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We study the induced primordial gravitational waves (GWs) coming from the effect of scalar
perturbation on the tensor perturbation at the second order of cosmological perturbation theory. We
use the evolution of the standard model degrees of freedom with respect to temperature in the early
Universe to compute the induced gravitational waves background. Our result shows that the spectrum of the
induced GWs is affected differently by the standard model degrees of freedom than the GWs coming from
the first-order tensor perturbation. This phenomenon is due to the presence of scalar perturbations as a
source for tensor perturbations, and it is effective around the quark gluon deconfinement and electroweak
transition. In case of considering a scalar spectral index larger than 1 at small scales or a non-Gaussian
curvature power spectrum, this effect can be observed by gravitational wave observatories.
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I. INTRODUCTION

The first observation of a gravitational wave (GW) event
from the merger of binary black holes and binary neutron
stars by laser interferometer gravitational-wave observatory
(LIGO) opened a new way for us to understand the Universe
[1–3]. Before, using electromagnetic waves, we could see the
physical phenomena in the Universe; however, now, some-
how, we can listen to them in case they produce gravity
waves. Beyond the GWs produced by astrophysical events at
the recent era of cosmic evolution, it would be interesting to
listen to the early moments of the Universe to detect the
predicted GW by cosmological and particle physics models
[4,5]. The inflationary scenario as a theory to explain the
moments after the big bang and explain the current cosmo-
logical observations can produce that kind of primordial
gravitational waves (PGWs) [6,7]. In principle, if we have
detectors of high sensitivity, one can observe such PGWs.
However, their detection depends on the first-order tensor to
scalar ratio “r,” which appears directly in the predicted
observable relic density of tensor perturbation at the first
order of cosmological perturbation theory. Since the cosmic
microwave background (CMB) experiments like Planck have
only put an upper bound on the tensor-to-scalar ratio and

some theoretical predictions assume very tiny values close to
zero for this quantity, it motivates us to consider the second-
order terms in the cosmological perturbation theory induced
by scalar perturbations. This has been done in the literature
[8–11] and gained much interest recently [12–27] due to the
first direct discovery of GW signals from binary mergers.
The predicted shape for the induced spectrum using the

standard model (SM) equation of state at different scales or
frequency and the evolution of the induced tensor power
spectrum should be roughly like the first-order one.
However, this has not been checked numerically, and the
goal of this paper is to do exactly this. Studying induced
PGW is also interesting when there is non-Gaussianity on
scales smaller than the CMB [20,28]. This can boost the
spectrum of induced PGW to large values of the relic
density which might be accessible by near future experi-
ments [18–20] especially by pulsar timing arrays. Also, it
would be one of the real chances to test particle physics
models and the early Universe cosmology based on our
current data from CMB and the standard model of particle
physics and ΛCDM cosmological constant and cold dark
matter in the case in which tensor-to-scalar perturbation
ratio is much smaller than the current bound from Planck
[29] or from future CMB experiments like CMBS4 [30].
Currently, GW experiments can mostly detect the GW

spectrum from astrophysical events with a strong enough
amplitude. However, future detectors will be able to probe
much smaller signatures from possible phase transitions
and the PGW in the early Universe cosmology. Some of
these planned GW missions are the Laser Interferometer
Space Antenna (LISA) [31], the Einstein Telescope
[32], the Deci-Hertz Interferometer Gravitational Wave
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Observatory (DECIGO and B-DECIGO) [33,34], the Big
Bang Observatory [35], the Square Kilometer Array (SKA)
telescope [36], the North American Nanohertz Observatory
for Gravitational Waves [37], and the European Pulsar
Timing Array [38]. Moreover, LIGO can be sensitive to the
predicted GWs for the early Universe depending on the
model [39,40].
For a pre-big-bang-nucleosynthesis (BBN) cosmology

which is dominated by some matter with an equation of
state different from radiation, the spectrum of the first order
and the induced PGW will be different as studied in
Refs. [9,12,13,15,16,41–45]. Such models will not be
the focus of the current paper.
The value of secondary produced PGW depends on the

amplitude of scalar perturbations which is observed at the
CMB scale [29]. Since the scalar spectral index at large
scales is highly constrained by CMB and is close to 1, it is
not expected to deviate significantly from a flat scalar
power spectrum for the standard case. However, it might be
different at smaller scales, e.g., in the pre-BBN era. This
makes the induced PGW different from the first-order one,
which has different free parameters, i.e., the scalar-to-
tensor ratio and the tensor spectral index [41,46,47].
In the next section (Sec. II), we investigate the thermal

history of the early Universe including SM particles. In
Sec. III, the set of equations related to first-order and second-
order perturbations and the induced PGWwill be discussed.
We compute the relic density of the induced PGW for the
scale-invariant and the scale-dependent scalar perturbations
in Sec. IV. Finally, we summarize our results in Sec. V.

II. THERMAL HISTORY OF THE EARLY
UNIVERSE AND STANDARD MODEL PARTICLES

The effect of standard model degrees of freedom (d.o.f.)
on the (first-order) PGWespecially around the quark gluon
deconfinement and electroweak transition are studied in the
literature [41,46–49]. The evolution of d.o.f. influences
the relation between the scale factor and the temperature in
the early Universe cosmology [49,50]. However, this can be
interpreted as an evolution of the equation-of-state param-
eter. The equation-of-state parameter and the speed of
sound can be driven by other thermodynamics variables as

ω ¼ ptot

ρtot
; c2s ¼

∂ptot

∂ρtot ; ptot ¼ Tstot − ρtot; ð1Þ

where the energy density and the entropy density are
defined as

ρtot ¼
π2

30
geffðTÞT4; stot ¼

2π2

45
heffðTÞT3 ð2Þ

and the effective relativistic d.o.f. for the energy and the
entropydensity are denoted by geff andheff . The contribution
of every relativistic fermion (boson) to the effective DoF is

7=8 (1). For radiation or any ideal relativistic fluid,
c2s ¼ ω ¼ 1=3. We use the result of Ref. [50] to compute
the equation-of-state parameter and speed of sound for SM
d.o.f. as plotted in Fig. 1. This figure shows that around
temperatures of 150 MeV and 100 GeV, due to QCD and
electroweak crossover transitions, ω and c2s will be smaller
than 1=3. This happens since the interaction between
particles in the thermal bath of the early Universe deviates
from an ideal relativistic fluid. Every extra d.o.f., e.g., due to
dark matter or any beyond the SM physics in the early
Universe can also lead to small effects on these quantities.
Especially, considering a highly populated sector like
supersymmetry can modify the result of Fig. 1 and add a
new valley at temperatures around 1 TeVor higher depend-
ing on the scale of supersymmetry (see Refs. [47,51,52] for
supersymmetric DoF and PGW).

III. TENSOR AND SCALAR PERTURBATION
EQUATIONS

At second order of the cosmic perturbation theory, one
can consider the metric [8,10,12]

ds2 ¼ gμνdxμdxν ¼ −a2ð1þ 2ΦÞdη2

þ a2
�
ð1 − 2ΨÞδij þ

1

2
hij

�
dxidxj; ð3Þ

where a is the scale factor and η is the conformal time.
Assuming the metric does not contain anisotropic stress
(Φ ¼ Ψ), the scalar perturbation and tensor perturbation are
denoted by Φ and h, respectively. The metric in Eq. (3) is
considered in Newtonian gauge. Here, we mainly follow
Ref. [12] for the evolution equations of induced scalar and
tensor perturbations. The evolution of the tensor power
spectrum sourced from scalar perturbation can be obtained
by solving the equation in Fourier space [8–10,12]

cs
2
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FIG. 1. The speed of sound c2s (solid red curve) and the
equation-of-state parameter ω (blue dotted curve) with respect
to temperature T including all the SM d.o.f. at relevant temper-
atures using the result of Ref. [50]. The dashed line shows the
ideal gas case c2s ¼ ω ¼ 1=3.
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h00
k⃗
ðηÞ þ 2Hh0

k⃗
ðηÞ þ k2hk⃗ðηÞ ¼ 4Sk⃗ðηÞ; ð4Þ

where the conformal Hubble parameter is denoted
by H ¼ aH and the derivative with respect to the
conformal time is denoted by 0 ¼ d=dη. The Hubble
parameter can be evaluated from the Friedmann equation
H2¼ð8π=3M2

PlÞρtot, withMPl being the Planck mass. Also,
the entropy conservation in the early Universe is consid-
ered.1 To consider the whole evolution of DoF for finding
aðηÞ, one should solve a0 ¼ a2H numerically assuming
a0 ¼ aðη0Þ ¼ 1 at today.
The source term on the right-hand side of Eq. (4)

assuming Φ ¼ Ψ can be evaluated as [8–10,12]

Sk⃗ ¼
Z

d3l

ð2πÞ3=2 ϵijðk⃗Þlilj
�
2Φ⃗lΦk⃗−⃗l

þ 4

3ð1þ ωÞ ðH
−1Φ0

⃗l
þ Φ⃗lÞðH−1Φ0

k⃗−⃗l
þΦk⃗−⃗lÞ

�
; ð5Þ

where the polarization tensor for GW is shown by ϵijðk⃗Þ. In
Eq. (5), the terms depending on c2s cancel out so that the
expression depends only on ω explicitly. We use the
Green’s function method to solve the differential equation
for tensor perturbations. Then, the solution in the comoving
frame will be [12]

aðηÞhk⃗ðηÞ ¼ 4

Z
η

ηi

dη̃Gk⃗ðη; η̃Þaðη̃ÞSk⃗ðη̃Þ; ð6Þ

where we make use of the Green’s function as the solution
of the following equation [8,12]:

G″
k⃗
ðη; η̃Þ þ

�
k2 −

a00ðηÞ
aðηÞ

�
Gk⃗ðη; η̃Þ ¼ δðη − η̃Þ: ð7Þ

For a fixed ω, the scale factor evolves as a ∝ η
2

3ωþ1. Then,
Eq. (7) will be given by

G″
k⃗
ðη; η̃Þ þ

�
k2 −

�
2

3ωþ 1

��
2

3ωþ 1
− 1

�
1

η2

�
Gk⃗ðη; η̃Þ

¼ δðη − η̃Þ: ð8Þ

To compute the Green’s function, we use the method of
Ref. [8] in both cases of constant and evolving ω. If the
functions G1 and G2 are two homogeneous solutions of
Eq. (7) for a mode k, then the Green’s function will be
defined as

Gðη; η̃Þ ¼ G1ðηÞG2ðη̃Þ − G1ðη̃ÞG2ðηÞ
G0
1ðη̃ÞG2ðη̃Þ − G1ðη̃ÞG0

2ðη̃Þ
; ð9Þ

where in practice we compute the numerical form of this
function [assuming G1ðηÞ ¼ 0, G0

1ðηÞ ¼ 1; G2ðηÞ ¼ 1,
G0
2ðηÞ ¼ 0 for the initial conditions at superhorizon scales]

for each mode k or GW frequency f ¼ 2π=k. We find
two different numerical solutions (using the mentioned
initial conditions) of the second-order differential equation
in (7) or (8). Then, we use Eq. (9) to define the numerical
(interpolated) Green’s functions, which we will use in the
calculation of the induced tensor power spectrum.
The evolution of scalar perturbations in cosmology can

be described with the differential equation [12,53]

Φ00
k⃗
þ 3Hð1þ c2s ÞΦ0

k⃗
þ ð2H0 þ ð1þ 3c2s ÞH2 þ c2sk2ÞΦk⃗

¼ a2

2
τδS; ð10Þ

where δp ¼ c2sδρþ τδS. By assuming c2s ¼ ω ¼ const:
and vanishing entropy perturbation in cosmology δS¼ 0,
one gets [12]

Φ00
k⃗
ðηÞ þ 6ð1þ ωÞ

ð1þ 3ωÞηΦ
0
k⃗
ðηÞ þ ωk2Φk⃗ðηÞ ¼ 0: ð11Þ

In the limit c2s → ω, our numerical results match with the
analytical solution of Eq. (11) as given in Refs. [8,12].
However, for a precise numerical calculation, one should
distinguish between the speed of sound c2s and the
equation-of-state parameter ω as shown in Fig. 4 and
consider them separately in the computation. The correla-
tion function for curvature perturbations is derived as
shown in Ref. [12] and gives

hϕk⃗ϕ ⃗k̄
i ¼ δðk⃗þ ⃗k̄Þ 2π

2

k3

�
3½1þ ω�
5þ 3ω

�
2

PRðkÞ; ð12Þ

where the superhorizon value of ϕk⃗ is evaluated from the
relationΦk⃗ ¼ΦðkηÞϕk⃗. The transfer functionΦðkηÞ reaches
1 before the moment of horizon crossing (k ¼ ahcHhc). We
will consider the evolution of the d.o.f. of SM in the result of
Eq. (10) and other relevant equations in the following.
The induced tensor power spectrum from scalar pertur-

bations is determined via [8,10,12]

PTðη; kÞ ¼ 4

Z
∞

0

Z
1þv

j1−vj
dv du

�
4v2 − ð1þ v2 − u2Þ2

4vu

�
2

× I2ðv; u; xÞPRðkvÞPRðkuÞ; ð13Þ

where v ¼ j⃗lj=jk⃗j and u ¼ jk⃗ − ⃗lj=jk⃗j. In Eq. (13), the
definition of the function I reads [10,12]

1To find the evolution of temperature with respect to scale
factor in the standard cosmology after reheating, the entropy
conservation should be assumed. This can be taken into account

by the relation dT
da ¼ −

T
a

1þ T
3heff ðTÞ

dheff ðTÞ
dT

.
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Iðv; u; xÞ ¼
Z

x

0

dx̃
aðη̃Þ
aðηÞ kGkðη; η̃Þfðv; u; x̃Þ; ð14Þ

where the source function f based on the equation-of-state
parameter ω and transfer functions Φ is obtained from
[10,12]

fðv;u;x̃Þ¼6ðωþ1Þ
3ωþ5

Φðvx̃ÞΦðux̃Þ

þ 12ðωþ1Þ
ð3ωþ5Þ2H½∂ η̃Φðvx̃ÞΦðux̃Þþ∂ η̃Φðux̃ÞΦðvx̃Þ�

þ 12ð1þωÞ
ð3ωþ5Þ2H2

∂ η̃Φðvx̃Þ∂ η̃Φðux̃Þ: ð15Þ

The terms depending on c2s for the case Φ ¼ Ψ in the
original equation of Refs. [8,10] cancel out. Then, only the
terms on the right-hand side of Eq. (15) are left. By
changing the variables u and v to u ¼ ðpþ qþ 1Þ=2
and v ¼ ðp − qþ 1Þ=2 [12], the numerical solution of
the tensor power spectrum in Eq. (13) turns out to be
computationally faster.
For different values of ω shown in Fig. 3, we derived the

Green’s function and Φ from Eqs. (9) and (11) and
computed then the function f from Eq. (15). Then, the
function I was computed analytically from Eq. (14) and
used in Eq. (13) for numerical integration. We also checked
them with the complete numerical solution, and both of the
solutions match each other. As an example, the Green’s
function for ω ¼ 1=3 considering a ∝ η and a00 ¼ 0 from
Eq. (8) can be evaluated as Gkðη; η̃Þ ¼ sinðη − η̃Þ=k [12].
Also, the scalar transfer function for a radiationlike fluid by
solving Eq. (11) and assuming (Φðkη → 0Þ → 1) can be
shown to be [12,54]

ΦðkηÞ ¼ 9

ðkηÞ2
�
sinðkη= ffiffiffi

3
p Þ

kη=
ffiffiffi
3

p − cosðkη=
ffiffiffi
3

p
Þ
�
: ð16Þ

The explicit form of the function I is complicated and long.
It will not be presented here (see Refs. [10,12]). In
Ref. [12], the limits of the function I in a radiation-
dominated Universe are found to be Iðu; v; x → 0Þ ≈ x2=2
and Iðu; v; x → ∞Þ ≈ Iðu; vÞ=x2. Using the latter limit,
the evolution of the tensor power spectrum is estimated to
be PTðη; kÞ=A2

R ≈ 19.7=x2 [12]. This expression is vastly
used afterward to estimate the value of the GW relic density
of today. However, the value 19.7 does not match the results
for ω ¼ 1=3 shown by the solid black line in Fig. 3 based
on a complete numerical calculation. This will be explained
in more detail in the next section.

IV. PRIMORDIAL GRAVITATIONALWAVES AND
EXPERIMENTAL CONSTRAINTS

The scale-invariant scalar power spectrum defined in
Eq. (12) can be written as [55]

PRðkÞ ¼ AR: ð17Þ

Moreover, the power law scalar power spectrum can be
defined as [55]

PRðkÞ ¼ AR

�
k

k̃

�
ns−1

; ð18Þ

with the pivot scale k̃ ¼ 0.05 Mpc−1 and the scalar spectral
index ns.
From Planck satellite observations, the value of the scalar

spectral index has been determined to be ns ¼ 0.965�
0.004 [29]. Also, the value of the curvature perturbation
amplitude at the CMB scale is AR ≃ 2.1 × 10−9 [29]. In
addition, the scale-invariant tensor power spectrum at first
order is defined as [55]

Pð1Þ
T ¼ AT: ð19Þ

FIG. 2. Evolution of the scaled tensor perturbation at horizon
crossing with respect to a constant equation-of-state parameter ω
of the background fluid (blue solid curve). The vertical gray
dashed line shows the ideal gas case ω ¼ 1=3.

FIG. 3. Evolution of the scaled tensor power spectrum
PTðη; kÞ=A2

R with respect to kη for different values of ω is
shown. As ω → 0, the tensor power spectrum diverges as the
upper limit of first integral in Eq. (13) becomes infinite [12].
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Then, the tensor-to-scalar ratio at first order is [55]

r ¼ AT

AR
: ð20Þ

The current limit from the Planck Collaboration is r≲
0.07 [29].
In Fig. 2, we assume that the parameter ω is fixed and

constant in the calculation of Eqs. (7), (11), and (13). The
scaled tensor power spectrum [scaled by the square of the
scale-invariant curvature power spectrum: PTðηhc; kÞ=A2

R]
at horizon crossing is computed for the range of 0 < ω < 1,
where the minimum of the tensor power spectrum appears at
ωmin ¼ 0.175. As Fig. 2 shows and as it is analytically
calculated in Refs. [9,12,45], if ω → 0, the tensor power
spectrum diverges, PTðη ≥ ηhc; kÞ → ∞. The reason is that
in a matter-dominated era the scalar perturbation becomes
constant and the functionI2 at late timeswill have a constant
value. Since the other terms in the integrand of Eq. (13) are
nonlinear and the integration is effectively done over the
modes from very small to very large modes, the result
diverges. This happens when one assumes the matter-
dominated era might last forever; however, this might not
be the realistic case in standard and nonstandard cosmol-
ogies. The period of matter domination can be limited; then,
it should start and end at some specific modes [changing the
limits of integration in Eq. (13)]. Then, the second-order
tensor power spectrum for the matter-dominated epoch
becomes larger than other cases and not divergent. The
final result for PTðηhc; kÞ=A2

R in the range 0 ≤ kη ≤ 10 and
different ω’s is shown in Fig. 3. The function I inside the
integral of Eq. (13) is highly oscillatory. It gets its maximum
value slightly after horizon crossing (2≲ kη≲ 4 depending
on the value of ω), then decays proportional to 1=ðkηÞ2
during radiation domination [12].
For the induced tensor perturbation in the computation of

the tensor power spectrum after horizon crossing until
today, the WKB method (which considers the numerical
value of the transfer function and its first derivative to
match the approximate analytical solution of the transfer
function) cannot be used to match the result at some point
and then extend it until today, since (to the best of our
knowledge) there is not any well-defined shape of the
transfer function during radiation domination for the
induced PGW like A sinðδþ kηÞ=kη as assumed in
Refs. [41,46,47] for the first-order PGW.
The power spectrum, shown in Fig. 3, increases after

horizon crossing to a maximum value, then dilutes with the
expansion of the Universe. The numerical calculation of
such a power spectrum is difficult and time consuming
since it includes various numerical integrations over oscil-
latory functions. In practice, it is very difficult to solve the
integral of Eq. (13) for a large range of kη from zero to
today kη0. So, one should calculate until horizon crossing
or until the peak for ω ¼ 1=3 in Fig. 3, then use 1=ðkηÞ2 as
the dilution factor due to the expansion of the Universe.

The tensor power spectrum can also be defined in
terms of the transfer function PTðηhc; kÞ ∝ T 0ðηhc; kÞ2 ¼
k2T ðηhc; kÞ2. It scales like 1=a2 after horizon crossing.
For the radiation-domination case (without the change
of DoF), the scaled tensor power spectrum in Fig. 3
at horizon crossing and at its first peak (x̃1st;peak ≃ 2.17)
are PTðηhc; kÞ=A2

R ≃ 0.87 and PTðη1st;peak; kÞ=A2
R ≃ 1.75,

respectively [PTðη1st;peak; kÞ=PTðηhc; kÞ ≃ 2].
It is expected that the evolution of the DoF in the

early Universe plays a role in the computation of Eqs. (7),
(10), and (13), so we checked it. We have included all DoF
of the SM to find the scaled tensor power spectrum
PTðηhc; kÞ=A2

R. Then, the shape of the spectrum will have
a correction factor, shown in Fig. 4, due to the evolution of
different functions inside the integral of Eq. (13) by a
change of the DoF over time. This fact originates from the
combination of all functions in the integral aðηÞ=aðη̃Þ,
fðu; v; kη̃Þ, and Gðη; η̃Þ due to carrying the retarded effects
from previous times. In practice, an analytical formula to
show the explicit form of Fig. 4 has not been found.
However, it roughly behaves like the evolution of dω=dT
including the retardation effects due to the Green’s func-
tion. The inflection points in the correction factor of the
secondary PGW spectrum roughly show the points of
the crossover transition having the smallest values of c2s
and ω at the relevant frequencies (3 × 10−9 and 10−6 Hz).
In the case in which one adds the supersymmetric DoF or
any highly populated sector around the TeV scale, there
will be another inflection point at higher frequencies
around 10−4 Hz.

FIG. 4. The correction factor ZðkÞ ¼ PTðηhc; kÞ=PTðηhc; khighÞ
on the scalar-induced gravitational waves due to the evolution of
standard model d.o.f., which is scaled to the value at high fre-
quencies where ω → 1=3 well above the electroweak transition.
The solid blue line includes the thermal history using all the SM
particles. The dashed gray straight line denotes a radiationlike
equation of state with ω ¼ 1=3. The correction factor for non-
Gaussianity peaks around frequencies k̄=2π ¼ f̄ ¼ 1.6 × 10−9 Hz
(green), 1.6 × 10−8 Hz (black), 1.6 × 10−7 Hz (orange), 1.6 ×
10−6 Hz (violet), and 10−4 Hz (red) and is plotted in colored
dashed curves for the choice of ½F 2

NL; AG� ¼ ½10; 10−2�.
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The density of PGW per frequency (wave number) from
tensor perturbation at first order in the case of Eq. (4) being
source free can be estimated as [41,46,47]

Ωð1Þ
GWðη0;kÞh2¼

1

24

�
ahcHhc

a0H0

�
2

hPð1Þ
T ðη0;kÞiosc

≃
1

24

�
heffðT0Þ
heffðThcÞ

�4
3

�
geffðThcÞ
geffðT0Þ

�
Pð1Þ

T ðkÞΩγ;0h2;

ð21Þ

where PT
ð1ÞðkÞ ¼ Pð1Þ

T ðη; kÞ=T 0ð1Þðη; kÞ2 ¼ Pð1Þ
T ðηhc; kÞ=

ðkT ð1Þðηhc; kÞÞ2 for the first-order PGWwhen T ð1Þðηhc; kÞ2
is the first-order tensor perturbation transfer function.
Here, we focus on frequencies larger than 3 × 10−11 Hz,
which are equivalent to temperatures larger than 4 MeV.
Consequently, we do not consider the effects of neutrinos
and photons free streaming, which appear at smaller
frequencies [46,56,57] as a new source term on the
right-hand side of Eq. (4). The relic PGW today from
induced scalar perturbation can be obtained from [54]

ΩGWðη0; kÞh2 ¼
1

24

�
ahcHhc

a0H0

�
2

hPTðη0; kÞiosc

≃
1

24

�
heffðT0Þ
heffðThcÞ

�4
3

�
geffðThcÞ
geffðT0Þ

�
2

× ð2.17Þ2ZðkÞPTðηhc; khighÞΩγ;0h2; ð22Þ

and the correction factor is defined as ZðkÞ ¼ PTðηhc; kÞ=
PTðηhc; khighÞ, shown in Fig. 4 as blue solid line
[PTðηhc; khighÞ=A2

R ≃ 0.87]. The shape of this function
completely depends on the details of the functions inside
the integral of Eq. (13). The function ZðkÞ already corrects

the spectrum on the order of 10% especially around
the QCD epoch, which is equivalent to a frequency of
3 × 10−9 Hz. As mentioned earlier, the evolution of DoF
of SM particles is taken from the results of Ref. [50].
Using the numerical factor 2 × ð2.17Þ2 in Eq. (22) from
the fact that x̃1st;peak ≃ 2.17, the tensor power spectrum
from scale-invariant curvature power spectrum during
radiation domination evolves as ½PTðη1st;peak; kÞx̃21st;peak�=
½PTðηhc; kÞx̃2hc� × 1=x̃2 ≃ 2 × ð2.17Þ2=x̃2. The results for
the first-order and second-order PGWs are shown in
Fig. 5 in addition to the different experimental constraints
[31–40] and the BBN bound [12] as outlined in the legend
of the plot (the suffix number for the SKA experiment
shows the constraints based on the number of years in
operation). In case of scale invariance, the relic of the first-
order PGW can have any value from approximately 10−16

down to the lower limit by the induced PGW of approx-
imately 10−23 depending on the value of r. If r≲ 10−9, then
the scalar-induced contribution on the PGW will be
dominating. The scale-dependent induced PGWs for scalar
spectral indices of ns ¼ 0.96 and 1.5 are also plotted in
Fig. 5. For the case ns > 1, the spectrum can be constrained
by current and future experiments.
The curvature power spectrum can deviate from a flat

shape at scales smaller than the CMB scale, especially if
one assumes that there is some Gaussian or non-Gaussian
source for it from the curvature bispectrum [18,20,28]. This
can enhance the spectrum by some peaks of the relic
densities at frequencies accessible by pulsar timing arrays
or other experiments. The effect of the evolution of the
d.o.f. in the early Universe also appears on the secondary
PGW if there is some source of non-Gaussianity [18,20].
To represent this effect, first we assume that the follow-
ing Gaussian curvature power spectrum (for k in the

FIG. 5. The spectrum of the PGWs is shown for the scale invariant first-order tensor perturbations (blue dashed line) assuming the
maximum value of tensor-to-scalar ratio r ¼ 0.07 from the upper limit of Planck data [29] and the induced PGWs using the observed
value of scalar perturbation amplitude AR ¼ 2.1 × 10−9 assuming the scale invariance (green solid line), a scale dependence with
ns ¼ 0.96 (green dotted line), and ns ¼ 1.5 (green dot-dashed line). Also, some current and future experimental constraints [31–40] and
the BBN bound are shown (see the text for details).
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logarithmic scale) around a specific mode k̄ with width σ̄
[18–20] is parametrized by

PR;G ¼ AG exp

�
−
lnðk=k̄Þ2
2σ̄2

�
; ð23Þ

where AG is the Gaussian amplitude that can depend on the
characteristic scale k̄ and other model-dependent variables.
Here, we simply assume it to be constant to test for its
observational consequence. By considering the presence of
non-Gaussianity in the curvature power spectrum, one gets
[18–20]

PR;NGðkÞ ¼ PR;GðkÞ þ F 2
NL

×
Z

∞

0

Z
1þv

j1−vj
dv du

PR;GðkvÞPR;GðkuÞ
v2u2

; ð24Þ

where the nonlinear factor for the non-Gaussian curvature
perturbation is denoted by FNL. We choose different
benchmark points for k̄ and FNL to see how its conse-
quence will be on the PGW. Also, we consider the
evolution of DoF to check how it influences the induced
PGWs by the non-Gaussian power spectrum. This is also
shown in Fig. 4 for the scaled tensor power spectrum
assuming F 2

NL ¼ 10, AG ¼ 10−2, and σ̄ ¼ 1 for different
k̄’s. As we expect from previous discussion, the effect of
QCDand electroweak transitions is also apparent in this case
for different peaks around modes k̄=2π¼ f̄¼1.6×10−9,
1.6 × 10−8, 1.6 × 10−7, and 1.6 × 10−6 Hz. The value of
the scaled tensor power spectrum in the mentioned modes is
scaled to its value at a high frequency f̄ ¼ 10−4 Hz. We
should emphasize again that this effect is due to the changes
of the equation-of-state parameter and DoF during cosmic
transitions (see Fig. 1) in the calculation of Eq. (13).

Non-Gaussianity at the CMB scale is constrained by
Planck data [58]. However, there are fewer constraints
on non-Gaussianity at small scales. To predict a realistic
signal for the presence of non-Gaussianity, we assume
AGF 2

NL ≪ 1 [20]. This causes the second term on the right-
hand side of Eq. (24) to be smaller than the first term, which
means that the non-Gaussian part of the curvature power
spectrum is smaller than the Gaussian one. However, the
contribution of non-Gaussianity on the second-order PGW
peak can be larger than the Gaussian part depending on the
values of FNL and σ̄ [20]. In Fig. 6, the non Gaussian–
induced PGWs for ½F 2

NL; AG� ¼ ½10; 10−2� and ½60; 10−4�
for different modes are plotted using Eqs. (22), (23), and
(24). For these peaks, pulsar timing array experiments or
LISA can be sensitive enough to observe such peaks on the
GW background, which can be distinguished from other
prediction, e.g., by first-order phase transitions, due to the
specific shape of the spectrum. Consequently, the effect of
the thermal history of the Universe and the induced tensor
spectra from scalar perturbations will be small at the peaks
and can provide information about pre-BBN cosmology.

V. CONCLUSIONS

The second-order PGWs from scalar perturbations have
been studied analytically and by a numerical calculation in
the radiation- and early matter-dominated epochs [8–22].
Here, first we focused on studying the effect of the
equation-of-state parameter on the induced PGWs during
the dominance of radiation or any fluid with 0 < ω < 1
(see Fig. 2). The shape of the tensor spectrum is shown in
Fig. 3 for different equation-of-state parameters for
0 ≤ kη ≤ 10. Moreover, the effect of the d.o.f. of thermal
bath particles evolving with temperature on the spectrum of
induced PGWs at different frequencies is studied and
shown by a correction function ZðkÞ [ZðThcÞ] in
Eq. (22) and Fig. 4. This function includes the evolution

FIG. 6. The induced PGWs from the non-Gaussian scalar power spectrum at small scales is shown for characteristic frequencies
k̄=2π ¼ f̄ ¼ 1.6 × 10−9 Hz (green), 1.6 × 10−8 Hz (black), 1.6 × 10−7 Hz (orange), 1.6 × 10−6 Hz (violet), and 10−4 Hz (red) for two
choices of ½F 2

NL; AG� ¼ ½10; 10−2� (solid curves) and ½60; 10−4� (dashed curves).
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of the tensor perturbation and the retarded effects from the
scalar Green’s function and is particularly important around
the QCD and electroweak transitions. It is possible that
future experiments do not observe the first-order PGW for a
scale-independent tensor spectral index and tiny values of
the tensor-to-scalar ratio approximately 10−9 at first order,
based on the current knowledge of ΛCDM cosmology and
observations. Then, it is expected that the induced PGWs
should be observable when GW experiments can probe the
PGWrelic down to approximately 5 × 10−23 (Fig. 5). Larger
values due to non-Gaussianity (Fig. 6) aremeasurable by the
recently planned missions and are distinguishable from
astrophysical backgrounds. In a sense, what is calculated
here is the combined prediction of general relativity basedon
just the SM of particle physics using the current CMB
observation for the early Universe cosmology.
Principally, one should be able to observe the impact of

the thermal history of the early Universe on the induced
PGW background from scalar perturbations. Since we have
already observed the scalar perturbation at the CMB scale
and their effect on structure formation, it would be
reasonable to see its indirect impact on the production of
induced PGWs at smaller scales. Otherwise, there should
be some theoretical model-dependent explanation for it
from alternative approaches to the big bang cosmology and

inflation or an unknown effect at early epochs that has not
been investigated before [8,10,12,22].
Considering the effect of the standard model DoF on the

induced PGWs will be influential for the future searches of
gravitational waves with cosmological origin, since it helps
to improve the theoretical prediction due to different effects
for the GW spectra from the early Universe. In addition,
studying details of the induced PGWs affects our under-
standing about the impact of thermal evolution of the SM in
the early Universe and pre-BBN cosmology on the GW
background. Also, searching for the PGWs can be useful as
a cosmic laboratory for the indirect probe of new particles
being present in the thermal bath of the early Universe and
new physics even without observing any boosted effects on
the GW spectrum from the predicted cosmic phase tran-
sitions and nonstandard cosmological scenarios.

ACKNOWLEDGMENTS

F. H. thanks Caner Ünal for useful discussions. Also, he
is grateful to the hospitality and support of Galileo Galilei
Institute for Theoretical Physics at Florence during the last
stages of this work. The authors acknowledge the support
by the Deutsche Forschungsgemeinschaft (DFG) through
the CRC-TR 211 Project No. 315477589-TRR 211.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 241103 (2016).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 061102 (2016).

[3] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[4] C. Caprini and D. G. Figueroa, Classical Quantum Gravity
35, 163001 (2018).

[5] M. Maggiore, Phys. Rep. 331, 283 (2000).
[6] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974) [Sov.

Phys. JETP 40, 409 (1975)].
[7] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[8] D. Baumann, P. J. Steinhardt, K. Takahashi, and K. Ichiki,

Phys. Rev. D 76, 084019 (2007).
[9] H. Assadullahi and D. Wands, Phys. Rev. D 79, 083511

(2009).
[10] K. N. Ananda, C. Clarkson, and D. Wands, Phys. Rev. D 75,

123518 (2007).
[11] S. Mollerach, D. Harari, and S. Matarrese, Phys. Rev. D 69,

063002 (2004).
[12] K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018).
[13] K. Inomata and T. Nakama, Phys. Rev. D 99, 043511

(2019).
[14] M. Drees and Y. Xu, arXiv:1905.13581.
[15] K. Inomata, K. Kohri, T. Nakama, and T. Terada, J. Cosmol.

Astropart. Phys. 10 (2019) 071.

[16] K. Inomata, K. Kohri, T. Nakama, and T. Terada, Phys. Rev.
D 100, 043532 (2019).

[17] Y. Lu, Y. Gong, Z. Yi, and F. Zhang, J. Cosmol. Astropart.
Phys. 12 (2019) 031.

[18] R.-g. Cai, S. Pi, and M. Sasaki, Phys. Rev. Lett. 122, 201101
(2019).

[19] R.-G. Cai, S. Pi, S.-J. Wang, and X.-Y. Yang, J. Cosmol.
Astropart. Phys. 10 (2019) 059.

[20] C. Unal, Phys. Rev. D 99, 041301 (2019).
[21] R.-G. Cai, S. Pi, S.-J. Wang, and X.-Y. Yang, J. Cosmol.

Astropart. Phys. 05 (2019) 013.
[22] I. Ben-Dayan, B. Keating, D. Leon, and I. Wolfson,

J. Cosmol. Astropart. Phys. 06 (2019) 007.
[23] J.-O. Gong, arXiv:1909.12708.
[24] K. Tomikawa and T. Kobayashi, arXiv:1910.01880.
[25] J. R. Espinosa, D. Racco, and A. Riotto, J. Cosmol.

Astropart. Phys. 09 (2018) 012.
[26] C. Fu, P. Wu, and H. Yu, Phys. Rev. D 101, 023529 (2020).
[27] G. Domènech, arXiv:1912.05583.
[28] X. Chen, Adv. Astron. 2010, 1 (2010).
[29] N. Aghanim et al. (Planck Collaboration), arXiv:1807.

06209.
[30] K. Abazajian et al., arXiv:1907.04473.
[31] H. Audley et al. (LISA Collaboration), arXiv:1702.00786.
[32] B. Sathyaprakash et al., Classical Quantum Gravity 29,

124013 (2012); 30, 079501(E) (2013).

HAJKARIM and SCHAFFNER-BIELICH PHYS. REV. D 101, 043522 (2020)

043522-8

https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1016/S0370-1573(99)00102-7
https://doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1103/PhysRevD.79.083511
https://doi.org/10.1103/PhysRevD.79.083511
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.69.063002
https://doi.org/10.1103/PhysRevD.69.063002
https://doi.org/10.1103/PhysRevD.97.123532
https://doi.org/10.1103/PhysRevD.99.043511
https://doi.org/10.1103/PhysRevD.99.043511
https://arXiv.org/abs/1905.13581
https://doi.org/10.1088/1475-7516/2019/10/071
https://doi.org/10.1088/1475-7516/2019/10/071
https://doi.org/10.1103/PhysRevD.100.043532
https://doi.org/10.1103/PhysRevD.100.043532
https://doi.org/10.1088/1475-7516/2019/12/031
https://doi.org/10.1088/1475-7516/2019/12/031
https://doi.org/10.1103/PhysRevLett.122.201101
https://doi.org/10.1103/PhysRevLett.122.201101
https://doi.org/10.1088/1475-7516/2019/10/059
https://doi.org/10.1088/1475-7516/2019/10/059
https://doi.org/10.1103/PhysRevD.99.041301
https://doi.org/10.1088/1475-7516/2019/05/013
https://doi.org/10.1088/1475-7516/2019/05/013
https://doi.org/10.1088/1475-7516/2019/06/007
https://arXiv.org/abs/1909.12708
https://arXiv.org/abs/1910.01880
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1103/PhysRevD.101.023529
https://arXiv.org/abs/1912.05583
https://doi.org/10.1155/2010/638979
https://arXiv.org/abs/1807.06209
https://arXiv.org/abs/1807.06209
https://arXiv.org/abs/1907.04473
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.1088/0264-9381/30/7/079501


[33] N. Seto, S. Kawamura, and T. Nakamura, Phys. Rev. Lett.
87, 221103 (2001).

[34] S. Sato et al., J. Phys. Conf. Ser. 840, 012010 (2017).
[35] J. Crowder and N. J. Cornish, Phys. Rev. D 72, 083005

(2005).
[36] G. Janssen et al., Proc. Sci., AASKA14 (2015) 037 [arXiv:

1501.00127].
[37] Z. Arzoumanian et al. (NANOGRAV Collaboration),

Astrophys. J. 859, 47 (2018).
[38] L. Lentati et al., Mon. Not. R. Astron. Soc. 453, 2577

(2015).
[39] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. D 100, 061101 (2019).
[40] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 120, 091101 (2018).
[41] N. Bernal and F. Hajkarim, Phys. Rev. D 100, 063502 (2019).
[42] D. G. Figueroa and E. H. Tanin, J. Cosmol. Astropart. Phys.

08 (2019) 011.
[43] T. Opferkuch, P. Schwaller, and B. A. Stefanek, J. Cosmol.

Astropart. Phys. 07 (2019) 016.
[44] D. Bettoni, G. Doménech, and J. Rubio, J. Cosmol.

Astropart. Phys. 02 (2019) 034.
[45] L. Alabidi, K. Kohri, M. Sasaki, and Y. Sendouda,

J. Cosmol. Astropart. Phys. 05 (2013) 033.
[46] K. Saikawa and S. Shirai, J. Cosmol. Astropart. Phys. 05

(2018) 035.

[47] Y. Watanabe and E. Komatsu, Phys. Rev. D 73, 123515
(2006).

[48] S. Schettler, T. Boeckel, and J. Schaffner-Bielich, Phys. Rev.
D 83, 064030 (2011).

[49] F. Hajkarim, J. Schaffner-Bielich, S. Wystub, and M.M.
Wygas, Phys. Rev. D 99, 103527 (2019).

[50] M. Drees, F. Hajkarim, and E. R. Schmitz, J. Cosmol.
Astropart. Phys. 06 (2015) 025.

[51] R. Jinno, T. Moroi, and K. Nakayama, J. Cosmol. Astropart.
Phys. 01 (2014) 040.

[52] Y. Cui, M. Lewicki, D. E. Morrissey, and J. D. Wells,
J. High Energy Phys. 01 (2019) 081.

[53] V. Mukhanov, Physical Foundations of Cosmology (Cam-
bridge University Press, Oxford, 2005), ISBN 0521563984,
http://www-spires.fnal.gov/spires/find/books/www?cl=
QB981.M89::2005.

[54] K. Ando, K. Inomata, and M. Kawasaki, Phys. Rev. D 97,
103528 (2018).

[55] D. Baumann, in Physics of the large and the small, TASI 09,
proceedings of the Theoretical Advanced Study Institute in
Elementary Particle Physics, Boulder, Colorado, USA,
2009 (World Scientific, 2011), pp. 523–686.

[56] S. Weinberg, Phys. Rev. D 69, 023503 (2004).
[57] B. A. Stefanek and W.W. Repko, Phys. Rev. D 88, 083536

(2013).
[58] Y. Akrami et al. (Planck Collaboration), arXiv:1905.05697.

THERMAL HISTORY OF THE EARLY UNIVERSE AND … PHYS. REV. D 101, 043522 (2020)

043522-9

https://doi.org/10.1103/PhysRevLett.87.221103
https://doi.org/10.1103/PhysRevLett.87.221103
https://doi.org/10.1088/1742-6596/840/1/012010
https://doi.org/10.1103/PhysRevD.72.083005
https://doi.org/10.1103/PhysRevD.72.083005
https://arXiv.org/abs/1501.00127
https://arXiv.org/abs/1501.00127
https://doi.org/10.3847/1538-4357/aabd3b
https://doi.org/10.1093/mnras/stv1538
https://doi.org/10.1093/mnras/stv1538
https://doi.org/10.1103/PhysRevD.100.061101
https://doi.org/10.1103/PhysRevLett.120.091101
https://doi.org/10.1103/PhysRevD.100.063502
https://doi.org/10.1088/1475-7516/2019/08/011
https://doi.org/10.1088/1475-7516/2019/08/011
https://doi.org/10.1088/1475-7516/2019/07/016
https://doi.org/10.1088/1475-7516/2019/07/016
https://doi.org/10.1088/1475-7516/2019/02/034
https://doi.org/10.1088/1475-7516/2019/02/034
https://doi.org/10.1088/1475-7516/2013/05/033
https://doi.org/10.1088/1475-7516/2018/05/035
https://doi.org/10.1088/1475-7516/2018/05/035
https://doi.org/10.1103/PhysRevD.73.123515
https://doi.org/10.1103/PhysRevD.73.123515
https://doi.org/10.1103/PhysRevD.83.064030
https://doi.org/10.1103/PhysRevD.83.064030
https://doi.org/10.1103/PhysRevD.99.103527
https://doi.org/10.1088/1475-7516/2015/06/025
https://doi.org/10.1088/1475-7516/2015/06/025
https://doi.org/10.1088/1475-7516/2014/01/040
https://doi.org/10.1088/1475-7516/2014/01/040
https://doi.org/10.1007/JHEP01(2019)081
http://www-spires.fnal.gov/spires/find/books/www?cl=QB981.M89::2005
http://www-spires.fnal.gov/spires/find/books/www?cl=QB981.M89::2005
http://www-spires.fnal.gov/spires/find/books/www?cl=QB981.M89::2005
http://www-spires.fnal.gov/spires/find/books/www?cl=QB981.M89::2005
http://www-spires.fnal.gov/spires/find/books/www?cl=QB981.M89::2005
https://doi.org/10.1103/PhysRevD.97.103528
https://doi.org/10.1103/PhysRevD.97.103528
https://doi.org/10.1103/PhysRevD.69.023503
https://doi.org/10.1103/PhysRevD.88.083536
https://doi.org/10.1103/PhysRevD.88.083536
https://arXiv.org/abs/1905.05697

