB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ 1

2
∂μb∂μb

þ
ffiffiffi
2

3

r
α0

96κ
bðxÞRμνρσR̃μνρσ þ � � �

�
; ð25Þ

involving only the KR axion and the gravitational field. The
presence of the axion bðxÞ represents the effects of “torsion,”
in view of our previous discussion on the role of the KR field
strength as a (quantum) torsion [Eq. (16)] in string theory
[32–34]. On ignoring the gauge sector, the topological
density (24) becomesffiffiffiffiffiffi
−g

p
RμνρσR̃μνρσ ¼ ffiffiffiffiffiffi

−g
p

KμðωÞ;μ ¼ ∂μð
ffiffiffiffiffiffi
−g

p
KμðωÞÞ

¼ 2∂μ

�
ϵμναβωab

ν

�
∂αωβabþ

2

3
ωαa

cωβcb

��
;

ð26Þ

which is also called the “gravitational Chern-Simons” term, a
terminology that we shall use in this work. The (purely
gravitational) quantity

ffiffiffiffiffiffi−gp
Kμ may be viewed as the “axial

current density” of our bosonic theory (i.e., in the absence of
fermions), as its (covariant) four-divergence is related to the
gravitational anomaly. For completeness and future conven-
ience, we also express below

ffiffiffiffiffiffi−gp
Kμ in terms of the

(standard) torsion-free Christoffel connection Γα
βγ,

ffiffiffiffiffiffi
−g

p
Kμ ¼ ϵμβγδ

�
Γν

βσ∂γΓσ
δν þ

2

3
Γν

βσΓσ
γλΓλ

δν

�
: ð27Þ

We now notice that, by partially integrating the CP-
violating anomaly term in Eq. (25), ignoring surface terms
(on account of the assumption that the gravitational field
and its derivatives vanish at infinity), and using Eq. (26),
one arrives at the effective action

SeffB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ 1

2
∂μb∂μb

−
ffiffiffi
2

3

r
α0

96κ
∂μbðxÞKμ þ � � �

�
≡ Sgrav þ Sb þ Sb-grav; ð28Þ

where Sgrav denotes the pure-gravity Einstein-Hilbert Ricci
scalar action, Sbðb; gαβÞ denotes the “matter” action of the

6It should be noticed that, in our conventions for the Levi-
Civita tensor (20), the kinetic term of the b field in Eq. (23) has
the opposite sign to that of the (covariant) square of the Hμνρ

tensor in Eq. (15).
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bðxÞ field, which does not contain derivatives of the
graviton,

Sb ≡
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
∂μb∂μb; ð29Þ

and

Sb-grav ≡ −
ffiffiffi
2

3

r
α0

96κ

Z
d4x

ffiffiffiffiffiffi
−g

p ð∂μbðxÞKμÞ

¼
ffiffiffi
2

3

r
α0

96κ

Z
d4x

ffiffiffiffiffiffi
−g

p
bRμνρσR̃μνρσ; ð30Þ

is the KR-axion-gravitational anomaly term (24).
The “matter”KR-axion stress-energy tensor is calculated

from Eq. (28) by using the standard definition of Tb
μν in

general relativity,

Tb
μν ¼

2ffiffiffiffiffiffi−gp δSbðb; gαβÞ
δgμν

¼ ∂μb∂νb −
1

2
gμνð∂αb∂αbÞ: ð31Þ

To compute the metric variation of Eq. (30), we take into
account that the variation of the Christoffel symbol with
respect to the metric tensor gμν is

δΓβ
αγ ¼

1

2
gβδððδgδγÞ;α þ ðδgαδÞ;γ − ðδgαγÞ;δÞ: ð32Þ

One can then easily express the infinitesimal metric
variation of the Pontryagin-term bRR̃ in terms of the so-
called four-dimensional Cotton tensor Cμν [41]:

δ

�Z
d4x

ffiffiffiffiffiffi
−g

p
bRμνρσR̃μνρσ

�
¼4

Z
d4x

ffiffiffiffiffiffi
−g

p
Cμνδgμν

¼−4
Z

d4x
ffiffiffiffiffiffi
−g

p
Cμνδgμν; ð33Þ

where [34,41]

Cμν≡−
1

2

�
vσðεσμαβRν

β;αþεσναβRμ
β;αÞþvστðR̃τμσνþ R̃τνσμÞ�

¼−
1

2
½ðvσR̃λμσνÞ;λþðμ↔νÞ�;

vσ≡∂σb¼b;σ; vστ≡vτ;σ ¼b;τ;σ: ð34Þ

As follows from its definition (34), and the properties of the
Riemann tensor, the Cotton tensor is traceless [41]

gμνCμν ¼ 0: ð35Þ

At this stage, we would like to make some generic
remarks concerning the conservation properties of the
Cotton tensor, and thus potential problems associated with
theories with gravitational anomalies [41]. From Eq. (33),

we may write the corresponding (generic) Einstein equation
in the form

Rμν −
1

2
gμνR ¼ Λgμν þ

ffiffiffi
2

3

r
α0κ
12

Cμν þ κ2Tμν
matter; ð36Þ

where Tμν
matter is a generic matter stress tensor, including

axion-like fields [like our KR axion above, cf. Eq. (29)]
which does not contain couplings to curvature and, in
general, derivatives of the metric tensor. The latter cou-
plings contribute only to Cμν. In standard situations, without
gravitational anomalies, general coordinate diffeomor-
phism invariance, implies the conservation of the matter
stress tensor, Tμν

matter;ν ¼ 0, given the covariant constancy of
the metric, which ensures that the cosmological constant Λ
contribution to the total energy-momentum tensor is con-
served. Because of the curvature tensor Bianchi identity,
the Einstein tensor Rμν − 1

2
gμνR, also obeys such a covar-

iant conservation law, but this is not the case for the Cotton
tensor, as one can readily check [41]:

Cμν;μ ¼ −
1

8
vνRαβγδR̃αβγδ: ð37Þ

Thus, in the presence of gravitational anomalies, the
diffeomorphism invariance would appear to be in trouble,
unless one deals with specific gravitational backgrounds
[41,50], such as the ones pertaining to the FLRW universe
of interest to us here, for which the Pontryagin density
vanishes RμνρσR̃μνρσ ¼ 0. Indeed, in our case, during the
inflationary era, for whichA ¼ 0, the term bRR̃ in Eq. (25),
yields, on account of Eqs. (33)–(34), a Cotton tensor of the
form [34]

Cμν ∝ ð∂ρbR̃ρμλνÞ;λ þ ðμ ↔ νÞ; ð38Þ

where the dual Riemann tensor R̃μνρσ has been defined in
Eq. (21), and the numerical proportionality coefficients are
of no interest to us, and hence we do not write them
explicitly here. For a homogeneous and isotropic FLRW
space-time, and axion field bðtÞ, for which only the
temporal derivative is nonzero, we obtain from Eq. (38)
that TbRR̃

00 ¼ 0, on account of the antisymmetry of the
Riemann tensor Rμναβ ¼ −Rνμαβ and the properties of its
dual. The pressure density contributions of such terms also
vanish, as follows from the Bianchi identity of the Riemann
curvature tensor, Rμ½νρσ� ¼ 0, with ½…� denoting antisym-
metrization of the respective indices. Thus for a FLRW
universe, the Cotton tensor vanishes, consistent with
diffeomorphism invariance.
The “apparent” nonconservation of the matter stress

tensor in the presence of the Cotton tensor in the Einstein
equation (36) appears to be in contradiction with the
perfectly covariant form of the axion-gCS coupling in
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Eq. (25) under general coordinate transformations. As is
standard, when evaluating anomalies in higher-order
quantum-corrected effective actions, one employs specific
regularizations, such that there is some sort of conserved
“improved” second-rank tensor which plays the role of
the energy-momentum tensor, compatible with general
covariance.
This also happens here, for generic space-time back-

grounds. Indeed, as can be seen from Eq. (36), from the
Bianchi identities of the Einstein tensor, there is a con-
served modified stress-energy tensor

κ2T̃μν
bþΛþgCS ≡

ffiffiffi
2

3

r
α0κ
12

Cμν þ κ2Tμν
b þ Λgμν

⇒ T̃μν
bþΛþgCS;μ ¼ 0; ð39Þ

with the extra terms, proportional to the Cotton tensor Cμν,
describing energy exchange between the axion and gravi-
tational field.7 The covariant conservation law (39), then,
leads as usual to the energy conservation of the KR axion-
gravity system. Any regularization scheme employed in the
computation of the anomaly should then respect this
conservation law, and thus the CP-violating axion-gravity

interaction terms in the effective action (28) are fully
consistent, both formally and conceptually, as was to be
expected given that such terms arise in the context of string
theory [34], which is a consistent theory of quantum
gravity [32].
What we say here is that, rather than restricting [41,50]

the consistent space-time backgrounds by demanding the
covariant conservation of the pure axion matter stress
tensor, Tμν

axion-matter;ν ¼ 0, when there are gravitational
anomalies, to which these axions couple, this on-shell
conservation law breaks down, as a result of the exchange
of energy with the gravitational field. There is instead a
modified stress tensor (39) which remains conserved. This
peculiarity refers only to axion fields and should be
reflected in the solutions to the equations of motion for
these fields in the presence of anomalous background
space-times. It is the purpose of this work to demonstrate
the existence of such consistent solutions; however as we
shall see they “spontaneously” violate Lorentz symmetry.
The latter should not come as a surprise, due to the
“spontaneous” breaking of diffeomorphism invariance by
the anomalous space-time gravitational backgrounds (“vac-
uum”). The underlying UV-complete, full quantum gravity
theory should be diffeomorphism invariant, as is the case in
string theory in our example.
Indeed, as we shall discuss later on (cf. Secs. II B

and II C), primordial gravitational waves during the infla-
tionary phase of FLRW universes do induce nontrivial
CP-violating anomalous gravitational-Chern-Simons-KR-
axion couplings, and condensates of the gravitational
anomaly. Upon taking into account such condensates,
the classical equation of motion for the KR axion field
is modified from the standard one in the absence of
gravitational anomalies. In the anomaly-free case, the
KR axion, classically satisfies □bðxÞ ¼ 0, where □ is
the covariant D’ Alembertian. This implies the classical
conservation law Tμν

b ;μ ¼ 0, where Tμν
b is given in Eq. (31).

As we shall see below, in the presence of gravitational-
anomaly condensates, this equation is modified to Eq. (45),
which admits the nontrivial Lorentz-violating solutions
(72), mentioned above. For such solutions, it is the
modified stress tensor (39), taking into account the KR-
gravitational-Chern-Simons interaction, that is classically
conserved on account of the classical Einstein equations.
As we shall discuss in Sec. II C, the anomaly condensates
induce a background FLRW universe with a positive (de
Sitter–type) cosmological constant, which drives inflation.
However, in this case things are even more subtle, in the

sense that the anomalous gravitational contributions are
obtained by averaging over quantum graviton fluctuations
[52], and in this sense Einstein’s equations, which are
classical equations, do not describe the graviton quantum
fluctuations that induce the Chern-Simons term. Hence,
there is no inconsistency as far as the underlying quantum
gravity (string) theory during the inflationary era of the

7The existence of a conserved modified stress-energy
tensor proportional to higher-curvature terms also characterizes
the case of dilaton-Gauss-Bonnet Oðα0Þ terms in string effective
actions [51]:

SB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
½−Rþ 2∂μΦ∂μΦ�

− c1
α0

8gð0Þ2s κ2
e−2ΦðRμνρσRμνρσ − 4RμνRμν þ R2Þ

þ c2ð∂ΦÞ4 þ � � �Þ ð40Þ

where ci, i ¼ 1, 2 are numerical coefficients, and the … denotes
contributions from the central charge deficit, antisymmetric
tensor fields, and higher derivatives. The existence of the
Gauss-Bonnet terms, leads to a modified stress tensor conserva-
tion T ϕþGB;μ

μν ¼ 0, with

T ϕþGB
μν ¼ 2

κ2
∂μΦ∂νΦ −

1

κ2
gμνð∂σΦÞ2 þ α0

κ2
Pμν þ � � � ;

Pμν ¼
c1

8gð0Þ2s

ðgμρgνλ þ gνρgμλÞεσλαβðR̃ργ
αβ∂σ ½e−2Φ�Þ;γ; ð41Þ

with the extra interactions describing energy exchange between
dilatons Φ and gravity, in a similar spirit to our case with axions
interacting with the gravitational Chern-Simons term, which is
also a higher-curvature term. In fact, the analogy with our case
goes even further, in the sense that the modifications Pμν in
Eq. (41) lead to nonpositive contributions to the modified stress-
energy tensor, which in Ref. [51] were deemed important in
evading the no-hair theorem, allowing for black hole solutions
with (secondary) dilaton hair. In our case, the negative contri-
bution of the gravitational Chern-Simons term proves crucial for
the consistency of our framework; see Sec. II C.
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Universe is concerned, which at low energies is described
by the effective action (25), and contains only fields from
the string gravitational multiplet. The latter is fully con-
sistent and diffeomorphism invariant.
Nonetheless, as we shall see in Sec. III A that, in the

radiation or matter era, after the exit from inflation, the
generation of chiral matter would lead to a cancellation of
gravitational anomalies, as would be “conventionally”
required for the “consistency” of the matter and radiation
quantum field theory, without the need to employ a
generalized stress-energy tensor [Eq. (39)]. In such a case,
the axion fields would only couple at most to chiral or in
general triangle anomalies, which do not contribute to the
stress tensor, due to their topological form [see the dis-
cussion in Sec. III A, after Eq. (99)], and, thus, the conven-
tional local covariant conservation of the matter/radiation
stress tensor is guaranteed for any metric background.
After these important remarks we next proceed to discuss

the equation of state of the KR fluid. From Eq. (31), and
taking into account the generic relation for the stress-energy
tensor for an observer moving with a four-velocity uμ with
respect to an inertial frame

Tμν ¼ ðρþ pÞuμuν − gμνp; ð42Þ

we obtain for the energy density ρb ¼ Tbrest
00 and pressure

pb defined via Tbrest
ii ¼ −pbgii (no sum over i) for an

observer at rest with respect to the cosmic frame of a FLRW
Universe, with a homogeneous and isotropic KR axion
field bðtÞ fluid,

ρb ¼ 1

2
ð _̄bÞ2; pb ¼ 1

2
ð _̄bÞ2 ¼ ρb: ð43Þ

This has a stiff matter [42] equation of state, w ¼ 1 and
hence cannot by itself lead to a “running vacuum” type of
fluid. The scaling (with the universe’s scale factor) of the
energy density of stiff matter is

ρb ¼ pb ∼ a−3ð1þwÞ ¼ a−6; w ¼ 1: ð44Þ

Below we shall explicitly demonstrate this by evaluating
the induced energy density, as a self-consistency check of
the approach. To this end, we first observe from Eq. (28),
that the classical equations of motion of the KR axion field
bðxÞ, imply the existence of backgrounds b̄ that satisfy

∂α

� ffiffiffiffiffiffi
−g

p �
∂αb̄ −

ffiffiffi
2

3

r
α0

96κ
Kα

��
¼ 0; ð45Þ

where, as we shall see, Kμ will be associated with an
average of the Hirzebruch-Pontryagin density (26) over the
inflationary space time, which in the presence of the CP-
violating anomalous interactions of Eq. (28) can be non-
vanishing [52]. By multiplying Eq. (45) with ∂νb, and

taking into account Eqs. (33), (34) and (37), the reader can
easily verify that this equation implies the conservation of
the improved stress tensor (39), as explained previously.
In order to not disturb the homogeneity and isotropy of

the inflationary space-time, we may assume only a (cosmic)
time t dependence of the KR background b̄ðtÞ, which, in
view of Eq. (45), would imply that only the temporal
component (μ ¼ 0) of the “axial current density” could be
nontrivial, K0ðtÞ ≠ 0. The general solution of Eq. (45),
which we assume from now on, is

_̄b ¼ C0ffiffiffiffiffiffi−gp þ
ffiffiffi
2

3

r
α0

96κ
K0; ð46Þ

where _̄b ¼ d
dt b̄ðtÞ and C0 is a constant. Equation (46) is a

mathematically consistent relation, since both ∂μb and Kμ

are (covariant) axial four-vectors.
The relation (46) induces a background for the KR axion

field that spontaneously breaks Lorentz, CP and CPT
symmetry. In fact the masslessness of the KR axion b can
be understood by viewing this pseudoscalar field as the
Goldstone boson of the spontaneously broken Lorentz
symmetry [22].
The term proportional to C0 in Eq. (46) is expected to be

suppressed in an inflationary space-time, so without loss of
generality we may set from now on C0 ¼ 0 and consider the
solution

_̄b ¼
ffiffiffi
2

3

r
α0

96κ
K0: ð47Þ

From the anomaly equation (26), assuming homogeneity
and isotropy for the anomaly density

ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞp

KμðtÞ, where t
is the cosmic time, one has

d
dt

ð ffiffiffiffiffiffi
−g

p
K0ðtÞÞ ¼ h ffiffiffiffiffiffi

−g
p

RμνρσR̃μνρσi; ð48Þ

where h…i denotes appropriate averages over graviton
fluctuations in the inflationary space-time to be defined
below [52].
In an unperturbed FLRW space-time, with scale factor

aðtÞ, the right-hand side of Eq. (48) vanishes, as already
mentioned, which would imply

K0ðtÞ ∝ ð
ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞ

p
Þ−1 ∼ a−3ðtÞ; ð49Þ

consistent with the expected “stiff matter” scaling (44) in
this case, where only a massless KR axion field without a
potential is the only constituent of “matter” in the Universe.

B. Gravitational waves during inflation, anomalies
and a “running vacuum”

In this context, another scalar field or mechanism, can be
introduced to induce inflation. At the moment we assume
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that the new field is some conventional inflaton field, φ,
imported from an external framework which the current one
might be embedded into. Later on, in the next subsection,
we will see that such a scalar field need not be a new
fundamental field but just the one that enables mapping the
RVM to its scalar field representation. However, everything
that we will say below does not depend on the nature of φ
and hence we postpone the discussion of the scalar picture
of the RVM to Sec. II C. So, let us assume for concreteness
the existence of an inflaton scalar field, φ, which is different
from the KR axion bðxÞ.8 Augmenting our effective action
(28) by the inclusion of a scalar-φ sector, with a canonical
kinetic term and a potential UðφÞ, we write for the complete
effective action9

Seffbþφþgravity¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ1

2
∂μφ∂μφ−UðφÞ

þ1

2
∂μb∂μb−

ffiffiffi
2

3

r
α0

96κ
∂μbðxÞKμþ���

�
; ð50Þ

where the … denotes higher-derivative terms, including
higher-curvature terms irrelevant for our purposes
here.10 From Eq. (50), we observe that the equations of
motion for the KR-axion field are the same as those
obtained from the action (28), i.e., they still assume the
form (45), but, now, the total “matter” stress tensor, for the
fields φðxÞ and bðxÞ, reads

Tφþb
μν ¼ ∂μφ∂νφþ ∂μb∂νb

− gμν

�
1

2
∂αφ∂αφþ 1

2
∂αb∂αb − UðφÞ

�
; ð51Þ

where the reader is reminded of the fact that the anomaly
terms do not contribute in a FLRW space-time, assumed
on average (however, see below, where we consider

gravitational-wave perturbations [52]). This implies that
the energy density ρφþb and pressure pφþb are

ρφþb ¼ 1

2
ð _̄bÞ2 þ 1

2
ð _φÞ2 þ UðφÞ;

pφþb ¼ 1

2
ð _̄bÞ2 þ 1

2
ð _φÞ2 − UðφÞ: ð52Þ

For slow running of both the φðtÞ and bðtÞ fields, that is
ð _φÞ2, ð _bÞ2 ≪ jUðφÞj which we assume for our purposes
here (and we shall check the self-consistency of this
assumption explicitly in what follows), we observe then
that the conditions for inflation are satisfied to leading order
in small quantities,

pφþb ≃ −ρφþb ≃ −UðφÞ; ð53Þ
provided UðφÞ > 0 (in our conventions).
Naively speaking, as follows from Eq. (49), one would

expect that in the case of inflation the (temporal component
of the) anomaly current Kμ would be completely washed
out at the end of inflation, as a result of the exponential
expansion of the scale factor during the inflationary phase:

aðtÞ ∼ expðHtÞ; ð54Þ
where H ≃ const denotes the (approximately) constant
Hubble parameter during inflation (in units in which
today’s scale factor a0 ¼ 1, which are used throughout).
However, as we shall demonstrate now, this is not always

the case. Indeed, it is possible to consider scenarios
displaying cosmological birefringence during inflation.
This means that one can distinguish the effects from chiral
gravitational components having different dispersion rela-
tions, which explains the name. In what follows, we shall
explore situations in which, due to the above phenomenon,
the right-hand side of Eq. (48) might be nonvanishing, and,
as we shall discuss, under certain circumstances to be
specified below, the washing out of the anomaly triggered
by inflation could be avoided.
To this end, let us consider a spatially flat FLRW space-

time, with scale factor aðtÞ, perturbed weakly by scalar
(ϕ̃, ψ) vector (wi) and tensor (hij) perturbations

ds2 ¼ ð1þ 2ϕ̃Þdt2 − widtdxi − a2ðtÞ
× ½ðð1þ 2ψÞδij þ hijÞdxidxj�: ð55Þ

Only the tensor perturbations contribute to RR̃ terms, and
hence we keep them in our subsequent discussion.
Notice that the tensor perturbations constitute the non-

diagonal part of the metric. In the study of the usual cosmic
perturbations of the matter and dark energy fields the vector
part of the perturbation is set to zero and one exclusively
focuses on the Bardeen gravitational potentials ϕ̃ and ψ
since the nondiagonal spatial part decouples from the rest in
the form of gravitational waves propagating in the FLRW
background. Here, however, we rather focus on the tensor

8In some supergravity models, the role of the inflaton might be
played by the real part of a complex scalar field, which represents
the dilaton Φ [see Eq. (14)], whose imaginary part is the axion; a
slow-roll dilaton, upon assuming appropriate potentials, leads
then to inflation, and the cosmic time derivative of the axion field
might be taken to be of the same order as that of the dilaton (slow
roll for both components of the complex scalar field). This was
the case assumed in Ref. [52].

9For brevity and concreteness, we assume here that the scalar
field couples minimally to gravity. Nonminimal couplings to
gravity are certainly interesting scenarios, which however we do
not consider here, as they will not be directly relevant to (in the
sense of not qualitatively affecting) the main conclusions of our
work, which are the RVM-type contributions to the vacuum
energy density of the Universe due to the gravitational (and
chiral) anomalies and the novel matter-antimatter asymmetry
induced by the undiluted KR field at the end of inflation.

10If quadratic terms in the (scalar) curvature, βR2, β > 0, exist
in the effective action (50), then one may associate the inflaton
field φ with the scalar mode contained in those R2 terms [53], in
which case the potential UðφÞ is that of the Starobinsky model for
inflation [54].
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part and ignore the rest since it has no impact on our
considerations. In fact, it is only during the inflationary
stage that the primordial gravitational waves can provide a
significant contribution. After inflation they are washed out
only to reappear in the very late universe but in a much
weaker form, as we shall see in Sec. IV.
In Ref. [52], the right-hand side of the averaged

Hirzebruch-Pontryagin density (48) has been evaluated
for metrics representing gravitational-wave space-times
during inflation, which is a solution of Einstein’s equations
in the action (28)with the anomalous term, andwe use it here
as a prototype for yielding nonzero anomalies of relevance to
us. Assuming, for concreteness, gravitational waves propa-
gating along the z spatial direction, we consider the metric

ds2 ¼ dt2 − a2ðtÞ½ð1 − hþðt; zÞÞdx2 þ ð1þ hþðt; zÞÞdy2
þ 2h×ðt; zÞdxdyþ dz2�; ð56Þ

in the usual notation for the polarization of the gravitational
waves. For an inflationary space-time the scale factor has the
exponential form (54). TheCP violation, induced by axion-
like couplings to theHirzebruch density (48) in Eq. (25), can
be seen if one uses the chiral graviton basis:

hL;R ¼ 1ffiffiffi
2

p ðhþ � ih×Þ; ð57Þ

where the − (þ) sign pertains to L (R), and hL;R are scalar
complex-conjugate fields. The CP-violating topological
interactions of the axion field in Eq. (25) imply inequivalent
behavior of hL;R in the inflationary space-time.
Taking into account that [52] RμνρσR̃μνρσ≃

4ia−3½∂2
zhR∂t∂zhLþa2∂2

t hR∂t∂zhLþ 1
2
∂tða2Þ∂thR∂t∂zhL−

ðL ↔ RÞ�, which is quadratic in the graviton perturbations,
we may make the following approximation, to leading (up
to second) order in small perturbations, at which we shall
be working in this article:

h ffiffiffiffiffiffi
−g

p
RμνρσR̃μνρσi ≃ ffiffiffiffiffiffi

−g
p hRμνρσR̃μνρσi; ð58Þ

which implies that one should use the unperturbed infla-
tionary metric [with scale factor (54)] inside the metric
determinant

ffiffiffiffiffiffi−gp
on both sides of Eq. (48).

The average of Eq. (48) over such a space-time then, up
to second order in fluctuations hL;R, has been performed in
Ref. [52], with the result

hRμνρσR̃μνρσi ¼ 16

a4
κ2
Z

d3k
ð2πÞ3

H2

2k3
k4Θþ OðΘ3Þ; ð59Þ

to leading order in kη ≫ 1, where k is the standard Fourier
scale variable, and η is the conformal time defined as [52]

dη ¼ dt
aðtÞ ⇒ η ¼ 1

H
expð−HtÞ ð60Þ

and in the last relationwe took into account Eq. (54), which is
valid during inflation.We should note that dη and dt actually
have opposite signs for the inflationary solution, and hence

when the cosmic time increases the conformal time
decreases. This is to be taken into account in the integration
limits of each variable. Thus, the infinite future in conformal
time is attained in the limit η → 0. In Eq. (59), we used the
notation of Ref. [52] for the (dimensionless) quantity Θ
associated with the anomalous interactions in Eq. (25):

Θ ¼
ffiffiffi
2

3

r
α0κ
12

H _̄b: ð61Þ

At this point,wemake the important remark that thenontrivial
result (59) induced by the (primordial) gravitational-wave
perturbations will imply a nonzero result on the right-hand
side of Eq. (37), which produces a gravitational anomaly, in
the sense that the matter stress-energy tensor is no longer
conserved and, for constant G, it implies the violation of the
Bianchi identity. Ultimately the reason for this situation is
that, since quantum graviton fluctuations are invoked in the
computation, there is no guarantee that the classical Einstein
equation (36)will continue to hold, and this is implied here by
the nonconservation of the classical KR-axion stress tensor.
Finally, we note that the nonvanishing of Eq. (59) is due to the
fact that inflation produces a violation of the CP symmetry
out of equilibrium, and this fulfils Sakharov’s necessary
conditions for baryogenesis, which will have implications for
our subsequent discussion on the generation of matter-
antimatter asymmetry in our model, in Sec. III B.
Above, we assumed slow roll for b̄,

_̄b ≪ H=κ; ð62Þ

so that jΘj ≪ 1, which justifies neglecting OðΘ3Þ terms in
Eq. (59) [52] (the reader should recall that, during inflation,
the Hubble parameter H is assumed to be approximately
constant). This necessitates an α0 ¼ 1=M2

s , whereMs is the
string mass scale, such that α0H2 ≪ 1 during inflation, for
which the scale factor aðtÞ appearing in Eq. (59) assumes
the de Sitter form (54). A natural choice, which we adopt in
this work, is to assume large string mass scalesMs near the
reduced four-dimensional Planck mass scale, i.e.,11

α0 ∼ κ2 ¼ M−2
Pl ; ð63Þ

given that the inflationary Hubble scale is expected from
phenomenology [1] to be Hκ < 10−4 (we use here bounds
for single-field inflation models). Here we take for con-
creteness H in the range

H
MPl

∈ ½10−5; 10−4Þ: ð64Þ

11In general [32], the string scale α0 is an independent
parameter from the four-dimensional Planck scale κ2. We shall
discuss the phenomenology of this more general case briefly later
on in the article and in the Appendix.
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FromEq. (47), then, the slow-roll conditionson b̄ðtÞ, Eq. (62),
should also characterize hK0i, as a consistency check.
While staying in the FLRW frame, it is convenient to pass

into conformal time η [Eq. (60)] to study the solutions of
Eq. (48). We also use an ultraviolet cutoff μ for the modes,
such that their physical momentum k=a is cut off by [52]

kη < μ=H: ð65Þ
Indeed, let us note that the leading contributions to the

momentum k integral on the right-hand side of Eq. (59)
come from modes 1 ≪ kη < μ=H [52]. On using Eqs. (47)
and (61), and taking into account that η runs in the opposite
direction as the cosmic time t, we obtain from Eq. (59), to
leading order in the CP-violating quantity Θ [Eq. (61)],

hRμνρσR̃μνρσi¼ 1

π2

�
H
MPl

�
2

μ4Θ

¼ 2

3π2
1

96×12

�
H
MPl

�
3
�

μ

MPl

�
4

MPl ×K0ðtÞ:

ð66Þ
Using this result, then from Eqs. (48), (59) and (60) we
get [40]

d
dt

ð ffiffiffiffiffiffi
−g

p
K0ðtðηÞÞÞ ¼ −ðηHÞ d

dη
ð ffiffiffiffiffiffi

−g
p

K0ðtðηÞÞÞ

¼
�
5.86 × 10−5

�
H
MPl

�
3
�

μ

MPl

�
4

MPl

�
× ð ffiffiffiffiffiffi

−g
p

K0ðtðηÞÞÞ: ð67Þ

The slow-roll nature [Eq. (62)] of K0ðtÞ, follows immedi-
ately from Eq. (67), already from the beginning of inflation
t ¼ 0 [or equivalently η ¼ H−1, cf. Eq. (60)], as a conse-
quence of the fact that during inflation H ≪ MPl
[cf. Eq. (64)]. This is a self-consistency check of our
approach in adopting the solution (47). The end of inflation
occurs for t ≫ M−1

Pl , and for all practical purposes we set it
here formally at t → ∞ [i.e., for conformal time (60)
η → 0]. Thus, in conformal time units the duration of
the inflationary period is Δη ∼H−1.
On assuming that H remains approximately constant

during the inflation period, Eq. (67) can be integrated overR η
0 dη

0. With the above in mind, we can estimate from
Eq. (67) that

K0ðtðηÞÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðtðηÞÞp K0

beginðtðη¼H−1ÞÞ

×exp

�
−5.86×10−5

�
H
MPl

�
2
�

μ

MPl

�
4

lnðHηÞ
�

∼K0
beginðtðη¼H−1ÞÞexp½−3HtðηÞð1−1.95×10−5

×
�

H
MPl

�
2
�

μ

MPl

�
4
��

≡K0
beginðtðη¼H−1ÞÞexp½−3HtðηÞA�; ð68Þ

where we used Eq. (60) to write ln ðHηÞ ¼ −Ht and
Eq. (54) to express 1=

ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞp

∼ a−3ðtÞ ¼ exp ½−3HtðηÞ�
so as to integrate this expression as part of the exponential.
Finally, as already mentioned, we have set the beginning of
inflation at t ¼ 0 (η ¼ H−1), which is assumed immedi-
ately after the big bang, and its end at t → þ∞ (η → 0).
The value K0

beginðtðη ¼ H−1Þ, which on account of
Eq. (47) corresponds to an initial condition for the cosmic

time derivative of the KR axion, _̄bð0Þ, is a boundary
condition to be determined phenomenologically, as we
shall discuss later on. In our normalizations (60), the initial
scale factor aðtðH−1ÞÞ ¼ 1, and thus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðtðH−1ÞÞ

p
¼ 1.

The reader should compare Eq. (68) with Eq. (49). The
presence of gravitational waves during the inflationary
phase may lead to a decrease in general, or even complete
elimination, of the exponential washing out effects of
inflation as t → þ∞. Indeed, the factor A in the exponent
on the right-hand side of Eq. (68) reads

A≡ 1 − 1.95 × 10−5
�

H
MPl

�
2
�

μ

MPl

�
4

¼ 1 −
�

H
MPl

�
2
�
0.664

μ

10MPl

�
4

: ð69Þ

Due to the slow running of H during inflation, A is
approximately constant. In inflationary scenarios where
H ≪ MPl [Eq. (64)], and taking into account that a natural
range of the cutoff μ is μ≲MPl, one would expect, in
general, A ≃ 1, in which case the anomaly would be
washed out at the end of inflation t → þ∞. However,
one observes that

A ¼ 0 ⇒
½cf:Eq:ð69Þ� H

MPl
¼
�
15.06

MPl

μ

�
2

: ð70Þ

If one insists on phenomenologically acceptable ranges of
H ≪ MPl, e.g., Eq. (64), then we observe from Eqs. (69)–
(70) that trans-Planckian modes should be necessarily
involved to ensure that the factor A ¼ 0, since the cutoff
in that case should exceed the Planck scale

μ ∼ 103 MPl: ð71Þ
This provides, through Eq. (47), a self-consistent and
necessary condition for _b to be approximately constant
during inflation, which implies a spontaneous violation of
the Lorentz symmetry by the KR background. The scale μ
of this violation (71), being trans-Planckian, does not affect
the effective potential of the low-energy effective field
theory at inflation, the latter defined for modes below the
Planck scale.
Having said that, we remark that the appearance of trans-

Planckian modes, might indicate to many a potential
breakdown of an effective field theory, or the weak gravity
conjecture, i.e., that the effective quantum field theory we
are dealing with cannot be consistently coupled to the full
quantum gravity if Eq. (71) is valid. We, however, adopt a
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different interpretation, in that Eq. (71) offers a sign that
these gravitational waves are indeed of quantum-gravity
origin and are generated deep in the trans-Planckian region
but appear to us as classical gravitational waves below the
Planck scale, which is the only region we can deal with at
the semiclassical level.12 In this respect, we also mention
that trans-Planckian values of the inflaton field are also
considered in inflationary scenarios, but still a classical
general-relativity treatment applies in such cases [55].13

The relations (71) or (A5), provide, through Eq. (47), the
self-consistent and necessary conditions for _b to be
approximately constant during inflation, which thus
remains undiluted at the end of the inflationary period of
the string Universe:

_̄b ¼
ffiffiffi
2

3

r
α0

96κ
K0 ≃ const: ð72Þ

We can now use the above result to provide a phenom-
enologically consistent estimate of K0

beginðt ¼ 0Þ. In prin-
ciple, without details of the model for inflation it is not
possible to do this. The KR field is an independent field
from the inflaton φ, and thus in principle, although both are

slow running, the only constraint is that _̄b has to be much
smaller than jUðφÞj, in order not to upset the inflationary
condition (53). A reasonable scenario, which allows a self-
consistent phenomenology, is to assume that these two rates
are of the same order of magnitude. Such a case character-
izes, for instance, the scenario of Ref. [52], inspired by
string-inspired conformal supergravity models, where the
axion is just the imaginary part of a complex scalar field,
whose real part is the dilaton. In our case, the KR axion
originates from the same gravitational multiplet of strings
as the graviton and dilaton, and thus the above assumption
is also reasonable. Taking into account the phenomeno-
logical value for the slow-roll parameter for (single-field)
inflation ϵ, as inferred from cosmological CMB observa-
tions [1], we then write

ϵ ¼ 1

2

1

ðHMPlÞ2
_φ2 ∼

1

2

1

ðHMPlÞ2
_̄b
2 ∼ 10−2; ð73Þ

which implies14

_̄b ∼
ffiffiffiffiffi
2ϵ

p
MPlH ∼ 0.14MPlH; ð74Þ

which can be integrated to give

b̄ðtÞ ∼ b̄ð0Þ þ
ffiffiffiffiffi
2ϵ

p
MPlHt; ð75Þ

where b̄ð0Þ is an initial value of the KR axion field, at the
beginning of inflation, immediately after the big bang. We
shall come back to the phenomenology of this initial value
later on, in Sec. II C.
This allows, through Eqs. (47) and (63), to express the

(approximately constant, during inflation) anomaly K0 ∼
Kbeginðt ¼ 0Þ as [40]

K0 ∼Kbeginðt ¼ 0Þ ∼ 16.6HM2
Pl: ð76Þ

From Eqs. (52) and (73), then, we can express the
contributions of the anomaly to the energy density of
the string-inspired Universe as

12Nonetheless, trans-Planckian values for the cutoff μ can be
avoided in the more general case, where α0ð¼M−2

s Þ≠ κ2ð¼M−2
Pl Þ,

upon appropriately restricting the range of values of α0, as
explained in the Appendix.

13Nonetheless, we should remark at this point that, independ-
ently of our considerations here, it was pointed out in Ref. [56]
that the predictions of Ref. [52] for leptogenesis due to primordial
chiral fermions depend heavily on the ultraviolet completion of
the theory, in our case the full string theory, given that mainly
modes in the deep quantum-gravity/string-theory regime con-
tribute to the lepton asymmetry; moreover, as argued in
Refs. [56,57], by performing proper ultraviolet regularization,
including higher-than-quadratic-order derivative terms, one may
effectively obtain a much smaller lepton number than the one
claimed in Ref. [52], since the cutoff μ is effectively replaced by
the Hubble constant during the de Sitter phase. In contrast, in our
approach, there are no primordial fermions, and leptogenesis
during the radiation era occurs in a completely different way
[37,38] to be discussed in Sec. III B, due to the presence of a
constant Lorentz-violating axial background of the KR field. The
latter is induced by the gravitational anomaly (59), and, as we
shall show below, remains undiluted at the end of inflation,
provided trans-Planckian modes (71) are included. Thus,
although the induced CP violation, required for a nonzero
(average) value of the gravitational anomaly, and thus lepto-
genesis, is generated by gravitational waves, and one needs the
full string/quantum gravity theory to determine the initial value of
the KR axion at the big bang (t ¼ 0), nevertheless, the low-
energy effective field theory approach suffices for a description of
the generation of a lepton asymmetry during the radiation epoch.
As we shall discuss in Sec. III B below, the latter is proportional
to the KR axion background itself, whose value at the exit from
the inflationary era is treated as a phenomenological parameter in
our scenario, since an exact prediction would depend on the
details of the underlying microscopic (nonperturbative) string
theory model, which, at present, are not known. Our consid-
erations therefore are different from those of Refs. [56,57], in
that, in our model, the lepton asymmetry can be computed in
terms of the gravitational-anomaly-induced (Lorentz-violating)
KR axion background (in fact, the reader can easily verify that
such backgrounds also constitute solutions of the axion equations
of motion of the one-loop effective action of Ref. [57], but no
predictions on their magnitude can be made in that framework,
given that the coefficients of the various terms can only be
computed if the UV-complete theory is known). Incidentally, for
a connection of the trans-Planckian problem to Lorentz violation,
but from a rather different perspective than ours, see also
Ref. [58].

14In Sec. III, we shall see that such an order of magnitude for ϵ,
or equivalently _̄b at the end of inflation (74), also leads to
phenomenologically acceptable leptogenesis in the radiation era,
according to the mechanism of Ref. [38].
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ρφþb ≃ 3M4
Pl

�
3.33 × 10−3

�
H
MPl

�
2

þ UðφÞ
3M4

Pl

�
: ð77Þ

Inflation occurs as long as UðφÞ ≫ 10−2ðHMPlÞ2. The
terms depending explicitly on H in Eq. (77) constitute
running-vacuum-like corrections [6] to the classical infla-
tionary (almost constant) potential U. In case, for instance,
the inflationary potential is that of Starobinsky, with
parameter β, which arises naturally in string-inspired
models that contain higher-curvature corrections in their
effective low-energy actions, the dynamical vacuum model
energy density assumes the form [26]

ρRVMðHÞ¼ 3M4
Pl

�
c0þν

�
H
MPl

�
2

þβH4

�
; β> 0: ð78Þ

As we can see, this expression is of the generic running
vacuum form (5) that we have studied in the previous
section. In our case,

ν ∼ 3.33 × 10−3 ≪ 1; ð79Þ
and c0 ≪ ð H

MPl
Þ2 may be considered as part of UðφÞ so we

can safely ignore it when we talk about quantities during
the inflationary era. The neglected term resurfaces of
course in the late universe and becomes the leading
contribution to the DE.

C. Anomaly-induced inflation through running vacuum

In this section we wish to discuss in some detail what
was already announced at the beginning of the previous
subsection, namely the fact that the scalar field φ that we
introduced there need not be a fundamental external
inflaton but it can be identified with the field ϕ (different
from φ) that defines the scalar field representation of the
RVM in its full fledged form (5) or (78). This form contains
both H2 and the higher power H4, the latter being essential
to trigger inflation in the RVM. In what follows we wish,
first of all, to note that our gravitational anomaly frame-
work actually predicts the full RVM form of the vacuum
energy density, in which the higher power H4 is generated
by the gCS anomaly term, that is, the last term on the right-
hand side of the string effective action (25).
This comes about upon averaging such an effective action

over the inflationary space-time, i.e., when we consider the
vacuum expectation value of hbðxÞRμνρσðxÞR̃μνρσðxÞi in the
inflationary background. This is viewed as a condensate of
graviton fluctuations, which is formed in the context of a
UV-complete theory of quantum gravity, such as string
theory in the present example. From a formal point of view,
such condensates appear dynamically by first averaging the
(quantum gravity) partition function corresponding to the
low-energy effective action (25) over gravitational pertur-
bations about a de Sitter background, and then looking for
local minima of this action, characterized by semiclassical

(Einstein-type) equations with respect to the gravitational
field. In general this is a complicated process, where the full
string theory (or UV-complete quantum gravity) dynamics
plays a role, and at present a complete formal treatment is not
available. Nonetheless, for our purposes here, we adopt a
phenomenological approach, in which we postulate the
existence of this condensate in a low-energy effective action
framework, basing this assumption on our previous results
on the induced anomaly by means of primordial gravita-
tional-wave perturbations of the de Sitter background
during inflation (59). We assume that such primordial
gravitational-wave perturbations set the dominant scale
for the condensate.
Once such a condensate is formed we may expand the

gCS term (30) in the effective action (25) over quantum
fluctuations about it, by writing formally

Sb-grav ¼
ffiffiffi
2

3

r
α0

96κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðhb̄ðxÞRμνρσR̃μνρσi

þ ∶bðxÞRμνρσR̃μνρσ∶Þ; ð80Þ

where ∶…∶ denotes proper quantum ordering of (quantum
field) operators, which, in the path-integral language, is
interpreted as indicating terms with the appropriate sub-
traction of the UV divergences, via regularization by means
of the UV cutoff μ. This quantum-ordered term can give
rise (via its variation with respect to the gravitational field)
to a quantum-ordered Cotton tensor (34), which is traceless
[cf. Eq. (35)].
The reader should note the fact that, as typical with

condensates in field theory, the quantity hb̄ðxÞRμνρσR̃μνρσi
does not depend on the metric tensor, which thus leads to
the addition of a DE-type term in the effective action (25),
which describes the effects of the gravitational anomaly
condensate:

SΛ ¼
ffiffiffi
2

3

r
α0

96κ

Z
d4x

ffiffiffiffiffiffi
−g

p hb̄RμμρσR̃μνρσi

≃
Z

d4x
ffiffiffiffiffiffi
−g

p �
5.86 × 107

ffiffiffiffiffi
2ϵ

p �
b̄ð0Þ
MPl

þ
ffiffiffiffiffi
2ϵ

p
N
�
H4

�
≡−

Z
d4x

ffiffiffiffiffiffi
−g

p Λ
κ2

: ð81Þ

Above, the symbol ≃ indicates an order-of-magnitude
estimate, and we used Eqs. (67), (71), (72) and (75),
and took into account that Ht is bounded from above by
ðHtÞmax, a maximum order of magnitude, evaluated at the
end of the inflationary period, for which ðHtÞmax ¼ Htend∼
N ¼ 60–70, whereN is the number of e-foldings. We also
set ϵ ∼ 10−2, as required by inflationary phenomenology
[cf. Eq. (73)]. In a sense, the term (81) is equivalent to a
quantum-gravity-induced “trace” of the Cotton tensor,
which, as we have seen above, is classically traceless
[Eq. (35)]. Such a Λ-type term cannot arise in a classical
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general-relativistic treatment, and, hence, it was not con-
sidered in the analysis of Ref. [41]. In fact, such a vacuum
expectation value acts as a new effective (induced) con-
tribution to the vacuum energy density (52).
We next notice that, if we consider b̄ð0Þ < 0 and trans-

Planckian values for jb̄ð0Þj ≫ MPl (in analogy with what
happens with the inflaton field in conventional large-field
inflationary scenarios), then the order of magnitude of the
quantity Λ > 0 in Eq. (81) does not change during the
entire inflationary period, for which H ≃ const, and thus it
can be approximated by a constant. In fact, for this purpose,
it suffices to assume

jb̄ð0Þj ≳ ffiffiffiffiffi
2ϵ

p
NMPl ∼ 10MPl: ð82Þ

Hence, the term (81) behaves as a positive-cosmological-
constant (de Sitter) type term, which is responsible for
inducing inflation. Quantum fluctuations of the condensate
are then responsible for deviations from scale invariance,
providing a novel mechanism for cosmological perturba-
tions to be explored further and compared with data in a
future work.
We would now like to demonstrate the role of the

anomaly-condensate-induced dark energy density (81) in
ensuring that the temporal (00) component of the conserved
modified stress-energy tensor T̃μν

bþgCSþΛ [Eq. (39)], which
would correspond to the total energy of the system, is
positive, thus implying stability. To this end, we consider
Eq. (39), and assume a nonzero vacuum expectation value
(59) of the anomaly term, due to gravitational waves, and
an isotropic and homogeneous temporal component of the
Cotton tensor C00ðtÞ. Anticipating the latter to be propor-
tional to Θ2 ≪ 1 [cf. Eq. (59)], one obtains from Eq. (37)15

Cμ0;μ ¼
d
dt

C00 þ 4HC00 ≃ −
1

8
_̄bhRαβγδR̃αβγδi

≃ −
1

8

ffiffiffi
2

3

r
α0κ
12

H
1

π2

�
H
MPl

�
2

μ4 _̄b
2
; ð83Þ

in a mean-field approximation, to lowest order in a
perturbative Θ expansion, whereby on the left-hand side
of the equation we considered a (spatially flat) FLRW
background space-time. In arriving at Eq. (83) we used
Eq. (35). We also remind the reader that the notation b̄
denotes the KR background, satisfying Eq. (72). Assuming
a (approximately) constant-in-time C00 and homogeneity
and isotropy (i.e.. setting C0i ¼ 0) we find from Eq. (83) the
consistent solution

C00 ≃ −ϵ
ffiffiffi
2

3

r
α0κ
192

1

π2
μ4H4 < 0; ð84Þ

where we used Eq. (74) but keep the slow-roll parameter ϵ
generic for the moment. From Eq. (36), this contributes to
the energy density of the vacuum a negative term,16 in a
similar spirit to the Gauss-Bonnet-dilaton coupling [51],
also appearing in string-effective actions, which, like the
gravity-anomaly term (30), also involves terms quadratic in
the Riemann curvature tensor:

ρgCS ¼
ffiffiffi
2

3

r
α0

12κ
C00 ≃ −

2

3

1

π2 × 192 × 12
ϵ

�
μ

Ms

�
4

H4

≃ −2.932 × 10−5ϵ

�
μ

Ms

�
4

H4 < 0: ð85Þ

Using Eq. (70), we then obtain in order of magnitude17

ρgCS ≃ −1.484ϵM2
PlH

2: ð86Þ

From Eq. (39), and the first equality of Eq. (83), we also
obtain

d
dt
ðρbþρgCSÞþ3H

�
ð1þwbÞρbþ

4

3
ρgCS

�
≃0

⇒ ρb≃−
2

3
ρgCS; ð87Þ

where the last result holds if d
dt ðρb þ ρgCSÞ ≃ 0 and we took

into account that the equation of state of the pure b fluid is
wb ¼ 1, as follows from Eq. (31). Thus, we see from
Eq. (87) that the negative value of ρgCS is essential for the
consistency of the approach, since it is only then that the
energy conservation of the total stress-energy tensor (39)
leads to consistent results, given the positivity of ρb. From
Eqs. (86) and (87) we then obtain

ρb ≃ 0.9895ϵM2
PlH

2: ð88Þ

The KR axion stress tensor Tμν
b [Eq. (31)] in Eq. (36), on

the other hand, will contribute H2 terms to the vacuum
energy density but of the same order of magnitude as the
∼H4 terms of the gravitational anomaly, due to Eq. (87):

15For the remainder of this subsection we treat Ms ¼ ðα0Þ−1=2
and MPl ¼ κ−1 as independent (see the Appendix) in order to
demonstrate the generic nature of our results regarding the role of
the condensate; we revert back to the special case α0 ∼ κ, adopted
in our work so far, from the next section onwards.

16For the benefit of the reader, we note that the negativity of
C00 is robust against a change of signature of the coefficient of the
gCS term in Eq. (25), given that the latter will be compensated by
a corresponding change of signature of the averaged anomaly
(59), which is proportional to that coefficient.

17An important remark we would like to make is that the
condition (70) is assumed to be valid as an order-of-magnitude
estimate, and does not imply that the cutoff μ varies with H as
H−1=2. The quantity μ is independent of H and constant in time.
This implies that the gCS term varies as H4, in contrast to the ρb

term that varies as H2. However, for our solution under which
Eq. (70) is valid, both terms are of the same order of magnitude.
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ρb ¼ 1

2
ð _̄bÞ2 ≃ ϵM2

PlH
2; ð89Þ

where we used the first equality in Eq. (74). Comparing
with Eq. (88) we can then see the consistency of our
approach, for every value of the slow-roll parameter ϵ < 1
and every value ofH. We can then adopt the range of values
for these parameters dictated by the data [1], Eqs. (73) and
(64), respectively. The 1% discrepancy between Eqs. (89)
and (88) is to be expected, according to our discussion in
the Appendix [cf. Eq. (A4)], which implies that the result
(86) for ρgCS should be multiplied by an uncertainty factor
ð1 − ξ

3NÞ in the range 0.9889≲ ð1 − ξ
3N Þ≲ 0.9905. This is

perfectly justified when also taking into account theoretical
uncertainties in our estimate (59) of the gravitational-
anomaly condensate.
We now remark that, as follows from Eqs. (85) and (87),

the sum of the respective energy densities turns out to be
negative

ρb þ ρgCS ¼ 1

3
ρgCS ≃ −0.496ϵM2

PlH
2 < 0; ð90Þ

indicating that, if there were no other contributions to the
energy density of the KR axion-gravity system, the gravi-
tational anomaly would induce an instability in the de Sitter
vacuum.
However, as already mentioned, the term (81) in the

energy density, induced by the anomaly condensate, leads
to an additional Λ–de Sitter–type contribution to the
modified stress-energy tensor (39), with an equation of
state ρΛ ¼ −pΛ, which does not modify its conservation
(39), but corresponds to a (positive) contribution to the total

energy density ρΛ ≃ 5.86 × 107
ffiffiffiffiffi
2ϵ

p jb̄ð0Þj
MPl

H4. For ϵ ∼ 10−2,

N ¼ Oð60–70Þ and jb̄ð0Þj≳ 10MPl, it dominates the total
energy density,

ρtotal ¼ ρb þ ρgCS þ ρΛ ≃ 3M4
Pl

�
−1.7 × 10−3

�
H
MPl

�
2

þ
ffiffiffi
2

p

3
× 5.86 ×

jb̄ð0Þj
MPl

× 106
�

H
MPl

�
4
�
> 0; ð91Þ

which is thus positive and drives the de Sitter (inflationary)
space-time.
Before closing the current subsection, we would like to

compare the expression (91) with the form of the RVM
energy density (5). For the conventional RVM, the expect-
ation is that ν, α are positive [3–7]. On comparing Eq. (91)
with Eq. (5), by identifying ρtotal and ρΛRVMðHÞ, we make
the following observations for our model:

(i) In our string-inspired model for the early Universe
we have c0 ¼ 0. Such a term may appear in the late
eras of the Universe, e.g., through the generation of a

potential for the bðxÞ field, as we shall discuss
in Sec. V.

(ii) As a result of the negative contributions of the
Cotton tensor to the energy density ρtotal, the
coefficient of the H2 terms in Eq. (91) would imply,
on account of Eq. (5), a ν < 0 in the early Universe,
where gravitational-anomaly contributions domi-
nate. However there is no contradiction with the
spirit of the RVM. Indeed, in our case, the Cotton
tensor is not a vacuum contribution, as it is asso-
ciated with gravitational-wave excitations of the
FLRW metric background space-time. For the back-
ground space-time, the Cotton tensor vanishes, as
we have already mentioned [41]. On the other hand,
the KR axion is associated with the spin-1 anti-
symmetric tensor field of the massless gravitational
multiplet of strings [33], which in the case of the
(phenomenologically relevant) superstring consti-
tutes the ground state, due to the absence of tachyon
modes from the spectrum. In this sense, the RVM
should be associated with the contributions of the
b-axion field stress tensor Tμν

b [Eq. (31)] alone,
ignoring the Chern-Simons terms, which, on ac-
count of Eqs. (73)–(74) leads [cf. Eq. (5)] to a
positive ν coefficient (79), as mentioned previously.
In the radiation- and matter-dominated eras, where
the gravitational anomalies cancel [40], as we shall
discuss in Sec. III A, this is also the case.

(iii) On the other hand, we find that the coefficient α is
positive already during the inflationary era, and of
order

α¼
ffiffiffi
2

p

3
×5.86×

jb̄ð0Þj
MPl

×106
�
HI

MPl

�
2

∼2.8×10−2
jb̄ð0Þj
MPl

;

ð92Þ

assuming a (typical) Hubble parameter HI during
inflation of order (64). Notice that the value of α does
not depend on the specific magnitude of the string
scale, but only on the ratio μ=Ms [see the discussion
in the Appendix, and Eq. (A5)]. From Eqs. (91) and
(64), then, one easily sees that we may identify the
total energy density with a GUT-like potential
V ∼M4

X corresponding to an energy scale MX:

ρtotal ≃ ρΛ ∼M4
X ≃ 8.3 ×

jb̄ð0Þj
MPl

× 10−10M4
Pl

⇒ MX ≃ 1.3 × 1016
�jb̄ð0Þj

MPl

�
1=4

GeV; ð93Þ

which, for jb̄ð0Þj≳ 10MPl [cf. Eq. (82)] is in agree-
ment with generic RVM predictions based on GUT
models [7].

The next point is also of crucial interest for us. The
quantum fluctuations of the gravitational fields that pro-
duce the anomaly condensate Λ term (81) could be
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described by an effective action of a composite scalar mode,
“ϕ,” consisting of a coherent superposition of quantum
b-axion and graviton modes. The (gravitational) inter-
actions among those fields, will result in self-interactions
of the condensate field, and thus an effective potential, that
can in principle be computed. In practice, as the full string
theory is in operation here, such a task is currently not
feasible. In simpler situations, for instance dynamically
broken supergravity scenarios, a low-energy effective
potential of condensates of gravitino fields has been
computed in Ref. [59], and the situation resembled the
Starobinsky model of inflation [54], under the conditions
discussed in detail in that work.
Interestingly enough, the ∼H4 behavior can be equiv-

alently mapped to a scalar field behavior. Such a scalar field
picture will be called the “vacuumon picture” of the RVM
since the field ϕ is called the vacuumon [60]. To implement
the mapping of the RVM to the vacuumon picture one has
the following correspondence between the total density and
pressure [8,9,60]:

ρtot≡ρϕ¼ _ϕ2=2þVðϕÞ; ptot≡pϕ¼ _ϕ2=2−VðϕÞ; ð94Þ

with

_ϕ2 ¼ −
2

κ2
_H; ð95Þ

and where

V ¼ 3H2

κ2

�
1þ

_H
3H2

�
¼ 3H2

κ2

�
1þ a

6H2

dH2

da

�
ð96Þ

is the effective potential of the vacuumon scalar field ϕ.
Once we realize that the higher-order term∼H4 of the RVM
density (5) can indeed be generated thanks to the gravi-
tational-anomaly term, we can just use the vacuumon
picture. In particular, using Eq. (96), one can compute
the effective potential associated to the RVM density,
whose explicit form was given in the aforementioned
references, with the result

UðϕÞ ¼ H2
I

ακ2
2þ cosh2ðκϕÞ
cosh4ðκϕÞ : ð97Þ

In this scenario, if the potential (97) were the true potential
that describes the dynamics of the quantum fluctuations of
the scalar anomaly condensate in our case, this would be
the potential assumed in Eq. (77).
However, there are some subtle issues in the approach of

Refs. [8,9,60] that prevent one from extending it straight-
forwardly to the case examined in this article. The scalar
field ϕ in Eqs. (94) and (97) is a classical field, which is
used to describe the temporal evolution of the classical
RVM vacuum. It is by no means equivalent to the true

quantum scalar mode encoded in the quantum fluctuations
of the condensate (80), which, as we mentioned above,
needs to be computed within the proper string theory
framework. That scalar condensate mode would be the true
“vacuumon” field, which should be used in the inflationary
phenomenology of cosmological perturbations in our
scenario. Hence, the true effective potential of this
composite “vacuumon,” properly including all the quantum
corrections, might be very different from the “classical”
potential (97) used in Ref. [60] to describe the classical
RVM evolution. Nonetheless, our arguments above indicate
that, in the present string-inspired RVM scenario, where
gravitational-anomaly condensates coupled to KR axions
from the massless bosonic gravitational string multiplet,
dynamically induce de Sitter space-times, there could be
such a fully fledged vacuumon quantum field, that also
represents the fluctuations of the RVM and thus could be
used for the inflationary phenomenology of the model.
If we use the (correct) vacuumon representation, then, its

aforementioned effective potential would contain the same
information as if one used the RVM density (5). Borrowing
the correspondence formula (95) between the two pictures
we find that the slow-roll parameter for the vacuumon is

ϵ ¼ −
_H
H

¼ 1

2

1

ðHMPlÞ2
_ϕ2 ≃ 10−2; ð98Þ

and as we can see it takes exactly the same form as for the
inflaton case in Eq. (73). The upshot is that the averaged
gCS anomaly term over the de Sitter space-time leads to a
∼H4 contribution to the effective vacuum energy density of
the RVM and there is no need to introduce any ad hoc
inflaton to trigger inflation by hand, given that inflation can
be entirely driven by this term [8–13].
Thus, we can use the exact same fundamental fields as

the ones we started with in the effective action of bosonic
string theory in Sec. II A. The RVM density (5) appears to
be an effective description of the same physical context
when it is averaged over the inflationary space-time. Such a
description can alternatively be formulated within the
vacuumon picture and in this case it is a scalar field (the
vacuumon) which mimics the ∼H4 behavior (and thus the
inflaton behavior) through an appropriate effective poten-
tial. The vacuumon, therefore, is not an external scalar field
but just an internal d.o.f. associated with the gCS anomaly,
leading to the scalar field representation of the higher-order
∼H4 term in the original averaged effective action over the
de Sitter background. This fact allows us to entirely
reproduce the same considerations as in the previous
section but without invoking any new scalar field, which
would be extraneous to our original massless bosonic
gravitational multiplet of string theory (as this would
require an appropriate dilaton potential, in case the dilaton
is identified with the inflaton, which however cannot be
generated at tree level in string loop perturbation theory, but
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requires higher string loops, which we do not have control
of). The RVM formulation is therefore fully self-consistent
for the description of the cosmic evolution.

III. POST-INFLATIONARY ERA AND
ANOMALOUS MATTER OVER
ANTIMATTER DOMINANCE

A. Chiral fermionic matter and cancellation
of gravitational anomalies

At the end of inflation, the proper decay of the running
vacuum to matter and radiation components will reheat the
universe and lead to the appearance of fermions among
other matter. If such fermions have anomalous axial
currents, then matter-antimatter asymmetry in the observ-
able Universe could be due to such an anomaly in the post-
inflationary era through the mechanism advocated in
Refs. [36–38], as we now proceed to explain.18

To this end, we first assume that the space-time after
inflation has the ordinary FLRW form (in the radiation era),
since any primordial gravitational-wave perturbations
would have been washed out during inflation. This would
imply that the gravitational anomaly (48) would vanish at
large scales for such space-time backgrounds. However,
locally gravitational-wave perturbations are present, and
could jeopardize the local diffeomorphism invariance of the
radiation (and matter) quantum theory, according to our
previous discussion. We now postulate that the generation
of chiral matter at the end of inflation leads to a cancella-
tion of the gravitational anomalies, even locally. Otherwise
diffeomorphism invariance would be violated locally in the
presence of matter. However, and this will turn out to be
crucial for linking KR axions to DM in our scenario, as we
shall discuss later, we assume that U(1) chiral anomalies
[62] remain uncompensated. These do not contribute to the
stress tensor of matter, unlike the gravitational ones, and
hence there is no fundamental reason for the matter theory
to be chiral-anomaly free: only the gauge symmetry must
be anomaly free so as to preserve the Ward identities. Thus,
we postulate the following relation during the radiation
(and matter) era [40]:

∂μ

� ffiffiffiffiffiffi
−g

p � ffiffiffi
3

8

r
κJ5μ−

ffiffiffi
2

3

r
κ

96
Kμ

��
¼

ffiffiffi
3

8

r
κ
e2

8π2
ffiffiffiffiffiffi
−g

p
FμνF̃μν

¼−
ffiffiffi
3

8

r
κ
e2

4π2
ϵ0ijkF0iFjk¼−

ffiffiffi
3

8

r
κ
e2

2π2
ffiffiffiffiffiffi
−g

p
EiBjgij; ð99Þ

where we used Eqs. (20)–(21); Ei and Bi denote the
cosmic electric and magnetic fields in curved space,
respectively [from the third equality in Eq. (99), the
reader can readily see the topological nature (i.e.,
independence of the metric) of the chiral anomaly,
which thus, unlike the gravitational anomaly, does not
have any contributions to the stress-energy tensor of the
KR axion field19]; and J5μ ¼Pj ψ̄ jγ

μγ5ψ j is the axial
current, with the summation being over appropriate
fermion species ψ j of the matter sector, e.g., charged
chiral quarks or leptons in the SM sector.
The reader is reminded that the appearance of the square

of the QED coupling e (electron charge) on the right-hand
side of Eq. (99), is a result of the fact that the chiral
anomaly (like the gravitational anomalies) is a one-loop
exact effect [62], with the chiral fermions circulating in the
loop. For concreteness and brevity, in Eq. (99) we assumed
the circulation of a single chiral fermion of charge equal to
the electron charge e. In realistic applications, one should
replace e2 on the right-hand side of Eq. (99) by an
“effective” squared charge:

e2 ⇒ e2eff ¼ e2N ; ð100Þ

where N is a model-dependent numerical constant, which
depends on the number and kind of fermions circulating in
the loop, and is proportional to the square of their electric
charges normalized to the electron charge e. For instance,
for QCD chiral anomalies, of Nf species of light quarks,
with electric charges qI , I ¼ 1;…Nf, each of which comes
in Nc colors (for ordinary QCD, Nc ¼ 3), one has [63]

N ¼ Nc
Nf

PNf

I¼1ðqIe Þ2. The generalization (100) will be under-
stood in what follows.
We stress once more that, in our approach, the U(1)

photon and fermion fields are produced by the decay of the
running vacuum at the end of the inflationary era [8].
During the exit phase from inflation, there is also the KR

18We remind the reader that in our approach we do not discuss
the role of (primordial) fermionic excitations during inflation,
since we assume that only bosonic gravitational d.o.f. describe
the string-inspired Universe. Thus the considerations of Ref. [52]
for generating sufficient leptogenesis only through the gravita-
tional anomaly induced by gravitational waves do not apply here,
given that the relevant fermionic chiral matter in our model is
generated only at the end of inflation, not during inflation. For
completeness, we mention though that there are works in the
literature [47,61] which discuss the possibility that primordial
fermionic torsion contributions in torsional versions of general
relativity (in which the spin connection and vielbein are treated as
independent fields), result, through appropriate fermion conden-
sates, in inflation. We shall not discuss such scenarios here.

19In this work, for simplicity, we consider only chiral U(1)
anomalies. In general, one may face situations in which there are
also QCD triangle anomalies, which would amount to adding to
the right-hand sides of the first and subsequent equalities of

Eq. (99) a term of the form þ
ffiffi
3
8

q
α0
κ ðαs8π

ffiffiffiffiffiffi−gp
Ga

μνG̃
aμνÞ, where Ga

μν

denotes the gluon field strength, where a ¼ 1;…8 is an adjoint
SU(3) color index, and αs is the strong interaction fine-structure
constant. This term, like the chiral U(1) anomaly one, is also
topological and does not yield any contributions to the stress-
energy tensor of the KR field.
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axion, which is undiluted, [Eqs. (47) and (74)]. As we shall
discuss below, this field plays an important role in both the
cancellation of the gravitational anomaly and inducing
leptogenesis during the radiation era [36–38].
Let us see these effects in a detailed manner by discussing

the low-energy (string-inspired) effective action during the
radiation era. First we remark that, upon inclusion of
fermionic matter at the end of inflation, the contorsion
interpretation of the antisymmetric tensor field strength [33–
36],Hρ

μν, implies aminimal coupling of this field to the axial
fermion current, given that the corresponding Dirac
Lagrangian for fermions in torsional gravitational back-
grounds [47,61] contains the generalized spin connection
ω̄abμ¼ωabμþKabμ, Kabc¼1

2
ðHcab−Habc−HbcaÞ¼−1

2
Habc:

SDirac ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
{
2
ðψ̄ jγ

μD̄ðω̄Þμψ j

− ðD̄ðω̄Þμψ̄ jÞγμψ jÞ −mðjÞψ̄ jψ j

�
;

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ψ̄ j

�
{
2
Γa∂a

↔
−m

�
ψ j

−
Z

d4x
ffiffiffiffiffiffi
−g

p ðF a þ BaÞψ̄ jγ
5Γaψ j

≡ SFreeDirac þ
Z

d4x
ffiffiffiffiffiffi
−g

p ðBa þ F aÞJ5a; ð101Þ

with latin indices a; b; c;… denoting tangent-space indices,
raised and lowered by the Minkowski metric ηab of the
tangent space (at a point with coordinates xμ) of a space-time
with metric gμνðxÞ ¼ eaμðxÞηabebνðxÞ, where eaμðxÞ are the
vielbeins and eμaðxÞ their inverse. Γa is a tangent-space Dirac
matrix, such that γμðxÞ ¼ eμaðxÞΓa, andwe used the standard

notation for χ̄ ∂a

↔
ψ ¼ χ̄∂aψ − ∂aχψ. The covariant deriva-

tive is defined as D̄a ¼ ∂a − {
4
ω̄bcaσ

bc, σab ¼ {
2
½Γa;Γb�,

F d¼εabcdebλ∂aeλc, Bd¼−1
4
εabc

dHabc, and J5μ ¼
ψ̄ jγ

μγ5ψ j, and correspondingly J5a ¼ ψ̄ jΓaγ5ψ j. In arriving
at Eq. (101) we used the standard properties of the flat
(tangent) space Γa matrices.
Adding Eq. (101) to Eq. (15), implementing the con-

straint (22) via a Lagrange multiplier pseudoscalar field
bðxÞ,20 canonically normalized as before, and integrating
over the field H in the path integral, we easily arrive at an
effective action [using Eq. (63)]:

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ1

2
∂μb∂μb−

ffiffiffi
2

3

r
κ

96
∂μbðxÞKμ

�
þSFreeDiracþ

Z
d4x

ffiffiffiffiffiffi
−g

p �
F μþ

κ

2

ffiffiffi
3

2

r
∂μb

�
J5μ

−
3κ2

16

Z
d4x

ffiffiffiffiffiffi
−g

p
J5μJ5μþ�� �

�
þ��� ; ð102Þ

where the … in Eq. (102) indicates gauge field kinetic
terms, as well as terms of higher order in derivatives, which
are of no direct relevance to us here. The reader should
notice the four-fermion axial-current-current term in
Eq. (102), which is characteristic of Einstein-Cartan the-
ories with torsion [47,61], the latter being provided here
[33,34] by the (totally antisymmetric) quantity ϵμνρσ∂σb
which is dual to the Kalb-Ramond antisymmetric tensor
field strength Hμνρ, as discussed in Sec. II [cf. Eq. (16)].
We also remark that local gravitational-wave perturba-

tions during the radiation and matter (dust) eras lead in
general to a nontrivial background F μ in Eq. (102);
however, such perturbations are much more suppressed
during the radiation (and matter) eras as compared with
their primordial counterparts. In the subsequent discussion
in this section, we consider a pure FLRW background as a
sufficient approximation of the Universe at large scales in
late eras. For such a pure FLRW metric gμν background
(and in general spherically symmetric space-times with
diagonal metrics [64]) one has that F a ¼ 0.
The KR axion bðxÞ background field equation of motion

then, obtained from Eq. (102), reads

∂α

� ffiffiffiffiffiffi
−g

p �
∂αb̄ −

ffiffiffi
2

3

r
κ

96
Kα þ

ffiffiffi
3

8

r
κJ5α

��
¼ 0 ⇒

∂α½
ffiffiffiffiffiffi
−g

p ∂αb̄� ¼
ffiffiffi
3

8

r
κ
e2

2π2
a5ðtÞEiBjδij; ð103Þ

where, in the second line, we used Eq. (99) and the FLRW
metric, gij ¼ a2ðtÞδij, i, j ¼ 1, 2, 3. The alert reader should
have noticed that one would have arrived at the same
equation, had one used the absence of gravitational
anomalies in a background FLRW space-time, but of
course our result emerging from anomaly cancellation is
more general as it is independent of any metric perturba-
tions (such as gravitational waves) that would jeopardize
the diffeomorphism invariance of the radiation/matter
quantum field theory.
Nonetheless, for the purposes of our discussion in this

section, we do assume on average a FLRW space-time
during the radiation era at large scales, for which gravi-
tational-wave perturbations are suppressed. In this case, the
chiral anomaly term on the right-hand side of Eq. (103) is
associated with the covariant derivative of the axial fermion
current [62]

20It is crucial for the reader to notice that we keep only the
gravitational part of the anomaly, setting the non-Abelian gauge
fields A to zero; we stress that we do not include Abelian U(1)
Chern-Simons terms in the modified Bianchi identity (19), as we
anticipate the existence of chiral U(1) anomalies only in the
fermion sector of the model.
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J5μ;μ ¼
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
J5μÞ ¼ e2

8π2
FμνF̃μν

¼ −
e2

2π2
a2ðtÞEiBjδij: ð104Þ

Assuming homogeneous and isotropic situations at
large (cosmological) scales, we only consider cosmic-
time-dependent backgrounds b̄ðtÞ, hJ50ðtÞi. We denoted
the background for the fermion axial current by h…i, as we
may also assume thermal averages [in our treatment
we assume the existence of chiral currents, as, e.g., is
the case of the SM chiral (left-handed) leptonic current,

J5L ¼Pfðl̄ðfÞ
L γμlðfÞ

L þ ν̄ðfÞγμνðfÞÞ, where lðfÞ
L ðνðfÞÞ are the

charged leptons (active neutrinos), and f is a generation
number. In models beyond the SM, other chiral fermions
might play a role, as well].21

Some discussion is required at this stage concerning the
space-time dependence of the electromagnetic fields, EðxÞ
andBðxÞ (with bold face notation referring to three vectors)
entering Eqs. (99) and (104). It is clear that one cannot have
just time-dependent fields, since, on account of Maxwell’s
equations, ∇ ×E ¼ − _B, where ∇ is the spatial gradient.
To have nontrivial chiral anomalies at large (cosmological)
scales, one may adopt the simplified (but concrete) example
considered in Ref. [65], according to which one has a
monochromatic configuration of magnetic and electric

fields, corresponding to a single mode of momentum
k > 0, such that22

Bðt;zÞ¼BðtÞð−sinðkzÞ;cosðkzÞ;0Þ;

Eðt;zÞ¼−
1

k
_Bðt;zÞ¼−

1

k
_BðtÞð−sinðkzÞ;cosðkzÞ;0Þ:

ð107Þ

Such configurations have been argued in Ref. [63] to play a
role in providing a source for the dark energy in the
Universe. We shall take a different point of view in the
current work, where we shall argue that such configurations
can lead to a source of (stiff [42]) dark matter, through the
solution (103) of the KR background.
The important thing to observe [65] is that the chiral

anomaly corresponding to Eq. (107) has only time depend-
ence for a FLRW metric with a scale factor aðtÞ:
ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞ

p
Eiðt;zÞBjðt;zÞgijðtÞ¼−a5ðtÞ 1

2k
d
dt
ðB2ðtÞÞ: ð108Þ

In such a case, the general solution of Eq. (103) is

_̄b ¼ C0
a3ðtÞ −

ffiffiffi
3

8

r
κ
e2

4π2
1

a3ðtÞ
Z

t
dt0a5ðt0Þ 1

2k
d
dt

ðB2ðtÞÞ

¼ C0
a3ðtÞ þ

1

k

ffiffiffi
3

2

r
κ
e2

4π2
1

a3ðtÞB
2ðt0Þ

Z
t
dt0 _aðt0Þ

¼ C0
a3ðtÞ þ

1

kMPl

ffiffiffi
3

2

r
e2

4π2
1

a2ðtÞB
2ðt0Þ; ð109Þ

where C0 is a constant, which we shall determine later on by
using continuity requirements for the b field at the interface
between the inflation and radiation eras. To arrive at the
middle equality in Eq. (109), we took into account that the
amplitude BðtÞ of the magnetic field intensity scales with
the scale factor as [66]

BðtÞ ¼ Bðt0Þ
a2ðtÞ ; ð110Þ

where t0 is the age of the Universe, and, thus, Bðt0Þ denotes
today’s value.
During the radiation era, as follows from

Einstein’s equations, the scale factor behaves as aðtÞ∼
ð2

ffiffiffiffiffiffiffiffi
Ωrad

0

q
H0tÞ1=2, while the Hubble parameter is given by

HðtÞ ¼ 1=ð2tÞ, with the subscript “0” indicating present-day
quantities. Hence, Eq. (109) yields

21The expansion of quantum fermionic axial currents around
such backgrounds is performed by writing J50 ¼ hJ50i þ
quantum fluctuations in Eq. (102). We ignore the quantum
fluctuations for our (classical) treatment in this section. This
implies that, when we consider quadratic expressions of the axial
current appearing in Eq. (102) [and in the stress tensor computed
from it; see below Eq. (115)] we should use

J50J
5
0 ≃ hJ50i2 > 0; ð105Þ

etc., which will be understood in what follows. However, it
should be mentioned for completeness that, when one considers
fully quantum corrections, including fermion path integration, as
essential when dealing with fermions, then spatial components of
the axial current J5i should in general be considered in fermionic
terms, and in general one may face a situation where quantum
fermion condensates, ⟪J5μJ5μ⟫ ≠ ⟪J5μ⟫⟪J5μ⟫, could arise, which
could take on negative values [constant in cosmic time, for some
period of the (early) Universe]

⟪J5μJ5μ⟫ < 0: ð106Þ

This can lead to inflation (in the sense of equations of state of the
form p ≃ −ρ) in models where primordial fermions are consid-
ered [47,61]. For our purposes, where primordial fermionic
matter excitations are assumed to not be present in the effective
action (50) during the inflationary era, we shall consider the case
(105), where only the temporal component hJ50i of the axial
current of some chiral matter is nonzero during the radiation and
matter eras.

22The relative sign differences between Eq. (107) and the
corresponding solution of Ref. [65] are due to the opposite sign
of the term coupling the KR axion with the chiral anomaly in
Eq. (102) from that of the corresponding term in the action of
Ref. [65].
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_̄b ¼ C0
a3ðtÞ þ

1ffiffiffiffiffiffiffiffi
Ωrad

0

q ffiffiffi
3

2

r
e2

4π2
HðtÞ B2ðt0Þ

kMPlH0

: ð111Þ

Notice that the chiral-anomaly contributions to the KR
background field are proportional to the Hubble parameter
HðtÞ during the radiation era. If one considered the solution
with C0 ¼ 0, then such corrections would contribute purely
H2-running-vacuum-type corrections [Eq. (78)] to the
energy density [8]. However, in view of the smallness of
cosmic magnetic fields in the Universe, including possible
primordial ones [63,65,66], we expect such terms to be
suppressed compared to the a−3ðtÞ term in the early
Universe, when C0 ≠ 0, a case relevant for leptogenesis
[38], as we shall discuss below.
At present, we note that, on using Eq. (104), for

homogeneous and isotropic backgrounds, we can equiv-
alently write the solution (109) as

_̄b ¼ C1
a3ðtÞ −

ffiffiffi
3

8

r
κhJ50i; ð112Þ

where C1 ≠ C0 (in general) is another integration constant.
For our purposes, and in the spirit of our treatment in
Sec. II, we take C1 ¼ 0, and hence

_̄b ¼ −
ffiffiffi
3

8

r
κhJ50i: ð113Þ

Next we shall determine the (classical) energy-momen-
tum tensor, and check the self-consistent condition to
obtain a total equation of state compatible with radiation
dominance, which we used in order to arrive at the above
results. To this end, we first notice that, the fermion
equations of motion (species j), derived from Eq. (102), are

{eμaΓa∇μψ j −mðjÞψ j þ κ

ffiffiffi
3

8

r
∂ab̄ΓaΓ5ψ

−
3κ2

8
ðψ̄lΓaΓ5ψlÞΓaΓ5ψ j ¼ 0; ð114Þ

where ∇μ denotes the gravitational covariant derivative on
spinors of the species j with respect to the torsion-free
connection. One can then write the (classical) stress tensor
for the fermions as [47,61]

TF
μν ¼

{
2

X
j

ðψ̄ jγðμ∇νÞψ j− ð∇ðμψ̄ jÞγνÞψ jÞ−
3κ2

16
gμνJ5αJ5α:

ð115Þ

Above, we took into account that in the radiation/matter
phase of the Universe, in which we assume that gravita-
tional anomalies cancel, the topological, chirally anoma-
lous b-axion-fermionic matter coupling terms in Eq. (102),

do not contribute to the covariant stress tensor, whose
conservation is thus not affected, in contrast to the infla-
tionary phase, where the gravitational anomaly is present.
Solutions to the equations (114) have been discussed in

Ref. [61]. It is important to notice that during the radiation
era, the fermions, like all other matter species in the model,
are relativistic and hence, cannot be simply assumed to
have only temporal derivatives, i.e., spatial derivatives ∂iψ
should also be considered. This complicates the detailed
expressions for the stress tensor. However, for our purposes
here, we may simply follow the approach of Ref. [61], and
estimate that such extra contributions will simply be
absorbed into the energy density (and pressure) of free
radiation ρrad0 (prad), which dominates both the KR-axion-b
contributions and those from the self-interactions of the
fermions induced by the axial current-current hJ50i2 inter-
actions due to the H torsion.
On account of Eq. (113), then, the energy density for the

fermions acquires the form (we ignore mass terms during
the radiation era, as the species are assumed to be
relativistic)

TF
00≃ ðTFree

DiracÞ00−
3κ2

16
hJ50i2 ¼

3κ2

16
hJ50i2− κ

ffiffiffi
3

8

r
_̄bhJ50iþ �� �

≃
9κ2

16
hJ50i2þ��� ; ð116Þ

where the … denotes pure radiation contributions from the
kinetic terms which scale with the scale factor as a−4ðtÞ. On
the other hand, the energy density of the KR axion reads

Tb
00 ¼

1

2
ð _̄bÞ2 ¼ 3κ2

16
hJ50i2: ð117Þ

The spatial and time-space components of TF;b
ij

[Eq. (115)], computed from Eq. (102), are [61]

TF
ij ¼ gijpF ¼ gij

�
3κ2

16
hJ50i2 þ � � �

�
;

Tb
ij ¼ gijpb ¼ gij

1

2
ð _̄bÞ2; TF;b

0i ¼ 0; ð118Þ

where again the … denotes relativistic ∼a−4ðtÞ contribu-
tions from the free kinetic terms of the fermions.
The total energy density ρtot and pressure ptot are then

given by

T tot
00 ¼ ρtot ¼ TF

00 þ Tb
00 þ ρrad;

T total
ij ¼ gijptot ¼ gijðTF

ij þ Tb
ij þ pradÞ; ð119Þ

where the superscript “rad” denotes the conventional
contributions from free relativistic species in the model,
including photons, with an equation of state prad ¼ 1

3
ρrad,

scaling as a−4ðtÞ.
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By comparing Eq. (116) with Eq. (118), the reader can
readily verify that this is also the total equation of state for
the axial current-current contributions in the fermion fluid,

pF ¼ 1

3
ρF: ð120Þ

However, as follows from Eq. (111), for C0 ≠ 0, the scaling
of pF and ρF is not purely a−4 (as would be the case with
C0 ¼ 0), but contains a superposition of terms with differ-
ent scalings, ∼a−6, ∼a−5 and ∼a−4. We would like to stress
that Eq. (120) is the result of the solution (113) and the fact
that, in our string-inspired model, the KR axion is a fully
fledged dynamical field.23

On the other hand, the KR axion component is charac-
terized by a “stiff matter” [42] equation of state

pb ¼ ρb: ð121Þ

but again, on account of Eq. (111), the scaling of pb and ρb

is not a−6 alone; each contains a superposition of terms
∼a−6, a−5 and a−4.
On account of the conservation of the total stress tensor

T tot
μν [Eq. (119)], which is respected in the presence of chiral

anomalies, as already explained, one may write

_ρtotþ3HðρtotþptotÞ¼0

⇒
d
dt
ðρFþρradÞþ4HðρFþρradÞ¼−

d
dt
ρb−6Hρb; ð122Þ

where we used Eqs. (120)–(121).
If one recalls that the cosmic electromagnetic fields are

expected to be suppressed [63,65,66], one may make the
reasonable assumption that it is the first term on the right-
hand side of Eq. (111) which dominates, at least during the
early stages of the radiation era, implying a scaling
[cf. Eq. (113)]

_b ¼ −
ffiffiffi
3

8

r
κhJ50i ≃ C0

a3ðtÞ : ð123Þ

On making the further physically reasonable assumption
that it is the radiation fields that dominate over the KR
contributions in the stress tensor during the radiation era
[and thus drive the scaling aðtÞ ∼ t1=2 of the Universe],
ρrad ≫ ρF, prad ≫ pF, one obtains a self-consistent
(approximate) vanishing of both sides of Eq. (122) sepa-
rately, i.e., the equations

d
dt
ðρFþρradÞþ4HðρFþρradÞ≃ d

dt
ðρradÞþ4HðρradÞ¼ 0;

d
dt
ρbþ6Hρb≃0; ð124Þ

which provide a self-consistency check of the approach.
Continuity requires matching the background (123) with

Eq. (47) [under Eq. (63)] at the temperature just at the exit
of inflation, Ti, which, we take to be the Gibbons-Hawking
temperature [67]

Ti ¼
H
2π

ð125Þ

where H ≃HI ∼ 10−5MPl is the value of the Hubble
constant during the inflationary period (64). Taking into
account, then, that, during the radiation era, the temperature
(T)/cosmic time (t) relation assumes the (standard cosmol-
ogy) form, t ¼ 0.3

ffiffiffiffiffiffi
8π

p
g1=2⋆ MPlT−2, where g⋆ (assumed to

be approximately temperature independent) denotes the
total number of relativistic d.o.f. of the model under
consideration, this implies

C00 ¼ 3.5 × 1011M2
Pl; ð126Þ

where we absorbed T-independent numerical constants into
the definition of the constant C0 ⇒ C00 in Eq. (123). The
scaling of the background (123) with the temperature, then,
during the radiation era, is

_̄b ≃ 3.5 × 1011M2
Pl

�
T
MPl

�
3

: ð127Þ

As we shall see in the next subsection, such backgrounds
can produce phenomenologically correct leptogenesis.

B. KR-axion-induced leptogenesis and
matter-antimatter asymmetry in the universe

Indeed, as discussed in Refs. [36–38], the presence of the
background (123) could lead, in principle to leptogenesis,
as it spontaneously breaks Lorentz, CP and CPT sym-
metry. In Ref. [38] we discussed the generation of matter-
antimatter asymmetry in the presence of backgrounds of the
KR field precisely of the form (127), which are considered
to be slowly varying during the (short) freeze-out era of
leptogenesis, as explained in that work.
In particular, we considered lepton-number asymmetry

originating from tree-level decays of heavy sterile (right-
handed, Majorana) neutrinos (RHN) into SM leptons. The
relevant part of the Lagrangian is given by

L ¼ LSM þ iN̄=∂N −
mN

2
ðNcN þ N̄NcÞ − N̄=Bγ5N

−
X
f

yfL̄fϕ̃
dN þ H:c: ð128Þ

23The situation should be contrasted with the corresponding
case of torsional space-time studied in Ref. [61], where the
equation of state characterizing the torsion-induced fermion self-
interaction contributions to the stress tensor was that of stiff
matter [42] pF ¼ ρF.
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whereLSM denotes the SM Lagrangian,N is the RHN field,
of (Majorana) massmN , ϕ̃ is the SU(2) adjoint of the Higgs
field ϕ [where ϕ̃d

i ≡ εijϕj with i, j ¼ 1, 2, SU (2) indices, is
the SU(2) dual of the Higgs field], and Lf is a lepton
(doublet) field of the SM sector, where f is a generation
index, f ¼ e, μ, τ, in the standard notation for the three SM
generations; yf is a Yukawa coupling, which is nonzero
and provides a nontrivial (“Higgs portal”) interaction
between the RHN and the SM sectors. In the models of
Refs. [36–38] a single sterile neutrino species suffices to
generate phenomenologically relevant lepton asymmetry,
and hence from now on we restrict ourselves to the first
generation (f ¼ e, setting ye ¼ y). The quantity =B ¼ γμBμ

appearing in the axial current term of Eq. (128) is defined in
terms of the four-vector

Bμ ¼ M−1
Pl
_̄bδμ0: ð129Þ

It denotes the Lorentz (LV), CP (CPV) and CPT (CPTV)
violating background (127), with Bμ having only a tem-
poral component. For such (slowly varying in the cosmic
frame) backgrounds, as in our case here, the Lagrangian
(128) assumes the form of a Standard Model extension
(SME) Lagrangian in a Lorentz and CPTV back-
ground [68].
At this stage we should make an important remark. As

the reader should have noticed, in our model, the back-
ground (129) has a derivative form, Bμ ∝ ∂μb, which, by
partial integration, implies a coupling of the KR axion to
the derivative of the axial current in the effective action
(128). In our model, the RHN are massive in the radiation
epoch, where leptogenesis occurs, and hence the classical
axial current is not conserved, since its four-divergence
equals imNðNcγ5N þ N̄γ5NcÞ, as follows from the
(Majorana) equation of motion of the free RHN fields.
Therefore, the nontrivial coupling of the KR axion to the
RHN current is guaranteed, independent of any
potential anomalies, and thus is consistent with the can-
cellation of gravitational anomalies by the chiral matter in
the radiation- and matter-dominated eras, advocated in our
scenario.24

In the context of the model (128), a lepton asymmetry is
generated due to the CPV and CPTV tree-level decays of
the RHN N into SM leptons in the presence of the
background (129) [36–38]:

Channel I∶ N → l−hþ; νh0;

Channel II∶ N → lþh−; ν̄h0; ð130Þ

where l� are charged leptons, ν (ν̄) are light, “active,”
neutrinos (antineutrinos) in the SM sector, h0 is the neutral
Higgs field, and h� are the charged Higgs fields, which, at
high temperatures, above the spontaneous electroweak
symmetry breaking, of interest in this scenario, do not
decouple from the physical spectrum. As a result of the
nontrivial B0 ≠ 0 background [Eqs. (129) and (127)], the
decay rates of the Majorana RHN between channels I and II
are different, resulting in a lepton asymmetry [38],

ΔLTOTðT ¼ TDÞ
s

∼ q
Φ0

mN
; q > 0; ð131Þ

where s is the entropy density of the Universe, TD denotes
the temperature at which this asymmetry freezes out
(“freeze-out point”), that is when the total decay width Γ
for the decays (130) equals the Hubble rate of the Universe,
HðTDÞ ≃ Γ, and the quantity Φ0 is defined as [38]

B0ðTÞ ¼ Φ0

�
T
mN

�
3

: ð132Þ

The lepton asymmetry (131) can then be communicated to
the baryon sector via baryon-minus-lepton-number (B − L)
conserving sphaleron processes in the SM [39], thus
producing the observed amount of baryon asymmetry
(baryogenesis) in the Universe, by requiring that the lepton
asymmetry (131) is of Oð8 × 10−11Þ, as indicated by
(cosmological) observations [1]. The number q > 0
expresses theoretical uncertainties in the analytical deriva-
tion of the lepton number asymmetry in Ref. [38], where
the Padè approximant method was used to solve the
pertinent system of coupled Boltzmann equations associ-
ated with Eq. (130). The precise value of q depends on the
freeze-out point. Using Eq. (127), we may write

Φ0 ¼ 3.5 × 1011
�
m3

N

M2
Pl

�
: ð133Þ

By demanding phenomenologically acceptable values of
the lepton asymmetry (131) of orderOð8 × 10−11Þ, one can
then infer from Eq. (133) that

mN ≃
1.5ffiffiffi
q

p × 10−11MPl ≃
3.7ffiffiffi
q

p × 107 GeV: ð134Þ

The reader should bear in mind that in the semianalytic
method of Ref. [38] only the following combination of
parameters, involving mN , enters the series expansions of
the solutions about a point x ¼ mN=T used to approach (via
Padé approximants) the freeze-out point xD ¼ 0.1:

24Gravitational anomalies may play a role in a dynamical
generation of the RHN (Majorana) mass, as in the scenario of
Ref. [43], involving mixing of the KR field with other string
theory axions. Such mechanisms can be consistently embedded
in our framework, specifically in the early radiation epoch, just
after inflation, when chiral matter is generated. However, their
discussion falls beyond the scope of the current work.
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I ≡ y2
MPl

mN
: ð135Þ

We now notice that the ratio y2=mN appears in the
expression for the SM active neutrino ν masses via the
(type-I) seesaw mechanism [69],25

mν ∼ jyj2v2=mN: ð136Þ

In Ref. [38], the Yukawa coupling y ∼ 10−5 and mN ∼
105 GeV [36–38] gave phenomenologically relevant
values for mν. Such parameters correspond to
[cf. Eq. (135)]

I ∼ 103 ð137Þ

which we keep fixed in our approach, so that the
considerations of Ref. [38] apply, and moreover one
obtains the same (phenomenologically consistent) active
neutrino masses via the seesaw mechanism as in
Ref. [38] [cf. Eq. (136)].
Additionally, the assumption that TD ≃mN was made in

Ref. [38], which we also maintain here. In such a case [38]
q ¼ Oð10Þ, and from Eq. (134) one obtains

mN ≃ 1.17 × 107 GeV; ð138Þ

that is, the sterile neutrino mass and, hence the
freeze-out temperature, in our case are 2 orders of magni-
tude higher than their counterparts considered in
Refs. [36–38].26
From Eq. (135), then, the corresponding Yukawa

coupling assumes the value jyj ≃ 4.8 × 10−5 (just a
factor of 5 larger than that in Ref. [38]), while from
Eq. (132) one obtains for the background field at freeze-
out [38] B0ðT ¼ TD ≃mN ∼ 107 GeVÞ ¼ OðkeVÞ, which
induces phenomenologically relevant leptogenesis
at T ∼ 107 GeV.
Before closing this section, we also remark that the value

(138) is compatible with the upper bound on the sterile
neutrino masses required in minimal scenarios for Higgs
mass stability (naturalness) in type-I seesaw models [70],

that is, assuming no new physics (such as supersymmetry)
at the TeV scale. Indeed, the Higgs-mass-squared correc-
tions coming from one-loop contributions in the electro-
weak-symmetry-broken phase, due to the Higgs portal
interactions in Eq. (128), involving (in their generality)
the three active and three sterile neutrinos propagating in
the loop, read [70] δm2

H ¼Pα¼e;μ;τ

P
3
I¼1

1
ð4πÞ2 y

2
αIm

2
I . In

order to ensure Higgs mass stability/naturalness, then, one
must have δm2

H ≲m2
H, where mH is the Higgs mass. In our

single sterile neutrino case, considered above, we may
eliminate the Yukawa coupling y, using the type-I seesaw
formula (136), to obtain the following criterion for mass
stability:

mN ≲ ðm2
Hv

2ð4πÞ2m−1
ν Þ1=3: ð139Þ

Using the cosmological bound [1] for the sum of the three
active neutrino masses

P
3
i¼1mνi < 0.12 eV, and trans-

lating it (on account of the neutrino oscillation data on the
active neutrino mass differences, assuming normal or
inverted hierarchies [71]) into an upper bound for the
single active neutrino we consider here, mν ≲ 0.04 eV, we
may replace the mν in Eq. (139) by this upper bound, to
obtain a sufficient condition for the satisfaction of the
Higgs mass stability, mN ≲ 108 GeV. A similar estimate
is obtained [70] in the casewhere there are three active and at
least two sterile neutrino flavors. In that case, one may use
the measurement of atmospheric oscillation experiments
for the observed active neutrino mass differences [71],
Δm2

atm ∼ 2.4 × 10−3 eV2, and the type-I seesaw generaliza-
tion of Eq. (136), giving nonzero masses to at least two
of the active neutrinos, to determine the allowed upper
bound for mN for Higgs mass stability from experimental
data. Indeed, by settingmν ∼ ½Δm2

νatm�−1=2 in Eq. (139), one
obtainsmN ≲ ðm2

Hv
2ð4πÞ2½Δm2

νatm�−1=2Þ1=3 ∼ 108 GeV. On
the other hand, assuming that two of the active neutrinos are
nearly degenerate, with the third one having a much smaller
mass, one may face a situation where mν ∼Oð10−1Þ eV,
implying mN ≲ 107 GeV.
As already mentioned, such naturalness bounds can be

bypassed, if new physics, e.g., supersymmetry, exists at
some scale below 107 GeV, in which case the RHN
contributions to the Higgs mass quantum corrections might
be canceled by, say, loops of sneutrinos, if the masses of the
latter are similar to those of the RHN. In our string-inspired
case, such extra contributions might well exist, but here we
consider minimal seesaw scenarios, which suffice for our
purposes.

IV. MODERN ERA AND REAPPEARANCE OF THE
GRAVITATIONAL ANOMALIES

After freeze-out, during the radiation era, the temper-
ature of the Universe continues to drop at a rate aðtÞ ∼ 1=T,
until the expansion of the Universe is such that the a−2ðtÞ

25One needs more than one flavor for heavy neutrinos in that
case, which can be easily accommodated in the framework of
Refs. [36–38].

26It should be noted that the freeze-out temperature could be up
to 1 order of magnitude higher than mN , due to model depend-
ence when calculating it from the equality of the total decay rate
(130) with the Hubble parameter. In such a case, one may have
q ≃Oð100Þ or larger in the lepton asymmetry equation (131),
implying a mN ¼ Oð106Þ or smaller, in the ballpark of the sterile
neutrino mass of Refs. [36–38]. Thus, the above numbers should
be considered with a theoretical uncertainty of a couple of orders
of magnitude. The unambiguous conclusion, though, is that, in
this scenario, there is phenomenologically relevant leptogenesis
during the early radiation era.
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term, due to the chiral anomalies, in the solution for
the KR axion background (111) dominates over the
a−3ðtÞ-scaling term. Such dominance lasts until more or
less the matter-radiation equality era, after which matter
(mostly DM) begins to dominate, and this signals the dawn
of the matter-domination epoch, which according to data
[1] ends at redshifts z ≃ 0.7, succeeded by the current
de Sitter phase. As follows from Einstein’s equations,
during matter dominance, the scale factor behaves as

aðtÞ ¼ amðtÞ ∼
�
3
ffiffiffiffiffiffi
Ωm0

p
H0

2
t
�
2=3

. Taking into account, as

standard in cosmology, that it is only the relativistic
d.o.f. that contribute to the constant entropy density of
the Universe during its entire evolution, implies that the
matter-dominated era scale factor is inversely proportional
to temperature T, amðtÞ ∼ T−1, as is the case during
radiation dominance.
During the matter-dominated era, then, as follows

from Eq. (109) upon imposing the continuity
assumption for the KR background and its derivatives,
the a−3ðtÞ ∼ T3 term may be considered subdominant
[38], with the dominant behavior being provided by the
a−2 ∼ T2 chiral anomaly term [below, for convenience,
we express the temperature in units of MPl, and absorb
any T-independent proportionality constants appearing
in the expression of amðtÞ in the definition of
Bðt0Þ → B0ðt0Þ]:

_̄bjmatter era ≃
1

kMPl

ffiffiffi
3

2

r
e2

4π2
1

a2mðtÞ
B2ðt0Þ

⇒ _̄bjmatter era ≃
ffiffiffi
3

2

r
e2

4π2
B02ðt0Þ
kM3

Pl

T2: ð140Þ

From Eq. (140), and the above discussion, we there-
fore conclude that at the late stages of the radiation era
and during matter dominance, the presence of a chiral
anomaly implies a softer (∼T2) temperature dependence
of the KR axial background, as compared to the T3

scaling in the case of Ref. [38], where chiral anomalies
were ignored. In our case, any such T3-scaling con-
tribution to this background is subdominant, as follows
by continuity requirements at the interface between
the end of radiation- and beginning of matter-domina-
tion eras.
During the current epoch, where matter has started to

fade away, and a cosmological-constant-like (de Sitter)
phase, seems, according to data [1], to start dominating the
(accelerated) expansion of the Universe, the presence of
late-epoch gravitational waves would lead once more,
following the reasoning of Sec. II B, to the resurfacing
of gravitational anomalies of the type (59) and (61); these
can no longer be canceled by the diluted chiral matter.
However, now, the approximately constant Hubble param-
eter of the current-era de Sitter phase equals the Hubble

constant today, H ∼H0, which is much smaller than its
counterpart during inflation. Hence any gravitational
anomalies would be strongly suppressed. The slow-roll

conditions for the KR axial background _̄b are valid for
scaling ∼T2, which prompts us to conjecture a behavior
today [40]

_̄btoday ∼
ffiffiffiffiffiffi
2ϵ0

p
H0MPl; ð141Þ

in analogy to Eq. (74).27 In general, ϵ0 ≠ ϵ.
An estimate of ϵ0 can be provided by matching the value

of _̄btoday [Eq. (141)] with that of Eq. (140), upon setting
amðt0Þ ¼ 1. We thus obtain,

ffiffiffiffi
ϵ0

p
≃

ffiffiffi
3

p

2

e2

4π2
B2ðt0Þ
kM2

PlH0

: ð142Þ

We proceed now to estimate the momentum scale
k of the monochromatic solution (107). This comes from
Maxwell’s equations in the presence of the chiral anoma-
lies, which for homogeneous and isotropic KR back-
grounds _bðtÞ read [63,65]

∇ ×BðtÞ ¼ σE − _̄b

ffiffiffi
3

8

r
κ
e2

4π2
BðtÞ; ð143Þ

where σ is the conductivity of charged chiral matter (we
used Ohm’s law and identified the electric current density
as j ¼ σE). From the solution (107), one has

∇ ×BðtÞ ¼ −kBðtÞ; ð144Þ

and, thus, Eq. (143) becomes

kBðtÞ ¼ −
σ

k
_BðtÞ þ _̄b

ffiffiffi
3

8

r
κ
e2

4π2
BðtÞ: ð145Þ

The reader should bear in mind that the classical KR

background _̄b plays a role analogous to the chiral chemical

27We do not discuss here the behavior (vs the cosmic time) of
the gravitational anomaly during the entirety of the late de Sitter
era. In fact, the gravitational anomaly in the current era most
likely will not be constant, and thus will be washed out at the end
of the new inflationary period, which however cannot be
predicted, as the microscopic string theory dynamics leading
to this era is not known. Given the strongly suppressed Hubble
parameter today H0 as compared to its counterpart HI during the
inflationary period, H0 ≃ 10−55HI , in order to ensure a constant
gravitational anomaly à la Eqs. (69)–(70), one would need
enormously (and unnaturally) trans-Planckian cutoff values for
the momentum modes, although it must be said that, since the
detailed string dynamics is unknown, one cannot make definite
statements on the subject. Fortunately, such issues do not affect
our current study.
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potential −μ5 [63,65,72].28 However, for us, in contrast to
the considerations in Ref. [63], the KR axion is a fully
fledged quantum field.
Ignoring chiral matter in our case, as it becomes

subdominant in the modern-era de Sitter phase, is equiv-
alent to setting σ → 0 in Eq. (145).29 Taking into account
Eq. (110), which has so far been used self-consistently, and
utilizing Eq. (142), we obtain from Eq. (145)

k ≃
ffiffiffiffi
ϵ0

p ffiffiffi
3

p

2
H0

e2

4π2
; ð146Þ

which, on account of Eqs. (145) and (141), leads to

ϵ0 ≃
Bðt0Þ2
M2

PlH
2
0

¼ 2

3

ρB0

ρð0Þc

; ð147Þ

that is, ϵ0 is of the order of the energy density of the
magnetic field today ρB0 ¼ 1

2
B2ðt0Þ in units of the critical

density of the universe ρð0Þc ¼ H2
0M

2
Pl=3.

On account of Eqs. (147) and (141), and the stiff
equation of state (121) of the (massless) KR axion, which
dominates the “matter” part of the action in the de Sitter era,
we then observe that the latter field can provide a source of
(stiff) DM, with a vacuum energy density of the order of the
magnetic field energy density.

ρbð¼ pbÞjtodayðdeSitter-eraÞ ¼
1

2
ð _̄bjtodayÞ2 ≃ B2ðt0Þ: ð148Þ

Unfortunately, in our low-energy effective string theory,
there is no way of estimating Bðt0Þ from first principles. In
the context of the underlying string model, this in principle
can be done by an appropriate choice of the ground state,
but in view of the landscape afflicting string theory, at
present such a task does not seem feasible. Thus, we have to
resort to phenomenological arguments.
To this end, we first notice, that, as with the inflationary

phase, it is not the massless KR field which drives the late-
era de Sitter phase. There must be some other mechanism,
by means of which an approximately constant potential U
appears dynamically during the late epochs of the Universe,
which resembles quintessence, thus driving the later de
Sitter era. In such a case, one may assume that the kinetic
energy of the KR axion field Kb ¼ 1

2
_b is roughly 1 order of

magnitude smaller than U, a typical situation for other
cosmological fields, such as quintessence, which would
allow the total equation of state to be approximated by that
of de Sitter space-time w ≃ −1. In such a case, by
identifying the two slow-roll parameters for the KR field,
in the early and late de Sitter eras of the string Universe
[cf. Eq. (47) and (141)]

ϵ ∼ ϵ0 ¼ Oð10−2Þ ð149Þ

one can get the DM content in the right ballpark [1]:

Ωm0 ¼
ρm0

ρð0Þc

≃
U

ρð0Þc

≃ 10
Kb

ρð0Þc

≃ 10ϵ ¼ Oð0.1Þ; ð150Þ

where ρm0 is the current energy density of DM in the
universe. Abovewe used the fact that, according to Eqs. (73)
and (141), the slow-roll parameter of bðxÞmeasures the ratio
of its kinetic energy, Kb ∼ ð1=2Þ _b2, to the critical energy
density of the Universe, ρc ¼ ðMPlHÞ2=3.
On account of Eq. (147), then, this also determines the

current energy density of the cosmological magnetic field,
ρB0 . Moreover, we observe that the temporal component of

the KR background (129), B0 ¼ _̄bM−1
Pl in the current era

(141), is of order

28We note, however, that there are important subtle physical
differences between a bare μ5 and the temporal component of an

axial-vector background (axial potential), such as _̄b, coupled to
the axial fermion current. The latter, unlike μ5, does not contribute
[73,74] to the so-called chiral magnetic effect (CME) [75], that is
the excitation of an electric current density in the presence of an
external magnetic field, with a coefficient proportional to μ5,
jCME ¼ e2

2π2
μ5B, which is an effect associated with the chiral

anomaly. Indeed, if one uses energy conservation arguments [73]
or calculates the electric current density from first principles
using, e.g., the relativistic quantum mechanics approach
[74] in the presence of both a chiral chemical μ5 and the
axial potential, then only the μ5 contributes to the current. In
our case, the noncontribution of the axial potential to the CME is
consistent [38] with the fact that the contributions of the KR

torsion [and thus the axial KR potential _̄bðxÞ] to the chiral
anomaly can be removed by the addition of appropriate renorm-
alization group counterterms to the string effective action,
order by order in perturbation theory [48,49]. Such issues will
not be directly relevant for our purposes in this work, though,
which is based on Eqs. (143) and (145) and the associated
magnetogenesis. In this respect, the reader should notice that the
last term on the right-hand sides of Eqs. (143) and (145), which
has a form similar to the chiral magnetic effect, does contribute to
the magnetic field evolution, but cannot be considered as a
contribution to the electric current, for reasons explained in
the text.

29We note at this stage, that, had we kept charged chiral matter
today, and thus the conductivity σ term in Eq. (145), then the
equation would have admitted a growing solution [65]

BðtÞ ¼ B0 expðδtÞ, with δ ¼ k
σ ð e2

4π2

ffiffi
3
8

q
κ _̄b − kÞ > 0, for suffi-

ciently low k, where _̄b is given by Eq. (141). This would have
led to the well-known instabilities in the presence of a chiral
chemical potential [65], which in the approach of Ref. [63] have
been linked to the creation of a cosmological magnetic field,
whose energy density was identified with the dark energy of the
Universe in the current era. In our approach, where chiral charged
matter is not dominant in the current de Sitter era, we differ from
this interpretation, associating the KR axion with a source of dark
matter, as we discuss below.
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B0jtoday ∼ 2.435 × 10−34 eV: ð151Þ

We note that this is about 14 orders of magnitude larger
than the corresponding background found in Ref. [38], in
the absence of chiral anomalies.
In view of the role of the almost constant B0 ∼ _̄b

background as a CPT- and Lorentz-symmetry-violating
background in the effective theory, which, as mentioned
above, falls within the framework of the Standard Model
extension [68], it is imperative to check the phenomeno-
logical consistency of Eq. (151) with the current bounds of
such backgrounds [76]: B0 < 10−2 eV for the temporal
component, and (the much more stringent)Bi < 10−31 GeV,
for the spatial components. The predicted value in
our model (151) comfortably satisfies those bounds, even
if one takes into account the relative motion of our
laboratory frame with respect to the cosmic Robertson-
Walker frame, which we take to be the CMB frame. Indeed,
if the lab frame moves with a certain velocity [77] jv⃗j ≪ c
(where c is the speed of light in vacuo) with respect to
the CMB frame, then, according to special relativity, we
shall also observe spatial components ofBμ in the lab frame
of order

Bi ¼ γ
vi
c
B0; i ¼ 1; 2; 3; ð152Þ

where γ ∼ 1 is the Lorentz factor. As can be inferred
from studies of the CMB anisotropies, a typical
order of magnitude of the velocity of the Earth
(where precision tests of the Standard Model are made)
with respect to the CMB background is [1,77]
jv⃗j ¼ Oð390� 60Þ km= sec. From Eqs. (151)–(152)
then, we observe that all bounds for the Lorentz- and
CPT-violating KR background Bμ, μ ¼ 0;…3, are
comfortably satisfied.

V. MASSIVE KR-AXION DARK MATTER

Wewould like to close our study by making some further
remarks on the nature of the KR axion as a source of DM.
In our approach so far, the KR axion has been treated as
exactly massless, not having any potential, and thus
respecting the shift symmetry. Axions in such conditions
are usually viewed as Goldstone bosons of a spontaneously
broken global (shift) symmetry (such as an accidental
Peccei-Quinn symmetry for QCD axions [78]). If the
symmetry is broken explicitly, however, by nonperturbative
quantum (instanton) effects, as happens, for instance, in the
case of the QCD axion, then a (small) periodic axion
potential is developed. In this sense the axion acquires a
small mass, which implies its potential role as a light DM
candidate.Concretely, theQCDaxion field θðxÞ≡ aðxÞ=fa,
where fa is the (mass-dimension-one) axion decay constant,
estimated phenomenologically to lie in the range [78]
109 GeV < fa < 1012 GeV, has anomalous couplings with

the gluons of the form g2sθðxÞ
32π2

GA
μνGAμν; A ¼ 1;…8 [an adjoint

SU(3) color index], where gs is the strong-interaction
coupling, and GAμν is the gluon field-strength tensor.
The global Peccei-Quinn Uð1Þ symmetry is associated
with shifts aðxÞ → aðxÞ þ ϵ, where ϵ ¼ const The non-
perturbative potential induced by instanton effects, which
breaks this shift symmetry, has the schematic form
VðθÞ ¼ Λ4

QCDð1 − cosðθÞÞ, where ΛQCD is the QCD scale.
Minimization of the potential fixes the strong-CP-violating
angle hθi ¼ 0. The nonperturbatively generated QCD axion
mass squared is m2

a¼∂2V=∂a2ja¼0¼Λ4
QCD=f

2
a and hence

ma ¼ Λ2
QCD=fa.

30

In our case, as mentioned previously, the massless KR
axion, which is dual in four space-time dimensions to the
antisymmetric tensor field strength, ∂μb ∼ εμνρσHνρσ , might
be viewed [22] as the Goldstone mode of the spontaneous
breaking of Lorentz symmetry induced by the constant
background (74) or (141). However, it is possible that the
shift symmetry of the KR axion is broken by some
nonperturbative stringy effects, which are also responsible
for generating a potential for it, at least in the current
cosmological epoch. In such models, there might be a slow-
roll behavior of the axion, which is thus viewed as a
quintessence field [79], driving the current de Sitter phase
of the Universe.
There are also models that involve nontrivial interactions

of the KR axion with standard axions, which exist
abundantly in string theory [44], which may thus provide
additional components of axionic DM. Below we shall
discuss such a toy model, in which the field bðxÞ acquires a
potential U (and a mass) in the current epoch, and the
expression (141) is still a consistent solution of the
equations of motion. The ingredients of such a model
have been considered in Ref. [43], in an attempt to propose
alternative (beyond seesaw [69]) mechanisms for radiative
generation of right-handed Majorana neutrino masses, that
appear, e.g., in the Lagrangian (128) and are crucial for
leptogenesis. The model couples the bosonic action (102),
involving the KR axion field in the presence of a gravi-
tational anomaly, to stringy or ordinary (including QCD)
axion fields AiðxÞ, i ¼ 1;…n, through a kinetic mixing
term [43]

Sb−amixing ¼
Xn
i¼1

γi

Z
d4x

ffiffiffiffiffiffi
−g

p ∂μAi∂μbðxÞ; ð153Þ

where the (dimensionless) mixing coefficients 0 ≠ jγij < 1.
The axionsAi are assumed to have canonically normalized
kinetic terms and shift-symmetry-breaking nontrivial
Yukawa couplings with right-handed Majorana neutrinos,

30In more precise estimates, Λ2
QCD is replaced by mπfπ, where

mπ (fπ) is the pion mass (decay constant), and the potential is
appropriately modified [78].
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which can be generated by nonperturbative string
instanton effects. The details of the potential of the Ai
fields are irrelevant for the radiative Majorana neutrino
mass generation [43]. For our purposes, it suffices to
concentrate on one such axion field AðxÞ. In general,
we assume that the A axion also couples to the (gravita-
tional) anomaly with some dimensional coupling, which
we take to beZ

d4x
ffiffiffiffiffiffi
−g

p fAα0

96κ
AðxÞRμνρσR̃μνρσ

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p fAα0

96κ
∂μAðxÞKμ; ð154Þ

where fA is a dimensionless constant, which depends
on the microscopic details of the theory, in particular
on stringy d.o.f. circulating in the anomalous chiral
fermion loop. In our current approach so far we have
assumed for concreteness α0 ∼ κ2, but in realistic string-
theory models one may keep the Regge slope as
an independent parameter, to be fixed phenomenologi-
cally, and this is what we adopt for the remainder of this
section.
The equations of motion of the bðxÞ andAðxÞ fields read

(the overline above the fields, denotes classical solutions, as
per our previous notation)

∂α

� ffiffiffiffiffiffi
−g

p �
∂αb̄ −

ffiffiffi
2

3

r
α0

96κ
Kα þ γ∂αĀ

��
¼ ffiffiffiffiffiffi

−g
p δUðb; Ā;…Þ

δb

				
b¼b̄;A¼Ā

;

∂α

� ffiffiffiffiffiffi
−g

p �
∂αĀ −

ffiffiffi
2

3

r
fAα0

96κ
Kα þ γ∂αb̄

��
¼ ffiffiffiffiffiffi

−g
p δUðb;A;…Þ

δA

				
b¼b̄;A¼Ā

; ð155Þ

where we included a potential Uðb;A;…Þ, assumed to be
generated in the late cosmological eras, which explicitly
breaks the shift symmetry of the axions. Above we ignored
fermion and gauge anomaly contributions, as we assume
that in the current de Sitter era, fermion matter and radiation
are not dominant, while only A- and b-axion DM
dominate.
We do not discuss here the details of the generation of the

potential Uðb;A;…Þ, apart from noting that a cosmologi-
cal-constant-type dark energy contribution is included for
phenomenological reasons. One may use quintessence-like
potentials, of the form used for axion inflation [79], which
contain mass terms for the bðxÞ field, so that the latter can
play the role of an ordinary massive axionic DM compo-
nent. The important point is that, in the presence of an axion
kinetic mixing parameter γ ≠ 0 [Eq. (153)], within the
context of a homogeneous and isotropic cosmological

situation where the fields depend only on the cosmic time
at large scales, the solution (47) is still valid despite the
presence of the potential Uðb;A;…Þ. In that case, the
equations (155) reduce to

γ
d
dt
½ ffiffiffiffiffiffi−g
p ð _̄AÞ�¼ ffiffiffiffiffiffi

−g
p δUðb;A;…Þ

δb

				
b¼b̄;A¼Ā

;ffiffiffi
2

3

r
d
dt

� ffiffiffiffiffiffi
−g

p ðfA−γÞα0
96κ

K0

�
¼ ffiffiffiffiffiffi

−g
p �

1

γ

δUðb;A;…Þ
δb

−
δUðb;A;…Þ

δA

�				
b¼b̄;A¼Ā

: ð156Þ

Gravitational-wave perturbations contribute to the anomaly
as in the inflationary period, but with a much smaller
Hubble parameter H0. We stress that, in a FLRW space-
time, massive bðxÞ fields necessitate the presence of a

nontrivial δUðb;A;…Þ
δb ≠ 0, and thus γ ≠ 0.

In general, an approximately constant solution (141) of a
massive b axion is consistent with the above equations.
Let us see this in a concrete but simple case, in which
0 ≠ fA ¼ γ < 1, which implies [cf. Eq. (156)]

�
1

γ

δUðb;A;…Þ
δb

−
δUðb;A;…Þ

δA

�				
b¼b̄;A¼Ā

¼ 0: ð157Þ

Using Eq. (157), we observe that the first line of Eq. (156)
becomes

3H _̄Aþ ̈Ā ¼
�
δUðb;A;…Þ

δA

�				
b¼b̄;A¼Ā

: ð158Þ

We remain agnostic as to the precise underlyingmicroscopic
string theory that produces the potential Uðb;AÞ through
stringy instanton effects. Therefore below we resort to
phenomenological plausibility arguments. For concrete-
ness, we assume that the axion A field induces the late
de Sitter phase through a nonperturbatively generated
(periodic) potential of a form used in inflationary scenarios
[79], which can be embedded in concrete string/brane
theory models:

Uðb;AÞ ¼ c0M4
Pl þM1

4

�
1 − cos

�
b

Mb
−

A
MA

��
þ � � � ; c0 > 0; ð159Þ

where Mi > 0, i ¼ 1;A; b are appropriate mass scales,
to be fixed phenomenologically. The term c0M4

Pl > 0 acts
as a (positive) cosmological constant term in the current
era, under the slow-roll condition for the axion fields,
which are assumed to be weak in the current epoch (see
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discussion below).31 The … in Eq. (159) indicates terms
involving shift-symmetry-breaking couplings with other
fields, e.g., the aforementioned chiral Yukawa coupling
with right-handed fermions, ybðxÞψ̄c

RψR [43]. At late
epochs, like the current one and beyond, where the
Universe enters a de Sitter phase again, we assume that
such fermionic matter is completely diluted, or equivalently
that the correspondingYukawa couplings (that are in general
also temperature dependent) are negligible.Hencewe ignore
them for the purposes of our subsequent discussion.
The reader should note that the potential (159) is

characterized by nondiagonal mass terms for the b and
A fields, with the corresponding mass eigenstates obtained
by diagonalization. The massive nature of the axions b and
A, then, allows them to play the role of multicomponent
DM in the current era.
The condition (157) is satisfied for the potential (159),

provided

M1
4

γMb
sin

�
b

Mb
−

A
MA

�
¼ −

M1
4

MA
sin

�
b

Mb
−

A
MA

�
⇒ Mb ¼ −

MA

γ
; ð161Þ

where, for consistency with the condition Mi > 0; i ¼
A; b, we should take γ < 0 (the reader is reminded that
jγj < 1, but it can have either sign [43]).
We shall look for self-consistent solutions of Eq. (161) in

which A=MA ≪ 1, to satisfy the weak-field requirement.
We shall also assume that M1 ≪ MA. Taking the kinetic
mixing parameter 0 ≠ jγj ≪ 1, for concreteness, from
Eq. (161) we observe that Mb ≫ MA, so that
Eq. (158) can be approximately written, to leading order
in small quantities, as

A00 þ 3
H
MPl

A0 ≃ −
M4

1

M2
AM

2
Pl

A; ð162Þ

where the prime denotes differentiation with respect to the
dimensionless variable x ¼ tMPl. The general solution of
Eq. (162) is

AðxÞ ¼ e−
3H

2MPl
xðC̃1e

−x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

M4
1

M2
A
M2
Pl

þ 9H2

4M2
Pl

r
þ C̃2e

þx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

M4
1

M2
A
M2
Pl

þ 9H2

4M2
Pl

r
Þ;

x ¼ tMPl; ð163Þ

where the constants C̃i; i ¼ 1, 2, are determined by
boundary conditions. In the current era, H ¼ H0. Then,
due to the smallness of H0, we may assume for concrete-
ness that the arguments of the square roots in the exponents
on the right-hand side of Eq. (163) are negative. Upon
imposing suitable boundary conditions, then, we arrive at a
dumped oscillatory solution with (increasing) cosmic time,
familiar from massive axion DM cases,

AðtÞ ¼ A0e−
3H
2
t sin

 
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

1

M2
A

−
9H2

4

s !
;

A0 ≪ MA;
M4

1

M2
A

>
9H2

4
; ð164Þ

with the quantity

m2
A ≡ M4

1

M2
A

−
9H2

4
ð165Þ

playing the role of an effective axion mass squared in an
expanding Universe [above we kept H general, since the
expression (164) is valid beyond the current era]. The
condition A0 ≪ MA guarantees weak fields.
Slow-roll conditions for both axions A and b, which in

this model behave as massive DM fields in the modern era,
can thus be arranged by suitable choices of the parameters.

The order of _̄A and _b today is bounded from above
by current cosmological observations [1]. Without
loss of generality, and assuming that the axions constitute
the dominant form of DM today, one may assume
[cf. Eq. (141)]

j _Ajtoday ∼ j _bjtoday ¼ Oð
ffiffiffiffiffiffi
2ϵ0

p
H0MPlÞ; ð166Þ

which can be easily achieved by an appropriate choice of
the parameters.
The energy density of the b −A fluid at the current

(approximately de Sitter) era is then given by

ρb−atoday ¼
1

2
ð _̄AÞ2 þ 1

2
ð _̄bÞ2 þ γ

2
_̄A _̄bþUðb̄; Ā;…Þjtoday;

γ ≪ 1: ð167Þ

In view of Eqs. (47) and (166), and the fact that a
cosmological constant term is present in the (slowly varying)
potential Uðb;A;…Þ [cf. Eqs. (159) or (160)], one can
readily see that the energy density (167) in the present epoch
acquires a “running vacuum” form [Eq. (5)], with H2

31Alternatively, one could also consider the potential

Uðb;AÞ¼M1
4

�
1−c22 cos

�
b

Mb
−

A
MA

��
þ�� � ; 0≠ c22 < 1;

ð160Þ

in which the dominance of the (positive) cosmological constant
(M1

4ð1 − c22Þ > 0), driving the current-era de Sitter phase, arises
from a weak-field expansion about the origin in field space
A ¼ b ¼ 0, corresponding to the trivial local maximum of the
potential, under the assumption of slow roll for the axion fields
AðxÞ, bðxÞ. For the purposes of our discussion in this section,
both potentials (159) and (160) are qualitatively equivalent.
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contributions associated with the gravitational anomalies.
On account of the current constraints on the DM energy
density [1], and the role of both axion fields as massive DM
components with a quintessence-like potential, we thus
observe that Eq. (166) is consistent with the identification of
the slow-roll parameters of the b axion between the infla-
tionary and current eras, Eqs. (73) and (141) respectively,
ϵ0 ∼ ϵ ¼ Oð10−2Þ, as assumed in our model, following the
argumentation leading to Eq. (150).
This completes our discussion. We stress once more that,

unfortunately, at present, the above analysis provides only
plausibility arguments, not a concrete mechanism for mass
generation for the KR axion, due to the lack of knowledge
of the underlying microscopic string/brane model that
could generate the (nonperturbative) potential Uðb;AÞ.
Nonetheless, we believe that the arguments are sufficiently
interesting to foster further research in this direction. The
fact that our model promotes axionic DM as the dominant
species of DM in the Universe, makes it relevant for current
DM studies, in particular in models in which the effective
DM mass (165) is small, so that the respective DM is
ultralight. Such ultralight DM currently constitutes the
subject of intense research, proposing, for instance, the
use of precision atomic or laser interferometric devices or
other quantum sensors, to falsify particle physics models
involving scalar or pseudoscalar (axion) DM particles with
masses smaller than 10−21 eV [80].

VI. CONCLUSIONS

In this article we have provided a string-inspired theo-
retical framework in which, during the early phase of the
Universe, there are important contributions to the vacuum
energy density which are related to the CP-violating
gravitational anomalies of a primordial space-time of
string theory. The latter are induced by primordial gravi-
tational waves during the inflationary era, in the presence of
Lorentz- and CPT-violating backgrounds of the KR axion
field of the massless bosonic string multiplet. The KR field
itself, though, does not cause or drive inflation, which is
due to other independent mechanisms.
During the primordial inflationary era, we assume that

only (stringy) gravitational d.o.f. are present. Hence, the
gravitational anomalies, whose presence in general would
cause diffeomorphism-invariance breaking in the quantum
theory, do not constitute any inconsistency, as would be the
case if matter were present, since the anomalies describe the
exchange of energy solely among (quantum) gravitational
d.o.f. Moreover, there is a second-rank modified stress
tensor which is conserved and describes any exchange of
energy between the KR axion field and gravity. The stress
tensor of this KR axion alone, which would be the “matter”
stress tensor if anomalies were absent, is not conserved in
their presence. It is important to mention that the infla-
tionary epoch can be described using the formalism of an
effective “running vacuum” model with H2-type

contributions to the vacuum energy density, which owe
their existence to the gravitational anomaly. Furthermore,
as we have shown, in our string-inspired theoretical
framework inflation can be correctly initiated and termi-
nated (graceful exit) with the help of the gravitational
Chern-Simons term, whose average over de Sitter space-
time also induces an additional, higher-order, power ∼H4

contribution to the vacuum energy density. This higher-
order term triggers inflation within the context of the RVM,
as has been proven in detail in the literature [8–13]. It
follows that the entire history of the universe can be
described in an effective RVM language upon starting
from the fundamental massless bosonic gravitational multi-
plet of a generic string theory. We believe that this is an
interesting and remarkable result of our work, which, to the
best of our knowledge, was never put forward in the
literature prior to the present work. Thanks to this result,
the effective language of the RVM can be used in a very
practical way to compute the main traits of the cosmic
evolution starting from inflation and going through the
standard radiation- and matter-dominated epochs until the
late-time universe, i.e., the incipient DE epoch around our
time, and finally into the future.
Because of the anomalous coupling of the KR axion to

gravitational anomalies, the field remains undiluted at the
end of inflation. During the radiation/matter eras, chiral
fermionic matter generated at the end of inflation cancels
the gravitational anomalies, thus restoring diffeomorphism
invariance in the radiation/matter quantum field theory, as
required for consistency. We have found that, as the
Universe passes from inflation to the radiation-dominated
epoch, the presence of the undiluted CP- and (sponta-
neously)CPT-violating KR axion background, may lead to
baryogenesis via leptogenesis, in models involving heavy
right-handed (sterile) neutrinos. The lepton asymmetry is
generated by CP (and CPT)-violating decays of the sterile
neutrinos into Standard Model particles in the presence of
the KR background. Baryon-lepton-number-conserving
sphaleron processes in the Standard Model sector of the
theory can then communicate the lepton asymmetry to
baryons, thus leading to baryogenesis. Therefore, the
aforementioned process could provide an efficient way
to understand the underlying physical mechanism for the
dominance of matter over antimatter in the early Universe.
Moreover, during the radiation/matter dominance, uncom-
pensated gauge chiral anomalies of the fermionic-matter
axial (chiral) currents, also lead to H2ðtÞ “running vac-
uum”-type contributions to the energy density of the
Universe.
In the late universe such running vacuum contributions

involve an additive constant term, which was neglected in
the early universe, and hence the effective or “running”
cosmological term within the RVM is of the form
ΛðHÞ ¼ c0 þ νH2, where the value of c0 is close (but
not exactly equal) to the cosmological constant term of the
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ΛCDM model, and νH2 (with jνj ≪ 1Þ is the running part
of the DE density, a characteristic feature of the model. The
RVM is, therefore, finally testable in a very concrete way. It
provides a specific mechanism for inflation, which is
different from the conventional one based on the inflaton
field [8–13], but also furnishes a mildly varying vacuum
contribution which surfaces in the late universe and
can be perceived as a form of dynamical dark energy.
Such a form of DE leads to an overall improvement of the
fit of the cosmological observations as compared to the case
of a rigid Λ term [14–17]. In addition, that dynamical
component of the DE can help alleviate some of the
tensions that exist in the ΛCDM model concerning σ8
[15] and H0 [31].
During the current de Sitter era, the dilution of any

matter, and the dominance again of the stringy gravitational
d.o.f., including the KR axion, leads, through late-epoch
gravitational waves, to the resurfacing of gravitational
anomalies. We have also discussed how the KR field in
the present era can act as a source for dark matter in models
involving large-scale cosmic magnetic fields, generated by
the chiral anomalies. The magnetic energy density con-
tributes to the late-era energy budget of the Universe, with
terms of RVM type, scaling as H2

0. Moreover, there are
scenarios in which the KR field mixes with other axion
fields, which are abundant, e.g., in string models, thus
providing models for multicomponent DM.
Before closing, we make a last but rather important

remark. Since our effective-field-theoretic running-vacuum
model of quantum gravity, upon which we based our
studies here, is inspired by string theory, it would be
interesting to discuss it in the context of the recent
conjectures on the incompatibility of de Sitter vacua
(characterized by a rigid positive cosmological constant)
with the “swampland criteria,” and in general of how one
can couple quantum field theories to quantum gravity
models, especially in view of our trans-Planckian regime
of modes entering Eq. (71) [81]. We leave this interesting
topic for future works, as we did not discuss here micro-
scopic string theory models leading to inflation. We
remark, though, that the dynamical nature of the running
vacuum leads to deviations of our model from the standard
ΛCDM model, as far as the nature of the vacuum energy is
concerned, which is dynamical in our case; in this respect,
the compatibility of some of the models falling within our
framework with the “swampland criteria” is to be expected.
To summarize our findings, the (gravitational) anomaly

played an important dual role for our existence: first, it
induced a nondiluted axion background of DM at the end of
inflation into the radiation epoch, which itself induces
leptogenesis; and, second, it fostered the subsequent gen-
eration of chiral matter from the decay of the running
vacuum, thus canceling the unbalanced gravitational
anomaly and restoring general covariance in our
Universe. As demonstrated in our work, the gravitational

or chiral anomalies lead to mildly running dark energy, as a
smoking gun evidence of their presence!
So, paraphrasing the famous quote by Carl Sagan [82],

the thesis of this article is that we may well be anomalously
made of star stuff!
Affaire à suivre...
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APPENDIX: ARBITRARY STRING MASS SCALE

In this appendix, we demonstrate how in the general
case, where the string scaleMs ≠ MPl, one can avoid trans-
Planckian values for the UV cutoff μ by appropriately
constraining the range of Ms.
Indeed, this follows from the fact that, in such a case, the

condition (70) for an approximately constant K0 during
inflation is replaced by

A ¼ 1 − 1.95 × 10−5
�

H
MPl

�
2
�

μ

Ms

�
4

≃ 0

⇒
μ

Ms
≃ 15

�
MPl

H

�
1=2

; ðA1Þ

where the ≃ in the above relations are to be interpreted as
within an error of order at most 1%. Indeed, an approx-
imately constant K0 in Eq. (68) is guaranteed provided that
at the end of the inflationary period its value is diminished
by no more than an order of magnitude, that is

K0
endðtendÞ ≃ ðe−1 − e−2ÞK0

beginðtðη ¼ H−1ÞÞ: ðA2Þ
Taking in to account that, in units of cosmic Robertson-
Walker time t, the end of inflation occurs for Htend ∼N ,
where N , the number of e-foldings, is expected from the
data [1] to be of order N ¼ Oð60–70Þ, we thus observe
from Eq. (A2) that
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0≲A≲ξð3N Þ−1∼ξð0.0048−0.0056Þ; ξ¼1−2; ðA3Þ

suffices for our purposes, which leads to the aforemen-
tioned uncertainty of at most 1% in the value of μ in
Eq. (A1),

μ

Ms
≃ 15

�
1 −

ξ

3N

�
1=4
�
MPl

H

�
1=2

≃ ð0.998–0.999Þ × 15

�
MPl

H

�
1=2

: ðA4Þ

If one insists on phenomenologically acceptable ranges of
H ≪ MPl, e.g., Eq. (64), then one obtains

μ ∼ 103Ms; ðA5Þ
which replaces Eq. (71). Then, upon combining Eqs. (61)
and (62), we see that a sufficient condition to guarantee the
smallness of jΘ ≪ 1 is

H=Ms ≪ 3.83; ðA6Þ

which, on account of Eq. (A5) implies

μ ≫ 2.61 × ð10−3–10−2ÞMPl: ðA7Þ

This, in turn, leads to the observation that the cutoff scale μ
can be at least of order MPl. Thus, by allowing Ms ≠ MPl,
we can in principle avoid a trans-Planckian cutoff μ, since
we may set μ ∼MPl which is a quite natural order of
magnitude for the UV completion of the low-energy
effective theory. In such a case, Eq. (A6) implies the
following range of the minimal allowed order of magnitude
of the string scale: Ms ≳ 10−3MPl. Saturating from above
Ms ≲MPl we thus obtain the range for the string scale

MPl ≳Ms ≳ 10−3MPl; ðA8Þ

in order to guarantee the Lorentz-violating solution (72) for
the KR background.
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[4] J. Solà, J. Phys. A 41, 164066 (2008).
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(2016).
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[28] H. Fritzsch and J. Solà, Classical Quantum Gravity 29,
215002 (2012).

[29] A. Babić, B. Guberina, R. Horvat, and H. Štefančić, Phys.
Rev. D 71, 124041 (2005); 65, 085002 (2002).

[30] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D.
Scolnic, Astrophys. J. 876, 85 (2019); 853, 126 (2018); 826,
56 (2016).

[31] M. Rezaei, M. Malekjani, and J. Solà, Phys. Rev. D 100,
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