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We compute the next-to-leading order (NLO) impact factor for inclusive photon + dijet production in
electron-nucleus (e + A) deeply inelastic scattering (DIS) at small x. An important ingredient in our
computation is the simple structure of “shock wave” fermion and gluon propagators. This allows one to
employ standard momentum space Feynman diagram techniques for higher order computations in the
Regge limit of fixed Q% > AéCD and x — 0. Our computations in the color glass condensate (CGC)

effective field theory include the resummation of all-twist power corrections Q2/Q?, where Q, is the
saturation scale in the nucleus. We discuss the structure of ultraviolet, collinear and soft divergences in the
CGC, and extract the leading logs in x; the structure of the corresponding rapidity divergences gives a
nontrivial first principles derivation of the JIMWLK renormalization group evolution equation for
multiparton lightlike Wilson line correlators. Explicit expressions are given for the x-independent
O(a,) contributions that constitute the NLO impact factor. These results, combined with extant results
on NLO JIMWLK evolution, provide the ingredients to compute the inclusive photon + dijet cross section
at small x to O(a? In(x)). First results for the NLO impact factor in inclusive dijet production are recovered
in the soft photon limit. A byproduct of our computation is the LO photon + 3 jet (quark-antiquark-gluon)

cross section.
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I. INTRODUCTION

An important discovery of the electron-proton (e + p)
deep inelastic scattering (DIS) experiments at HERA was
the rapid growth of the gluon distribution with decreasing
Bjorken x, for fixed large momentum transfer squared Q2.
This demonstrated that the proton wave function in the
corresponding high energy Regge limit is dominated by
Fock state configurations containing large numbers of
gluons. Their number grows via bremsstrahlung with
increasing energy or decreasing x. It was conjectured that
in this Regge limit repulsive gluon recombination and
screening effects [1,2] conspire to slow down the growth of
cross sections. A remarkable consequence is that a semi-
hard saturation scale Q,(x) is generated dynamically by
these competing many-body effects.

If the saturation scale is large compared to the intrinsic
QCD scale, asymptotic freedom suggests that the coupling
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a,(Qy) < 1; this allows weak coupling effective field
theory techniques to be employed in systematically
computing cross sections in a regime of QCD where
field strengths are nonperturbatively large. The physics of
this nonlinear regime of QCD can be quantified in a
classical effective field theory (EFT) called the color
glass condensate (CGC) [3-9] which implements a Born-
Oppenheimer separation of the relevant degrees of free-
dom into static color sources at large x and gauge fields
at small x.

A further important element in the EFT is that the
separation in x between color sources and fields satisfies
a renormalization group (RG) equation as the scale sep-
aration is evolved toward smaller x. This can be understood
in a Wilsonian picture wherein, with each small change 6x
in the scale separation, the dynamical gauge degrees of
freedom within 6x are absorbed into the static light cone
color sources in the classical EFT at the lower x — ox scale.
The RG equation correspondingly describes the change in a
nonperturbative weight functional describing the distribu-
tion of color sources, from large x toward smaller x, and
efficiently resums simultaneously logarithms in a, In(1/x)
and power corrections Q?(x)/Q* when they become large.
To leading logarithmic accuracy in x, this RG equation is
the JIMWLK equation [10-13] with a corresponding
JIMWLK Hamiltonian [14] that contains all the relevant
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information regarding the rapidity evolution of n-point
Wilson line correlators.

A number of well-known results are obtained as limits of
the IMWLK Hamiltonian. In the limit of large number of
colors N, and for large atomic nuclei with A > 1, the
JIMWLK equation for the simplest “dipole” correlator of
light-like Wilson lines describing fully inclusive DIS is the
Balitsky-Kovchegov (BK) equation [15,16]. In the leading
twist limit, where Q?(x)/Q? < 1, this reduces to the BFKL
equation [17,18]. The latter was first derived by explicit
computation of perturbative QCD Feynman diagrams in
Regge asymptotics.

The CGC EFT has been applied to compute a large
number of final states in both DIS and in hadron-hadron
collisions. An excellent introductory review of the formal-
ism and applications can be found in [9]. An important test
of the framework will be its ability to make predictions of
high accuracy that can be compared to experiment. The
ideal experimental conditions for such tests require access
to large Q2 and small x. Further, since the saturation scale is
enhanced in nuclei as Q% , ~A'30Q2 . [1.3,8], heavy
nuclear targets are preferred. In principle, these conditions
are achieved in proton-nucleus (p 4+ A) collisions at the
LHC. However large final state interactions may be present
in these experiments that will complicate interpretations of
the data [19]. These considerations provide a major
motivation for future Electron-Ion Collider (EIC) experi-
ments [20-22].

Such experiments at an EIC are envisaged to have much
higher luminosities than were available at HERA; this, in
combination with the nuclear beams, greatly enhances the
possibility that DIS e + A collider measurements may
uncover definitive evidence for gluon saturation. These
precision DIS experiments demand higher order computa-
tions in Regge asymptotics in close analogy to how higher
order computations in the Bjorken limit provided powerful
tests of perturbative QCD. To further the analogy, just as
one computes universal splitting functions and process
dependent coefficient functions in the Bjorken limit of DIS,
one needs to compute both universal multiparton lightlike
correlators (or equivalently, as we shall discuss, their
generating weight functional describing color charge dis-
tributions) and process dependent impact factors to higher
order accuracy in the Regge limit.

The next-to-leading order (NLO) computation of the
BFKL kernel has now been available for over twenty years
[23,24]. Subtleties in the treatment of singularities in the
NLO BFKL kernel were noticed shortly after [25,26]—for a
recent comprehensive discussion, see [27]. Computations
of higher order corrections to the BK equations followed in
short order [28-30] and specific prescriptions for the
running coupling following from these studies were imple-
mented [31] in phenomenological studies. More recently,
NLO computations of multipoint Wilson line correlators,
or equivalently, the NLO JIMWLK Hamiltonian have

become available [32-36] and next-to-next-to-leading
order (NNLO) computations of BK and JIMWLK are
underway [37,38].

Because of the absence of final state interactions,
isolated photons are clean probes of this strongly correlated
gluonic matter. Several computations [39-43] of inclusive
photon production have been performed in the CGC
framework in the context of proton-nucleus (p + A) colli-
sions. In a recent paper [44], henceforth referred to as
Paper I, we reported on a first CGC computation of the
leading order differential cross section for inclusive prompt
photon production in conjunction with two jets in electron-
nucleus (e + A) DIS at small x. This process has clean
initial and final states and is the simplest nontrivial process
besides fully inclusive DIS to study the physics of gluon
saturation in e + A collisions. This computation provides
more differential phase space distributions, thereby going
beyond existing small x computations [45-53] on the total
cross section for fully inclusive DIS; exceptions are the
NLO differential cross section computations by Boussarie
et al. [54-56], albeit for diffractive DIS.

In Paper I, we showed explicitly how in the limit of the
final state photon momentum k, — 0, the Low-Burnett-
Kroll soft photon theorem [57-59] allows one to recover
existing results for inclusive dijet production in DIS [60]. In
the leading twist limit, we also obtained the k, and
collinear factorized expressions which match the dominant
NLO small x perturbative QCD (pQCD) contributions. In
particular, our result in the collinear limit is directly
proportional to the nuclear gluon distribution at small x.

For precision physics in pQCD, it is essential to go
beyond leading order descriptions for quantitative studies
of data. NLO computations will be especially important for
the discovery and characterization of gluon saturation in
e + A DIS where its effects are anticipated to be larger than
ine+p DIS." As we observed in our LO photon + dijet
computation, there are novel quadrupole gauge invariant
correlators of lightlike Wilson lines that appear, whose
energy evolution, in addition to the dipole correlators
measured in fully inclusive DIS, will be a sensitive test
of IMWLK evolution. We will show how such correlators,
in combination with the dipole correlators, violate the soft
gluon theorem. A quantitative understanding of this vio-
lation can provide deeper insight into the infrared structure
of QCD in the Regge limit [61].

Byproducts of our computation of the differential
photon + dijet cross section are the first NLO results for
inclusive dijet, inclusive photon and photon + jet measure-
ments at an EIC. Further, the NLO graphs for real gluon
emission provide the complete LO results for the
photon + 3-jet (y + ¢gg) and 3-jet ggg final states [62].

'Moreover, as our discussion of Paper I suggests, the leading
twist limits of these NLO computations can also be matched to
results for the same in the collinear factorization framework.
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FIG. 1.

Feynman diagrams for the dressed quark and gluon propagators with effective vertices denoted respectively by crossed and

filled blobs. The respective effective vertices are also shown. i and j represent color indices in the fundamental representation of SU(N )
whereas a and b stand for the same in the adjoint representation. In the saturation regime these vertices are effectively of order unity.

We will point to the steps necessary for extracting “num-
bers” from our computation; though much more computa-
tionally challenging than comparable computations in the
highly developed collinear factorization pQCD framework,
such a program is feasible and essential for precision
physics at an EIC.

As we will discuss further shortly, all computations in the
CGC EFT rely on a separation of scales between static
color sources and dynamical gauge fields. Thus perturba-
tive computations at small x in this framework are
performed in a background of such static color sources
and physical quantities are obtained by subsequent gauge
invariant averaging over these sources. The first principles
formalism in quantum field theory underlying such com-
putations in strong background fields has been discussed
previously [63-67]; in particular, [63] and [67] provide
pedagogical discussions in complementary approaches.

We begin our discussion of the NLO DIS photon + dijet
computation with the starting point of all CGC computa-
tions, the classical Yang-Mills equations,

[D,, F*](x) = g6+ 6(x™ )pa(x ). (1)

Here the covariant derivative D, = 0, — igA,,, g represents
the QCD gauge coupling, and p,(x~,x, ) & ps(x)d(x7)
represents the color charge density of large x static sources
for the small x dynamical fields A#. The delta-function
in the color charge density denotes that we are working
in a frame where the nucleus is moving in the positive
z-direction at nearly the speed of light with large light cone
longitudinal momentum Py, — co. (See Appendix A for
details of the conventions adopted in this work.) In addition
we will choose the frame in which the virtual photon has
a large longitudinal momentum ¢~ and transverse momen-
tum ¢, = 0.

The solution of the classical equations in Lorenz gauge
d,A* = 0 is given by

dZZL 1
Ag = 1 ~z.);
cl / 471_ n (xJ_ _ZJ_)ZAZ pA('x ZJ_)

Ag=0; Ay =0, (2)

where A is an infrared cutoff that is necessary to invert
the Laplace equation —ViAjl = gp4 in two dimensions.
This solution to the Yang-Mills equations in Lorenz gauge
is simply related to the solution in the light cone gauge
At =0, where one obtains likewise that A7 =0 and
Al =1Uy9'U*, and

g

Ulx,)=P. (exp{—ig /_ o~ dz‘AS’“(z‘,xQT”}), (3)

(5]

denotes the adjoint Wilson line expressed in terms of the
large x static color source densities via Eq. (2). Note that
T a=1,...,8 are the generators of color SU(3) in the
adjoint representation.

These Wilson lines, and their counterparts U in the
fundamental representation represent respectively, the path
ordered phase acquired by a gluon and a quark in their
eikonal multiple scattering off the classical background
field of a nucleus. The Wilson line U is obtained by
replacing the adjoint generators in Eq. (3) with the
fundamental generators: 7 — t*. In the LO photon +
dijet cross section of Paper I, the virtual photon fluctuates
into a quark-antiquark pair that multiple scatters off the
classical background field of the nucleus. In the Feynman
diagram computations of this LO process, the Wilson lines
are incorporated in the momentum space structure of the
dressed quark propagators. At NLO, there are real and
virtual gluon contributions to the leading order process.
The corresponding gluon propagators are also dressed by
multiple scattering off the classical background field of the
nucleus.

The structure of the dressed quark and gluon propagators
in the classical background field, is particularly simple in
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the “wrong” light cone (LC) gauge A~ = 0. As indicated by
Eq. (2), this gauge shares the same classical field solution
with Lorenz gauge. However, unlike the LC gauge A" =0
for P}, — oo, it does not provide a simple physical
interpretation of parton distribution functions. Any concern
in this regard is however far outweighed by the advantages
provided by the simple forms of the dressed propagators
that were computed previously in Refs. [5,15,68-71]. The
effective vertices for these dressed quark and gluon
“shockwave” propagators, incorporating the fundamental
and adjoint Wilson lines respectively, are shown in Fig. 1.

As discussed in Paper I, these effective vertices are
identical to the quark-quark-Reggeon and gluon-gluon-
Reggeon effective vertices [36,72—76] in Lipatov’s reggeon
field theory [77]. Another salient feature in the expressions
below is that we do not subtract the unit matrix in the
expansion of Wilson lines. This allows for the possibility
that the quarks and gluons do not scatter in addition to all
their possible multiple scatterings encoded in the higher
terms in the Wilson line expansion. Consequently, we draw
Feynman diagrams with all dressed fermion and gluon
propagators and for each such kinematically allowed
process, we only need to subtract the “no scattering”
contribution (obtained by putting U and U’s to unity) to
get the physical amplitude. As we will see, this significantly
aids in the NLO computation where the number of
contributing processes is large.

Note further that since our computations do not employ
light-front perturbation theory like many of the NLO
computations in the literature, and are carried out entirely
in momentum space (also unlike many computations), they
also provide a useful cross-check on extant NLO results on
fully inclusive DIS. The techniques employed here may
also provide a pathway to carrying out higher order
computations to NNLO in the Regge limit.

To proceed with our NLO computation, it is important to
elaborate further on the RG procedure for resummation of
large logarithms in x, specifically with regard to how it
applies to the inclusive photon + dijet computation of
interest. As noted, the Wilsonian RG ideology on which
the CGC EFT is based naturally involves a cutoff scale in
rapidity or longitudinal momentum separating the soft
and hard partons in a hadron/nucleus. At LO, this scale
A (or rapidity Y, = In(A{,,/A{)) is arbitrary and
the fast or valence modes with longitudinal momenta
k™ > AJ are represented by the stochastic color charge
density, ps(x7,x, ). A gauge invariant weight functional
WAg(YO)U’A] describes the probability density correspond-

ing to this charge density. As also noted, the soft modes are
represented by classical color fields that are solutions of the
classical Yang-Mills equations with appropriate gauge
fixing conditions.

As we boost the nucleus toward the small x scale of
interest (or toward higher energies), modes that were below
the cutoff A start contributing to the scattering process.

sources
L

\
£

~

T Increases

FIG. 2. Schematic illustration of sources and fields in the CGC
effective theory in terms of the cutoff scale A;, or equivalently
the rapidity Y,. At NLO, contributions from field modes in the
range A < k™ < AJ, such that ag In(AJ /A]) = agAY < 1, are
integrated out and absorbed into the source densities at the scale
Af. This self-similar renormalization group (RG) pattern is
repeated successively generating the JIMWLK RG equation
for the source densities.

We therefore have to consider quantum effects induced by
these “semifast” gluons [12] (see Fig. 2) which can be
defined as the nearly on-shell fluctuations with momenta
deeply inside the strip A] (= bA]) < |IT| < AJ or con-
versely, energies in the range Aj < |I7| < Ay /b where

_ 0 05 x _
As = _ %0 X - 4
O 2Py xp Q2 1 (4)

Here Q3 and x, are respectively the virtuality of the nucleus
and the Bjorken-x at the initial scale. Further, Q? =
—2¢gTq is the fixed virtuality of the exchanged virtual
photon in DIS (in Regge kinematics) and x is the Bjorken-x
of interest determined by the kinematics of the process.
The effect of integrating out these fluctuations manifests
itself in the appearance of large logarithms In(1/b) which
for agIn(1/b) ~ 1 must be resummed to all orders in ag.

Denoting the differential cross section for inclusive
photon plus dijet production by do for simplicity, we
can write down its expectation value in the CGC EFT at
LO as [44]

(doro) = / DoaWi paldérolpsl.  (5)

The right-hand side (r.h.s.) represents the fact that the LO
cross section is first computed for a fixed distribution of
color sources p, with A~ < Aj. This object déy[p,]
shown in Fig. 3, is computed using standard techniques
in perturbative QCD albeit, as noted, with the modified
propagators listed in Fig. 1, wherein the dependence on p,
enters (at LO) via the fundamental Wilson line U.

The process independent weight functional W, [pa] is a
nonperturbative object that contains fundamental informa-
tion about n-body correlations among gluons at the initial
scale Ag. It can be understood as representing large x
diagonal elements of the density matrix of QCD in the
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FIG. 3.

Regge limit; a recent discussion of W[p,], and generaliza-
tions thereof, can be found in [78].

AtNLO (=0(ay)) in the CGC power counting, we have
to account for quantum fluctuations of both the quark-
antiquark dipole as well as the wave function of the nuclear
target. In the EFT language, these are distinguished by the
magnitude of the LC momentum of the gluon modes relative
to the initial scale Aj. As shown in Fig. 4, the modes with
I= < Ay (which we shall denote as NLO:1) can be inter-
preted as contributions from Fock states dressing the target
wave function. The contribution to the cross section for
processes of this kind can in general be written as

(donLo:n) = /[DPA]WA(; [paldénLo:1[pal. (6)

where dénio:1[pal, for a fixed configuration of py, is
comprised of nontrivial combinations of Dirac traces and
Fourier transforms of color traces over products of the
Wilson lines U and U. From these contributions, we are
interested in collecting only pieces that contain large
logarithms in Ay. These can be written as

<50NL0:1>_/[DPA]WA5 [PalIn(AT/AG ) Hiodbiolpal,
(7)

where A7 is the scale to which the target gluon modes are
evolved. Here H; o represents the JIMWLK Hamiltonian
[10-141]; its explicit form will be discussed later in the paper.

increases

-

PA PA

Processes contributing to the leading order amplitude and hence the cross section déy g in Eq. (5). The other two diagrams are
obtained simply by interchanging the quark and antiquark lines.

For our purposes here, it suffices to note that H; odéy o is of
order agdé; o[p4]. Combining the above contribution with
the LO resultin Eq. (5), and using the Hermiticity of W with
respect to the functional integration over p 4, we can write the
result as

(doro + doN1o:1) = /[DPA]{U +In(A7/A§)Hio)

X W lpaltdéiolpal- (8)

Further redefining
(1 +In(A7/A5)HLo)Wa=[pal = Wa-lpal. (9

and thereby absorbing the effects of the semi-fast gluons in
terms of a modification of the probability distribution of the
fast color sources, one obtains the leading log in x JIMWLK
equation

0
WWA’ [pal = HioWa-[pal- (10)
To derive this result, we employed the essential RG
philosophy that the observable on the left-hand side
(Lh.s.) of Eq. (8) must be independent of the arbitrary scale
Ay separating the static color sources p, from the dynamical
gauge fields. Replacing the expression in curly brackets in
Eq. (8) by the r.h.s of Eq. (9) is equivalent to summing the
leading logarithmic terms aglIn(1/x) to all orders in

™ increases

FIG. 4. NLO contributions from gluon modes with /= < Aj fluctuating within the target. The dashed horizontal line represents the
EFT scale A separating the gluon modes in the target and the projectile dipole. The diagrams shown are representative of those
containing the large logarithms In(A7/Ay) that contribute toward the LLx evolution of W{p,].
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FIG. 5.

2
)

Representative NLO contributions from gluon modes in the projectile with /= > Ag. Both real and virtual emission diagrams

are shown. For the latter case, we have to consider interference diagrams with LO processes described in [44].

perturbation theory. We will henceforth label the weight
functional that satisfies Eq. (10) as WEE*[p,].

One also has NLO contributions from gluon modes with
I= > Ay corresponding to quantum fluctuations of the
dipole projectile. As shown in Fig. 5, these include real
gluon emission and virtual gluon exchange processes; the
filled blobs represent the dressed gluon propagators
allowing for the possibility that the gluon can scatter off
the background classical field of the nucleus. We will refer
to contributions from the quantum fluctuations of the
projectile as NLO:2 contributions to distinguish these from
the NLO:1 quantum fluctuations of the target below the
scale Ag.

As in any loop computation, the intermediate steps of our
calculation will contain soft, collinear and ultraviolet (UV)
singularities depending on the region of phase space of the
gluon that we are integrating over. In the virtual graphs, UV
divergences appear from integrals over the transverse
momentum of the gluon in the loop; these are isolated
using dimensional regularization in d = 2 — e dimensions.
At this NLO order of quantum fluctuations of the projectile
quark-antiquark pair, all UV divergences must vanish or
cancel without the necessity of renormalizing the param-
eters of the EFT. This is because we will work the limit of
massless quarks and there is no running of the QCD
coupling constant in the projectile wave function at this
order in the CGC power counting.

The small x divergences arise from integrating over the
quantum fluctuations induced by “slow” or “semifast”
gluons with “—""longitudinal momenta that are small relative
to the large ¢~ momentum of the virtual photon. These
divergences are regulated by imposing a cutoff at the initial
scale, Ay of the evolution which is defined in Eq. (4). The
resulting logarithms in Aj (or equivalently x) are absorbed
into small x renormalization group evolution of the weight
functional W(p,] as shown in Eq. (10). At higher orders, it
may be necessary to employ more sophisticated regulari-
zation schemes for these rapidity divergences as well [79].

For gluon emission diagrams, in addition to small x
divergences, there are also singularities that arise from the
region of phase space where the unscattered gluon is soft or
collinear to the quark or antiquark. In particular, there are
residual collinear divergences that survive after real and
virtual contributions are combined. These divergences are
absorbed into the evolution of fragmentation functions.

Conversely, we can regulate the phase space integration
over final states by promoting partons to jets where the
latter are defined using a cone algorithm [80,81]. We will
show explicitly in the limit of small jet cone size [8§2-85]
that collinear divergences between real and virtual graphs
cancel completely enabling the extraction of the dominant
contributions toward the jet cross section.

With all the divergences in the (NLO:2) quantum
fluctuations of the virtual photon projectile accounted
for, one can write the infrared (IR) safe jet cross section as

(@08012) = Goi) + [ [DpalWglaldoE™ .

(11)

These NLO contributions (shown in Fig. 5) can be broken up
into two pieces. The first piece is obtained by taking the

“slow” gluon limit, /=~ — 0 and is identical (50}31022 =

80k :1) to the expression in Eq. (7) at the momentum scale
Ay. We will show this explicitly later in the paper.
Specifically, this matching corresponds to a first principles
derivation of leading log JIMWLK evolution for a nontrivial
final state of the projectile. While the NLO:2 derivation
represents the slow IR limit of the projectile, the RG
corresponds to matching it to quantum fluctuations at their
fast scale Ay in the target. o

The second term on the r.h.s of Eq. (11) (d&’ﬁtﬁgmte [PaD)
contains genuine ag suppressed (without logs in x) con-
tributions to the differential cross section from real and
virtual graphs. For the latter, it is possible to deduce
analytical expressions because the divergent structures
can be isolated at the level of the amplitude. In contrast,
divergent structures in the real NLO contributions are
manifest only at the level of the squared amplitude and
obtaining analytical expressions for the finite terms is
challenging. However they can be evaluated numerically
using the fact that rapidity divergences can be isolated in the
slow gluon limit; these can then be subtracted from the
squared amplitudes (using a numerical cutoff procedure) to
obtain the desired finite pieces.

Further, by replacing parton momenta in these contri-
butions with those of jets (using a jet algorithm) gets rid of
the remaining collinear divergences. The finite contribu-
tions déri[p,] that we will compute explicitly in this
paper are, in the language of Regge theory, the NLO
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increases
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FIG. 6. NNLO diagrams that contain ag magnitude contributions for agIn(A7/Ag) ~ 1. These diagrams contribute to the NLO

JIMWLK kernel.

[~ increases

[t increases

FIG.7. Representative NNLO diagrams whose leading logarithmic pieces are combined with the ag suppressed contributions to show
the LLx evolution of the weight functional for the large-x color sources at NLO.

“impact factor” corrections to the LO impact factor
day’o[pal-

Computing this process-dependent NLO impact factor
6T [p,] for photon + dijet production is important
because it allows us to go one step further in precision
and consider relevant (two loop) NNLO contributions to the
cross section that have terms proportional to a3 In(A7/Ag).
These contributions are effectively of NLO magnitude if
asIn(A7/Ay) ~ 1. Diagrams corresponding to a two loop
fluctuation of the target are shown in Fig. 6. In the class of
such two loop diagrams, there are contributions of order
a%In’(A7/Ay) ~ O(1) which are included in the leading
log JIMWLK resummation, as represented by WXL¥[p,].
There are also contributions from two-loop QCD diagrams
proportional to a3 alone (without leading logs in x) but these
are suppressed at the desired accuracy of our problem. We
will consider here only those two loop contributions in Fig. 6
that contain next-to-leading logarithms in x (NLLx) con-
tributions to the result in Eq. (8). This in turn gives us the
LO + NLLx result which can be expressed in terms of a
modified weight-functional as

(@) oexan = [ Dol WA lpildelslpal. (12
where
WX pa] = {1+ In(AT/AG) (Hio + Hawo) }Wa; [pal.
(13)

and the NLO JIMWLK Hamiltonian Hy; o [32-36] is of
order as.

There are however a second class of two loop NNLO
contributions of the sort shown in Fig. 7 which contain
contributions that are parametrically of order a2 In(A7 /Ag).
These correspond to one loop fluctuations of both the
projectile and the target. From these processes, we have
to extract the LLx pieces from the gluon fluctuations below
the cut Ay and match them with the O(ag) NLO “impact
factor” expression in Eq. (11) to obtain

(6ofiuo) = [ [DpAIW(pldsEE o). (14)

As a result of our power counting in powers of ag and
asIn(A7/Ay), one can finally write the complete NLO
result for the differential cross section at NLLx accuracy by
combining the results in Eqgs. (12) and (14) respectively as

<d6jet>NLO+NLLx = / [DPA]{WNLLX U)A]dﬁfé [PA]
£ W AR )
= [ Dol (Wl {4t

+dali0  [pal} + O(a} In(AT/A7))).
(15)
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As the ~ in the above equation indicates, we can go one
step further by promoting the second term on the r.h.s of the
first equality from W — WNLL* This extends the scope
of computation to O(a3In(1/x)) with the understanding
that we will miss terms at that order of accuracy.

The weight functional WNM-[p,] in Eq. (13) can
be obtained by adapting extant results for LO and
NLO(=0(e%)) JIMWLK [33,35,36,86,87] and BK
[28,29,32] evolution into our approach. Thus to obtain results
for photon + dijet production up to O (a3 In(A7/Ay)) accu-
racy, it is sufficient to compute the NLO impact factor
dali™ier, . To go beyond this level of accuracy, we
would have to compute fluctuations in the projectile involving
the emission of two gluons, two loop virtual gluon processes,
as well as interference diagrams of the genuine NLO
processes shown in Fig. 5. This will be reserved for a future
project.

The rest of the paper is organized as follows. In Sec. II,
we shall briefly review the essential elements of the leading
order (LO) computation of Paper I [44] and revisit some of
the key results obtained there. In Sec. III, we will outline
the structure of the NLO computation, structured for
convenience in two subsections. In Sec. III A we categorize
contributions to the NLO amplitudes from real gluon
emission and virtual gluon exchange diagrams in terms
of their color structure. We also provide a flowchart (see
Fig. 17) in this subsection that shows the various compo-
nents constituting the real and virtual contributions to the
NLO amplitude. In Sec. III B, we organize these contri-
butions at the level of the squared amplitude in Table II in
terms of common Wilson line structures. Doing so enables
one to see cancellations of divergences in a transparent
manner; this in turn facilitates the computation of the finite
NLO impact factor in the photon + dijet inclusive cross
section.

Section IV contains a detailed computation of the
amplitude for real gluon emission processes. These are
discussed separately for the case when the real gluon either
crosses or does not cross the nuclear “shock wave” using a
representative diagram from each category. The final
expression for the amplitude is given by Eq. (75). In
Sec. V, we describe in detail the computation of the
amplitude for virtual gluon exchange processes; these
are broadly classified into the topologies of self-energy
and vertex corrections. Specifically, Secs. VA and V B deal
with the amplitudes for self-energy graphs with dressed and
free gluon propagators respectively. There are ultraviolet
and rapidity singularities associated with these processes
which are carefully isolated from the finite parts. For each
class of diagrams, we use a representative graph to show the
explicit computation. The results for the amplitudes from
these processes are given respectively by Eqs. (79), (106)
and (136). A similar exercise is performed in Secs. V C and
V D respectively for the vertex correction processes with
dressed and free gluon propagators. The final expressions

for the amplitudes are given by Eqgs. (139) and (164) for the
case of dressed gluon propagators and by Egs. (167) and
(190) for the case in which the gluon does not cross the
shock wave.

Section VI combines the results obtained in the earlier
sections to obtain the final result for the principal goal of
our study, the NLO impact factor for photon + dijet
production in e + A DIS. We demonstrate here the can-
cellation of collinear divergences between real and virtual
processes resulting in an infrared safe differential cross
section. To facilitate this, we introduce jet definitions and
work in the approximation of a jet with small cone radius
[82] to explicitly extract the collinearly divergent contri-
butions from the squared amplitudes of real gluon emission
graphs which contain the possibility of a gluon being
collinear to the (anti) quark. We note that there is no
Sudakov suppression of the cross section because we have
not imposed any kinematic constraints. Interestingly, we
observe that (unlike the case of diffractive DIS [55]) the
NLO cross section does not factorize into the LO result and
kinematic factors in the soft gluon limit. The implications
of this result will be addressed in future work.

In Sec. VII, we take the slow gluon limit of our general
expressions for the cross sections and show that
these provide a first principles derivation of the JIMWLK
RG equation. While there exist several derivations of the
JIMWLK equation in the literature going back to the
original papers, many of these begin at the outset in
the slow gluon limit. It is therefore interesting to see how
the JIMWLK equation arises in the explicit computation of
the nontrivial photon + dijet cross section. This exercise
also helps lay the groundwork for an independent deriva-
tion of the NLLx JIMWLK equation.

We will end this paper with a brief summary and outlook.
With regard to the latter, an important next step is to
provide quantitative predictions for measurements at a
future EIC. These are significantly more challenging even
though our use of the wrong light cone (A~ = 0) gauge
allows us to present our computations in a manner
analogous to comparable NLO computations in collinear
factorization computations. This is firstly because going
away from the collinear limit introduces additional non-
trivial integrals in the computations. Further, a quantitative
computation of the dipole and quadrupole correlations is
much more complex than their parton distribution (pdf)
counterparts. This is unsurprising because the former
contain a tremendous amount of information on the physics
of many-body correlations in QCD that are not contained in
the pdfs. Nevertheless, the technology to achieve the
desired goal has advanced considerably to bring it within
reach.

The principal results and conclusions of this paper are
spelled out in an accompanying letter [88].

Appendixes A through J supplement the material in the
body of the paper. The notations and conventions used

034028-8



NLO IMPACT FACTOR FOR INCLUSIVE PHOTON + DIJET ...

PHYS. REV. D 101, 034028 (2020)

TABLE I. 4-momentum assignments used in the calculation.

q: Exchanged virtual photon
k: Quark, directed outward

[;: Quark or gluon internal (loop) momentum to be integrated over

I: Incoming electron I': Outgoing electron
p: Antiquark, directed outward k,: Outgoing photon
kgy: Outgoing real gluon

Pyo: Total momentum of final state in real emission= p + k + k, + k;
P: Total momentum of final state in virtual emission and LO = p + k + k,

throughout the paper are summarized in Appendix A.
In the computation of the amplitude for the various
processes, we will encounter tensor integrals over trans-
verse components of the gluon loop momenta. General
expressions for these constituent integrals along with
details for special cases are provided in Appendix B
for both processes with gluon emissions and gluon
loops. Appendix C contains detailed expressions for the
amplitudes for gluon emission processes that are too
cumbersome to include in the main text. Likewise, in
Appendix D, we provide a detailed computation of the
quark self-energy, which provides the template to com-
pute the amplitudes of self-energy graphs where the gluon
propagator is not dressed. The expression obtained in
Eq. (D1) for the gluon loop contribution is very general
and can be straightforwardly used in any pQCD compu-
tation performed using light cone coordinates and in the
light cone gauge. A similar computation for the virtual
gluon corrections to the ygq and y*qq vertices is provided
in Appendixes E and F.

Appendix G contains the rapidity divergent pieces,
discussed in Sec. V C, for the vertex corrections with the
dressed gluon propagator that are not provided in the
main text. Similar expressions for the amplitudes with
final state interactions (discussed in Sec. VD) are
provided in Appendix H. The expressions for the finite
pieces of the amplitudes are distributed over seven
subsections in Appendix I. Finally, Appendix J provides
a short proof of the subdominance of noncollinearly
divergent contributions to the cross section for real
gluon emissions when we work in the limit of small
jet cone radius.

II. GENERAL DEFINITIONS AND BRIEF
REVIEW OF LO COMPUTATION

We will work in the light cone (LC) gauge A~ =0
throughout this computation. The highly energetic nucleus
is considered to be right moving so that it has a large ‘+’
component of LC momentum Pj. The virtual photon
exchanged between the electron and nucleus is considered
to be left moving and consequently has a large “-”
component of LC momentum ¢~. The mass of the electron
is neglected throughout the calculation.

Following the LO computation in [44], we can
write the amplitude for inclusive photon + dijet production
in DIS as

~ ~ e ~
ML, g k.p.Jey) = 5 8(1)Gqu(D M, (4. K.p. Ky 2),

(16)
where

i ghy~
%:yﬂ_u’ nt = ST (17)
q
is obtained by index contraction with the propagator for the
exchanged photon with momentum® g =(—0%2¢.4~,0, ).
The amplitude for the hadronic subprocess is given by

M, (q.k.p.k,;2) = e*(k,, )M, (q.k.p.k,),  (18)

and is the quantity of interest. Here e(k,, 1) is the polari-
zation vector for the outgoing photon. The 4-momentum’
assignments are given in Table I and boldface letters denote
3-momentum vectors.

We define the following ratios of the outgoing momenta
to the dominant component ¢~ of the incoming virtual
photon momentum

=~
|
I

==~

Zq:__7 ZZ]: ’ Zy:_y_a Zg:_(i‘ (19)

_Q
_Q
S
_Q

We will work in the limit of light quarks and neglect their
masses in the present computation. Since we are dealing
with prompt photon production in DIS at small x, the
dominant contribution is indeed expected to involve light
quarks.

Squaring the expression for the amplitude in Eq. (16),
and performing the necessary averaging and sum over
electron spins and photon polarizations,4 we can write

See Appendix A for the conventions used in this paper.

For the outward directed external momenta, we have
(kg > 0.

We use here the identity

ken# + Kne
Ze‘/’(kﬂ)e*“(ky%)=—9"/’+7yn ;:i A
y 4

as the sum over outgoing photon polarizations. By virtue of the
Ward identity, we can easily show that only terms proportional to
g contribute, thereby leading to Eq. (22).
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LO:(1)

FIG. 8.

LO:(2)

Leading order contributions to the amplitude for photon production. The other two contributions [LO:(3) and LO:(4)] are

obtained by interchanging the quark and antiquark lines in LO:(1) and LO:(2) respectively. The blobs with the crosses mark represent all
possible eikonal scatterings with the background classical field of the nucleus including the possibility of no scattering.

1
3 > IMP = Lmx,,. (20)

spins,A
The lepton tensor given by

2

o oy
2Q4

1941 G:). (21)

is identical to the one obtained in fully inclusive DIS.
In the following, we will concentrate on obtaining the
NLO contributions to the hadron tensor which is defined as

X, ==Y (Mia(q.k.p.k, )M, (g.k.p.k,).  (22)

spins

The (...) in the above equation refers to the CGC averaging
over all possible source charge configurations p,. From a
first principles quantum field theory perspective, this
corresponds to the systematic computation of Feynman
diagrams in the presence of static sources, and sub-
sequently performing averages over the source distribution,
as spelled out in [63-65], and references therein.
For a generic operator O this is quantified as [12,13]

(©) = / DpAlWy oAl Ol (23)

In this equation, @Lo 4] is the quantum expectation value of
the operator for a given charge configuration p,. One then
performs the classical-statistical average of O over all
possible color charge configurations with the gauge invari-
ant weight functional Wy[p,] representing the distribution
of the color charge configurations at a rapidity Y =
In(x/xg) in the target. This double average is justified
because the color charges p, are long-lived (or static) on the
timescales corresponding to the (quantum) dynamics of
the gauge fields. The functional dependence on p, enters
the amplitude M, through Wilson lines which are also the
phase rotations in color space obtained by the quark and
antiquark during their eikonal propagation along the light

cone. We will see this more clearly when we present the
structure of the amplitudes at LO and NLO in the upcoming
discussion.

Since we wish our presentation to be self-contained, we
will sketch here the LO contributions to the amplitude
derived in [44]. At LO in the CGC power counting, there
are four contributions to the amplitude; two of these are
shown below in Fig. 8 and the other two obtained by
interchanging the quark and antiquark lines. As noted
previously, an important ingredient in the computation is
the simple form of the dressed quark propagator in the
classical background field of the target nucleus
[5,15,68,69,71]. In A~ = 0 gauge, this can be expressed
as [70]

Sij<p’ q) = SO(p)Tq;ij(p’ 7)S0(q) (24)
where
So(p) = p2lf ie’ (25)

is the free fermion propagator, and

T ..ji(g. p) = 2m)3(p~ — ¢ )y~ sign(q™)

% / dZZLe—i(qJ.—IM.)'zJ. Ujiign(q’) (ZJ_), (26)

is the effective vertex corresponding to the multiple
scattering of the quark (or antiquark) off the shock wave
background field. The dependence on the latter is given
by the Wilson line defined in Eq. (3); here i and j label
the colors of the incoming and outgoing quarks. Because
we are including the possibility of no scattering within
the definition of the effective vertex, the dressed
propagator in Eq. (24) also contains a free part given by
(27)*6W (p — q)So(p) and an interacting part which con-
tains all possible scattering with the nuclear shock wave.
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The diagram labeled as LO:(1) can be written as
d*l
(27)*

The integration over [~ is trivial because of the 5(I~ 4+ p~) factor from one of the effective vertices. The integration over [+
is performed using the theorem of residues. After subtracting the “no scatterlng 17 contribution in which neither the quark
or antiquark cross the nuclear shock wave, we can write the result compactly as

M0 (g kop k) = —(eq,)? /

u(k)yoSo(k + k)T gk + kyo g + 1)So(q + D)y, So(D)Tyu;(=p. Do(p),  (27)

M,m (q kp.k,)= 2ﬂ<eqf)25(P_—q / / iy (e =y )=iky 4k, )x — szyLu(k)Rﬂ(? 1(&)[( (xL)UT@l)_]])]UU@)
x, .y, JI

(28)
with
(g ) = - 1 kK - (0 -zg)q —rvidilrulrtzgg +ridi] - (29)
+ 2(q7 )2 2k k, P+ A0
Here ALO:(D) = 027, (1 — z;) — ie. .
The other diagram in Fig. 8 can be expressed similarly with R,,a (l 1) - R,];(? 1) (1,), with
ROy — 1 - rrzeq —vi (i —k,) v (1 —z)g” =7 ((Q%25 + 1) /22497) — 71 Ly ,
g 2(q7)? (zq +23)/7 “ P+ AL "
Tz9q” +711d
Y 239 | ARLEE - (30)

X
(ll+v1101(2))2+AL0:(2)

where

SO 17
1 1_Z}/ yLo>
. 742 0%z,2
ALO:(2) 9*q 2 %9 _ e 31
(1 _ Z7)2 yLl 1 _ Zy ( )

The remaining R-functions are related to those in Eqgs. (29)
and (30) by the following replacements: x| <>y, k <> p
and (k) <> v(p). If we keep the internal momentum labels
identical to that in Fig. 8, this also results in an overall
change in sign. Finally, one needs to redefine [, — —I, +
k,, in order to make the transverse phases in all four
contributions identical.

The sum of the four contributions to the LO amplitude
can therefore be compactly written as

In the followmg, we will use the shorthand notations:
fi=[da)t, = [l /2x)? .= [dI*/2z and
fo f dzx 1-

[
MO =2x(eqs)*5(1 — 2, — 25— 2,)

/ / eili-(ei=yy)=ilk +k, ) x —ipy,
Iy Jxyy)

X a(l)TLQ(1)(U(x )T (1) = Do (p), (32)

where g, is the charge of a quark or antiquark of a certain
flavor f and

TLO ( lJ_

24: RO (33)

i=1

is the sum of the contributions from the four processes,
whose individual contributions are given by Ri]o? ),
Plugging this expression for the amplitude (and its complex
conjugate) back into Eq. (22), we obtain the LO triple
differential inclusive cross section for the production of a
prompt photon in association with a dijet as [44]

4?60 _ @Gmqpy’Ne 101

= ~LmX0, (34
dxdQ*d°K &g 5122°Q% (2m)*2 (34)

where a,,, = e?/4x is the electromagnetic fine structure
constant, y=gq-Py/l- Py is the familiar inelasticity
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FIG. 9. Diagrammatic representations of dipole (left) and quadrupole (right) Wilson line correlators. The dotted lines represent Wilson
lines at the given transverse spatial position in the fundamental representation of SU(N..) and the horizontal axis represents the x~ from

X~ = —oo to co. The arrows indicate the direction of path-ordering—whether we have a U or Uf. The Wilson lines are connected at

X~ = *oo by solid lines which show the order in which the Wilson lines are multiplied and the closed loop represents the trace over the

product.

variable of DIS and L* is the lepton tensor in Eq. (21). We
also introduced the differential phase space measures,
d°K | = d*k d°p  d*k,, and Eng = digdy,dyy . In deriv-
ing the triple differential cross section, we also isolated the
prefactors (eq;)*N, of the hadron tensor in Eq. (22) and
used a properly normalized wave packet description for the
incoming virtual photon [39,44].
The leading order hadron tensor is given by

X0 =226(1 -z, — 25— 2,) / drte
x /dnlLo w1 V)L y YL X)), (35)

where we introduced a compact notation for the integrals
over the phases appearing in the amplitude expression in
Eq. (32)

/dHiO:// elli-(xr—yi)=ilk +k, ) x —ipL oy, (36)
I Jxiyo

The second such term appearing in Eq. (35) results from the
complex conjugate of Eq. (36) and corresponds to replacing
all transverse coordinates and internal momenta therein by
their primed counterparts. The function
a A A~

i (1) = TeRT (L) (=) (Tad) T30, (37)
represents the spinor trace in the cross section.

Finally, the nonperturbative input from the dynamics of
saturated gluons in the nuclear target is contained in
E(x,,y;:y,.x ) which can be decomposed as

E(vaJ’Léy/l,xl) =1-D Dy’x’ + Qy’x’;xy7 (38)

where

Dx.y=NiC<Tr<z7<xL>U*<yl>>>,

L (000 0 T w1))) =

Qxy;zw - Nc

sz;xy’
(39)

represent respectively dipole and quadrupole Wilson line
correlators. A pictorial representation of these correlators
is given in Fig. 9. These gauge invariant quantities appear
in a variety of processes in both p + A and e + A collisions.
Explicit expressions for these correlators are avail-
able [8,89,90] in the McLerran-Venugopalan model [3-5],
where the distribution of sources W(p,] is Gaussian distrib-
uted with

(P4 (x=x )Pph (™ .y 1)) =68(x~—y7)8@ (x L =y )Aa (x7).

(40)

Here
[ e =i (@)
where u3i = A/2zR* ~ A'/3 is the average color charge

squared of the valence quarks per color and per unit
transverse area of a nucleus with mass number A. As we
will discuss later, the JIMWLK evolution equation can be
reexpressed as evolution equations for these gauge invariant
quantities.

III. OUTLINE OF THE NLO COMPUTATION

Before we dive into the rather involved computations
(which, as articulated briefly in the introduction, have much
of the complexity of two-loop computations in standard
pQCD) it is useful to outline the structure of various
contributions to the computation at NLO. These can be
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classified into real and virtual contributions; the latter can
be further subdivided into self-energy and vertex correc-
tions. An important simplification in the Regge limit is that
the shock wave interaction is instantaneous, which elim-
inates more than one insertion from the effective vertex
on any given line in a Feynman diagram. In addition to
outlining the structures comprising the different contribu-
tions, we will also provide in this section a flow chart which
points to the different contributions, and links that take
the reader to specific terms in the computation, without
having to wade through the entire detailed computation in
the next section.

A. Structure of contributing processes

There are both real gluon radiation and virtual gluon
exchange processes that contribute at O(ag) to inclusive
photon + dijet production. For the computation of the NLO
differential cross section, we need to take the modulus
squared of the amplitudes for gluon emission for fixed
static color sources, perform the CGC averaging over the
distribution of these color charge configurations, and
finally integrate over the phase space of the emitted gluon.
In the case of the amplitudes of graphs containing virtual
gluons, we need to include the interference of these with the
leading order amplitude given by Eq. (32), before perform-
ing the CGC average over static color charge distributions.

The NLO hadron tensor is then given by

X0 — { | (om g dep )
aa(,)

x (MNLOReal (g k. p ke, ky)))}
+ {{((Mi2(q.k.p.k,)) (MNOSE(q k. p. k,)

+ MNEONert(g e p k)% + c.c)}, (42)

where

fou = @

is shorthand notation for integration over the phase space of
the emitted gluon and c.c denotes the complex conjugate.
For virtual exchange graphs, we can broadly classify the
two topologies of diagrams as self-energy and vertex
contributions, which we have denoted above with the
superscripts “SE” and “Vert” respectively. We will now
describe the further systematic classification of the con-
tributions to the amplitudes in each category in terms of
their color structure.

1. Real emissions

There are 20 Feynman graphs that describe the radiation
of a gluon in addition to the photon radiated in the final

v

7 + 4 permutations
of v emission vertex

tq<q

FIG. 10. Feynman diagram for gluon emission with the quark-
antiquark dipole as well as the gluon scattering off of the
background classical field. The other such diagrams are obtained
by permutations of the photon emission vertex and their quark <>
antiquark interchanged counterparts.

state. Further, there are distinct topologies of these graphs
depending on whether
(1) the gluon is emitted prior to scattering of the quark
and antiquark, or
(2) emitted by the quark or antiquark after they scatter
off the nucleus.
In the former case, the gluon has the possibility of
scattering off the background classical field whereas in
the latter case it does not. For each of these diagrams,
we need to subtract the no scattering contribution to the
amplitude, which is obtained by setting U and U’s
to unity.
As in the case of the LO amplitude, we can write the
amplitude for real emissions as

MR =2n(eq,)?98(q~ — Pigy)

x/anu(k)(TSJ;La((U(xL)t“U*(h))Uba(zl)

— 1) + T (1,0 )T (v,)) 1)
+ T (T )T (v )t,) —1,))o(p).  (44)

where [ dIl; represents the integrals over the transverse
Fourier phases associated with the effective vertices.
By an appropriate redefinition of momenta, these can be
made identical for all the contributions. Their exact form is
not important for the present discussion but will be
delineated in the upcoming sections which contain the
detailed computation of the amplitudes for the various

processes. The essential features of TEQU, Tg), and Tg) are
as follows:

(i) There are a set of 10 diagrams that contribute
to the factor TEQ These are the processes where
the emitted gluon may simultaneously scatter
off the background classical field in addition
to scattering of the quark-antiquark dipole. A
representative diagram is shown in Fig. 10, with
the other diagrams obtained simply both by
permutations of the emission vertex for the final
state photon and by interchanging the quark-
antiquark lines.
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5

v + 4 permutations
of v emission vertex

FIG. 11. Representative diagram for the NLO process involving
real gluon emission from a quark after the quark-antiquark dipole
gets scattered off the background classical field. The gluon does
not get scattered in this scenario. The remaining diagrams are
obtained simply by permutations of the photon emission vertex.

(i) There are 5 contributions that constitute Tg) in

Eq. (44). These correspond to gluon emission from
the quark after it scatters off the nucleus. A repre-
sentative graph is shown in Fig. 11; the others are
obtained by permutations of the vertex for the final
state photon.

(iii) Finally, there are 5 contributions constituting TE?
which are obtained by interchanging the quark
and antiquark lines in the Feynman graphs of
Fig. 11. These are identified separately because they
have a different color structure from the diagrams
comprising Tg).

Thus at the level of the squared amplitude, 400 diagrams
contribute to the NLO photon + dijet cross section.

2. Virtual contributions

Broadly speaking, virtual contributions can be classified
into vertex and self-energy graphs. In addition, there are
diagrams in which the emitted gluon scatters off the shock
wave before being reabsorbed by the quark/antiquark. To
add to the complexity of such computations, the photon can
be emitted either before or after these scatterings from the
quark or antiquark. Thus the total number of diagrams to
compute is significantly more than fully inclusive DIS at
NLO. These can however be classed into distinct categories
based on their Wilson lines structures.

(1) Self-energy contributions: We can write the ampli-

tude of the self-energy contributions as

NLO;SE
M

=27(eq,9)*8(q~ — P7)
< [ (o (10, (06 )07 5.)
X Upyp(zy) = Cpl)
(O )1 T (y )" Upa(z1) = Cr1)
(

+T
+ T (CHOE )T (v)) = 1))olp),  (45)

where [ dIlg denotes the phase space factor corre-
sponding to the self-energy contribution.

v

~* + 5 permutations
of ~ emission vertex

FIG. 12. Representative diagram involving a gluon loop where
the gluon is emitted and reabsorbed by the quark with the
possibility of scattering from the background field. The remain-
ing 5 diagrams are obtained simply by permutations of the final
state photon emission vertex.

(a) There are 6 contributions proportional to Té” in

the expression above; one such diagram is
shown in Fig. 12. The topology of these dia-
grams corresponds to that of a gluon emitted by
the quark prior to scattering and then reabsorbed
by the quark after the ggg state scatters off the
shock wave.

(b) The 6 contributions that constitute T(Sz) in
Eq. (45) are obtained by interchanging the quark
and antiquark lines in Fig. 12. They are classified
separately because the interchange modifies the
color structure of the diagrams.

(c) There are 24 other contributions in which the
emission and absorption of the gluon occurs
either prior to or subsequent to scattering with
the nucleus; these are proportional to T(S3>.
Two examples of such diagrams are shown in
Fig. 13. The multitude of diagrams is pri-
marily because of the various possibilities
associated with the emission of the final state
photon.

(2) Vertex contributions: Similarly to the self-energy
contributions, the general expression for the ampli-
tude of vertex contributions can be written as

v
+ + 5 permutations + q <>
of v emission vertex
v
+ + 5 permutations + q ¢

of v emission vertex

FIG. 13. Representative Feynman diagrams for self-energy
graphs with no scattering by the virtual gluon. The gluon loop
can be present either before or after the shock wave.
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MYOVr _ 21(eg,9)25(¢~ — P) / drty a(k)(

T (1“0 (e )P T (y,)) Unp(z1) = Cr 1)

+ TV (O )T (3, Upgl(z)) = Cpl) + T4 (Cr(O(x )T (v,) = 1))
+ TV (00 (x )T (v )1, — Cp1))o(p), (46)

where [ dIly represents the phase space factor for vertex-
like corrections and Cr = (N2 —1)/2N, is the quadratic
Casimir for the fundamental representation of SU(N..).

(a) There are 6 contributions to TV1 . A typical
diagram is shown in Fig. 14; the rest are obtained
by permutations of the photon emission vertex.
These correspond to the virtual gluon emitted by
the antiquark following which it crosses the
shock wave before being absorbed by the quark.

(b) The Ti,z) are obtained by interchanging quark
and antiquark lines in Fig. 14.

(c) There are 6 contributions proportional to T$ );
one such graph is shown in Fig. 15. These are
part of the radiative corrections to the virtual
photon wave function fluctuating into a quark-
antiquark dipole with the addition of a final state
photon. Consequently, the Wilson line factor is
identical to that in the LO amplitude times the
color factor Cp.

(d) Finally, we have 6 contributions proportional to

TE;‘ ), representing final state gluon interactions
between the quark and antiquark after the latter

5 + 5 permutations
of v emission vertex

FIG. 14. Representative Feynman diagrams for the vertex
corrections in which the exchanged gluon crosses the shock
wave.

¥ + 5 permutations
of ~ emission vertex

FIG. 15. Vertex corrections to dijet + photon production where
the gluon does not scatter off the background classical field. The
5 other permutations are those of the photon emission vertex. Half
of them are connected to the other half by quark <> antiquark
interchange.

cross the shock wave. An example of this
process is shown below in Fig. 16 and the
remaining ones can be obtained via permutations
of the final state photon vertex. Half of the
diagrams are connected to the other half by
quark <> antiquark interchange.

For the convenience of the reader, the computational tree
depicted in Fig. 17 shows the components and sub-
components building up the NLO hadron tensor in
Eq. (42). This computational tree can also be used as a
template for numerical evaluation of the NLO photon +
dijet cross section that will be the subject of
future work.

As discussed above, perturbative contributions from
kinematically allowed diagrams with similar color structure
are contained in the various Tk s v functions. Each of these
is the sum of the contributions of the different Feynman
diagrams denoted by R;, and are presented in columns
under the Ty gy functions in Fig. 17. Within a certain
column, there may be diagrams that are connected to one
another by quark-antiquark interchange. We have put these
together within blue rectangular boxes in Fig. 17. These
R-functions can be obtained in sequence by imposing the
q <> q replacements given by Eq. (66) (later in the text) in
the functions appearing in the columns above the blue
boxes. Moreover, there are entire categories of processes
related by interchange of the quark and antiquark lines.
These are also shown in Fig. 17.

B. Assembling the different contributions
in the amplitude squared

For the computation of the differential cross section, we
need to take the modulus squared of the amplitude for the
real emission processes and the interference of the virtual
graphs with LO processes. The general expressions for the
NLO amplitudes are given by Eqgs. (44), (45) and (46)

~ + 5 permutations
of ~ emission vertex

FIG. 16. Representative diagram for final state interactions
between the quark and antiquark.
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RLO:(I)
RLO:(2)
MM TR RLO:(3)
RLO:(4)
xNLO
MNLO;Real MNLO;SE MNLO;Vert
T}(;) TI(%Z) T}%s) Tél) Téz) Tés) T‘(/l) T‘(/Q) T‘(/s) T‘(,4)
| | | | | | | | | |
R(Rl) R(Rll) R(RIG) R(Sl) R(S7) R(Sl3) R(Vl) R(V7) R(VIS) R(Vl9)
R(R2) R(R12) R(52) R(S14) R(V2) : R(V14) R(V20)
R(E3) R(R13) R(R20) R(53) R(512) R(515) R(V® R(V12) R(V15) R(V2D)
R(R) R(R14) RS R(516) RVY R(V16) R(V22)
R(RS) R(RIS) R(S5) R(Sl7) R(VS) R(V17) R(V?S)
R(EO) R(56) : =0 | RV6) R(V18) R(V24)
: g S (520)
: R
R(R10) q < q interchange y S R(521) M
q < @ interchange R(522) ¢ < g interchange
R(523)
R(524)
Legend: TR(525)
R(@ { R(S36)
R®) |
related by
R, q < q interchange
RYA

FIG. 17. Computational tree for the NLO computation of the hadron tensor. The different branches correspond to the different
components constituting X,I)LLO. The first of these nodes represent the amplitude contributions that comprise the NLO hadron tensor. The
sub-branches contain the combined result for the hard parts of the amplitude for the different contributing processes. These individual
contributions from diagrams which are categorized based on the color structure are provided in the long columns. Quark-antiquark
interchanged counterparts of quantities appearing in the same class of diagrams and hence the same column are grouped within blue
rectangular boxes. As an example, R(R0)-(R10) are obtained respectively by exchanging g <> g in R(RD--~(85) The labeling follows the
same ordering for the other quantities grouped in blue boxes. Terms grouped in the red box are all zero and do not contribute to the
amplitude.

respectively while Eq. (32) denotes the same for the LO (19),(19) = 1 (5”5,k - i(sl. .5“)’ (47)
amplitude. The squared amplitude, a functional of the Y 2 TN

stochastic source charge density p,, then needs to be
averaged over all possible charge configurations weighted
by the distribution W[p,]. Following extensive use of the _ _
Fierz identity Ux)1,U"(x 1) = 1"Upa(x1), (48)

and the relation
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TABLE IL

The expression for E is given in Eq. (38).

Classification of the dipole and quadrupole Wilson line structures from different contributions to the amplitude squared.
The Wilson lines for the conjugates of the terms in row 4 (5) are obtained by replacing (x,,y,) —

(v, x',) on the factor in row 5 (4).

Wilson line factor

Real emission Virtual: Vertex Virtual: Self-energy

2 —
%(1 - szDzy - Dy’zsz’ + Dy’nyx’) - %':'(xlsyl;yﬁ_»x/J_)
N_% 1-D..—D _1l= oy /

2 ( Xy VX + va'v"c’) '—'(xj_vyJ_ ngxJ_)

2
%[(1 - ny)(l - Dy/x’)] ( X1,Y15 yj_vxj_)
%(1 + (sz;y’x’ - &))D D»’x’) 2 (xJ_ yis yJ_va_)
%(1 + (Qy’x’;xz - sz)D D»’x’) %E(xl-yl;yl»xj_)

T
TR TS + 1T TioTy) +cc T;oTS) + c.c
Tﬁf’ T(R) +c.c TZOT&> +c.c
ey 1o 1ot
ey rigr? 1ot

connecting adjoint Wilson lines to fundamental ones,
we get nontrivial combinations of dipole and quadru-
pole Wilson line correlators [see Eqgs. (39)]. These are
summarized clearly in Table II below. The terms
proportional to products of T’s represent Dirac traces
obtained from expressions for the squared amplitudes.
The corresponding color trace over products of Wilson
lines corresponding to each row is given in the leftmost
column. To obtain the color factors for the conjugates
of the terms in rows 4 (5), we need to replace
(x1,y1)— (v),.x|) in the transverse coordinates of
the corresponding color factors of rows 5 (4). As
evident from Table II, the fundamental building blocks
which span the entire high energy computation have the
structures D, Q, DD and DQ, albeit with different
dependence on the transverse coordinates. In the sec-
tions that follow, we will carry out detailed computa-
tions of the wvarious entities in Table II. The
organization of the NLO computation in the manner
described here will provide a transparent guide to the
identification of soft, collinear and ultraviolet divergen-
ces in the computations.

NLO Rreal(1
/m b

ZM

IV. NLO CONTRIBUTIONS TO THE AMPLITUDE
FROM REAL EMISSIONS: DETAILED
CALCULATIONS

In this section, we will compute in detail the amplitudes
for the various real emission graphs presented in Sec. III.
As discussed there, there are two distinct topologies based
on gluon emission before and after scattering of the dipole
off the background classical field. We shall now system-
atically illustrate how to calculate the various diagrams
contributing to each of the three terms in the general
amplitude expression in Eq. (44). Readers uninterested in
these details can proceed directly to Sec. VI.

(1) Contributions to Tg) : The processes that contribute to

Tg) in the amplitude (see Eq. (44) for real gluon
emission are shown below in Fig. 18. Only half of
them (labeled (R1) — (R5)) are presented here. The
quark <> antiquark interchanged counterparts of these
5 diagrams are respectively labeled (R6) — (R10).
Before delving into the details of the computa-
tion, we will write down the general form of the
contribution from these 10 processes to the total
amplitude. After subtracting the no scattering con-
tribution from each of them, this is given by

2n(eq;2g5(1-20y) / dnhoft(k){ / ez <lu>[<0<xL>rar7T<yL>>Uab<zL>—rb]}mp).

ZL

(49)

Here ziy =z, + 25 + 2, + 2, 1s the total momentum fraction for real emission and JdITEO is a shorthand for the

integrals

/d]‘[lio :/ / eillL<<xi_yi)_i<kL+kyL)~xi_ipL<yL‘
Ly Jxypy)

We will now discuss the computation of the R(/)’s that constitute T}

Rﬂa lll

(50)

() given by

() (51)

ZR

Note that in this discussion, and all subsequent discussions, we will only explicitly show the dependence (if any) of these
functions on internal momenta (that are integrated over) albeit they are of course functions of the external momenta as well.
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KAUSHIK ROY and RAJU VENUGOPALAN
gl gl gl
v v -
(R1) (R2) (R3)
v v
gl v

(R4) (R5)
Real emission diagrams contributing at NLO to the “impact factor” with the gluon emitted prior to the scattering of the quark
and antiquark off the nucleus. The other five diagrams are labeled (R6) — (R10) and can be obtained respectively by quark-antiquark
(1)
in Eq. (44).

FIG. 18.
interchange of (R1) — (R5). These 10 contributions constitute in total the coefficient T’

The contribution to the amplitude for the processes labeled (R1) in Fig. 19 is given by

(eqf)zg/ z iw(k)yeSo(k+ k)T ,(k+k,.q + 1) — 1) So(q + I; — ,)t*y"
1,2
(52)

RI .
M/(m;i} =1 )
x So(q + 11,80 (1)T (L. —p)v(p) x T (k,. L)Gya(b)es(ky),

where the free fermion and gluon propagators in A~ = 0 gauge are respectively given by
1 ( » + Pully + nﬂPb) 5ab’ T (53)

n.p

4
S = , GO =
0(p) P2 +ie ;w,ab(p) p2 +ie
The effective vertices for the quark and gluon are contained in the expressions for their dressed propagators in the
background of the strong classical color field of the nucleus. Recall that the expression for the quark propagator is [given

(54)

previously in Eq. (24)]
Sij(P, Q) = SO(I’)Tq;ij(pv Q)SO(C])-

In the “wrong” light cone gauge A~ = 0, we conveniently obtain an analogous form for the dressed gluon propagator
(55)

o cd
G;w;ab (pv Q) - Ggﬂzac (p)Tel (p7 Q)va;db(q)’

where y, v and a, b are the Lorentz and adjoint color indices for the outgoing and incoming gluon which respectively carry

momenta p and g. Again, to recapitulate, the expressions for the effective vertices (introduced in Fig. 1) are,
T,(p.p') = 2m)8(p~ = p'")y~sign(p”) / &z, e P o) (g, ),
(56)

T3 (p. p') = =228(p™ = p'7) x (2p™)g"sign(p”) / Az e PPz (U )P (g ).

which can be written as [5,15,68-71]

= (

Since n.e*(k,) = 0in A~ = 0 gauge, the polarization vector for the outgoing gluon has the form e(k,) k’,t% ,0,e ).
(57)

Using this, we can derive the following useful relation

lz ng+n lz N
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where we have used the eikonal approximation /5 = k contained in the expression for the effective gluon vertex. Now
integrating over /7 and /5 using the d-functions appearing in the effective vertex factors, we can rewrite Eq. (52) as

. N
My = 2nleq, Podly™ = Pi) [ anto [ ehass (@0 ) Untes) [ et [ B (59
L, I
where r,, =z, —x, and the numerator and denominator are respectively given by
_ e Ly _\ .
N = ”(k>7a<k+ ky)}/ [7+(k + ky) - h'(lu - lzl)] [(h - %7 >~€L(kg):|
g
X[y~ 4k, + k) +y (gt + 1) —yobidrdr e +ro by o), (59)
and
D= 8p(k + k) + kr + ko) k) (1 = By ) (B i
P y r TRy Ny 2k 2k 20 2p
l2 i€ (lu_ - IZJ_)Z i€
x (g +1f - LL + >(++l+—l+— + . (60
(q Vo ks k) 200 1k + k) \T T TR T2 1 k) T 20 + k) (60)

As expected, we have an overall longitudinal momentum conserving §-function where P, = k™ + p~ + k; + k,, which is
a reflection of the eikonal approximation ingrained in our analyses.

When we examine the above equations, it is clear that the numerator structure allows for the use of Cauchy’s residue
theorem to evaluate the + -integrals by complex contour integration. There are two /3 poles on either side of the real axis.
We deform the contour clockwise so as to enclose the pole below and subsequently perform the [ integration by an
anticlockwise contour deformation. We next perform the I, integration using the expressions for the relevant integrals
tabulated in Appendix B [see Egs. (B9) and (B10) for the expressions in d dimensions]. Finally, subtracting the no scattering
contribution by setting the Wilson lines to unity, we write the resulting amplitude as

M) = 2aeqs a1 - 2 [ dn10u<k>{ [ emoeins <zu>[<0<xl>t“0m>>uab<zl>—rb]}v@, (61)
where

RED( 1y — k+ky_
Rya (u) Ya 2k.ky

[({y (1 =25 —zp)q =7 . L T O AR p ) T (0D AR )

. (1 - 25 = 29) (1 :
x 7€l (ky) = 2T . AR e (k)
g

(1 —zg)g =7 (Q%2 +B1)/2259 - h-luy v*zeq” +ri iy ,
B+ Q%z(1 —z5) —ie “2(q7) (1 —z5)/z,"

(62)

is independent of k,; but depends on the other external momenta which are not shown explicitly in its argument. In the
above equation, the functions Z are proportional to modified Bessel functions of the second kind (or Macdonald functions).
In d = 2 dimensions, and for the process (R1), these can be written as

Isl’o)(vfl), ARD p ) = z—e_ivf 'r‘"'"Ko< "ng(Rl))
n

i 1 _ip®D irix rzx -1/2 .
706, A0 = Lot {2 <—4A?m>) K1< r%xA(R1)>—(v<R1>)’K0( rgxmw)}, (63)

with the arguments of the functions given by
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k‘/
7
el

g+
P
/ ~ k
la
~

’Blﬂ

FIG. 19. The NLO process labeled (R1) in Fig. 18 with all
momentum assignments and directions shown. The effective
vertices are clearly shown in Fig. 1.

R1 <
Vi )——l_gz_lu, =21 X,
q
AR —__ %9 1-z lﬁ 0%zy(1-25-2,) e
(I—Zq) Zq I—Zq

(64)

At the level of the differential cross section, we will
integrate over the phase space of the real gluon which
includes an integration over k; from 0 to +oo. If we
examine closely Egs. (63) and (64) above, we observe a
logarithmic singularity in the limit &} (z,) — 0. The other
limit (k; — +o0o0) converges because of the oscillatory
nature of the exponentials in the Z-functions. We will
show later that this slow gluon limit (z, — 0) is what
generates the large logs in x—the net contribution of terms
with these large logs multiplies the JIMWLK kernel. This
aspect of the computation will be discussed at length in
Sec. VIL

v

The remaining four diagrams in Fig. 18 can also be
computed in a similar fashion and the combined contri-
bution is given by

5
f—

5
> ME) =" 2n(eqp)2g5(1 ~ 4y / ATz (k)

p=1 p=1

x{ / e hoss R (1, )[(0(e )0 (v,)
X Up(es) - zbJ}v<p>, (63)

where the R-functions are given in Appendix C.

In order to find the corresponding contributions
of Fig. 18 (with the quark and antiquark lines interchanged)
which we call (R6)— (R10), we need to impose the
following replacements in the R-functions in Egs. (62)
and (C2)—(C9)

k< p(z,<>z5), ak)<vp), x <y, and

llJ__)_llj_+kyJ_' (66)

As discussed at the end of Sec. II, the last redefinition is
only to ensure that the transverse phases defined by
Eq. (50) remain the same so that the net contribution to
the amplitude from the 10 diagrams can be compactly
written as in Eq. (49).

(2) Contributions to Tg):

We will now compute the contributions from
diagrams shown in Fig. 20 in which the gluon is
emitted by the quark after it scatters off the back-
ground classical field. The combined amplitude
from these 5 processes can be written as

,Y* fy* Vg ’y*
(R1

(R14)

2) (R13)
(R15)

FIG. 20. Real emission graphs with the gluon emitted by the quark subsequent to its scattering off the nucleus. The graphs obtained

by interchanging the quark and antiquark lines in the above diagrams are respectively labeled (R16) —

in Eq. (44).

(R20) and they constitute Tse)
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3

11:152 HReal(2 ZM 2n(eqy)*g6(1- th)/dnioﬁ(k){ lquXLTEQ)a(ng_vllL)K pUx )T (v1) 1] 0(p).
(67)
where
o 15
TRﬂa gl’llL Z /m gLalll (68)

has an explicit k,; dependence.

In the following, we will show how to compute one such contribution. The rest can be computed using the same
techniques. The contribution to the amplitude from the diagram labeled (R11), with the detailed momentum
assignments and directions shown in Fig. 21, is given by

kK+k  (re(k,))

MBW = 27(eq,)298(q~ — Py /dnLOe-ikm t,0(x ) U* / i)ia(k)y,
ach (eqr)*98(q~ = Piay) n (t,U)U (1)) lr() (k) 2k, e 1k 1K)

k—i_k}’_‘_kg _ +(k_+k_+k_)_7J_'llj_ }/+p_+yj_-llj_ B
2k, + 2k, (k+ k). & T e v(p), (69)
! . v+ +k+k)+2(k+k‘+k) R =it

where /] has been integrated out using the é-functions contained in the expressions for the effective vertices in
Egs. (56). We perform the integration over /{ by a clockwise deformation of the contour. Finally subtracting the no
scattering contribution, we get the amplitude as

MBY =27(eq,)298(1 - 24y) / AT O (k) {e*o = R (kyy 1y ) (1,0 )T (v,)) = 1] }o(p).  (70)

where
K+ ¥ . _ 2(1 - z5) .
R;(tlsll) (kgLvlll) ~Va k. k}’ YL'GJ_(kg)({er(l - Zq)q _yL'<kL +kyl)} _yL'kgl) - . kgl‘ej_(kg)
9
T(1=z:)g —7,.1 Tz.q” +vy, .1
- r (I—z)q” =721 (11e1L1) Vs 4 Zqzq Yibio 7/_, (71)
2(q7)*(1 = 25— 2)/z,[(kyy + v} )? + AR B+ Q%25(1 —z5) -
and
(R11) _ Y9k (R11) _
= - +k A — (1 - 2k.k 72
vy Zq+zy< 1 yJ_) Zq—l-zy( Zq)( ) (72)

At the level of the inclusive cross section when we
integrate over k|, it is evident from Eq. (71) that we
will once again encounter tensor integrals of the kind
given by Eq. (B8). The other contributions arising
from the emission of the gluon after the scattering off
the shock wave can be similarly computed and their
combined contribution is represented by Eq. (67).
Expressions for the remaining R-functions are pro-
vided in Appendix C.

Contributions to Tg): These are the processes
obtained by interchanging the quark and antiquark
lines in (R11) — (R15). They are respectively la-
beled (R16) — (R20) and their contributions to the
amplitude are obtained by imposing the replace-
ments given by Eq. (66) in Eq. (68). This ensures
that the transverse phases remain the same through-  EjG. 21. NLO process labeled (R11) in Fig. 20 with the
out. The total contribution from this final subcate- momentum assignments and directions shown. The gluon does
gory of diagrams can then be written as not suffer scattering off the nucleus in the above scenario.
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M Redtl ZM,,(,b—zn eqs)?g5(1—2ly) / dIOa(k) {e 2o TS (ko 1y (O )T (v1)1,) =1, 0(p),
(73)

with
Tg;ta gJ_vlll_ ZRHG gJ_’llJ_ (74)

Finally, we can write the combined contribution from all the allowed 20 real emission diagrams as

MR = 27(eqy)?g8(1 = ziy) / dnﬁoa(k){ / —’kqizLT L) [(O )T (p1) U (z0) = 1)

ZL

_|_ e—ik_(/J_ X T(Z)

To compute the contributions of these real graphs to the
differential cross section, we need to take the modulus
squared of the amplitude in Eq. (75) and then integrate
over the phase space of the real gluon. From the
discussion here, and the expressions given in Appendix C,
it is clear that for the 10 diagrams (see Fig. 18) in which
the gluon gets scattered off the nucleus, the amplitudes
can be written in terms of MacDonald functions whose
arguments in general depend on the gluon momenta. As
such, it is difficult to isolate analytically the rapidity
divergent pieces and the finite contributions from the
squared amplitudes for these graphs. In Sec. VII, we will
obtain the rapidity divergent pieces from these amplitudes
by explicitly taking the k; — 0 limit and show that these
pieces contribute toward small x evolution. To compute
the finite pieces from this class of diagrams, one however
needs to perform the integration over the gluon phase
space numerically by imposing a cutoff for the gluon
momentum fraction z,. Because of the interaction with
the nuclear shock wave, there are no collinear divergen-
ces associated with these diagrams.

For the processes shown in Fig. 20 (and their ¢ <> g
counterparts) in which the gluon does not scatter off the
nucleus, there are divergences from the region of phase
space where the gluon is soft (k, — 0) and/or collinear
(ks o<k,,p,) respectively to the antiquark and quark.
In Sec. VI, we will promote partons to jets and
explicitly extract these divergent structures by using
a jet cone algorithm. This will allow us to show the
cancellation between residual collinear divergences
from the virtual graphs with those in the real gluon
amplitude squared and therefore obtain an IR safe cross
section.

ko K L )8, U (x )T (v1) = 1) + e_ik”L‘yLTg;;)m(kgblu)[(ﬁ(xL)UT@L)tb) =t v(p).

(75)

[
V. NLO CONTRIBUTIONS TO THE AMPLITUDE
FROM VIRTUAL GRAPHS: DETAILED
CALCULATIONS

In this section, we will illustrate the details of the
computation of the amplitudes corresponding to the
virtual diagrams shown in Sec. III. We will start with
the self-energy diagrams and follow this with the
computation of the vertex correction graphs. An addi-
tional feature of these processes relative to the usual
Feynman diagram computations is that the emitted
gluon can scatter off the background shock wave
classical field before being absorbed by the quark or
antiquark.

A. Self-energy graphs with dressed
gluon propagator

As discussed previously, there are three distinct
topologies of the Feynman graphs describing self-
energy contributions. These are discussed individu-
ally below.

(1) Contributions to T( ) The diagrams contributing to

Tgl) in the general expression for the amplitude
given by Eq. (45) are presented in Fig. 22. These
are the processes which allow for a virtual gluon
emitted from the quark line to scatter off the shock
wave before being reabsorbed. We will first
present the combined result for the amplitude
from all such processes and then demonstrate
the details of the computation using a representa-
tive diagram.

The combined amplitude from these 6 processes
has the structure
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(S5) (S6)

FIG. 22. Self energy corrections with the gluon emitted and absorbed by the quark after it crosses the shock wave. These contributions

constitute 7' B By interchanging the quark and antiquark lines in the above diagrams, we get the contributions composing T s ) which are
labeled (S7)-(S12).

MO = 275(1 = 28,) (eqr9)? / AL (k) { T (L )P0 (x )T (91)) Upa(zi) = CR}u(p),  (76)

where zi = z, + 25 + z, is the total momentum fraction for virtual emission and we have bundled together the
transverse Fourier phases using the short-hand convention

/dni:/ / el (xp—yy)=i(ky+hk, )x —ipyy) :/ dHiO, (77)
Ly Jxiyizn 71

which contains an additional integration over z, relative to the similar expression given in Eq. (50). Finally, T T\

Sipa
can be written as the sum of a piece that includes UV and rapidity divergences and a finite part,
6
Sua ()= ZR (1)
p=1
1 ; 1\ /1 1 /(i 3 1 (@ 202
—_ zlu.rszLO l In In - In 1 1
27° %u ‘ pr u){ <Zo> (5 "2 0*)) 4 + 2 \@? 2 o) B
+ Rzlji(ula?m(lu)- (78)

Once again, we are including the dependence on momenta that are integrated over. Also note that as
previously, r., =z, —x . In the above equation, T'© [given previously in Eq. (33)] contains contributions to the

amplitude from the four allowed LO processes. The pieces that are independent of 1,, will produce a 6?)(r,,)
from the [, integration. Once the z, integration is done, the color structure corresponding to these pieces then
reduce to that for the LO amplitudes times the quadratic Casimir Cr. We can therefore write the amplitude in
Eq. (76) as

NLosse(l) _ 2asCr 1o 1\ /1 1 [j? 3/1 1. (i
M T M"“{l <ZO><6+21 @) i g

| 2a 1 20
[2715(1 zin) (eqy) /dH”/ el 7 ln< >IH<ZQ> (k){ Ty (11 1)
T L, 2 20 IZJ_

X [(("0(x)1U'(y1))Upa(z1) = CF1]}u(p) + Mfinite;;m’ (79)
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where M0 is the leading order amplitude given by lz/r \i3

Eq. (32).
The divergence free pieces of the various contri-

butions are combined to constitute M:Eftle) The oth kth & + kny W
logarithmic divergence In(1/zy) =In(¢~/A;) in ' k.
the above expression, where Ay is given by
Eq. (4), arises from the integration over the momen- <

tum fraction z; of the gluon in the loop. Its upper limit, I s >

up to logarithmic accuracy at this order, is controlled

by the g~ momentum component of the photonandits  F[G. 23. The process labeled (S1) in Fig. 22 with momenta and
lower limit by the longitudinal width 1/ Ay (or their directions shown. We must subtract the no scattering case
equivalently 1/P},) of the target nucleus. The latter ~ (corresponding to the same amplitude without crossed or filled
is a cutoff that we are imposing to regu]ate the gauge blobs) from the above contribution to obtain the physical
pole I~ = 0 in the LC gauge gluon propagator. amplitude.

Further, from the expression for the amplitude in
Eq. (79), we can see that there are two kinds of singular
logarithms multiplying In(1/z,). The one that appears
in the first line of Eq. (79) arises from the collinear limit
Z, — x| and are not part of the small x logarithms
contributing to JIMWLK evolution. Some of these
divergences will cancel out already at the amplitude
level between different classes of diagrams and the rest
will cancel between real and virtual graphs. ) )

The limit z;, > x,,y, of the evolution kernels is We. will now use one representguve process to
captured by the logarithms appearing in the second line exphclt.ly demonstrate the steps 1§ad1ng to th.e above
of Eq. (79). At this order of accuracy, the In(1/z;) log rgsult, in particular, the computatloq of the dlverggnt
can also be expressed as the In(xo /xg;) log giving rise pieces. The calcglatlon of t'h§ finite pieces, while
to small x JIMWLK evolution. We will discuss this absolutely essential for precision computations, are

point in greater detail in Sec. VIL In the limit of large not part.1cu1arly 111urmnat1ng; they are discussed in
02, these will give the double log limit of the DGLAP Appendix I. The amplitude for the process labeled (S1)

evolution equation [91-94] or equivalently the large with momentum assignments shown in Fig. 23 is given

Q? limit of BFKL equation. by

—l2 —l3

The 1/¢ singularities for e — 0 arise from regulating
the UV divergences in the integrations over the trans-
verse loop momentum of the gluon using dimensional
regularization in d =2 — ¢ dimensions. In our ex-
pressions, fi> = 4xu’e~7t, where yp is the Euler-
Mascheroni constant, is the reference scale used in
the MS-scheme.

Ml(lil) = <69qf)2/l N w(k)yoSo(k + k,)1?yPSo(k + k, = )T y(k+ k, — I3, g + 1} = 15)So(qg + 1, — 1)
1562583

x 177" So(q + 1)7uSo (1) T (11, —p)v(p) x Gga;bd(%)T;p;dC(l& L)Gpyica(l2), (80)

where the free fermion and gluon propagators are given respectively in Eq. (53) and the corresponding effective
vertices are in Egs. (56).

Although the structure of the free gluon propagator in A~ = 0 gauge is in general more complicated compared to
that in covariant gauges, we will use the light cone condition to derive an identity that allows one to simplify the
amplitude above. To show this, we start with the expression

lgng + ngls, Lyn, +n,l,
Vﬁ(---)}’y X <—9/}a+31317_ﬂ3>96’) (—gpy+2p17_p2>» (81)
3 2

where (...) denotes the terms between the two gamma matrices. The terms in parentheses on the right denote the
Lorentz structure of the free gluon propagators while the metric g’ in between these is from the effective gluon
vertex. Using n* = (1,0,0,) and some algebra with the indices, it is possible to reduce the above expression to

(}'k—gy‘)(---)(}’k—%y‘), (82)
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where k = 1,2 is summed over. Using the above identity, analogous to the one in Eq. (57), and integrating out /7, /5
using the o-functions in the effective vertices, Eq. (80) can be written as

MY :2ﬂ5(q‘—P‘)(egqf)2/dHij l e"(’u"u)’w/ sign(l3)sign(k™ + k; = I3)
215431

3

sign(i;) NG
X (thSlgn(k +k )( )taUk(,YJ_))Uba (ZJ_)/ IT, (83)
iagir DS
with
(S1) _ 2 K+ K B \it(im o e - T
NV =a(k)y, 2hk, rt =7 (ke +k, =15)—yi.(k k=L )y y (K +k = 5E) =yl b))
3
l
x (Vk —%r) (k= +k)+r (g + ) =y bidrr e +yodior o), (84)
3
and
DY = 32p~ (k= + k)5 (k- + ko — 15)2( 17 Lh e It + gt — by
v s 2p~ 2p— ! 2(k—+k;) 2(k~ + k)

L, —1))? ie
gt — U by
X<1 R s T k‘+k‘—l3 21—+21

12 ie (kl+kL_l3L ie
=3 =V -kt =k + r - ) 85
X<3 2l;+2l;><3 P 1k ) 20k +k;—15>> (85)

Note that in these expressions we have canceled a factor of 2/5 from the gluon effective vertex in the numerator with a
corresponding factor from one of the propagators in the denominator.
From the above expression for the denominator, it is evident that there are two /] poles which are located at

(ki +k, 1) ie . 1]y = B, e

2k +k; —1I3) 2k +k —15) 2 205 (86)

l+ — k+ k+ _
3 la T 20; 203

Forl3 < 0,wehave k™ + k;; — I3 > O which implies that the poles are on the same side (above) of the real axis. Since the
numerator is independent of /1, the contour can always be deformed such that none of the poles are enclosed, thereby
giving a null result. Hence we must have /5 > 0 as well as k= + k, — I3 > 0 for a nonzero contribution. As discussed
earlier, logarithmically divergent integrals in /5 are regulated by introducing a lower cutoff Ag given by Eq. (4).

We observe that there is an equivalence of this picture to analyses in light cone perturbation theory, where the positivity
of I3 here correspond to forward propagation (in light cone time) of the exchanged gluon. From inspection, an identical
argument holds for the /; pole.

We will enclose /5 |; and the following poles for the contour integration over /] and /3 respectively,

B, ie B, e
ll+|p01e = _2—_ 2 =5 12+|pole = i - E (87)
Finally subtracting the no scattering contribution we arrive at the following expression for the amplitude,
M) =275(1 =24 (eq9)° / ATy (P00 )0 (1)) Upa(z1) = C1]
dz y ; KK T - iy 2(=zg=2) ] _
x [ ety S G (-2 = pt ) ) 2
Lyl 2k'k1’ 2
_ 2(1 —Zz —Zl) .
x {({VJr(l_Zz]_Zl)q —}’L-lu}‘i‘ykllzc)h‘i‘zijllz]
r*(l—Z-)Q‘—V‘(sz +11)/2239” =71y r2aq" +ridi
! . 5 ! r o). (88)

(o +v00 R4 ATt o5 2+ ST AP (=2 P il Q2 (1=2g) =i
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where [ dIT} is defined by Eq. (77), z; = 5 /¢~ is the gluon momentum fraction in the loop and

(S1) i A(31) L

y = 1,
1L -z 1

q
3]
1-z

s1
ng_) ="

AGD

(ki +k,,). 2

q

As previously for the real contributions, we have
here too the familiar integrals over transverse
momental,, andl; |, that we encountered in the com-
putation of the real emission amplitude, which con-

tain the exponential terms exp(iivﬁil) r)(i=1,2)
and are proportional to Macdonald functions. We also
learnt from our previous discussion that these can give
singular logarithms from the z; integration in the limit
z; — 0 when these phases become unity. We will see
later that this is indeed the case. Another interesting
possibility is the limit r,, — 0 which corresponds to
the UV limit for the momenta, /; | (i = 2, 3) conjugate
to this transverse coordinate vector. The manifestation
of this UV divergence is explicit if we perform the
following momentum redefinition,l,;, —Il;;, — [, in
Eq. (88) with I3, remaining unchanged.

If we now do a naive power counting in 5 |, it is
clear that the numerator (NV) and denominator
(DS are both proportional to 1§, for large I3, .
J

M) =226(1 - i) (egq)? / At a(k)RSe (1 (0 (x )07 (v,)) Upa(z,) = Cp1]o(p).

(S1) (S1) (S1) (S1)
where R, R (gt ()’ Here R

+R )

will isolate these remaining finite pieces and combine them with the genuinely finite contribution R

net finite contribution from (S1).

_1—25,

(1 1 °! ){lﬁ + 25(1 —25) 0%} /25 — ie,
— 7

2]
I—Zq

(89)

By a careful use of Dirac algebra, it can be shown
that the terms proportional to [4; and [3; vanish and
hence the transverse momentum integral is at most
logarithmically divergent. We will use dimensional
regularization” in d = 2 — ¢ dimensions for terms in
the integrand proportional to 13, and use the d = 2
results for the convergent pieces.

However we also have to account for rapidity
logarithms from the z; integration which as one
can see arises from terms proportional to 1/z;. We
will therefore separate our amplitude into two con-
tributions. The first contribution is constituted of terms
in the integrand proportional to /3, and also includes
terms which will be finite from the /5| integration but
contains 1/z; pieces. The second contribution is
comprised of terms proportional to /5, (p < 2) and
does not contain any piece proportional to 1/z;. This
will then be a genuinely finite part of the amplitude.

With this in mind, we can rewrite the amplitude in
Eq. (88) as

(90)

contains the UV and rapidity divergent pieces and some finite terms. We

(s1)

(ISI) to obtain the

Carefully isolating these pieces from the numerator in Eq. (88) and after an extensive use of Dirac algebra in

d-dimensions and the identity y'y/I¥'I*/ = I3, we
(S1) i, [ 92 !

R l — 21 Fox N —_

(I);/m( 1J.> [u e / T { (Zl

can simplify the first contribution to read

1 2- ’
( €)Zl )Iuez-g)lu)

1 -z 4(1-2z5)?

(VY. a00)

+Z—ZZ’ZI(UZ’)(V(fl),A<S‘>)}R,I;§)'(1)(lu), (91)
where the constituent integrals appearing above are given by
2—e€ 2
e @iD) (S sty _ e [(9ThL 5,
HL (VLA )—ﬂ/ e
o) [ty + 92 + AP +vs)2 + ASY)
Vda /4ru? €/2 yDy2
_ [Ma (AN PR [ e (WL )L (92)
0 4 A(Sl) 2 2 A(Sl)

SThis implies the following replacement: [ d?ly, /(2x)> — u¢ [ d*ly, /(27)>~¢, where u has mass dimension of one.
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and

p— 1 /1 (V(Sl))i
TeIWVEY ASY) = -~ [t

(93)
We have also introduced here the short-hand notations
VP =ai (1—ap)s W =) e A =a(1-a) () - 2+ aaPV + (1-a)AlY, (94)

where the relevant terms v(lsz1 i and AS) were previously defined in Egs. (89). Using the standard identities

2
[(e/2) ===y +0(e) +...; A€/2:1+§1nA+..., (95)
€
for € — 0 in Eq. (91) and defining #? = 4zu’e~7=, we can finally write

(s o o L0 IN/1 1, @\ 3/1 1 (@
R(I);}la(lll> —WALe 217z Rﬂa (l]l>{ln(z—o> (€+21 Q2 —Z E+§1n @

202 ,
() )

where we have deliberately separated the logarithm containing /,, by introducing the resolution scale Q2. We will
show later that divergent terms of the kind appearing in the first line of the above equation cancel and do not appear in

the final cross section. This in turn also shows the independence of our final observable on the scale /.

The finite pieces from RE;]> that do not contain any logarithms in z, nor UV logs are contained in the remainder

term defined as’

2 2 (S1)
(S1) _ 1 il, r., pLO 5, L,.Vy
mﬁm (lu) —4—712[ € "Rﬂ lu /le/ [ { +1n<2A(Sl)> - AGD -1
21

+ (2(1 ilz,?)z 1 —lzq> (%(sw) +1H<A%21>)> +2(%Zq)] (97)

In Appendix I, we show the computation of the above term in detail. The R-function appearing in Eq. (90) can finally
be written as

(s1) U [ i, plos() N L (BN 3 (1 1 (P ! 20
REV(U, ) =— “RLS (=) (=+=m(E)) -2 (=4-m(L in(—)1
) =5 [u o (lu){ n(Zo) (6 Mg a\e 2"\ @2)) T2"5) "B,

+ O 1) + RS (1), (98)

In case of the diagrams (S2) and (S3), we get two independent contributions to the amplitude because we have
different choices of contours for the integration over I; ; depending on whether 0 < I3 < k™ or k™ < I3 < k™ +k;.

The net amplitude is therefore obtained by summing these individual contributions. We can show that for either range
(SB)

Dspar
polarization vector for the outgoing photon because e~ *(k,) = 0 in our choice of gauge. Therefore, for these

diagrams, only the finite pieces survive; we will present the expressions for these in Appendix I.

of /5 the divergent pieces in R (B = 2, 3), are proportional to g,, which will yield zero when contracted with the

Ri (1) = Ry (1), (99)

"Even though there is an apparent log divergence in z in the first line of the r.h.s, this is not the case because of cancelations between
the four individual terms.
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S3 S3
R/(m )(lll_> = REH));M(IU_) (100)

Finally, for diagrams (S4) — (S6), we can show that the divergent parts of the amplitudes have exactly the same
structure as Eq. (96) albeit with the (previously specified) different R“C’s depending on the topology of the diagram.

Ri'h)) Rig P (1) S e a1 e 200
: % )%
R0 | =50 | 12O | {n(3) (Gran(Ge)) 5 (ran(G) +2n () m GE) }
R (1)) Rue V) (l11)
‘)i,(,54)(lu) REIQI‘)‘;)W(lu)
+ | 9 )+ R () |- (101)
(S6) 6)
%,[Z (lu)+REfI)W(lu)

We would like to remind the reader that in our chosen convention the ¢ <> g interchanged counterparts of the LO
processes labeled LO:(1) and LO:(2) as shown in Fig. 8§ are respectively labeled LO:(3) and LO:(4). We can now
finally express the sum of the contributions to the amplitude from the six processes (in Fig. 22) in the form given by
Eq. (79).

The finite pieces of the amplitude are contained in

Mo = 275(1 = ) (egq,)? / A a(k)REY ()P0 (x )T (v,))Upa(z,) = Crllo(),  (102)

where

[=)}

ﬁmte/m llL - Z(S){Mﬂ} llL Rgigll)};)ﬂa(llL)>- (103)
=1

These are presented in detail in Appendix I.

The fact that the divergent part of the amplitude in Eq. (79) is proportional to the LO amplitude shows that
scattering off of the background classical field does not affect the UV structure of these processes. This is to be
expected because the gluon in the loop only experiences transverse momentum kicks while propagating through the
nuclear shock wave; in the limit of large loop momentum, this scattering should have no effect on the short distance
structure of the theory.

(ii) Contributions to T(S2 : These are the processes labeled (S7) — (§12) which are obtained by interchanging the quark
and antiquark lines in the diagrams shown in Fig. 22. The combined contribution to the amplitude from these
processes can be written as

Mg @S = 2751 —Zt%t)(equ)z/dﬂi'( W5 )T )T (91) ) Upa(zr) = Cr1l}o(p),  (104)

where T(Sz) is obtained by imposing the replacements in Eq. (66) to the corresponding expression in Eq. (78) of T(S”.

The resulting expression is given by

M@

S;ta lll R llL
=1
~2 ~2 2
= Lz et TR (1) {ln <l> <l i (”—2>> -2 <1 + 1 (”—2>> +imn <i> In (g) }
27= Ju,, )\ 2 \Q 4\e 2 \Q 2 \z B
+ Rfsi]ji(ti?ua(llj_)' (105)
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v
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FIG. 24. Self-energy corrections to the quark and antiquark propagator with the additional complication brought in by the final state

photon. These contributions constitute T<S3> in Eq. (45). The remaining 12 diagrams labeled (S25)-(S36) are obtained by interchanging

the quark and antiquark lines.

The amplitude in Eq. (104) can therefore be rewritten as

NLOSE(2) _ 2asCF L0 N1 L @\ _3/1 1 (@
Mlm Mﬁm{ <Z0>( +21n Qz 4 €+21n Q2

2
+f2“5 2501 = ) eqy)* [ any / 1n< )1 (QQ) (K){TE0(, )
L, <0 lu

X [(tb[](xl_)taU'(yL))Uba(zL) ]}U(p) +Mﬁnlteya’ (106)

where the finite piece is

M) = 215(1 - 2ty (egqy)? / AT (k)R (D) [(O ()T (9,)2) Upg(21) = Cptlu(p),  (107)

|
with at NLO. Half of them are shown in Fig. 24 and the other
half are obtained simply by interchanging the quark and
SE(2) antiquark lines. We have grouped them in three rows
finite; /m(l )= (Eh (lu) +R ua(lu)) depending on their divergence structure. As we will show,
= the first four processes labeled (S13) — (S16) inherit a UV
(108) divergence structure which is identical to the one described

in the previous section.

Because we are working in the limit of massless quarks,
we do not need to renormalize the quark mass. So diagrams
in which the gluon loop is on an external on-shell quark or
antiquark line will contribute zero to the amplitude. This is
true for the four diagrams labeled (S17) — (S20) appearing

B. Self-energy graphs with free gluon propagator in the second row of Fig. 24. A detailed computation of the

Contributions to 7%': There are a total of 24 diagrams  quark self-energy in Appendix D in the “wrong” LC gauge
which contribute to the quark self-energy corrections A~ = 0 demonstrates this result.

As noted earlier, the two functions appearing above
are obtained from their quark <> antiquark inter-
changed counterparts by imposing the replacements
in Eq. (66).
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We will also use the expressions obtained in this
Appendix for the self-energy loop to compute the diagrams
which have a similar topology albeit different locations of
the emission of the photon. Finally we will compute here
the amplitude for the two processes ($22) and (524) which
represent ag corrections to the quark-photon-quark vertex.
Although these diagrams will yield a different UV diver-
gence structure from the rest, we will see that there are
cancellations among the divergences of the four processes
in the third row (which explains why they are grouped
together). A general expression for the gluon loop correc-
tion to the quark-photon-quark vertex is derived in
Appendix E.

We will begin our discussion by considering the ampli-
tudes for (S13) — (S16). Subtracting the no scattering
contribution from each of these diagrams, we can write

FIG. 25. The process labeled (S13) in Fig. 24 with the
momentum assignments and directions shown. The gluon does
not scatter off of the background classical field in this picture.
Only the quark and antiquark do which are represented by the
crossed blobs.

the sum of the amplitudes from these processes as

ZM 7(eq9)*8(1 = ziy) / dITOa( ZR” (L )(CHOE)T (L) = 1))o(p), (109)
where
frno s Q)G () 16-4)
< >{ZAW (1;,) ——1n< )ZBW lu} ZRﬁmtw L) (110)

p=13 p=13

In the above equation, T° is given by Eq. (33) and the coefficients A?) and B(®”) will be given later. The finite pieces of

each process are contained in Rfm)e and expressions for these are provided in Appendix I3.

We shall now discuss in detail the computation for (S13). The results for the other three can be obtained using the same
methods. The amplitude for this diagram (shown in Fig. 25) is

M/Sil3):/u(k)(_ieq‘f)yaSO(k'f'ky)Tq(k—i_ky»q+ll)SO(Q+ZI)2(q+ll)SO(Q+ZI)(_ieqf)yﬂSO(ll)Tq(ll’_p)U(P)’
1

(111)
where the free quark propagator and effective vertices are given respectively in Egs. (53) and (56). The self-energy
contribution £ computed in Eq. (D10) of Appendix E is

stk =i [ o { (e + 25

JruT o,

K 51
+ (2 - 6') |:kf - (}’Jrk; + 2 # - 7kal> kz_],uél'gl'o)(ﬂl, AS)}, (1 12)
f f
with the four-momentum k; = (¢ + ], k= + k; .1, ). The constituent integrals are given by
i d>=1 I8 A, (2 P
70, A,) = / 2L In ole)), f 0.
p (0., 4)=p n) i+ A dn ctinla)* €) or € —
2—¢ 72
(1.0) "l 1 1 /2 K
Ly (0 ,Ay) = pu° 1 (0] , T 0, 113
H 0.4)=u / 20—, 1A, e -I- n A +0|e¢) or € —> (113)

__ 5y\r2
where A, = —k—j__ (1- k—j__)kf.
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We have used here the conservation of momentum across
the eikonal quark vertex to write g~ + [ = k™ + k. The
integration over [ follows trivially from the Dirac delta
functions contributed by the effective vertices and we will
obtain an overall momentum conserving delta function.
Since k} depends on /] the value of A, will be determined

by the pole enclosed in the contour integration over /{. We
will enclose the pole at

ie
2p~°

+ I%L
ll |pole = _ZP?

Mg

= 27(egq;)?5(1 — ziy) / dPak) R (1) [Cr(O(x )T (v,) = D]o(p),

which is above the real /| axis. The A factor, appearing in
the constituent integrals in Eqs. (D11), for (§13) therefore

becomes
(EERTRIC
I-z S

where z; =[5 / q‘ is the gluon momentum fraction in the
loop and ALO:() = Q%7 (1 — z) — ie. Using the identities
given by Eqs. (D14) and (D11)in Eq. (111), we can finally
write the expression for the expression in Eq. (111) as

2]

S13) _

AE (114)

(115)

where we employ the compact notation for the transverse Fourier phases appearing in the LO amplitude introduced in

Eq. (50).
For clarity, as previously, we split R©'3) as
$13) S13
Rf“ (lU_) SIV /4>a

(1)

(513)

+ Rﬁmte Ha (lll-) (l 16)

where the first part is constituted of logarithms in z, (equivalent to logarithms in rapidity) and UV singularities and the
second part is free of such terms. For (S13) these are obtained respectively to be

s13) I Lo
R((IIIV U (IU-) 2—7[2 RM”

and

RE13) 1 ro:
fmlte ;m(lll) 0 2R/m

1N/1 1
l —)(=+=1
Vo) (¢
1 1 0%z 1
“In(—)|In(—=22 ) —=1
#o(5) [ Faim) -5t

o

(&) -:(+m(3)

1
G )
7 3 0%z, i
gt gl <l7ﬁ +Afo;(1>> _E}' (118)

Following the structure of the amplitude for these four processes given by Egs. (109) and (110), the coefficients A and B

for (S13) are respectively

2
51% 07z
(lu) <7> pa
B, + AL

We can now employ these techniques to compute the contributions (S14) —

RV (,) 1 R (1) 1
thles)(lu) = _2_7;2 R/I;z?:(4)(llL) {m(Zo
R;(jzlé) (1) R;%S:G)(lu)

V), BE ) = RV ). (119)
(S16):
1 1 [ 3/1 1 [
In Sy (S Y
)( 2 <Q2)> 4(€+ZH<Q2
S14)
| | B,(;(SXM) (llL> Rimlte Ha (lll)
—si() | B [+ | R0 |- 0
Blgsam)(lu) ﬁsnlnﬁe,m(lu)
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The A and B coefficients above are

14 7,07 01/ 4) o1/
A1) = ln<(z +25)[(0 +(:JL01(2))2+AL0:(2)]>R’5(1 Y Bt ) =R, (12D
q q 1L 1
AS >_1n< 0y ) Yty ) + Al )m() B (1) = RO, )
Gt 2t @y pory) e T ARG ) A
(122)
where
A - _r*zqq‘—h-(lu—ku)y " (1=z,)q +y (ho =k, )?/2(1=z,)qg +7..(i —k,.)
a\tl - N
K (lquZq/zykﬂ)z—ls H (lu—kﬂ)erszq(l—zq)—w
vrzga +rihy
XYa ) 123
g e —z,) 12y
and
11 —k. )2 4+ ALO:(3) 1 .
— ( 1L lJ_) + ) b_ Zy [(llL_'_v]lO.(Z))z+ALO:(2)]. (124)
~Zq 7
Finally we have
0*(1-2z,)
A1) = ln((, o )R ) B ) = RO, (125)
11—k,

The terms vlio (12) and ALO:(12) gre given in Eq. (31) and AM0:0) = z4(1 = z,) — ie. The finite pieces for these processes

are given in Appendix I.
Moving now to the third line of Fig. 24, we can use the self-energy function in Eq. (D10) to compute the contributions to
the amplitude from diagrams (S21) and (523). As for the other diagrams, the expression for the amplitude can be written as

M = 27(egq,)25(1 - 28,) / dMr (k)RS (1, ) [Cr(O(x T (y) = D]olp).  p=121.23,  (126)
where
RSV, ) R((if\ib)a(lll> R(ﬁiile,m(lu)
(523) N\ L) + RO (127)
Rﬂ” (lll) Rdiv;;m(lll> hmtemx(llJ_)

We will provide expressions only for the divergent parts of these amplitudes in this section. The finite pieces are given in the
Appendix 13. For (S21) and (523) the divergent pieces are respectively given by

e o2 () ) b))

(128)

and
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+, g 1 iy ) o
vz~ —ky) T =)d A e eyt by

; Ya I 27
(o + vio.(2)>2 + ALO:(2) B, + Ao "2(1-2,)/24(q7)?

1 111;72 311;2211 0%, 1 /(1
inz{m(z(,) (erm(@) -3 (&) +an(3) (l“zm&o:m*zl“(m»}

(129)

R'

(8523)
div; /m( ll) =

_ Y Va¥u qu_ 1 <1+11 (ﬂ2>>
2(1=2,)/25(q Pl + 2O @ 2 4 AL 2(1 = 29) 227 \e 2 \Q

We conclude this section by detailing the computation of the amplitude for the remaining two diagrams labeled ($22) and
(S24) that appear in the third row of Fig. 24. For this we will use the general results in Appendix E for the gluon loop

contribution. For the diagram (522), we write the amplitude as

M;gizz) = / ﬁ(k)f’a(k7 ky)SO(k + ky)Tq(k + k]ﬂ q + ll)SO(q + ll)(_ieqf)yﬂSO(ll)Tq(ll ’ —p)v(p),

b

In Appendix E, we wrote X,

(130)

as the sum of two contributions X =34+ 32 where A and B denote
respectively the cases where the gluon loop momentum [~

is in the range (Aj.k”) and (k=,k™ +k).

The divergent pieces of each of these contributions are given respectively in Eqs. (E10) and (E24). Using the
Dirac equation #(k)¥ =0 for massless quarks, and a bit of algebra involving gamma matrices, we can rewrite

Eq. (130) as
M = 2m(egq,8(1 - 2iy) / dITCa(k)RE > (1) [Cr(O(x T (y)) = 1)]o(p). (131)
where
Rt (11) = R (111) + Rl (1), (132)

The divergent piece is

L () (oo (2)-

522
d1v ua (lll)

We can clearly see from Egs. (128) and (133) that the
divergent pieces for (S21) and ($22) exactly cancel leaving
only the finite pieces from these graphs toward their
contribution to the amplitude.

In a similar fashion, we write the amplitude for (524) as

524 )
MY = 27(egq,)?6(1 - 2l

dITOa(k)Ri Y (1, )

X [Cp(Ox U (y,) = 1]u(p), (134)
where
RV (1) = R (1) + R o(l).— (135)

eran(@) G i) Gl

(133)

The divergent piece for this diagram is provided in
Eq. (E25) of Appendix E.

Comparing this expression with the divergent part of
(523) [see Eq. (129)], we can check that there are indeed
UV and rapidity divergence cancellations occurring in the
net contribution from these processes. The only UV
divergent term that survives is the one whose Dirac
gamma matrix structure is y~y,y,. As we will show in
the next section, a similarly divergent piece is obtained
from the vertex correction graph labeled (V15) in Fig. 30
that cancels this UV divergence. The result for the finite
piece of the loop diagram in Fig. 34 is given in
Appendix E. This result has been used to compute the
finite pieces of the amplitude for ($22) and (S24) in
Appendix 3.
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We can now write down the

amplitude as

M ”F) = 27(egqy)?8(1 —Zﬁn)/dﬂio TSl )[CHT )T (y.) = D]}o(p),

where

24
S,ua llJ— Z R lU— {Z( leﬂa(llJ-) + Rgmte/m(lu_))} + (C] < Q>

p=13

final expression for the amplitude from the 12 processes
Fig. 24 (and their quark <> antiquark interchanged counterparts) that contribute to the “free gluon”

shown in
self-energy

(136)

(137)

The (g <> g) interchange in the above equation represents the contribution to the amplitude from the processes

labeled (S25) —
for (S13) — (S24).

(836). These are obtained by imposing the replacements in Eq. (66) in the result we computed

The divergent part of the amplitude coming from the 12 diagrams in Fig. 24 is given by

1 1
Z Rdw,m L) = ﬁT;IZo?(lu){ln (Z_) (

-0

(i) {2

()2 -(5)

1
(1) —*1 <O>T,]Z(9(lu)}

<4q%q 70:7/47/_

+1 14—11n
472 \e 2

The terms appearing in the first line of the above
equation are equal in magnitude but opposite in sign with
respect to the amplitudes from the six diagrams (S1) — (56)
given by Eq. (78). They will therefore cancel out when
we add the contributions from all possible self-energy
corrections.

There are two kinds of rapidity divergent pieces in
the second line of the above equation. (We have used

Zp 3B Sﬂ (i) =
The terms proportional to In(1/z,), with the coefficients
ABP) given in Eqgs. (119), (121), (122) and (125) contribute
to the LO JIMWLK Hamiltonian. Indeed, these are
precisely the terms that will give the double log limit of
the DGLAP/BFKL equations in the limit of large Q. On
the other hand, the terms proportional to In?(1/z) cancel
between real and virtual graphs; we will demonstrate this
explicitly in Sec. VL

Finally, the term in the last line of Eq. (138) is the UV
divergent piece that remains after cancellations between the
divergent pieces of graphs (S23) and (S24). This diver-
gence will be canceled by a similar contribution from the
vertex correction graph (V15) which also has a photon
nested in the gluon loop.

T5O (11, ) in writing the second term.)

()3

. (138)

C. Vertex graphs with dressed gluon propagator

In this section, we will compute the vertex corrections to
the LO amplitude in which the gluon crosses the nuclear
shock wave. As discussed in Sec. II1, there are two distinct
topologies with six contributions in each class. These two
sets of contributions are related to each other by g <> g
interchange. Following a logic identical to the discussion of
self-energy graphs, we will detail the computation of the
amplitude for one such representative process. The remain-
ing processes can then be computed following similar
techniques.

(1) Contributions to T,

(1)

The six diagrams contributing to 7'y,” in the general
structure of the amplitude given in Eq. (46) are shown
in Fig. 26. Their combined contribution to the
amplitude can be written as

(1).

MOV — 2z5(1 - 28,) (eq9)?

x /dnga(k){TQ;La(lu)

X [(PU(x )1*U"(y1))Upalzy)

- Cril}v(p), (139)
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FIG. 26. Vertex corrections proportional to Ti,l) in Eq. (46). The topology corresponds to that of a gluon emitted by the antiquark

which propagates forward and is absorbed by the quark after the ggg state scatters off the nucleus. The different diagrams correspond
then to the possible locations from where the final state photon might be emitted. By interchanging the quark and antiquark lines, we get

the diagrams constituting Ti,z). Those are labeled as (V7)-(V12).
where zi, = z, + 25 + 7, and L
Bl

V;m llJ.) ZRM(I llJ_

= Rm (i) + Ry (1), (140)

is the net perturbative contribution from the six q

processes which can be expressed as the combination L1

of a divergent and a finite part. We will see that there L2 I D

areno UV divergent pieces for these diagrams and the !

only singularities are those arising from the /= =0 FIG.27. The process labeled (V1) in Fig. 26 with momenta and

pole in the free gluon propagator. In the following, we their directions shown. We must subtract the no scattering case

will outline the steps leading to the above conclusion  from the above contribution to obtain the physical amplitude.

by considering the representative process (V1). This will correspond to the diagram above but with no crossed
The amplitude for (V1) with the momentum  and filled blobs.

assignments shown in Fig. 27 is given by

M%l) = (egqf)z/' y iw(k)yoSo(k + k, )1’y So(k + k, = 3)T y(k + k, = . + 1, = ,)So(q + 1} = )
1:02583

X 7,80 (ly = L)ty So (1) T 41y, —p)v(p) x Ggp;ac(l3)756;6d<l3v 5L)GYsap (L), (141)

where we remind the reader that the free fermion and gluon propagators are given respectively in Eq. (53) and the
corresponding effective vertices in Fig. 1. The various Lorentz indices appearing above can be contracted to obtain
the simplified expression given by Eq. (82) for the gamma matrices.

The integrals over /] and [; can be trivially performed using the delta functions appearing in the effective
vertices. The integrations over /{, /5 and /5 can then be systematically performed using Cauchy’s theorem of
residues. These contour integrations are non-zero for /3 in the range 0 < I3 < (k™ + k; ). Finally introducing the
gluon loop momentum fraction, z; =I5 /¢~ and subtracting the no scattering contribution we can write the (V1)
amplitude as

le()

M = 2a(ega; (1 -z Ay [ et (00 0 Unalan) €1 [ ST (142)
215831
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where the numerator and denominator are respectively given by

_ K+ K L _ _
N = alk)ya = ky —ﬁy rr(1—zg—z)q —vitky +k, ) +yi by
_ _ [ 0? 1, —1,,)
X[t (1—zg—z)g” —vi-(he — b))y, [}’+(Zq +u)q v (g + ﬁ +ri(h—hy)
G — 2
L _ _ _
x (n—ﬁy >[7*qu +r iy o). (143)
and
K3 kB (ki +k, —1)) ie(1 - z5)
D<V1):327 . 1 =7 — 2 —5( 1 + Y 31 14 q )
gaileg T2l =29 = a)) 22,97 22,97 2797 2(1-zg—z)q”  2z(l—z5—2)q”
% <Q_2_+ I%J__+ I%J‘_—[- (llL_IZL)2 __ 15(1—Z51) _)
2~ 27597 2zq° 2(1-zz—-z)q 2z(l —z5—2)q
2 _ 2 .
x <Q_+ hi=h)” £ _>. (144)
27 2Azgtu)l-zg—z)g 2(zg+z)(1 —25—2)q

Note that in these expressions we have canceled a factor of 2z, from the gluon effective vertex in the numerator with a
corresponding factor from one of the propagators in the denominator. This particular form of the amplitude given by
Egs. (142)—(144) will be useful later in Sec. VII. For extracting the UV divergent pieces we will redefine l, | — I3, —
Ly and I3, —z,/(1 —z5)(ky +k,,) = I3, to rewrite Eq. (142) as

dz NV
M) = 2(egayo(1 ~ ) [y [ el (@00 01)Viler) - 1) [ 2 / 145)
where the modified numerator and denominator are

k—l—ky ki—l—k; lé . 1
=S =z — g~k +k
2kk (1_Zq)q—7 qu_y v " (l=z5—2z)qg —v..(ky +k,\)

Xy~ [7*(1 —zg—u)q — 71 <lu

> (1, -1 - (k +k,))?
XYy [{7’+(Zq+21)6]— -r (Q—+ S e ) +h-<lu—lu— 1 jlz_ (kL +ku)>}
q

A
1-—

N(VI) :ﬁ(k) +YL'13L:|

g

§ (kL + kyl)) + h-lu]

2q~ 2(1-z5—2)q"
~ L, ( llL_IZL_li_IZ[_](kL‘l'kyL) _)l }
P a(l-z5—z)g \'* 2—z-wg )™
ki +ky; I+ 1 )
x (7 - “ - +7.d 146
<r T’ o ! rrzag +ro oy o), (146)

and

s 4z4(1 - 24)°(q7)?
DU = = P A AR A 47)
q

To write this denominator compactly, we have introduced the variables

V1)
"(u =L, +

(ki +k, —1,), ng) =0

1)
1 7z 4

N ; flz— (1 3 EZZ) B3+ Q%25 (1 —z5)l/z5 — i, Ag‘/l) =%zt )1 —z5—z) —ie
q q

(V1) <1 2 .
A = - 1- 2k.k,) — ie. 14
’ 1—Zq< l—z(—)( )i (148)
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The denominator in Eq. (147) grows as I$, for very large I3, . As we argued in the computation of (S1) in Sec. VA,
terms in the numerator in Eq. (143) propomonal to 3 3, and above vanish. This implies that the integral over /5, is at
most logarithmically divergent in the limit of large /3, . Collecting terms in the numerator proportional to I3, (and
using y'y/ L1, = <13, Y Vur” =29, = 28,-), we can write the piece of the numerator (in d = 2 — ¢ dimensions)
contributing to the UV divergence as

k"’ky - (p) {M_ngq-Fm}éﬂ_.

S(V1) o~
Nyyay = #(k)7a 7 A — (149)
However from the general expression for the amplitude of our photon + dijet production process in Eq. (16), it is
apparent that contractions of the virtual photon effective vertex given by Eq. (17) with §,_ will give the result to be
zero. This is a consequence of our choice of gauge. We therefore do not have any UV divergences in the (V1)
amplitude. There are however singularities arising from the /5 = 0 pole in the gluon propagator. They will be
regulated by imposing a lower cutoff in the integral over z; at zo = Aj/g~, where Ay was specified in Eq. (4).
To compute the terms proportional to logarithms in z; we will extract the contributions in Eq. (145) that are
proportional to 1/z;.

In terms of the constituent integrals given in Appendix B that appear in the computation of virtual graphs,

M |ty = 27(eq,9)26(1 = 2iy) / di a() Ry (4 )0 )10 () Upalz,) = CJo(p),  (150)

where

(v1) dz iy, ¥ TG (VD A (V1)

R l 21 -Fzy 4 5 2 V ) A
(I);ﬂa( IJ_) = / (27[)21 [u e ( )2 Va ok k [{ 239 m?’ q 7ﬂ7 7 }( ( 1 )
(

+ BT WYY AVDY) 4yt (1= 2)g — v vyt g + b (@S0 (v A
+ BT VY, AV, (151)

To obtain this expression, we redefined [, — I, — I, in Eq. (145). The constituent integrals here have the (finite)
expressions in d = 2 dimensions,

. - o (2 V3N
Ig; ‘”)<VJ_,A):—4— dal da2 K+A—J2_ V,
i —a Vivi s
I(3 J VJ_, / d(ll/ 062< A2 +K),
(.i) - I=ay vi
I'y (Vl, A) = —EA dal ‘/0 dazp, (152)

where a; and a, are Feynman parameters. For the process (V1) the arguments V| and A are defined in terms of the
factors (after imposing I, —1,;, — I;) in Eq. (148) as

V(LVI) —alv(u ) —l—azvg‘f),
AVD =gy (1=a) (0] + (1 =) ()2 = 2ema) 0l e AV 4+ e AV - (1= —ag) AT (153)

Interestingly, these arguments V| and A appearing in the constituent integrals too can be expanded in terms of the
gluon loop momentum fraction z; as

Vi = ¢l + zch, A = c3+ cu2; + €527, (154)
where the coefficients ¢; (j = 1, ..., 5) are different for each process. Using the above forms of the arguments one can

perform the integration over z; in Eq. (150) to extract the rapidity divergent term and a remainder piece which is finite.
In general, we can write the amplitude for each processes as
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Ml =21(eqr9)8(1 - zty) / A (k)R (1) [P0 (x )T (9 ) Upa(z1) = Crllo(p). f=1.....6,  (155)
where

R (1) = RGP (1) +RYY (1), (156)

The first piece is obtained from the contributions proportional to 1/z;. For the process (V'1), this contribution is the
one given by Eq. (151). Following the same logic as articulated for the self-energy computations, it can be written
(after extracting the rapidity logarithms) as the sum of a divergent contribution and a remainder term:

Rggli)a = R,%/fiev + ‘R . The remainder term is comprised of terms in the amplitude which are proportional to

1/z, but are devoid of logarithms in z,. We can combine this piece with other finite terms in the amplitude that are not

(VB)

proportional to 1/z;. The contribution of the latter is denoted above by R (I pa

and is computed in Appendix [ 4 for the

different processes.
With this decomposition, we can finally write the net amplitude from the processes in Fig. 26 as

MOV W = 27 (eq,9)28(1 = 28 / dIT (k) (Ryenet (1 1) + R (111))

< ("0 )10 (v1))Upa(z1) = Cr1]o(p), (157)
where
Ve (Vp) Vert Vp
dlvr;m ZRle/ﬂa llJ— Rtmlt[e pa llJ_ Z{%lm (llJ- (Hg;zm(lll)}' (158)
In particular, for (V1) we have
R (111) = Rl (l ) + {00 (11) + R (1) (159)

where the divergent term is

1 P K+¥ _ L Giif) (VD) (Vi 3.0j), (V1) (V1
R((hv ﬂa(lll) =In (ZO) ‘[ e Ly r, (q_)z}’a k. ! [{4qu 51';47/ Zq yy}, 4 }{Iv lo{gj ( (U_ >’Cg )) IJZS; lojg) (IJ_ )’CI(% >)}
21

- 3 Vi i Vi) (V1
Hrlr(1-z)a 7. lum 20 7Ll HT i (@1 8™+ BT el ™).
(160)
The integrals Z,,,, appearing in the above equation are the components of the constituent integrals in Eq. (152) that
are proportional to logarithms in z,. These depend only on the coefficients ¢; | and c; of the arguments V| and A of
the constituent integrals when they are decomposed in the form shown in Eq. (154). This is a very general feature of

our computation and we will express the divergent pieces for the other processes in terms of these integrals. Their
expressions can be obtained as

3.ijj - 21 ic2
Iilog)(clbc@ 8 2/ d051/ 0‘2( + ¢ l—% ;

3) 1-a, 5 c"c'
Iilog)(clLvCS /dal/ da2< 1

3,i 1—a i
I(U;lo)g(clj_’c3>: da1/ da, — 2, (161)

where repeated indices are summed over. For (V1), the coefficients ¢; and c; appearing in these integrals are
respectively
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@

c(l‘j_l) =l -l
ng) =a(l1-—a)l, + (1 -},

—|—2a1a21u.12L—|—a2Q2Zq(1 —Zq) (162)
Using the same techniques as described previously, it
is straightforward to show that the UV divergent
parts of the amplitude for the remaining processes
(V2),...,(V6) are proportional to §,_ and hence
yield zero. In addition, there are no rapidity divergent
contributions from the processes (V2) and (V5).
Therefore we need to compute only the finite pieces

Kﬂ,m (f =2, 5) for these diagrams.

The divergent term for (V6) is similar to the one
for (V1). The computation of the divergent terms for
(V3) and (V4) is especially tedious but can be
carried out along the same lines as discussed here.
These computations are cumbersome because we
encounter more denominators whose evaluation, in
turn, requires additional Feynman parameters in the
transverse momentum integrations. However the
arguments in these constituent integrals can again

interchanging the quark and antiquark lines in the
diagrams shown in Fig. 26. As in Eq. (139) their net
amplitude can be written as

MOV — oz5(1 - 22,) (eq9)?

< [ atato(r o)

X [(U(x )T (y1)1")Upa(z.)
- Cr1]}o(p), (164)

where

ZR

Vert (2
- Rle SHa

V;ta llJ_ llJ_

D) + R (1), (165)

is composed of divergent and finite contributions
defined by

12

be written generically in terms of the gluon loop (\i/;?/r:da Z d1v /la (1),

momentum fraction z;, as in Eq. (154). We will p=1

provide the results for the divergent pieces of (V4) in Vet (2 12 W)
Appendix G. The expressions for (V3) can be Rﬁmte ,m(lu) {ﬁRW (L) + R(H);,m(lu)}-
obtained following similar methods. p=1

Finally, the finite contributions from these 6
graphs ((V1) — (V6)) can be written compactly as

MVert'(l')

pasfinite

=27(eqpg)*5(1 — ziy)
6
v 5 n (V) v
X /dHLu(k) E (5}1,(4aﬂ> (liy) + REH)ﬁ)

ali)
p=1
— Cp1]o(p).

X [(t"O(x )1*U" (y1)) Upa(zy)
(163)

The detailed computation of each of these terms is
provided in Appendix 4.

Contributions to Tg/z): These are the processes
labeled (V7)—(V12) which are obtained by

v

(V13)
3)

(166)
In order to obtain Ti,z), we have to impose the
replacements defined in Eq. (66) along with a
change of sign in the various terms constituting

7 in Eq. (140).

D. Vertex graphs with free gluon propagator

There are two broad categories of processes with six
diagrams each that have the topology of vertex correc-
tions with the gluon not crossing the shockwave. Three
representative diagrams belonging to each of these

classes are shown respectively in Figs.

28 and 31.

The other half can be obtained by interchanging the
quark and antiquark lines. The second class of processes

(V14)

Y v

(V15)

FIG. 28. Feynman diagrams that give Ty,". Only half of the contributions are shown. The other half can be obtained by quark-antiquark
interchange and are labeled (V16)-(V18) respectively.
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labeled (V19) — (V24) actually resemble final state inter-
actions between the quark and antiquark but we will also
include them in this section. In the following sections, we
will demonstrate the computation of such amplitudes by
considering one representative diagram from each class,
with the full result given in the Appendixes.

(1) Contributions to T§,3): The diagrams contributing to

Tgf) in the general structure in Eq. (46) of the
amplitudes are shown in Fig. 28. The amplitude
for these six processes can be written as
M = 225(1 = 2) (eqy9)°
_ 3
X/dniou(k){T§/;La(llL)
x [Cp(Ox )T (1) = D]} o).

(167)
where
B)
Vﬂ(l (i) = Z Ru(1,1)
p=13
Rzllirfua (IIL) + stftte(ull(llL) (168)

is the sum of the perturbative contributions from
each process which can be decomposed into a
divergent and a finite piece. We show below the
computation of the divergent pieces constituting

Vert
d1v /w( § : Rdlv o lli
=13

(169)

by considering the representative diagrams (V13)
and (V'15). The latter has a nested photon in the loop
and hence has a topological similarity to the graph
(S24) in Fig. 24. We will see that there are indeed
divergent pieces that arise from this graph which
cancel the divergences appearing in the third line of

Eq. (138).
The diagrams labeled (V16) — (V18) are related
o (V13) — (V15) respectively by quark-antiquark

interchange; we can therefore obtain R/ (5 = 16,
17, 18) for these processes with the redefinitions
given in Eq. (66).
Fig. 29 shows the Feynman diagram for the
process (V13) with detailed momentum assignments.
The amplitude for this process is given by

MY / a(k)(~ieq;)raSo(k + k,)

h

X T o(k+kyq+1,)So(q +1L)T, (17, I7)
x So(11)T (11, —p)v(p). (170)

ll—ZQ ‘ll p >

FIG. 29. The NLO process labeled (V13) in Fig. 28 with
momenta and directions shown. Only the quark and antiquark
scatter off the background classical field in this scenario; as
previously, multiple scattering off this shock wave is represented
by blobs with cross marks in the figure.

The function T, (I{,[7) represents the gluon loop
contribution to the y*¢g vertex. Unlike the processes
discussed in the previous sections, where the sign of
the loop longitudinal momentum /5 is determined by
the location of the shock wave, there is nothing
preventing /5 from taking both positive and negative
signs. The expressions for the loop contribution for
these two cases are derived in Appendix F and are
given respectively by Egs. (F3) and (F5).

Using the delta functions present in the expressions
for the effective quark vertices in Eq. (26), it is trivial
to perform the /| integration. We get [{ = —p~ and
the overall momentum conserving delta function
8(g~ —p~ =k~ —k;). In order to perform the I
integration, we need to separately analyze the two
cases discussed above because the location of the /{°
poles are dependent on the sign of ;. The contribu-
tion to the amplitude for the process will then be the
sum of the individual results obtained for these
two cases.

(a) Case A: For 0 <I; <k™ +k, we have the
following locations of the /] poles,

12
N R
I, = T _—|—2 (above),
2 L, +1,,)?
lﬂbz—qJ’-i-z = u_ _ (21_+_1J_)
(k+k, —15) 21,
ie(k~+k;)
- below),
etk —1) o)
I? ie
It =—g* LR below).
ile=-4q G 2(k—+k;)( clow)
(171)

The second pole comes from one of the
denominators in Eq. (F3). We will enclose
the pole at /]|, for convenience.
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(b) Case B: For 0 > [; > —p~ we have the following locations of the /] poles,

| =1Ly
I, T +3 (above),
5 (L +1,)? iep”
[P YRR - Sk WO above).
R S I T s B
N N 5, ie
I, = —q* + - (below). (172)

20+ k) 2k +k,)

In this case, we will enclose the pole at /] |...

Using these results in Eq. (170) and finally subtracting the no scattering contribution we can write the
amplitude for (V13) as

K+¥ vk +k) =yl
“2uk, 261,—[1%L + ALO]

MUY — —ieq,2n5(q- — P) / AT, )T (y,) = DKy,

) AT o =p7) + TR oo =P )} p™ o iy o(p), (173)
where
ao 5 r*(l=zg—z)q +v~ z(lfiizl)q—‘f‘h-lu
Fﬂ(ll |a? lequ CF/ / y 1% 7ﬂ
Ly (L +v{ )* +A]
y+(Zq+Zl)q__ ( +2(1 -z z,)q ) _YL'IZL IJ< +(lz+l1)ﬂnl,—|—(lz+ll)ynﬂ )
X — —9pv — s
2B + Qe+ u)(1 = 2= ) — ie] ’ 2 .
(174)
and
LB(1f )., —p~) = ieq QZCF/ Zl/ sz - <24 +2<z +a> ) e IMJ’
pebe ! by (l2l+v2J_) +A¥ .

2

_ ., .~ B
) Y (zg+z)a +7r 42(1 o) yARUTE - (—g N (L +1)gny, + (I + 1),
2B+ Q% (2 T 2)(1 -2 —2) — ie] ﬂ”

Iy

g
(175)
In this expression, we defined z; =[5 /¢~ and introduced
v _I_Zé_zll AV (@ B+ Q%%(1 - z9)
LT I LT 1 ’
~ g Y Y g
7tz B+ 0% (1 -z,
p =2y A= (1 +Zl> 1L+ 0724 "), (176)
<g g 2 l—Zq
and
o= o B B, S Lo B 1! (177)
297 27 27,7 2(0-zz-2)q] 2
q 2349 g —)q

27 2(1-zz)q~ 2(zz+2)q”

If we use the identity in Eq. (D3) to expand the terms in the r.h.s of Egs. (174) and (175) we can infer that the
singular logarithms in rapidity will come from terms proportional to 1/z; whereas the UV divergent pieces will
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come from terms proportional to B I, lélé and I3,. We regulate these divergences using dimensional
regularizationind =2 — ¢ dlmensmns We will therefore require the following constituent integrals to compute
the divergent pieces of the vertex correction terms in Eqs. (174) and (175),

ﬂez'gz,ijj)(VL A) :ﬂe/dz_glzl l%l_li
(2z)*< [, (o +v1)*+ Ay

Al ) H6(0) 5

MEI?’U)(VL A) _ Me / dz_leL lélé
22 B, + A[(ly +v1)* + Ay

41” { (1 + ;m @22))5” + / da( <i2> 5 + V:”) } (178)

VLZCWL, A:Wi+(1A2+(1—a)A], (179)

where

and a is a Feynman parameter. The forms of these arguments are different for the two cases. Employing all the
above results, and a fair amount of algebra involving gamma matrices, we finally arrive at the following result
for the amplitude (V13):

M = 27(egq)28(1 = 2by) / dIOa (k) Ry (1, )[Cr(O(x )T (v1) = 1)]o(p), (180)

where

1 1 1 1 P2 3/1 1 2
R0 = g {n(5) (G 3m(5) ) -3 (G +am(Ge) ) o O + Rl s

In an identical manner, the amplitude for (V14) is computed to be

1 IN/1 1. (@ 3/1 1. [
R%.@(,lﬁ:4—,,2{1“<?3><E+51“<@)>‘5(2%"‘(@ R 10) + Ripicylis)- - (182)

One can therefore rewrite the amplitudes for (V13) and (V14) in terms of the amplitude for the leading order
processes (labeled LO: (1,2) in Fig. 8) as,

: V13
via) | 2 02 0? LO:(2 Vid )
Mﬁm ) T 2 ZO 2 Q 4 2 Q Mﬂ” ® Mi'inite?/m

(183)

We will now outline the computation of the amplitude of the graph (V'15). This is considerably more tedious
than the previous two diagrams because the presence of the real photon in the loop allows for two possible
regimes for the integration over /5 when [; > 0, namely Ag <I; < k™ and k= <I; <k™ + k. To see this
explicitly, we will start with the amplitude for (V15) (see Fig. 30 for the Feynman diagram with momentum
assignments) given by

M = / l w(k)T ,(k.q+ 1y + 1 — k,)So(q + Iy + L — k) (igr*)y"So(q + 1y — k,)(—ieqs)yaSo(q + 1)
2

x (=ieqs)y,So()(igr”)r*So(ly + L) T o (I + L, —p)v(p) X Gy, (L) (184)
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l1+ 1o p

FIG. 30. The NLO process labeled (V15) in Fig. 28 with
momenta and directions shown.

As usual, the integration over /] can be trivially
performed using the Dirac delta functions con-
tained in the effective vertices. The integration
over [; and I will be performed using the
theorem of residues where the choice of con-
tours is decided by the sign and magnitude of
[5. Expanding the denominators of the propa-
gators we can see that there are three /5 poles
located at

(llJ_+12J__kyJ_)2_ i€
2k~ 2k’
(lu+lzl)z+ i€

Llo==q"+k =l +

i), =-If - ;
2 |b 1 2p— 2p—
B ie
L= ——. 185

Clearly the locations of |, and I, are well
defined by the signs of the external longitudinal
momenta but the pole at |, can be below or
above the real [ axis respectively depending
on [; being positive or negative. We therefore
have two cases similar to the computations
of the graphs (V13) and (V14) in Fig. 28.

|

However for the case /, > 0 we can have two
separate contributions depending on the mag-
nitude of /5 relative to k™.

For 7 > 0, if we enclose the pole at /3|, in
the contour integration over /;” we have four [
poles located at

(L1 —k, ) e
2k =) 20k =15)

Ifo=—q"+k +

5, ie
2(k™+k;=1;) 2(k”+k, =13)
I? ]
Hlo=—smt =
2(I;+p7) 2(L+p7)
(lu_'f’lzj_)z I%L i€ ie

= t)” By e e e
la - anTan T, (186)

Ifly==—q"+

For 0 < I; < k= we have the poles at /||, and
I7|, located below the real /] axis whereas the
remaining two are located above. We will deform
the contour clockwise in our computation. For
k= < I3 < k™ + k; we have the poles at I |, . 4
located above the real axis and that at /] |, located
below which we will enclose through a clock-
wise deformation of the contour. The total
contribution to the amplitude for the case
5 > 0 is therefore obtained by summing these
individual contributions. The case [5 <0 is
simpler because we have a single pole located
above the real /| axis whose contribution ob-
tained through an anticlockwise deformation can
be computed using Cauchy’s residue theorem.

The UV divergent terms are obtained from
pieces proportional to the constituent integrals
730 and 78U There are no rapidity
divergent pieces from this graph. We can finally
write the amplitude for (V15) as

M = 2n(egqr) 5(1—Zﬁn)/dﬂi°ﬁ( R (1) [Cr(O(x )T (v,) = 1)]o(p), (187)

where

Ya¥u?~

R(V15>(l )__L 1_|_11n /’172 Z%Z(‘i +R<V15 (l ) (188)
e )= (2" @) 2= (=0 ) [, )y a0y T Rimenellis

contains the divergent piece that exactly cancels the residual divergence in the sum of the contributions from (523)

and (524) in Fig. 24.

The finite contributions to the amplitudes for these processes are part of

M) = 215(1 - ziy) (eq,9)? / ATz (k ZR ) [Cr(O )T () = Do), (189)
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where the expressions for Rgl‘;ﬁi (f = 13,14, 15) are provided in Appendix I 6. As in the previous cases considered,

Eq. (66) allows us to obtain the corresponding expressions for the finite contributions of the ¢ <> g interchanged
processes (V16)) —(V13).
(2) Contributions to T‘f : The final set of virtual gluon exchange diagrams are those with final state interactions between
the outgoing quark and antiquark. These are shown in Fig. 31.
The amplitude for these processes is given by

MgVt = 275(1 —Zt%t)(equ)z/dnio ATy () O ) T (1)1, = CE}o(p),  (190)

where

(vp) Ve Ve
V/m llJ_ Z RMU’/ llJ_ Rdlvr;wc)(lll) + er:e;m(lu) (191)
B=19

We have again expressed the perturbative contributions from each process as the sum of a divergent and a finite part.
We will see that there are only rapidity singularities associated with these processes. We will detail below the
computation for one such representative diagram (V19). The amplitude contributions for the other two diagrams in
Fig. 31 can be obtained following similar methods. In order to obtain the expressions for the ¢ <> g interchanged
counterparts of diagrams (V19) — (V21) we will use Eq. (66) in R(V19) — R(V21),

Figure 32 shows the Feynman graph for (V19) with the momentum assignments and directions. The amplitude for
this process is given by

Mua? = (eqr9) / B aSo(k + k)1 Solk + Ky = )T (k- Ky = g+ 1)So(q + 1)
1:62

X 7,So(1)T (i, =l = p)So(=L = )"y v(p) Gy, (L), (192)

where the free quark and gluon propagators are given by Egs. (53) and the effective vertex for the dressed quark
propagator is given by Eq. (26).

The integration over /| can be trivially performed using the delta functions contained in the effective vertex factors
resulting in an overall longitudinal momentum conserving delta function §(¢~ — p~ — k= — k). We next perform
the contour integration over /| by enclosing the single pole situated below the real /] axis. This results in the
following expression for the amplitude:

_ B ) N(V19)
MY = 2n(eq,9)6(q - pm — k- — k) / A0 0 (x ) 0 (y1 )1, — C 1] / A / ' (193)

D)

L, 1503
where the numerator and denominator are respectively given by

v Y v

(V19) (V20) (V21)

FIG. 31. Contributions that constitute Ti;”. The other three diagrams labeled (V22)-(V24) are obtained by swapping the quark and
antiquark lines.
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K+k v

(V19) _ 5
N u(k)y,—~——+ 2k,

Wtk 4k, =15) =y .(ky +k, =L )ly [y (k- +k = 15)—v..4]

Lygn, + lhyn
Xy r (G +p7) +ro iy (G 4+ p7) v (L ) v(p) <_gﬁu + w» (194)
2

and
(V19) = L =N L — 1=\~ 112 > . B e
D =165 (l; +p7 )k~ +k, = L)g [l + O (zg +2)(1 — 25— z;) —ig]{ 1) — 21_+21

l JFPL)Z ie (kL‘f'kL—lQL) ie
x| T+ +—(u + -kt =k + ! - . (195
(2 T R Ty k-5 2tk i) 1Y

If we use the identity in Eq. (D3) for the numerator, we see that it is at most proportional to /; and hence the contour
integration is well defined. There are three ] poles located at

2 - 2 .
l;|a:lz—{—l—g_; l;|b:_1’++<lu_+pl_) - _ze =
2L, 21 20 +p7) 2G+p7)
(kJ_+kJ_—lzJ_)2 ie
+ — et + r
Ble=k At = et~ T e -6) (196)
|

The location of the first pole clearly depends on the 0, contributes zero to the cross section, we can

sign of /5. We therefore have the following cases: easily see that (V19) is UV finite.

(a) Case A: For 0 < I; < k™ + k; we have I3 |, and There are however rapidity singularities and to
15|, located below the real [, axis whereas [; |, extract them we need to isolate the terms propor-
is above. We will deform the contour anticlock- tional to 1/z,;. Following the conventions used in
wise to enclose this pole. Sec. V C we can write the amplitude for (V19) as

(b) Case B: For 0 > [; > —p~ we will deform the
contour clockwise to enclose the pole at 5|, M,(m =27n(eqrg)*8(1 — ziy)

We are only interested in extracting the diver-
gent pieces for these two cases. Redefining [, | + X / dnﬁoﬁ(k)R,%lg) (L)
l,, — 1, we can get rid of the transverse phase . .
containing I, in Eq. (193). The denominator is x [1Ux )U (v, )1, = Crlo(p),
now proportional to 3, in the limit of large [, . (197)

Further, using the fact that terms proportional to
where

R (1) = (R (1) + R (1)
(V19):A V19);
+ {R ll ;m (lll-) +R(11 ”a (llJ_>}
Réxllza (lll) + Rﬁlzlltz U (lll)
(198)

We have here terms proportional to 1/z; for the

—ly —p D two cases A and B denoted respectively by

REI‘; 19):4 and R ‘;19 . Contributions from terms

FIG. 32. The NLO process labeled (V19) in Fig. 31 with

momenta and directions shown. This is representative of final . d d velv for th
state interactions between the quark and antiquark after they plece(svagc)e enote z‘glsgectlve y for the two cases

scatter off the shock wave. by R( ) and R( ) From the first set of

not proportional to 1/z; and hence yielding finite
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terms, we will get a logarithmically divergent
contribution leaving behind a finite remainder.

Adding these remainders with the other finite
contributions REK; 9)A.B results in the net finite

contribution from this process:

Ripo) (1) = {0 () + R A 111)}

+A> B, (199)

where the remainders are given by

R A2 ) =R @ ) REAE ).

(I)spa diviua
(200)

With these definitions in mind, we will now
write down the expressions for the contributions
proportional to 1/z; for the two cases consid-
ered above.

(a) Case A: 0 < Iy <k +k,

A(V19);A)

9

(V19):A 1 dz;  K+K, (i) (VIA A (V19):4 TG (V194
R(I);ﬂ(l (llJ_) - 2( _)2 / (2”) Ya 2%k, k [ (1); IU (VJ_ 5 A ) + R( (VJ_
; 7G4 V19):4 ; ; 3.0) v ,(V19):A .
R R] J)(VS_ ) ’A(Vl‘) ) (R +R(4)R<1);M)I§, )(Vi ) ’A(VIQ),A)

3.0) v, (V19):A A
- R@)sz‘v (VP A, (201)
where the coefficients multiplying the constituent integrals are given by

Rl =429 60 =207 v 77 Reu=vrlr(1-z)q —ridilrlrzae +rodidr,

The expressions for the constituent integrals are given in Eq. (152). We can always express the arguments V| and

A of these integrals in terms of the gluon loop momentum fraction z;, as in Eq. (154). For the purposes of the

discussion in this section where we extract the logarithmic singularity from Eq. (201) we will only require the
(V19):A (v19)

expressions for the coefficients ¢;, " and ¢

We can now finally write the rapidity dlvergent piece for Case A as

RV (lu)ln< >k+k}'[ LS 194 AVIONAY 4 Ry T (V194 o019

diviua 2k.k ™ vilog 1L ’ /4 vilog \" 1L ’
i 31 V19):A i i 3. V19):A .
- R( RI Vo™ v lojg) (C( ) ’ AVI9:A ) (R R + R(4)R(1);ﬂ)zg);lo?g(csi ) ’ A(Vlg)’A)
~Rig R Loap(ei”, AV, (203)

where all but one of the integrals8 appearing above are given in Egs. (161). The arguments appearing in these can
be obtained for case A as

(V19);A

e, " =—agly {1 =z5)p —z5(k +k,1)}
CgVIQ);A = al(l - al)lﬁ + az(l - az){(l - Zz‘])PL - Zq(kL +k;¢)}2
+ 200, (1 - Zq)PL - Zq(ki +ku)} + alzq(l - ZF{)QQ
—az5(1 — 25)(2p.k + 2p.k, + 2k.k,). (204)

$The only missing expression is for the integral Z' " 1o)g (c11.63) = g2 [y doyy Jo 7 day(1/63).
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(b) Case B: 0 > I > —p~

(V19):B 1 dz; K+ K i Gy, (VI9)B 70 (yV19):8 :
Fowa (1) =352 / Gy 2k, RluTe ™ (VI AVE) 4 Ry, T (VL A010)
Rz R’ % IJ)(V(lV19);B’A(V19);B) _ 7:\)”('3)7?’(2):MI§’3J)(V(LVlg);B’ A(v19);3)]’ (205)
where the coefficients R(; 2 4) are the same as in Eq. (202) and
Riyy = 225(k' + k) =2(1 = 29)p" = (k¥ + K,)r'z5- (206)

The divergent piece for Case B can now be obtained as

K+ K
“2k.k,

RV19)

. 1
div;yc;B (llJ_) ln( )

(1) vilog

_ R’ RJ (3 11)(05‘119);147 AV19);

)i 1) ;log

with ¢; | and c¢5 defined in Eq. (204).

[R I<3’ijj)

V19):4 3. V19):A .
c(u ) L AVI9A )"‘Rz )it ykl;g CEL ) ’A(Wg)’A)

Combining the results for the two cases, we obtain the net divergent contribution to (V19) as

Rgl:/vlsa (lll>

where RSK/IQ)

(V19);

) = Ry Ry Loged (€74, aV194)], (207)
dlvua (lll>+R(<jK/1;2¢)x;B(lll)’ (208)

and Rfﬁ/vlg);B are given respectively by Eqgs. (203) and (207). The expressions for the divergent

pieces of the other contributions are provided in Appendix H.

VI. CONSTRUCTING THE INCLUSIVE
PHOTON +2 JET CROSS SECTION

In this section, we will define jets9 using the small cone
algorithm of Ivanov and Papa [82] to extract the collinear
and soft contributions from the expressions for the squared
amplitude in the relevant diagrams of real gluon emission
processes. These jet definitions can then be employed for
amplitudes with virtual loops. When their cross sections are
combined with gluon emission contributions including
collinear and soft divergences, we will obtain a finite cross
section for inclusive photon production in association with
a quark-antiquark dijet.

Following the general definitions in Sec. II, the differ-
ential cross section for inclusive y + ¢g production at NLO
can be written as

ddghtOparton _ (ngq;lc VNe 1 I LIWXNLO sparton
dxdQ?d®K | d*nx  5122°Q% (27)*2

(209)

?Although the underlying principle is identical to prior dis-
cussions in the literature [80,81,83—-85,95] that utilize the small
cone condition, the framework in [82] is best suited for our
computation.

where X OP"" represents the NLO contributions to the

hadron tensor, in analogy to its LO counterpart in Eq. (34).
Its computation was outlined in Eq. (42) and carried out in
the previous two sections. The superscript “parton” indi-
cates that the various components that build up the hadron
tensor in Eq. (209) are all calculated at the parton level. We
will now discuss how to promote these quantities to the
level of jets and shall construct the inclusive cross section
for y + 2 jets.

As a first step toward writing down our final result, we
refer the reader back to Table II. This table contains all the
elements to construct the cross section organized in terms of
their color structures. Those with identical structures are
placed in the same row, which makes the cancellations of
divergences transparent. We begin with the virtual graphs
discussed at length in the previous section; the structure of
their divergences is apparent at the amplitude level. For most
of these graphs, the divergent pieces are proportional to the
LO amplitude; hence their interference contributions with
the LO amplitudes are proportional to the LO cross section.

We observed that the UV divergences arising from the
self-energy graphs with dressed gluon propagators cancel
with the divergent contributions from the self-energy
graphs (S13) — (5§16) where the gluon does not scatter
off the shock wave. A similar cancellation of divergences
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that are proportional to the LO cross section also occurs
between the graphs (S21) and (S22). In addition, there are
a few virtual gluon exchange processes, unique to photon +
dijet production, which do not have a divergence structure
proportional to the LO cross section. In these graphs, the
photon is nested in the gluon loop for both self-energy and
vertex contributions. These correspond to the processes
(S24) in Fig. 24 and (V15) in Fig. 28 (and their ¢ <> g
counterparts). However as shown in Sec. V B, there is an
intricate cancellation of divergences that takes place
between the net contribution of self-energy graphs (523)

|

NLO;parton
X

Virtual

() (s
b1 7 e 2

T

The parton level LO hadron tensor is defined in Eq. (35).
Recall that (---) corresponds to the CGC averaging in
Eq. (23). The operator Hy here contains bilinear functional
derivatives in the classical gauge field A; as we will
discuss in the next section, the action of these on the color
structure E of the leading order cross section given in
Sec. II generates the leading log color structures of the
NLO cross section. The computation of the various pieces

that constitute the finite contribution from the virtual graphs

SNLO:part
(denoted above by X, 5 """ |\;a) are spelled out over

seven subsections in Appendix I.

In this section, we will focus on the divergent structures
shown in the first line on the r.h.s. These are the residual
collinear singularities that survive after cancellations of UV
divergences between different individual graphs in the
virtual amplitude. One must therefore combine the cross
section containing these divergences with those of the real
qqy + g cross section to obtain further cancellations.

For real gluon emission processes, it is difficult to extract
their soft and collinear structures at the amplitude level.
One needs to evaluate the squared amplitude and then
integrate over the phase space of the outgoing gluon to
recover these. In the notation of Table II, contributions from
processes in which the gluon interacts with the shock wave

|

SNLO;parton
X P

Real;scatter

= ag 1n< >HR ® XLO ;parton + XNLO ;parton

uvfinite

and (524) in Fig. 24 and the vertex contribution from
(V15) in Fig. 28. The rapidity divergences also cancel
between the diagrams {(S21), (522)} and {(523), (524)};
they therefore do not contribute to the JIMWLK kernel.
From the net UV contributions of virtual graphs, we are
therefore only left with the divergences from vertex
contributions with free gluon namely (V13) and (V14)
(and their g <> g counterparts).

We can now add the amplitudes for all the allowed
virtual graphs and obtain the following result for their
contribution to the NLO hadron tensor:

x (ML (q.k.p.k,))" (MN-OSE(q k. p.k,) + MNOVer (g k. p k)% + c.c)

_2(ZSCF§ 1+1] ~2 XLOparton
7 2\e 2 Q2

2aC ~1.O:ps
n g Fl 2 <Z >Xbl9,pmon + as 11’1( >HV ® XLO parton + XNLO parton
0

(210)

pvsfinite
virtual

(denoted as TEQU) do not contain soft or collinear singular-
ities. This is because the gluon gains a net transverse
momentum from the cumulative effect of successive
“kicks” received during multiple scattering off the shock
wave. Likewise, any soft gluon emitted before the shock
wave is not energetic enough to cross it without being
reabsorbed. This is true for the squared amplitude propor-

tional to TE;)*TEJ) as well as the interference contributions
of such graphs with those in which the gluon does not
scatter off the shock wave; the latter are proportional to
Tg) *Tg) and Tg) *Tg) in Table II. The only kind of
divergences present in these contributions are the small
x logarithmic singularities which can be isolated by taking
the slow gluon limit, k; — 0 in the results obtained in
Sec. IV. We will demonstrate these in detail in the next
section. One can then obtain the finite contribution to the

(1)

cross section from 7'’ and its interference contributions

with T§?2.,3) by numerically evaluating the gluon phase space
integrated results for the appropriate squared amplitudes in
Egs. (49), (67) and (73) and then subtracting the pieces that
contribute to leading log JIMWLK evolution.

Such rescattering contributions can therefore be written
generically as

NLO;Real(1)\ x NLO;Real(1 NLO;Real(2 NLO;Real(3) \ NLO;Real(1
o (M (M D) (M N 4 MO (GO - ce)

, (211)

real scatter
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where the term proportional to the small x logs can be

expressed as the convolution of an operator Hg) [analo-
gous to Hy in Eq. (210) above] acting on the leading order
hadron tensor. This too will be discussed in the next
section. The finite pieces can be evaluated numerically;
doing so will be a topic for future work.

The gluon emission processes of interest in this section
will be the ones in which the gluon does not cross the shock
wave and we have a region of phase space where it can be
soft or collinear with respect to the quark or antiquark.
Depending on whether the gluon is emitted from the quark
or antiquark, we have denoted the contributions from these
kinds of processes respectively by TE?’ and Tg). It is clear
from the first column of Table II that we get different results

for the respective color structures in the NLO cross section

depending on whether the processes constituting T%m)

interfere between themselves or with their ¢ <> g inter-
changed counterparts. This dependence on color flow at the
loop level is absent for the case discussed in [54—-56] where
the ¢g is projected on to a singlet final state. We will show
that these differing color structures have interesting impli-
cations for soft gluon factorization.

Since we are not integrating over the phase space of the
quark and antiquark, combining the NLO cross sections for
qqy and qgy + g will not in general cure all infrared (IR)
singularities. We will still have a remnant collinear diver-
gence which can be absorbed in the jet fragmentation
function of the quark or antiquark and this can be
interpreted as contributing to the evolution in energy of
the fragmentation function. Conversely, we can construct
an IR-safe cross section for photon + dijet production by
using a jet algorithm that restricts the phase space for the
final state gluon.

Following [55,82], we will work in the small cone
approximation (SCA) in which the extent of the jets in
the rapidity-azimuthal angle (Y, ¢) plane is small, or more
quantitatively, the jet cone radius R is not too large
(R? < 1). In this approximation, one then systematically
expands the partonic cross sections around R = 0. The
dependence on R is of the form Aln(R) + B + O(R?),
where the coefficients A and B can be evaluated analyti-
cally and the terms that are power suppressed in R” are
neglected.

For the inclusive computation of the photon + 2 jet cross
section there are three possible cases that we need to
consider:

(1) The gluon is inside the cone of either the quark or

antiquark,

(i1)) The gluon is outside the cone,

(iii) The gluon forms one of the jets, while the other jet is
formed by a ¢g pair.
We will not consider the third sort of contribution in this list
because it does not have a collinear divergence and is hence
subdominant in the SCA. A short proof is provided in
Appendix J.

We will therefore first isolate the singularities from the
region of phase space where the real gluon is collinear to
the quark or antiquark and shall use the SCA framework to
identify when two partons form a jet. For a jet cone radius R
(R* < 1), two partons i and k with respective momenta p;
and p,; will form a jet “J” carrying a momentum equal to the
sum of their momenta if both partons satisfy the condition

Ap? + AY?, < R (212)
Here Ag;, is the difference of the azimuthal angles
between parton i (k) and the jet; AY;  is the corresponding
rapidity difference. In the SCA, the jet constituted of the
partons i and k is considered on-shell (up to O(R)
corrections) and hence its momentum can be written as
ps =P/ + Py 20q"PiL +Pr0) (213)
where z; = (p; + py)/q7s pi + pi ~PjL/22,q"- The
quantities on the l.h.s of the inequality in Eq. (212) are
given by [82]

_1f PiLPikL
A¢p; = cos™! <7> ,
o Psolpisel

1 2 p?
Ank:—mcgamf>.
’ 2 JL Zik

Here z;; = p;;/q~- We will introduce the “collinearity”
variable

(214)

i Tk

= 215
Zi+ka 1 (215)

Ci1 Dil,

pL ——
Zi + 2k

which approaches zero when the partons i and k are
collinear (p,; — z;/z;p;1)- It is then possible to rewrite

Zi

Z,'—FZk

piL PkL =Pj1L —Pil (216)

Psi—Ci

and express the quantities in Eq. (214) in terms of C; | .
The small cone condition in Eq. (212) can then be
equivalently written in terms of this collinearity variable as

C2. | < R’p?, min 4 4 (217)
ik, L pPjL 2'22)

We will now use the above definitions to extract the
collinearly divergent contributions from the processes in
which a quark and gluon constitute the first jet J and the
antiquark constitutes the second jet “K.” The parton level
Feynman graphs for these contributions are shown in
Fig. 20. The corresponding expression for the quark-
antiquark interchanged diagrams are obtained simply by
J < K symmetrical replacements. If we look carefully at
the diagrams in Fig. 20, processes labeled (R12) — (R15)
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have a gluon emitted by an on-shell quark with the
remaining structure identical to those of leading order
(LO) processes depicted in Fig. 8.

It is physically intuitive that the divergent structure of the
amplitude squared for these processes will be proportional
to the LO amplitude squared. We will see that this is indeed
the case. For the diagram labeled (R11) (see Fig. 21) the
collinearity of the gluon with respect to the quark is lost
because the photon emitted after the gluon imparts a
virtuality 2k.k, to the quark. However in the soft photon
limit k, — 0, the quark goes on-shell and can be collinear to
the gluon. In the case of the amplitudes for the graphs
(R12) — (R15) in which the gluon is emitted after the
photon, we see from Egs. (C10) to (C13) that there is a
possible divergence in the collinear limit k,; — z,/z,k .
Because there is a similar term in the numerator of these
expressions, the structure of the singularity becomes trans-
parent only at the level of the squared amplitude.

It is also easy to check using the expressions for the
amplitude that for interference contributions between dia-
grams in which the gluon is emitted from the quark in the
amplitude and from the antiquark in the conjugate ampli-
tude (or vice versa) there are no divergent terms in the
collinear limit. Collinear divergences arise only when the
gluon is emitted and reabsorbed by the parton to which it is
collinear.

For the case where quark and gluon form the jet J, and
the antiquark constitutes jet K, we will introduce the jet
variables,

(ZJaPJJ_, Ik Pk1> ng,ﬁ

Z
= (Zq + Zg,kL +kgL,Zq,PL,Z_j (kgL - Zg/quL)) )

(218)
so that the d-dimensional phase space differential measure
transforms as

dz, dz;  dz, d%, d'p, Ak,
(27)2z, (2m)2z5 (27)2z, (27) (27)¢ (2m)?
dz, dzg dz, d’p,. d'pk. ddcqg,J_ <y
(27m)22; (2m)22k (27)22, (272)* (27)¢ (27)¢ 25—z,
(219)

—

After summing over the spins of the quark and antiquark in
the squared amplitude and using

N ellky)eti(ky) =87,

gluon pols

(220)

for the sum over gluon polarizations, it is a straightforward
exercise to show that the following relation holds in the
collinear limit ng_ 1. =0,

15 15

> > M M
collinear

p=120=12

{4(z; - Zg)ZJ =+ dzé}(ZJ - Zg)

32
ZJng.J_

= 47zaSCF

MO MEOs,
(221)

When we integrate over the phase space of the gluon, the
small cone condition given by Eq. (217) restricts the
integration over C,, | to be
2 2
(72 (25— z,)
Ctzlg,J_ < Ctzlg,l-|max = RZP%J_ min <£’?g) . (222)

Here d = 2 — € as previously. We will denote this collin-
early divergent (dominant) contribution to the cross section
from the amplitude squared of processes (R12) — (R15) as
X} linear- From Eq. (221), and employing the phase space

factors on the r.h.s of Eq. (219), this is given by

XNLO

2y 1 1 4
oollinear = | @sC / dz {4(———>+(2_€)_-"}
uv;collinear |: S“F . g 7, Z%

C2 1 ‘max dz_ecqg 1 ~1.0:j
~ € q9. X X ¢ ,]et’
S )
(223)

where X,.>7 is shorthand for the LO hadron tensor for the

production of a photon plus the quark-antiquark jets
J and K.

This quantity is equivalent to the LO hadron tensor for
v + ¢gg production if we make the following replacements
in Eq. (35):

(ququkLPL) = (27, 2k-PsLPKL)- (224)
The lower cutoff on the gluon momentum fraction z,, is set
to zo = Ay/q~ as in the previous sections. We will use the
following result in dimensional regularization for the
transverse integral,

Gl d2C, 1 /1 1, (@
H e = —Ho | taIn o
(2m)>=C,, 1 2z \e 2 \Q

1 cz max
+—1In (%) . (225)

47

The expression for the collinear contribution to the cross
section from the g <> g interchanged counterparts of
(R12) — (R15) is obtained simply by J <> K symmetry.
The net contribution from these processes is
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v NLO 0 — < —
X/u/ ;collinear + q<~>4q9= {

3
—In(z,zx)

e (R%MM)

4 4ZJZKQ2€J/E

2a5Cr (1N (1 1. (i
i bl Y (i I (I P i
—o(z) @ anl(z)

+ 2a5Cp {ln <i> (ln <R2[P/¢|l2p1u
b2 ) zyzxQ e’E

)(3)) + Grem(gics) + )
7
ti

2a5CF§ 1
2 \e

i LOsjet
()

2
T LO:jet
_}x,w .

. (226)

Now replacing parton momentum definitions with the jet definitions in Eq. (224) for the virtual contributions, we can
combine the above result with the contributions from the interference of virtual and LO graphs in Eq. (210) [as well as the

rest of the real contributions in Eq. (211)] to obtain

+ XNLO jet

Virtual

NLO;jet
X

+ {ngg)llinear + q < Q}

Real;scatter

2 1 R? R’p?
_ 2asCr {ln<—> ln<7lpu‘|lzpm‘|> + < In(z )ln(
b4 20 77z Q°e’E 2 b4

7
476

We observe clearly in the above expression that the
collinear divergences cancel and so do the terms propor-
tional to In?(1/z,). We are however left with a term from
Eq. (226) that contains a soft-collinear divergence propor-
tional to In(1/zy) In(R) (in addition to finite pieces for a
fixed cone size R).

Recall however that this result is obtained in the collinear
limit C,, | — O of the real graphs as shown in Eq. (222).
The dominant contributions to the inclusive cross section in
this limit are when the gluon is inside the cone of the quark
|

. NLO:Real(2)
lim (M-
k_q—>o( pasb

{(r O )0 (1) = 1) o = ()T (3 )ty — 1)L
pU X 1 b K X 1) bp

+ sub-leading terms in k.

The subleading pieces come from the process (R11) (and
its g <> g counterpart) where the gluon is emitted from an
internal fermion line as well as from the next-to-leading
soft terms in the amplitudes for (R12) — (R15) (and their
q <> q counterparts) in the expansion around k, = 0.

Squaring this expression, summing over the gluon
polarizations, and taking the CGC average over all possible
static color charge configurations, the dominant soft gluon
contribution to the NLO hadron tensor (and hence the NLO
cross section) is

XNLO

_ yNLO v NLO
uvisoft —— X (1) +X

puv;soft uv;soft(2)?

(229)

2 .
+__7T_} LOJet+a 1n<z >(Hv+HR )®)~(};E);Jet+XNLO]et

PjL 3 3 R*p,.|lpx.|
S Ry DN | -
; Q2(375> +J o > 2n(zsz) =7 In yE—T
NLO;je
uvifinite +X ufmjlt(: (227)

virtual real scatter

or antiquark jet. When one additionally requires the gluon
to be soft, there can be contributions where the gluon is
outside the jet cone. As we will now demonstrate, the jet
algorithm when applied to the case of a jet formed by a
single parton generates soft-collinear terms with opposite
sign that exactly cancel those obtained in the collinear limit.

In the soft gluon limit k; — 0, the contributions to the
amplitude from the five processes in Fig. 20 and their g <>
g counterparts [given respectively by Egs. (67) and (73)]
simplify to

T+ MEORA)) _(_005(1 - 2% (eq)? / AR TO (1, )

eitko)

(228)

[

where we have broken up the soft gluon contribution into
two parts. The first contribution comes from the terms

Tg)*Tgp (i = 2, 3) in Table II and possess a color structure
similar to that of the LO hadron tensor in Eq. (35):

XNLO

pussoft(1)

o fim (M ™) MG 0D 2 3,

4 4

2 LO; parton
=gC { 5+
g (kqi _*kl)

X
(kg1 —ZJ[PL)Z} "

(230)
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This is however not true for the interference contributions 7'

@)+ 7(3)

x +c.c in Table II; as noted previously, such

interference contributions do not contain collinear divergences. These however have the following dominant contribution to

the cross section in the soft gluon limit,'

XN LO

NLO:Real(3)a
puw;soft(2) )TM t+e.c,

N .
=G {C(l =D,y =Dyy+ Dy Dyy) _21v‘:(be’L;y/Lxl)}{
c

where Cp0 is the LO coefficient function,

8(kyL —Z—gkﬂ-(k 1 —2py)
g Zqu . 4 qu 2}’ (231)
(kg_L _Zkl) (ng_ _ZP_L)

c,&?—{zmeqf)za(l—zgt) [aneawriea, >v<p>}"'x{2n<eqf>25<1—zz;t> / dn5°a<k>rw<tu>sv<p>}. (232)

There are no soft-collinear divergences in Eq. (231). The
only divergent contributions are those in rapidity that are
recovered when taking the slow gluon limit.

We will therefore focus on extracting the soft gluon
contributions to the jet cross section from Eq. (230). Since
the collinear contribution obtained in Eq. (226) already
includes the soft-collinear limit, adding this contribution to
the expression in Eq. (230) will result in a double counting
of such divergent pieces. To avoid this, we will restrict the
region of integration in the first term on the rh.s of
Eq. (230) to ensure the emitted gluon is outside the cone
of the jets formed by the quark/antiquark:

GNLO
X/uz soft(1)
s dz d>—<c
—405sCF{/ g/ _;gl +J—>K}
20 qgl‘mm q9, 1
x Xy 0, (233)
where C7 | |nin = R°pj, /25 for the first integral is

obtained by imposing the small cone condition in
Eq. (212) on a jet formed by a single parton [82]. The
upper bound for the integral over the collinearity variable
can in principle be infinity. Hence the integration can be
performed using dimensional regularization and we will
obtain a similar result as in Eq. (225). We get finally,

""We should mention here that in decomposing the factors
2k.k, and 2p.k, in terms of LC coordinates, it is important to
keep both tenns ky and z,/z,k, (and z,/zzp ) because in the
soft gluon limit z, < z,,z; and ky; <k ,p;.

o 205Cr {ln <1> In <R2|Pu|[17m|>
ussoft(1) T 20 27K Qzeyb.
1 R’pj L0
+ <EIH(Z1) ln< 2Q216l“'> +J < K) }XW et

L4 I\ (11 (Y erog
*$Cr 1y ~ oI L) ) REOw
T z 2 0

(234)

As promised, we see that the terms in the first line on the
r.h.s are identical but have the opposite sign to the
corresponding terms in Eq. (227), therefore canceling
the final remaining collinear divergence.

The double log appearing in the second line of the
equation above is contained in the ‘“slow” gluon limit
(ky — 0) of our results. As we noted previously from our
discussion of similar divergent terms in the virtual graphs,
this is the double log limit of the BFKL equation. We are
therefore double counting here because the soft gluon
sector is a subset of the slow limit. In order to obtain finite
contributions from the squared real amplitude, we must
subtract the pieces from the soft gluon limit that contribute
to small x evolution."

More specifically we will absorb the kernels obtained in
the slow gluon limit (of the real unscattered gluon contri-
butions constituting T% ) in a redefinition of HR — Hg,
whose structure we shall discuss further shortly in the next
section. When we combine this sum with the result from
Eq. (227) we obtain finally

"The appearance of such BFKL logs in the final state emission
of slow gluons outside the jet cone is a concrete illustration of the
spacelike-timelike correspondence noted by Mueller [96]. We
will discuss this point further in the final section.
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X}I;II}O det _ 2a5CF —ln Rp,,| [I;KJ_ | i T 7T_2 Xb?;jet
7 4 \dz;zx Q7€' 4 6

+agln (Z ) (Hy +Hg) @XLOJet

o NLO;jet
pw;finite

+ XNLO Jjet

uvifinite

(235)

virtual real scatter

We see that the soft-collinear pieces cancel leaving terms that
have the generic form A In(R) + B as expected in the SCA.
As discussed above the divergent pieces coming from the
slow gluon limit that are contained in the soft gluon limit can

be isolated and absorbed in a modification of Hg) to form
the operator Hp. As we will discuss further in Sec. VII,
Hy + Hr = Hyo, where the rh.s is the LO JIMWLK
Hamiltonian that we introduced previously in the introduc-
tion. Finally, the finite contributions appearing in the second
line together with the first term on the r.h.s of Eq. (235)
constitute the NLO impact factor for inclusive photon + dijet
production. The computation of these terms is the principal
result of this work.

We conclude this section with a few comments. First, we
observe that there are no Sudakov double logs in our
computation—this also holds for inclusive dijet production
case in the soft photon limit of our result. These logs appear
due to the lack of complete real-virtual cancellations arising
from a constraint imposed on the process, an example being
dijet production in back-to-back correlations.'* Since we do
not impose any such kinematic constraints, this explains
our observation.

Second, soft gluon factorization is violated. This fac-
torization, in the soft gluon limit of k, — 0, corresponds to
a convolution of the LO dijet cross section with the well
known eikonal kinematic factor [k/(k.k,) — p”/(p.k,)|%,
where the latter is contracted with the sum over gluon
polarizations. This violation is a consequence of the
differing topologies of the color structures that contribute
toward soft and collinear divergences. However we can
rewrite the second term on the r.h.s of Eq. (229) (which
violates the soft gluon theorem) as a term that obeys soft
gluon factorization and another that violates factorization.
With this, we can rewrite Eq. (229) as

|

"

XNLOf . 92 |:CF{ 4Z§ (quJ_ _ZE/kJ_)Z })?LO;parlon
Zg Z
e 233 (kgl—gkl)z(kgL—ilu)z
N,
+C {7 (Quyiyw —DyyDyy) }

{8(ng_ _z_jkj_)'(kgl _E_ZPJ_) H
X .
(kgj__z_jkl_>2(kgl_§_§pl)2

(236)

The dipole (D) and quadrupole (Q) operators defined in
Eq. (39) correspond to particular boundary conditions at

~ = £o0. There have been recent developments that relate
soft gluon theorems to the existence of infinite dimensional
so-called BMS symmetries [98] and to a color memory
effect in Yang-Mills theory [99]. A dictionary between this
language in the Regge limit of QCD and that of the CGC
was established in [100], and involves identifying the
spacetime rapidity # = In(x™) in the latter with retarded
time in the former. An interesting question is whether the
soft gluon theorem can be restored by requiring that the
factorization violating structure (Q — DD) vanishes by a
modification of boundary conditions at x~ = *oo. This may
be equivalent to defining asymptotic states/propagators
that project out this color structure at x~ = £oo. We will
return to this interesting topic in future.

VII. HIGH ENERGY LEADING
LOG RESUMMATION

In this section, we will consider the “slow” (relative to
the virtual photon LC momentum ¢~) gluon limit of our
results for real (z, — 0) and virtual (z; — 0) diagrams. This
will allow us to isolate the soft divergences in rapidity; we
will show explicitly that these terms provide a nontrivial
derivation, in the evolution of the projectile, of the
JIMWLK renormalization group equation.

We begin by examining the amplitudes for virtual
processes in the z; — 0 limit, and subsequently, real
emission graphs. For the self-energy contributions with
the dressed gluon propagator, consider the process (S1)
given by Eq. (88):

M) =225(1 - zt) (eq9)> / Ay (PO (x )T (v 1)) Upa(z,) = Cr1]

dZ ethirtilz r k+k i - 1) 2<1_Z__Z)i
/ 1/ btttk g =—L | P ({rt (1= 25— 20)q™ = 7o-(k +h, )} + 7)) - ——1—CL
by ls, Zk'kV i
2(1=z5—2z) .
Xy~ [({}'*(1 —zz—2)q v b+ )y +Z—7ll’2
7+(1—Zq)q_—7’_(Q22q +0 /2257 =y 4 rrzga +ryidio yo(p),  (237)

oy + 700 1+ A0D][(1y, +vO0 )2 1+ ADT] " 4(q ) (1= 20 alley + Qg (1= 25) — ie]

12 . . . . . .
See [97] for a comprehensive discussion on Sudakov logs and their resummation for various small x processes.
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(S1)

where the parameters v, | and A(fzw are all proportional to
z; as can be seen from Eq. (89). In the slow gluon limit
z; — 0, this expression simplifies greatly to give

(S1) dz ll
hm/\/lW =4da / ! / / ehrre
7—0 7z, Jby — i€

L {2ﬂ(eqf)25( — 28

ll?L Txz

) [u I%J_ —ie
« [ antonioRe ) oip) |

(20 )t*UT (y1))Upalz1) — CF1],
(238)

where the contribution R,]Zg {0 (I1) to the perturbative
amplitude at LO was defined previously in Eq. (29).

The integrals over [, 3, represent the spatial derivative of
the two dimensional free gluon propagator. We will use its
coordinate space expression

/ eil Ly r — Lr_l
I B —ie 2nri’°
where the r.h.s represents the well-known Weizsicker-

Williams field created by the boosted quark-antiquark pair.
Substituting this in Eq. (238) then gives

d
tim MG = / ] / {2n<eqf>26<1—zzfm>
=0 b (X1 —21)
« [ o (lu)U(P)}

< (PO )*U (1)) Upalzs) =

(239)

Crll.
(240)

There is a logarithmic divergence in the kernel forx, — z
under which the color structure also reduces to that for the
LO process times the Casimir Cy. This is precisely the 1 /¢
singularity multiplying In(1/z,) that appears in the
momentum space result for (S1) given in Eq. (78). Note
that the color structure there also has the form
Cr(U(x)U'(y,)—1) for these divergent pieces. These
divergences cancel in observables reflecting the fact that
there are no divergences in the LO JIMWLK Hamiltonian
in the limit x | ,y, —»z,.

One can show in a similar fashion that (S2) and (S3)
vanish in the z; — O limit. The three remaining processes
have an identical structure to Eq. (240) albeit with different
R-functions corresponding to the structure of their LO
counterparts. Combining these results, the six contributions
in Fig. 22 give

B This result is easily obtained by taking the limits v, — 0 and
A — 0 in Eq. (B10).

lim M}I;I(XLO SE(1)

| /dzz/ o —zL) {Zﬂ(etﬁ) 6(1 = zir)

<[ dﬂioﬁ(k)TbS(lu)v@)}
X (U (x )T (y 1)) Upa(zy) —

The quark-antiquark interchanged diagrams are obtained
by replacing x| <>y, in this equation.

We next consider the slow gluon limit of the self-energy
corrections containing a free gluon propagator. Half of
these 24 processes are depicted in Fig. 24, with the other
half obtained by interchanging the quark-antiquark lines. In
the limit z; — 0, the loop contribution shown in Fig. 33) for
the quark self-energy reduces from the expression in
Eq. (D7) to the simpler expression,

Cr1). (241)

lim= (k) = ig?C dz / LK (242)
i .
e N R T
Employing the identity
) li / o l/i
— ellL Tox e ell 1Ty —, 243
/ZLA B—ielr, I'* —ie (243)

we can deduce an identical form for this limiting expression
as in the case of contributions with dressed gluon propa-
gators. Using the above simplification, and the identity in
Eq. (239), the amplitude for (S13) given in Eq. (111)
simplifies to

513 aS/le/ {2 e 2
nieq o(1 Zto
—z ) ( f) ( tt)

x/dH]lOﬁ(k)R;%(? m(’u)”(l’)}

x Cp(U(x )0 (y,) = 1). (244)
The above expression has the same form as Eq. (240) albeit
with a negative sign and a different color structure. The
corresponding expression for its quark-antiquark inter-
changed counterpart is obtained by imposing x|, <y, .
A similar simplification occurs for (S14) — (S16) with

the replacement Rbg ‘D with the corresponding LO R-
functions for these graphs.

Recall that as discussed previously in Sec. V B, the
diagrams labeled (S17)— (S20) in Fig. 24 vanish in
general. More nontrivial is that fact that the limiting
forms of the last four processes labeled (S21) — (524) in
Fig. 24 (and their ¢ <> g interchanged counterparts) cancel
among each another. This can be shown explicitly by using
Eq. (242) for (S21) and (S23) in Fig. 24 and the

simplification of %, (k. k,) in Eq. (E4),
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hmZ ok, k)

Z/—>

N 2C/ dzl/ Ly kraky + K )r™
UITE | )z B —ie 2k (k; +k;)

(245)

for the graphs (522) and (S24) shown in Fig. 34.

Thus (S13) — (S16) (and their quark-antiquark
exchanged counterpart) are the only surviving self-energy
contributions with the free gluon propagator; the net result
in the slow gluon limit of the 24 self-energy diagrams is
simply

lim MNLO:SEG)

/le/ [«H—ZL) (,M—IZL)}

. {2n<eqf>26<1 ~5) | dH&Oﬁ(kﬁ,%sau)v(p)}

X Cp(U(x )0 (y,) - 1).

71—0

(246)

We used here the relation T59(1)) = j‘:lRLO (1)
given in Eq. (33).

We now turn to the structure of vertex corrections in the
slow gluon limit. As an example, consider the amplitude
(V1) we worked out previously for the dressed gluon
propagator, the results for which are spelled out in
Egs. (145), (146) and (147). After further redefining
l,, -1, -1, and using Eq. (239), we obtain in the
z; = 0 limit,

hmM,,‘;l _ /de/ (X, —z1).(v1—21)
70 (x,—2z,) (.h ZL)
x {2n<eqf>25<1 — )

« [ arteuto R 0 |

x[(("O(x )T (p1))Upa(1) = Cr1]. (247)

Similarly, it can be shown that the limiting forms for
processes (V2) and (V35) are zero. Combining the con-
tributions for the remaining three processes, we can write
the total amplitude for the 6 processes in Fig. 26 under the
z; — 0 limit as

limMII;IaLO:Ver(l)
(x; —z,).(yL—z1)

/le/ 120 —z)?

{2ﬂ(eqf)25(1 — zmt)/dHiOﬁ(k)T;Ltg(lu)”(P)}

< (PO )*U (1)) Upalzs) =

Crl]. (248)
The structure of this kernel is different from that of the self-
energy corrections because here the Weizsicker-Williams
fields are emitted by both the quark and the antiquark. Since
the kernel is symmetric underx | <> y |, the limiting expres-
sion for the amplitude under quark-antiquark interchange has
the same form; note however that for the latter, the color
structure is instead (U (x | )t*U ™ (y | )*)Up,(z,) — Cr1.

Likewise, one can show that the corresponding virtual
amplitudes with free gluon propagators (in Figs. 28 and 31)
are

hmMII;%O :Ver(3)
7,—0
/dzl/ (xy—z1).(vy —21)
4 _ZL (,M Zi)
x {2n<eqf>26<1 = dH&Oﬁ(k)T,&g’(llL)v(p)}

X Cp(U(x)U(y,) - 1).

(249)
lim MII;IaLO :Ver(4)
Z[—>
/dzl/ (x.-2z.).(01—2z1)
Z, _ZL (,M Zi)
x {2n<eqf>25<1 ~5) | dHiOu(k)T,&g’(lluv(p)}

x (1°0(x )0 (y1 )1, — Cp1),

(250)

At the amplitude squared level, we have to consider the
interference contribution of these virtual graphs with the
leading order amplitude result in Eq. (32). As outlined in
the introduction, we then need to perform a CGC averaging
over all possible source charge configurations p 4. Using the
expressions for the loop contributions derived above in the
z; — 0 limit, and the color structures given Table II, we can
obtain the leading logarithmic singular structure (in rap-
idity) of the squared amplitude for virtual graphs. These are
summarized in Table III.

The coefficient function C*© in this table was defined
previously in Eq. (232). The “CGC averaged” leading order
squared amplitude constituting the LO hadron tensor in
Eq. (22) can be expressed as

< MLO* MLO> =N

LCOXE(x Ly 5y X)), (251)
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TABLE III.

LLx structure of the amplitude squared from interference contributions of virtual graphs with LO processes. The kernels

for the complex conjugates of the squared amplitudes in rows 3 and 4 are obtained by replacing x, — x’,,y, — ', The color structure
and kernels for the complex conjugates of rows 1 and 2 are obtained by permutations of the coordinates.

CGC averaged amplitude squared = (Common

factors) x (Structure of kernel) x (Color structure)

<MLO*(MNLO SE(1 4+ MNLO: :Ver(1 ))> ;Tgfd%, cLo

as (dz ~LO
27[2fl1 C

s dz ~LO
Zﬂzlec

<MLO*(MNLO SE(2 MNLO 1Ver(2 ))>

(MO (AMNLOSER) | AANLO:Ver(3)) 4 ¢ )

<MLO*MNLO:Ver(4) + C.C> aﬁgﬁf@cLO
T 2

1 _ (er—zy).(v1-21)

N%(l - Dy’x’ + sz;y’x’sz - Dx"D"V)_

(e1—z1)*  (er—z0)?(vi-—zu)? = ) o
By, yy).x))
1 _ ximzi).vi—z) N% 1-— vy —+ ey /D Dx D_ )—
i-z.)? (e1—z1)*(vi—z0)? ( Q o ¢ L})
(me’L,ypr)
1 2
[— =T T + Nc(l - lzxy - D_v/x/ /"‘ ley;yfxl)_
RET RN SIS B(rr.yy.x))
(121 ) (vi—z0)? Y-y
(ri-z1).001-z1) X, =X N2(1 - D -Dyv+D, D,y
(c1—z1)*(r1-z1)* (yL_Wi) C( N N )

(xL J’Lybxl)

with E‘(xJ_vyJ_;y,J_’le_) =1 _ny _Dy’x’ + Qxy;y’x”
where the dipole (D) and quadrupole (Q) traces over
the lightlike Wilson lines were defined previously
in Eq. (39).

We will now repeat the above exercise by taking the slow
gluon limit of gluon emission diagrams. We will first take

the z,(= k;/q~) — O limit in these amplitudes, take their
|
NLO: Real(1) S (RB)
Real
Moy => My,
p=1

modulus squared, and then integrate over the phase space of
the emitted gluon. We begin by considering the contribu-
tion from the 10 graphs in which the gluon crosses the
nuclear shock wave. (One half of these are shown in Fig. 18
and the other half are obtained via quark-antiquark
exchange.) Recall that their combined contribution was
expressed in Eq. (49) as

— 2n(eq)2g6(1 - &) / dH&Ou(k){ / ez 7 <zu>[<c7<xl>r“0*cn>>vab<zl>—m}v@), (252)

where zi =z, + 25 +z, + 7, and Tg) is defined to be

Rﬂa (i) = ZR (1) (253)
As an example, consider the process (R1) for which the R-function [in Eq. (62)] is
RE0) =gy ky (=g = 2)q” =7 LT OO AR ) 4 PTG AR )
crielly) -2t = ) 700648, A<Rl>;ru>ef*<kg>]
g
r (l=z5)g =7y (Q*2 +B.)/2z25a" —vi iy vTzgq +vi iy - (254)

G+ 021 - z5) -

2P =20)

where the 7 functions are proportional to modified Bessel functions of the second kind and are given in Eq. (63). The factors
in the arguments of these functions multiplying r,, =z, —x, are

2
(R1) _ g ®y _ %y 1-zg=7, 0 gy(l—z5—2z5) .
y = — L, A = I — le, 255
1 -z, 1L (I_Zq)z % 1L -2, (255)
which vanish in the z, — 0 limit. Under these conditions, we have
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HimZ) (R ARD. .y = T 256
NmZr vy ATr) =525 (256)
and
, ig_z'—-x . y .
lim Ry (1) = P <kg>{2zz<eqf>26<1 ) / dITOa (k) Ry (l)(lu)v(l’)}- (257)

One can similarly derive limiting expressions for the
remaining 4 diagrams in Fig. 18. The coordinate space
structure of the kernel remains the same for these diagrams
but they are proportional to different R™®’s. For the
|

|

quark <> antiquark interchanged diagrams, we can simply
replacex | <>y | along with an overall change of sign to get the
corresponding expressions in the z, — 0 limit. We obtain the
Z, — 0 limit of the amplitude from these 10 contributions as

z,—0 T

<[ dH&Ou(szs(zmv(p)}[<0<xL>r“0*<yl>>Uba<zL> 1yl

) i ) [l
lim MYEORe() 2 / ek 2 ( :
pa; (x
an

1—21)

- e ) {2 ot~

yL—z1
(258)

As a final demonstration, we will consider (R11), a diagram where the gluon is emitted by the quark and does not scatter
off the background classical field. Its amplitude was given previously in Eq. (70). In the z, — O limit, this amplitude

reduces to

2ki i (k,)
. (R11)

] W g V9
I Myas” = =9 2 -

X [(t,U(x )T (y1) = 1)

{onteqrati - [ antonmrs?
i€

it )olp) et

(259)

The limiting expression for the net contribution from the 5 processes in Fig. 20 therefore can be written as

Z[—>0 — IE

p=11
X [(1,0(x 1)U (1))

2kie™ (k,) ,

. O:Real(2 B) v - —ik .

hm( i ZMﬂ’i’b) =- #{M(eqf)za(l—zm) / dniou<k>T59<llL>v<p>}e ot
9

= Ip). (260)

Similarly, the contribution from their quark <> antiquark interchanged counterparts are,

2ki€i*

7;—0

X [(O(x )T (y1)1) = 1)

These three amplitude structures therefore give 9 contri-
butions at the level of the cross section, many of which are
Hermitian conjugates of each other. Since the final state
process of interest is inclusive photon + dijet production,
we will integrate over the phase space of the emitted gluon.
To obtain coordinate space kernels, we will liberally use
Eq. (239) and the relation between the two dimensional free
propagator in momentum and coordinate space:

(xr —z1)-0r1 —z1)

/ eikl.rxy / 1 . _
ky ki —ie z0 (277)2 (x, _ZJ_)Z(yJ_ _ZL)Z'

(262)

. ea (k) _ _
i (A5 ZMW,> = anteq o ~ ) [ anORTI o) ferto
gl

(261)

I

We can now extract the leading logarithm in x (LLx)
structures of the various real emission contributions to the
differential cross section at NLO. These are summarized in
Table IV. The quantities in the first column represent the
CGC averaged squared amplitudes integrated over the
phase space of the emitted gluon,

. B dzkgj_ dz, )
Aﬂ(k_a MM = / W/ (27)2z, (MM). (263)
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TABLE IV. LLx structure of the amplitude squared for real gluon emission diagrams. The kernels for the complex conjugates of the
squared amplitudes in rows 1 and 2 and their color structures are obtained by permutations of the coordinates.

CGC averaged amplitude squared with gluon phase space integrated over = (Common factors) x (Structure of kernel) x (Color structure)

MNLO:Real(2)*MNLO:Real(I)>

(¥, —z1)-(v1-z1)

’+Qy}’ ’D szDzy)_

fcm(kg) ( %fdz—“j Ccro {

(¥, ~z1)

ZO’L_ZL)Z

_ (xL_ZL)'(x:__ZL)} N%(]
Y ]
i) (vayL»yL’xL)
)

(MNLO:Real(3)* A {NLO:Real(1) as 9% ~LO { (-z0).0-21) =z -z } N2(1=Dyy + QyryyD.y, — D,.D., )~
fdQ(kg) ) 2 g ¢ Gl PO 2P T e )P ) ( yXE(xL ylf(.)’lﬂxi) <P
fdQ(kU) 33 (MNLO:Real(i)x A NLO:Real(i) gy g CLO {(ixi—zm ((;L—ﬁ) ((ny—zz L))2,((;’L—Zzl))z} N2(1 =D,y = Dyy + Qpyv)—

e b i)

MNLO:Real(2) ¥ A (NLO:Real(3) +c.c) g dzy ~LO {_ (e =z)-0 —21)  i=zi).&)—z)) } N2 1 — D..,+D D .
fdg(k(’) < > 2 f g ¢ (xl—zﬂz()’i—h)z (.YL—ZL)Z("T_ZL)Z ( :‘m(xj_ y)J_X yj_ xj_\) )

NLO:Real(1)% A NLO:Real(1) as 49z ~LO {(xl—m.(x/ —z1) _ (-z).00-z)  N2(1 - Doy —Dy.D_v + DyuDyy)—
fdQ(kq) < > 27 f Zg C (xL,zL)Z(xf,zl)z (fozL)Z(ersz)z C( ){xL yizyix x/J_) XX =y ))

(¥ ~z1)-(y1—z1)

(/VL—ZL)-(Y/L—ZD

(xl—zﬂz o1—z.)?

)

(V8 _ZL)ZO’IL _ZL)Z

We now have all the essential elements we pro-
mised in the introduction of the paper to derive the
JIMWLK evolution equation. Using the leading loga-
rithmic structures summarized in Tables III and IV for
virtual and real emissions we can organize the CGC
averaged squared amplitudes (and their Hermitian

|

conjugates) in a basis spanned by dipole, D and
quadrupole, Q Wilson line correlators and their products
DD and DQ. (For a general introduction to such basis
structures, and how to compute them, we refer the
reader to [101].)

After some algebra, and use of the identity

(1 —21).001 —21) :1 {_ (xp —y.)? + 1 + 1 (264)
(x, _Zl)z(yj_ _ZJ_)Z 2 (x, _ZJ_)z(.YJ_ _ZJ_)Z (x, _ZJ_)z 0L _ZJ_)Z
we can derive the following leading logarithmic structure for the CGC averaged amplitude squared at NLO
<MNLO*MNLO>|LLX
— hm{/ <MNLO:Rea1*MNLO:Real>} + lim(<MLO*MNLO:Vinual + C.C>)
7;—0 dQ(k,) ;-0
_ asN. (x, —J’L)z asN, (x', —yi)z
=In 2 7Dy + 2 / 2/ 2Dy’x’
27 o (X1 —z1)% (1 —z1) 2% Jp, (X —z0)* () —21)

- . P T LI R L DY
(27)? 2 L -2, )* (. —21)? (x', _ZL)Z(y/J_ —z,)* (xy —ZL)Z(xl -z (o _ZL)Z(y/J_ —z )2 T
asN. (xr—y1)? agN, (), —y\)?

- 2 2 2szDzy - 2 / = 2 a 2D>"ZDZX’

2% Jp, (0 —20)* (v —21) 27% Jo, (%) —z1) -2z))

e Py
(277)2 2 L —ZL)ZO"L _ZJ_)z (*', _ZJ_)Z(.VJ_ _ZJ_)Z (x L —ZL)Z(xl —Zl)z (o —ZL)zb’l _ZL)Z e

| asNe / 0 S . N .7 7D SO . A0 ]D D
(Zﬂ)2 7y _(xl —ZL)Z()’/L —Zl)z (x, _ZJ_)Z(.Y/J_ —ZL)z (x, _Zl)z(.YJ_ —Zﬁz (xl _Zﬁz(,"l _ZL)Z we

L asNe / [ e -x))? (o —y1)? B (x=y\)? }D 0
(2”)2 2 L _ZJ_)z(x/L _ZJ_)Z (x', _ZJ_)Z _ZJ_)2 (x 1 —Zl)z()’l - )2 R

n aSNc/ [ e =y1)? + (' —y'\)? _ (' —y.)? ]D O
2r)* Jo (01 =220 —2z0)? ) —z)20 —z)? @ —z )P —z)?] T

n ach/ [ () —x)? (r,—yi)? _ (o, —y.)? }D 0.0
(2”)2 2 L _ZJ_)Z(x/L _ZJ_)Z (x| _ZJ_)Z(.YJ_ _ZJ_)Z (x', —Zl)z()l _ZJ_)Z e
agN, / [ (x,—-y,)? (yi—y\)? (XL —y))? ] } LO

+ + - D 0Oy x N.C (265)
(2”)2 7y (%, _ZL)Z(yJ_ _ZJ_)2 2 _ZJ_)ZO’/J_ _ZJ_>2 (x . _ZJ_)Z(y/J_ -z ) @
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In the above equation, z; is the scale of the longitudinal
momentum of the virtual photon probe.

It is now a straightforward but tedious exercise to show
that the set of terms appearing within curly brackets in the
above equation can be generated by the action of the LO
JIMWLK Hamiltonian on the leading order color structure
E(x,,y1:y,.x). The former is defined as [10-14]

1 o o)
Hio 25/ 7’7”(‘&,‘&)77 (266)
u, v,

SAL“(uy) SAL (v))
where

ab(y _l 1 (g —z).(v. —zy)
) = | e
X1+ U, )U(v,) - U'(u,)U(z,)
- UT(ZJ_)U(VJ_)}M‘

(267)

The Wilson lines appearing above are in the adjoint
representation of SU(N,.) and written in terms of
At4(x",x ) as

+00
Ukx,)=P_ <exp{—ig/ dz‘Agﬁ‘“(z‘,xl)T”}),
(268)
where we have defined A*4(x ;) = [**dz7A}“(z7,x ).

As first outlined in the JIMWLK papers, the proof involves
extensive use of the identities,

5U(xJ_)

———= = —igsP (x, —z,)U(x )T,

SUT(x) . .

— =L —igsP(x, —z,)TU'(x), 269
5A§,Q(ZL) 96\ (x, —z,) (x1) (269)

and Eq. (48) relating the fundamental and adjoint Wilson
lines.

Now using Eq. (251) for the CGC averaged amplitude
squared at LO, one can write Eq. (265) as

<MNLO*MNLO> |LLx

< —_
=In (é) Hyo (NcCLOE(xLJ’LQ,Vl* x'))
~1In (?) Hyo (MO MLO),

0

(270)

While we derived the L.h.s of this identity explicitly here
for inclusive photon + dijet production, all the necessary
elements to derive the rh.s were obtained previously
in [102].

In the CGC EFT, the expectation value of an operator @
is defined to be

(©) = / DpAlW. (oA Olpal. (271)

where @[pA] is the expression for the operator for a given
charge configuration p, and W_[p,] is a stochastic weight
functional describing the probability density of that charge
configuration at a momentum (fraction) z. If we now
consider the result for the CGC averaged squared amplitude
(or differential cross section) up to NLO + LLx accuracy
we can easily see that the leading logarithmic pieces can be
absorbed in the weight functional to redefine the EFT at the
evolved scale z; as

(MLO* ALOY | ( ANLO* ANLOY|
= [0 (110 (2L) o ) W a0 0) )

20

N /[DPA]sz [Pl (MEO* M) [p]. (272)

In this equation, the functional dependence on p, enters
through the dipole and quadrupole Wilson line correlators
contained in E(x .y, ;Y ,x, ) appearing in the LO ampli-
tude squared.

Since the lepton tensor, and other prefactors remain the
same, we can extend these arguments to obtain the
JIMWLK evolution of the triple differential cross section
for photon + dijet production in small x DIS:

0
oA (dof?) = (Hio(d*a™0)).  (273)
Our proof is in the spirit of the IMWLK derivation from
the projectile side in [103] but is obtained by computing the
full cross section and then taking the slow gluon limit.

VIII. SUMMARY AND OUTLOOK

We presented in this paper the first computation of the
NLO impact factor for the inclusive photon + dijet pro-
duction in high energy electron-nucleus collisions. The
triple differential cross section for this process can be
expressed as

d3 6LO+NLO+NLLx;jct

dxdQ?d°K | d*nk

2 4.2
o aemey Nc 1 1 LMDXLOJrNLOJrNLLx;jet
~ 2% )

©5122°0Q% (27)*2 (274)

where L*¥ is the lepton tensor defined in Eq. (21) and
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LO-+NLO+NLLx;jet __ NLLx
bem / (Dpal W,

Recall that X,>[p,] is obtained by implementing the
replacements in Eq. (224) in the LO hadron tensor
definition given by Eq. (35) of Sec. IL. It contains the
dipole and quadrupole correlators of lightlike Wilson lines;
the latter are functionals of p4 as is clear from Eq. (3) in the
Introduction.

In this expression, the finite terms X}IILL gnf; are of order ag
relative to the leading term. The explicit results we derived
for these are the principal results of this paper. In order to
obtain their NLO expressions, we showed in Secs. Vand VI
that one has to first isolate the ultraviolet, collinear and soft
divergences respectively in the real gluon emission and
virtual self-energy + vertex correction diagrams. For the
virtual graphs containing gluon loops, as discussed in
Sec. VI, several already cancel between different contri-
butions to the amplitude. Of the rest, the collinear and soft-
collinear divergences cancel between the real and virtual
graphs at the level of the squared amplitude.

Our treatment of these in Sec. VI necessitated introduc-
ing a jet algorithm; the small cone approximation (SCA)
framework, corresponding to a small jet cone radius R, is
particularly convenient for our task. The term proportional
to agln(R) in Eq. (275) is an O(1) remnant of this
procedure. The soft gluon limit (k, — 0) is a subset of
the slow gluon limit of k; — O but finite k. The large
logarithms in x arise in the latter; the resummation of these
O(agIn(1/x)) terms is discussed at length in Sec. VIL. Our
discussion there provides a nontrivial derivation of the
JIMWLK equation. Though this equation has been derived
in a variety of ways, it is interesting to see it arise from an
explicit Feynman diagram computation of a nontrivial
final state.

An apparently technical point which is however of
general interest is our observation in Sec. VI that the
JIMWLK kernel already contains pieces of what we
isolated as soft-collinear divergences. These have to be
subtracted from the jet cross section to avoid double
counting when the NLO impact factor is combined with
small x evolution. The fact that slow gluon emission
outside the jet cone satisfies JIMWLK evolution is con-
sistent with this being a feature of non-global logarithms in
jet physics explored by Banfi, Marchesini and Smye [104],
identified with BK/JIMWLK evolution by Marchesini and
Mueller [105] as well as by Weigert [106], and sub-
sequently significantly developed by Hatta and collabora-
tors in a number of papers [107—-110]. (See also [111] for a
recent discussion of this correspondence.) Our NLO
computation of photons + dijets in DIS therefore combines
JIMWLK evolution in both the spacelike evolution of the
DIS wavefunction and the timelike evolution of dijets

M)ﬂ_”i}) LD ] 4 N0 ]|

4ZjZK Q2 eve

(e

puvsfinite (275 )

4 6

I

in the final state. This spacelike-timelike correspondence

in A~ = 0 gauge was noted previously by Mueller [96] and

is a quantitative implementation of a proposal in his paper.
The JIMWLK evolution equation describes the small x

evolution of the gauge invariant weight functional W' *[p,]

which resums leading logs O((agIn(1/x))") and power
corrections'* O((Q,/Q)"). An important development
is that the NLO JIMWLK evolution equation that resums
terms of order O((a%In(1/x))") is now available (in
addition to a significant body of work on the NLO BK
equation). If we take advantage of these developments,
we can promote Wi*[ps] = WiI[ps], as indicated
in Eq. (15).

The finite terms X,I:LL 1?[1]12 in Eq. (275) from the virtual
loop contributions are given in Appendix I. The finite terms
from the real gluon emission contributions to the cross
section are obtained by taking the modulus squared of the
amplitudes in Egs. (49), (67) and (73), integrating over the
gluon phase space with a cutoff, implementing the SCA in
Sec. VI, and subsequently subtracting the pieces that
contribute to leading log JIMWLK evolution.

The eventual goal of this project is to provide quanti-
tative predictions for a future Electron-Ion Collider (EIC).
As noted in the introduction, the computation of the finite
pieces X\ v ﬁr’uf; along with NLO BK/JIMWLK evolution,
provide the necessary ingredients to compute photon +
dijet production (and the associated measurement channels
we identified) in e + A DIS O(a3In(1/x)) accuracy. For
the x reach of an EIC, this corresponds to an accuracy of
O(a3) or ~10%. This level of accuracy in such differential
measurements is likely sufficient for the unambiguous
discovery of gluon saturation.

The realization of this numerical project while clearly
feasible is nevertheless a formidable challenge on several
fronts. Firstly, the number and complexity of the finite
contributions to the NLO impact factor are far greater than
comparable expressions in the collinear factorization
framework. This is because, unlike the latter, the large
k, ~ Qg from the target flowing through the diagrams
generalizes functional forms in the collinear framework to
nontrivial integrals that in many instances have to be
performed numerically.

"“The saturation scale Q, (x) is an emergent scale which arises
from the evolution of the intrinsic nonperturbative QCD scale
Aqcp in the initial condition W, [p4] at some x, to small x. In the
Balitsky-Kovchegov (BK) equation for the dipole correlator
(derived in a large N, and large A limit of the JIMWLK evolution
of the dipole), Q,(x) arises from the perturbative unitarization of
the dipole cross section.
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Further, the results obtained for the NLO JIMWLK
Hamiltonian are not yet ripe for numerical evaluation. In
addition to the sheer complexity of the NLO evolution
kernels, there are subtle conceptual issues, first identified
by Salam [25], regarding the regularization of these
kernels-recent work in this direction, and references to
the extant literature, can be found in [27,112]. A self-
consistent treatment of NLO JIMWLK in our framework
can be obtained by computing the leading In(1/x) con-
tributions to the next-to-next-to-leading order coefficient
function for dijet production in e + A DIS. While chal-
lenging, the developments in this paper suggest it can be
achieved on the required time scales.

Both the numerical and analytical developments sug-
gested here are however beyond the scope of this work and
will be pursued in parallel in future. As a final note, the
methods, computations, and principal results of this paper
are summarized in an accompanying letter [88].
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APPENDIX A: NOTATIONS AND CONVENTIONS

The metric used in this paper is the —2 metric, § =
diag(+1,—1,—1,-1), where the “hat” denotes quantities
in usual spacetime coordinates. The light cone coordinates
are defined as

e B A
X = N - )
V2 V2

with the transverse coordinates remaining the same. The
same definition holds for the gamma matrices y* and y~
with the Dirac algebra given by
{r.r} =2¢", (A1)
where gt~ = g7t =1 and ¢/ = =67 (i, j = 1, 2) are the
nonzero entries of the metric tensor. In this convention,

ab=a"'b~+ab"—a, b, and a, =a", a; = —a'.

APPENDIX B: CONSTITUENT INTEGRALS IN
COMPUTATIONS OF GLUON EMISSION AND
VIRTUAL GLUON LOOP DIAGRAMS

In this Appendix, we will derive a generic expression for
the tensor integrals that arise in the amplitude (and squared
amplitude) computation of real emission diagrams and use
it to extract some specific results. By taking a specific limit
of this result, we will also get the expression for the tensor
integrals that arise in the amplitude computation of virtual
gluon exchange diagrams.

(1) Generic integral for gluon emissions: The most

general tensor integral in d dimensions appearing
in real gluon emission computations has the form

e, I
il ry .

(Zﬂ)d DIDZ"'Dn
(B1)

Ign,ilizmip)(VL,A;m) :/

The denominators D,...,D, appearing on the
r.h.s of the above equation have the form D;=
(I, +v;1)*+A,. By introducing n Feynman para-
meters a, ..., &,, we can reexpress these integrals as

I(nl]lz iy >(VJ_,A rl

/dal/ daj...

/dan( —a -y —...ay)
0

/ R TR YO
X el .
(2m)“ (D ko o Dy)"

By integrating out one of the Feynman parameters, it
is always possible to write the denominator in the
above expression as (I, + V)? + A, where V| and
A can be written in terms of the various v;,’s and
A;’s with the Feynman parameters acting as coef-
ficients. This will become more clear when we
present the expressions for some specific cases
below. The integral in Eq. (B1) can therefore be
written as

(B2)

I(nzllz iy )(VL,A rl
n)/ da, /da2 /dan |

X/ l, pil i e
(2m) (1, + VJ_) + A"

(B3)

The remaining Feynman parameters satisfy the
condition

-+ a,_q < 1. (B4)
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To reduce this above integral, we first make the
observation that

o eill.rl
OV [(IL+ VL) +A]"

ZIipeilL.rL
(L +Vy) -+
(B5)

= (=n)

Performing this operation p number of times, we can
derive the identity

eill.rl

0 0
aVil 8Vip [(IL + Vi)z + A]”_P
(=1)PT(n)2P  elorepingi, I

= Ti-p) G aviirap (B

We next use the Schwinger parametrization for the
term on the Lh.s of the above equation,

1
(L +V)>+ AP

I(nlllz 0y )(VJ_,A rL

4” d/Z/ dal/daz

dt 0
d mp=1- .
/ an 1/ aVll
avz e —tA— lVLrL (Bg)
We now consider some special cases:
@n=1,p=0:
7, Asr)
ddlL eilL‘rL
B / Q) (AL +v.)* +A
2 I‘i %_% —iv,.r 2
~ (4n) (4A> ki (ria),
(B9)

1 0
“ Ty / degn—r=telltVay+al - (BY) where K, (z) represents modified Bessel (or Mac-
n=p)Jo donald) functions of the second kind Ford =2,
and redefinel, + V| — [, to arrive at the following this yields the simple result, I (d 2)=
expression for the tensor integral in Eq. (B1). S-e LK (VL A).
|
b)yn=1,p=1:
d il rygi
(1,i) d lJ_ et
Iy (v, Ar) =
(o diry) = / Q) (I +vy)*+A
2 PN\ o [ (2 5 . 5
= G <ﬂ> iV L{T <E> Kd/z(, /rJ_A) ~viKy (\ /rLA) } (B10)
c)n=2,p=0:
ddl ilL‘rL
I(z 0) (v, Asry) = / =
S ( ) (1L + Vu) AJ[(IL +v21)? + Ay
1 1-4
where
VL:(IV]L%-(I—G)VZL, A:a(l—a)(vu—vﬂ)z—i—aAl ‘I‘(l—(Z)AQ. (B12)
dn=2,p=1:
ddl ill.rlli
I3 Ary) = / =
S ( AL +vi)? + AL +v0)* + A

1 irt
da _WLJL -
o) " {5
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e)yn=2,p=2:

d il i
(2,if) d ll LI
Z, v ,Ar
o dirs) = / < >d[<u+m> +A1M<u+vu> + A

! e~ 1 ij (i) j t ri e 2
(an) = ) ¢ g0 =i () K (Vs
1 i\~ /2
_Zr i " Kd/z(w/ A) + vl Ky 2( rLA) . (B14)

Putting i=j above, we can obtain expressions from the result given by Eq. (B8) one
730y, A;r)). The v, and A appearing needs to carefully take the limit r, — 0 in the
in Egs. (BI3) and (Bl14) are same as MacDonald functions K, (1/r% A) that will appear
in Eq. (B12). in the computation. The limiting result is given by
(2) Generic integral for virtual gluon exchange dia- (see Eq. 10.30.2 of [113])
grams: The most general tensor integral appearing i
n the computation of virtual graphs has the form lir%K,,( ) ~ _r( )(z/2)7¥, for fixed v. (B16)
P

Moiyig i 1S CO A LT L L
IS/.'”'””)(VL,A):/ L . (BI5)

(27)!D\D,...D, APPENDIX C: R-FUNCTIONS APPEARING IN

GLUON EMISSION AMPLITUDES

Clearly this can be obtained in the r; — 0 limit of In this section, we will present expressions for the
the integral in Eq. (B1). We have provided explicit =~ R-functions (not given in the main text) embedded in
expressions for such integrals wherever they appear ~ the final expression for the NLO amplitude for gluon
in the main body of the paper. To derive such  emissions:

M,ILL? Rl = 21(eqy)gd(1 — me)/dnlloﬁ(k){/ e_ik“'leEel;La(lu)[(0(xL>faUT(YL)>Uab(ZL) — 1]

Z1

+ekn T (e 1) [(1,0(x )T (v,) = 1))

n e—ikyL.legLa(kgLlu)[((j(xl)f]*(yj_)zb) - tb]}v(p). (C1)

Here we defined Tg;ia(lu):Zbg] u{iﬂ (L) TE?/)la( oo hi) = Zﬁ 11 ua (gi’llL) and T}S;,)m(kgplu):

i R (kg 1,1).

The computation of Rf,l,?) is a bit involved. The expressions for the different transverse momentum integrals are provided
in Appendix B. We have made extensive use of the fact that any term proportional to g, is zero after contraction with the
polarization vector, e**(k, ) because €*~(k,) = 0 in our choice of gauge. After a fair amount of tedious algebra involving
careful manipulation of Dirac matrices, we arrive at the expression,
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1 Zq (2.ii)
- — V¥ €5 (k)L (v, .
2(6]_)2(Zq +Z(J)(1 _ ZZ])/Zé[l%J_ + ALO.(l)] {Zg7 7€ ( g) (vi 2x)

2(z, +z,)

RED(1y,) = —

2 i‘
(Y vare* (k) TEV (v AR )+

Pirare (k) T2 (R AR, >)
Zg

g9
+ 7'y e k)T 0P AR )+ (it zg — v~k )y
+rrar It (zg + 200 — v b1 )) (v o€ (k,))Zy 720) (v<f2 (R2): p )

7z, a =y =kl (2 +2)a =17 (Q%2 +B1) /22547 — 71014

<II< Oy #D AR, ) ¥ Iﬁz’i)(v(fz),A<R2>;rzx)>€"*(kg)}

g

X[yt (1=zg)g™ —r (Q%*2 + 1) /2250 — v hilvulr T zga™ + v iy v(p), (C2)
where
v(fz) = avfm + (1 - a)v(f3),

AR — (1 = a) () =y )2 4 aA®D 4 (1 = a) AR,

— k).
1 Zq i Zg ( 1L yJ_)
(R3) 24%yg gty 2tz 2 ;
AR =2 S~k )+ (R + Tk ) + Q%(zy +z,) —de g (C3)
(24 +2,)? 25 z,

The expressions for vfl) and AR are given by Eq. (64). The remaining R-functions are similar in structure as RRY and are

pHo
respectively given by

R W)= |({rtzgq =71~k NIV 0 A® ) 4 T 0 ARy )y, € (k)
224 (1 ui o _
Z"I“ Y AR )| [ (g 28 =1 (Q 2%, + 112, 4K 1 20) 227,07 = (s~ )]
q
qur*(l—Zq)q‘—7‘(Q2z@+lﬁ)/21zﬂ‘—n-lu v zga +yidiy I

> 4 - ;
(lu+v1101(2))2+117(1q+19)k5¢ +z?/(zq+zy)Q —je "2(q )2(1—Zy)(2q +Zg)/Zqu[l%J_+ALO~(1)]

ZY(I—Z},)Z l_ZV

For the case of (R4), any choice of contour for the /{ integration encloses two poles and hence the total contribution from
this process is written in terms of these individual contributions as

R4 Yzgq +ridi _
Ry (1) = (4, - B, e BT r, (C3)

— -, PL 24/ 2k ) — e

with

Aﬂz<1—zq—zg>y-[<{y+zqq-—n.au—ky NZHO D AR p ) 4 T G AR )y e ()

2z ; .
RN zx>e*l<kg>] 72y +2,)a7 =77 (@ (1= 2= 2)) + (i =k )/ 2(1 = 2y = 2,)”
q

S (k)
Yy (l=zy=25)q +v zélfzqi_;%*—h-(lu—ku)

-7, -k
v =kl (L =k, )* + Q% (zg + 2.)(1 — 24 — 2) — i€
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and
B, =7 |({rtzgq — 7o (i =k, VTV 0 A®) )+ T 68 AR )y € (k)

224 (1 3 i _ _
= Z2a M (B3 AR e (ko) |y (zq + 29)q™ =1 (@242, + 1 27y + k71 24) /2252, = 7L — K, 1))

Zq
o ri(l—zy—zy)q + 7_(I%J_Zy +k§¢2q)/22yzqq_ +yi(hi—ky) ytzgg +rid (€7)
T LO:(2)y2 . Zﬂ Zq+zvk 24(2+2)Q% Ta (1-2z,)/73 .
(lu-i-vL ) e + = e y)/%q
where
(R4)
v, == I, -k,
=~ k)
ARY) — 2q%yg [(lu_—kl)z‘FQz(Z e )(1_Z -z )_ig]. (CS)
(Zq + Zg)z(l —Zg— Zg) ! ¢ . 1 g
Finally, we can write
(RS) 7+ ky 1
R’ = —Ayy (C9)
g ok, T2 (g2 T e (=2~ 2/,

with A, given above in Eq. (C6).
We shall now present the R-functions for the NLO processes wherein the gluon is emitted after the interaction of the
dipole off the background classical field; these results were not discussed in the main text.

Ky )y K+ + K -
22,47 )" 2k, + 2k,.(k + k)

(- ) — v 7’+qu_ +yihy
4
(q )? (kg1 ZZk )2 —ie] ™ B+ ALO:()

Z . . Z .o .
R (kyy 1y)) = (k’ - —gk’> <€*’(kg) - 2—gr’yff€*’(kg)

2q

(C10)

In deriving the above expression we have extensively used the anticommutation relations given by Eq. (A1) and the Dirac
equation #(k)¥ = 0 for the outgoing quark. Using the same manipulations used to derive Eq. (C10), we can obtain the
expressions for the R-functions for the remaining three processes. These are given by

(R13) i Zg i\ ([ i L9 ik Yzt g v~k )
RED G 1) = —( ki =29k ) ((eih,) — =L yiyieni(k
p o) < Tz )( (k) zzqy}/ ( ,,))7/ (1=2z,)/25(q7)*((kyy —*ki) — ié]

rt(l—z3)qg” - 7/_(Q21¢7 + lﬁ)/2z¢—,q‘ vl vtrggT oyl

X Y . Y -, (C11)
. (242K ] yor . hp LO:(1)
(I, - 1iqzykyL)2 i Zqz(:zl_fz_;)zﬂ 4 Zq(z({jzz:)Q —ie B, +A
(R14) 290\ (i Zg i _ rHi(zg +z9)a —rvi-(h—k,)
Rua (kg 1)) = <k’ ——k’> (6 W(ky) =57y (k ))7 - v
S ? 72, P)T =2/ (zg +29) (g7 lkyr — 2k, ) = ie]
y r Tl =z,= 200 =7 (Q*(zg +25) + (L —k,1)*)/2(zg + 20)q” +7i-(li —k,1)
. 25(242y)k; 2(2442,)0° .
(e =75k ) + =+ (11_51,) —ie
tzoqg 4y, 1
a1 ARLEE (C12)

X}/a .
(lu _kyJ_>2 + QZ(Zq + Zg)(l —Z4— Zg) —1e
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: Z . . Z Lo
R = (k= 20) () - 2 et

2q q
v (zgt+z9)g —yi-(Lh— k1)
(¢ [y — 2k —ie] "
y y (l=zy=2.)qg +vi.(hy —k,1)
(e =k )* + Q% (zg +20)(1 — 24 — 2,) — i€
_P+k
2p.k

Xy

Xy Ya- (C13)

14

The usefulness of expressing the amplitude in this form
becomes clear in Sec. VI where we extract the collinearly
divergent structure at the level of the squared amplitude.
The factors k) — z,/z,k" in the amplitudes above cancel a
collinear structure in the denominator in the squared
amplitude. When we then take the collinear limit of the
resulting expression, and integrate over the phase space of
the emitted gluon, the logarithmic singularity is manifest.
|

We do not present the R-functions for the diagrams
where the quark and antiquark lines are interchanged.
These are easily obtained by using Eq. (66).

APPENDIX D: QUARK SELF-ENERGY
IN A~ =0 GAUGE

We will compute here the quark self-energy diagram
shown in Fig. 33. This is useful in the computations of the
diagrams (S13) — (S16) and (S21), (523) (see Fig. 24)
wherein appears the expression

So(ks)Z(ks)So(ky),

with Z(k;) the contribution from the loop. For diagrams

(S17) — (S20), the corresponding generic expression
would be i(ks)Z(ks)So(ks). In either case, this quark
self-energy can be written as

yHky =) +y (k= 17) —yy(kp = 11)
Z(kf) :_QZCF// yﬂ ! 71— — f+ + + f 7U<_gyy+
1 Jirr Al (ky = D)1 = I5) (1T = 1)

where
LB e
@21 2
ke —1,) j
If =kt ! fL {) L %))
: 2(kf—l ) Z(kf—l )
It is a trivial exercise to show that
lyn,+1,n
yﬂ()yy <_gﬂl/ +%)
) R YY)
=7y —7’1—_(---)7‘ —7‘(-.-)y’l—_+l—_r‘(---)7',
(D3)

where (...) represents the terms in between the gamma
matrices in Eq. (D1). Using this identity, we encounter the
integrals over [,

_—>
kp—1

FIG. 33.  Quark self-energy diagram for quark momentum k.
This block can appear either in the internal or external legs.

bury + Ly z+— l”n">, (D1)
/+°° dit 1 and
o 20 (I =1)
+oo d]t I
- . D4
A (B4)

While the first integral can be done trivially using contour
integration, and Cauchy’s residue theorem, the second
integral should be examined more carefully. This is because
unlike the first case where the contribution on the semi-
circle of the contour vanishes as the radius of the semicircle
approaches infinity, it does not for integrals of the second
kind. Therefore to obtain the value on the real line [which is
the second integral in Eq. (D4)], we must subtract the
semicircular contribution from the value obtained using the
residue theorem.

The location of the I poles given by Eq. (D2) depend on
the sign of /~. We need not worry about the [~ = 0 case
because that will be regulated by imposing a cutoff at the
value Ag. For 0 <[ < k7 the poles are on opposite sides

of the real [* axis whereas for [~ < 0 they are on the same
side. Let us discuss the latter case first. When both poles are
above the real [ axis, integrals of the first kind in Eq. (D4)
give a null result because the contour can be closed in the
other direction without enclosing any pole. For integrals of
the second kind, if we choose to close the contour above
such that both the poles are enclosed, then we have the
following result after subtracting the contribution from the
semicircle (as the radius approaches infinity).
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oo It I
/_oo 2z (IF = 1) = 1)

N N I i/ﬂd¢ i (D3)
=1 —_—— = —.
D=1 I -1r) 2z 2

We will obtain the same result if we close the contour
clockwise in which case the sole contribution will be the
one from the semicircle. We will come back to this
result later.

Now for the case 0 < [~ < k7 if we choose to close the
contour clockwise enclosing the pole at [ we get the
following result for the second integral,

(ky = 17) +y (kf 1 /2I)

+oo d/t I
/_oo 27 (I =11 = 1)

o i i
7S (D6)

-1 2

where the second equality shows that we will get identical
results for either choice of contour.

We will now analytically continue to d = 2 — € dimen-
sions for the integration over the transverse momentum and
choose the pole at [/ because in this case we get the
following compact expression for X(k),

_ d2-¢l o el
st i [ S [{(5-L))

= (Fw-n) )

where

: ( l‘)
Ay=——(1-2)&2 (D8)
s - - | Ky
k; k;

The term appearing in the second line of Eq. (D7) is the
contribution on the semicircle which vanishes because
of its proportionality to the d-dimensional measure; the
latter is identically zero within the context of dimensional
regularization. In fact, it is a special case of the general
identity first conjectured for massive particles by 't Hooft
and Veltman [114,115] and later proven for massless
particles [116,117]

ddl
/ E )L Byt =o, p>1 for complex d. (D9)
Using the above arguments, we can redefine [ | — ,’(—:k L=
;

I, and perform a fair bit of algebra involving gamma
matrices to arrive at the following expression for the quark
self-energy:

1 2+4+¢
Z(ks) = lgch/2k {(21_ +

X (0, A,)

k2 I~
+(2—€)|:kf— < +k_+7/ _22_—ykaL>k :|
f

2(ky - I7)
() )

X,uéIU (OL, )} (D10)

2k7 (10

_yL'(ka _ll) (7/1 li _)
_/i__;kfl)z + A

(D7)

|
where the constituent integrals are defined as

2—¢ 2

(1.ii) =1, n
Ty 0,,A)=pu° -

H (0,,A0)=p /(2ﬂ)2‘€Ii+As

A2 (R
- 4ﬂ< +1n <Zs)+0<€)>’ fore— 0,

d>=1 1
el'(bl-,o) 0,.A)= e/ L
H ( 1 s) H (2”)2_612 +A?

+1 +() 6) 5 f()r€—)().
47[ A‘

(D11)

One can now easily check that for diagrams (S17) — (520)
where the loop is on an external line, we will get A, =0
[see Eq. (D8)] because the on-shell condition k? =
Zkfk; —k% , =0 is satisfied. As a result the constituent
integrals in Eq. (D11) become scaleless and are zero within
the context of dimensional regularization.

For the first integral in Eq. (D11), this is a special case of
the ’t Hooft-Veltman identity given by Eq. (D9). Under the
condition A; = 0 the second integral has the form d?1, /I3
which is both UV and IR divergent. In dimensional
regularization, we can introduce an arbitrary scale A to
divide the UV and IR regions of loop momentum to write
the integral as [118]

a4l A )
/Tl: Q, (/ di, 143 +/ dzlld;‘)
B 0 A

= Qd<1n/\—i> +Qd(i—1n/\>, (D12)

€IR €uv
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where d = 2 — ¢ for the first integral (assuming egr < 0)
and d =2 — eyy for the second integral (assuming eyy > 0).
Above we have [, =|I,| and Q,=27%?/T(d/2) is the
surface area of a d-dimensional sphere of unit radius.
Since physical quantities must be independent of e and
eyy we usually set eg = eyy = € rather than splitting
the scaleless integrals each time. The above integral
simply vanishes in this case. As noted in [118], a more
general argument is that because of the absence of
quantities with nonzero mass dimension, scaleless
integrals such as the one above must vanish in dimensional
regularization in d dimensions. These for diagrams
(S17) — (520) therefore vanish and do not contribute to
the amplitude. The same argument holds of course for
|

2(ky = 1I7)

the quark <> antiquark
(S17) = (520).

Returning to the case of [~ < 0, for which the [* poles
are on the same side, Egs. (D5) and (D9) tell us that the
entire contribution will just vanish. This means that we can
only have nonzero contributions to the quark self-energy
for 0 < I~ <kJ7 and Ag # 0.

We will now use the result obtained in Eq. (D10) to
derive another general expression for the cases in which the
virtual gluon is emitted before the scattering and hence
appears on the quark line that is off-shell. It is straightfor-
ward to show using Dirac algebra that when the loop
contribution is sandwiched between two internal quark
propagators, we get the expression

interchanged counterparts of

1 2+4¢
Sk = ig?Cp | ——
KiZ(kp)ky = ig Fl_zk;{<21_ +

(")

k2 I~
+(2-¢) |:k2fkf' - kaf{kf - <}’+kf +7r % - h-kﬂ) } k—_]ﬂefgzl’())(ol, As)}.

)kf(%; — By ez (0, A))

(D13)

! f

This further simplifies when we bring in the y~ factor coming from the effective quark vertex. For the processes (S13) —
(S16) in which the gluon is absorbed before the shock wave interaction, this gives

2(k; = I7)
()

YK Z (k) Ky = ig*Cr /_{ (22—;_6 +

A similar relation can also be obtained for (S21) and (523)
in which the virtual gluon is exchanged after the shock wave
interaction. The only difference is that the order in which y~
and K, appear on the r.h.s of Eq. (D14) is reversed.

APPENDIX E: VIRTUAL GLUON
CONTRIBUTIONS TO THE yqq VERTEX
IN A~ =0 GAUGE

In a similar fashion to the quark self-energy calculation,
we will derive an expression for the gluon loop (with a
nested photon) that appears in diagrams ($22) and (524)
and their quark-antiquark interchanged counterparts. The
generic diagram is shown in Fig. 34. This contribution to
the amplitude can be expressed as

ulky.ky) = earg” [ 17Solky = raSulky + K, = e

X G[gu;ab(l)' (El)

If we expand the r.h.s of the above equation using the
expressions in Egs. (53) for the free quark and gluon
propagators and then apply the identity in Eq. (D3), the
numerator in Eq. (E1) is at most proportional to /. This is

) 2
>ﬂ€I(yl’”>(0l, A+ (2—e)—Lpezi 0, As)}}’_kf- (D14)

2%

because terms proportional to J,_, because of the gauge
condition A~ = 0, will yield zero after contraction with the
polarization vector for the outgoing photon.

The contour integration over /" is now well defined and
can be computed using the theorem of residues. The
location of the [T poles are given by

FIG. 34. Virtual gluon loop contribution to the quark-photon-
quark vertex for outgoing quark momentum k, and photon
momentum k,. This block appears respectively on external
and internal quark lines in the diagrams representing processes
(822) and (S24) in Fig. 24.
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= e
@ 201 2
ki —1,)? j
=k -Gt e
F T2k =) 20k 1)
k k,, —1,) j
l+|C=k}’—|—kj—(f¢_+ yi f) T 18_ .
20k + k1) 20k +k 1)

(E2)

We can see that for /= < 0 the three /™ poles are located on
the same side of the real [T axis and therefore the contour
integration yields a null result. For /[~ > 0 we can have two
separate contributions depending on the magnitude of /-
relative to k7.

(i) Case A: For [~ in the range 0 < [~ < k;, we have
the poles at [*], and [7]|, located above the real [+
axis whereas the one at /7|, is below. We will
deform the contour clockwise to enclose this
pole.

(i) Case B: For /™ in the range kJI <l < k} + k;, the
poles at /7|, and [*|, are located below the real [+
axis. So we will deform the contour anticlockwise to
enclose the pole at I1]..

The total contribution to the amplitude from the loop
diagram in Fig. 34 is therefore the sum of the contributions
obtained for these two cases

2a<k 1 k}') =

Sh(ks k) + S2(ky k). (E3)

We will detail below the computation of the divergent and
finite pieces for these two cases separately.
Case A: 0 <7 <kj

- I- ks k=1
A o (kpk,)=—ieq;g*C / — { fo
(VST P9 [ 2k (k; + k)

Stottr) =eur | g {5

2,ii i
+yaky}/ :| ( )(Vj\_,AA)+2{]/a+5m<}’

e V'Yal s (

14 kfﬂl(kf”'k}/)

The loop contribution in Eq. (E1) becomes

$4(ky. k,) = —ieqy*Cr / / (7 1 )

kf_},l -7 2[—+7Lli
Py A
2k (k7 4k ) /1[I + i) )? + Af]

__r
Ktk —r =y s=+ridy
(I +v5 ) + 43

(-t

where the quantities appearing in the denominators are
-

=g e )

; ( : )
presnel Rt el [T 0
k: +k; ky+k )

- - -
A A 2
"u = ——_ka_, AZ = —-— (1 __—>kf‘ (ES)
ks ky Ky

XYa

(E4)

In the following, we will redefine I, +v4, —1, and identify
the contributions that will lead to UV divergences in the
integration over /. The convergent pieces will be writ-
ten later.

A careful simplification of the numerator in Eq. (E4)
shows that terms proportional to /2 /' and I’V potentially
have UV divergences. Using dimensional regularization in
d =2 — ¢ dimensions, the final expressions for these
respective contributions denoted by f’(‘:;a)(kf, k,) and

2~’2;(II) (kf’ ky) are

k'—l

S s T A, (@

I~

- — 2k + 2k;ya}

i

k 2,ii
—k—fy‘> }l‘;fzi' (V4. a%)
!

) K N
- {Mtel (VA A% 26, (7’ —k—57‘>/t€1 (v, AA)} xel”

f

Y i e (2] ) k2 ; ki
AL pe TP (VA LAY T TP (VAL AY) by [l + M == (7 7 =y ke ) | (7 =Ly
2 k7 2kf k7

i ki k2 J/i ii ; ij
+ (7 —k—_V >|:kf_k__< Ty +y ﬁ—n ka)}}’a{Eﬂezgz' )(VA,AA)—VJMGIEJZ’/)(VA,AA)}J/_}-

(E7)
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The constituent integrals appearing above are defined in Eqs. (178) and the arguments are given by

k, k k
Vi = K (A_Ll),

kK +k\k &

st =i () (e -2) )} (-« )} o

We will now use the above results, along with the identity

(25 (- ) ®

to extract the divergent part of the loop contribution in Eq. (E4). This can be written as

Za W (ky ky) = T (g )+ Z00 (ko by ) (E10)
where
1 /1 1 i k, k;
SAdiv . _
o kpky) = letlfgchm< +21 <Q2>>m<kfa+k_{kfya+yaky>y ; (E11)
14 f f
and
1 1 2\ v Kraky + )™ v e + Ky
SAdiv f fla\lf 4 fra\ltf Y -
> (11 )(kf,k},) lequ Cpm—z {{ln <g> k_ - k]_( +kf7/(l
1 1. (@ <+ 1. (2 2 + 2,k 2
ot (Lo () S THASC R (N sl (0
€ 2 Q k 2 20 (Zf + Zy)kf - Zf(kf + ky) _kf
k, +k 2 1
- 2y Ky 2111(——Q i HV)Z) —|——ln(z—f> H (E12)
(zp + 2, )k7 — z(kp + k) zp(kp + k) 2" \zo
and zy = k7 /q".

We will now provide expressions for the finite pieces for the contribution in Eq. (E4). These are isolated from Egs. (E6)
and (E7). In addition, we have to combine these with terms in the integrand proportional to /' and {9 which yield finite
results for the integration over /. The finite contribution to Eq. (E1) can therefore be written as

ié;ﬁnite (kf’ ky) — iaA;;(fIi;lite (kfv ky) + ii;(f;l;l)ite (kf’ k},) ZA (f;l;’lll)[e (kf’ k},), (E] 3)

where EA (ffﬁ‘)te is the contribution from terms proportional to /¥, (p = 1, 0). These are respectively obtained as

K di- 0%\ (VA2 1 ks
SAfinite p g _ 2c d 1/ _ r
(1) (ky. k;) = —ieqsg F/ / aa{ < ) 204 2 2k;(k;+k;)2

- iequ2C ky,
1 —— ) 2kpy™ — — k , El4
X { < k;) fay <ky kf) Yol } 1677,'2 (k ¥ k= ) fay ( )
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(1 -,i—;) by ﬂ—kfya)}{ln(AA) : <V;A> = 4 T n(Z) o)
+ 7‘{% ((‘g)z - 1) Y A\AVAAYA (VA) vy }% Vf +¥, —% <y+kf + }’_% - Vl-ka)] (Vi - %7_)

O e o I R

434 ;fg‘a‘“de‘(kf, k,). (E15)

where the remainder appearing in the above equation is constituted of finite pieces left from the integration over terms in
i’é; ) that are proportional to 1/z; and produce the rapidity divergent pieces as shown in Eq. (E12). This can therefore be
written as

2 2 A2
S Asremainder _ legfg CFV kf}/a f + ky dl Q (VL) ~
Zei() (ky.ky) = 82 2k; (ky + k N 1) = Zaog(kp k) s (E16)

where the rapidity logs that must be subtracted to obtain the finite terms are contained in

S vroglhy k) = lln<z_f>{ (e + )k} ln(Q_2> _ 2k, + ky)? N (_ 0z + zy))
P2 \a0) Wep )k =k k)TN (2 2K 2k KN 2Ry £ k)

+3m(2)}. (E17)

The final finite contribution is
Fdl I- I- k3
s Asfinite — — _TfL
Zaw (Ky-Ky) = ~ieq s CF/ / "2k k 2% (k; + k) K E)y kf’y“[kﬁky_ﬁ(ﬁkf” 2%
i kl i - + 1= —k%i
—vikso e _k_‘y Vit (7 —k—_Y 14 kf—g vk +y 2k;—7yk/¢ Ya |y
+ l—l—_k - _&— - /_k_] \% k_|_k_l__ Tk -+ —kJ%_L_ k
k} F17 a k_}’ 4 ka Ya|kf y k; vV KTV 2k; ARLTAR
I- k2 K , I- K2
- |t -2fL i_ L, ~\vyi_ A Iy A =oAL
+1 [kf K <7 Ky +y 2% 7J_-ka_>:|7a<7 k;}’ )V |:kf K <7 ky +v 2% 71_~ka>:|

l - k? 4 kl ~ 1
bt b= (i g ke ) | (- ) e (B18)

In the above equations, ¥/} and A” can be expressed in terms of the Feynman parameter a and gluon loop momentum /-, as
shown in Egs. (ES).

Case B: ky < [I” < ki +k;

The results for this contribution can be obtained following a similar procedure as described above. In this case we can
write the loop contribution as

- . N
Zg(kf’ky) = _llegchBv (E19)

where the numerator and denominator can be expressed respectively as
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N:%[7ﬂ[7+(k;_l_)+7_(k}__l+|c)_7J_‘(kfl_lj_)]7a[y+(k;+k;_l_)+7_<k}_+k;__l+|c)_71_-<kfj_+k;d__lj_>]
1

lgn,+1,n
XW( gy + el

m) , (E20)

and
2k; (k; + k7) k7 — 1 2
r \"y f f :
=77 T g k. —k _
k; +k; = 1" [( L kTt -“) w}

- - -
l, ——(k k 2_ 1- k k) —iel. E21
X[(J_ ky__H{;(fL‘f' v1)) k;—i—k}( k;+k})(f+ v) ’8] (E21)

The numerator is evaluated at the location of the pole at /|, given by Eq. (E2). We can now simplify further by redefining

k7 — 1"
1 f
1+ K

ky —kp =1, (E22)

and use the identity in Eq. (D3) to expand the numerator in terms of four individual contributions. From each of these we

collect the pieces proportional to the constituent integrals Z @1ii) (VB,AB) and T @) (VB |, AB) which will give the
divergent contributions as well as finite pieces. The remaining finite contributions are obtained from the terms proportional

to the integrals Z\7" (V2 AB) and 1" (VB AB). The arguments V2 and AP for this case can be respectively written in
terms of the gluon loop momentum as

k k7 k k
B __ fL 7l f fL_ Myl
vi=a (2-5) - {e = (- 2) )
-\2
Y (LR T
k; k‘ k;Jrk; k]? k;

+ (l‘)z{a(l —a) (k; ! k;) <kkff 1;:;)2 ]]:fill?) (E23)

We can finally write the divergent contribution for this case as

> : L /1 1 ([ R AY A i
ZB. k,k _ — 2(j — | = _1 A l f Y flra\*f 4
ek ) = ~1eds 7 Cr g (e+2 n<Q2>){ n( 2 2k7 (k7 + k)

2 kfa _ k B ~
" <1 _2(zf—ykzy)> {k; +k]7y _7’“} +W%‘Vﬂ —Yakyy )}. (E24)

Using the expressions in Egs. (E10) and (E12), we can obtain the divergent contributions to the amplitudes for (522) and
(S24) in Fig. 24.

The result for (522) was given by Eq. (133). Because the computation of the divergent part for (S24) is tedious in
comparison, we give it here instead. We obtain the result
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RS2 (l )= b v zgq =yl —k,) v (1—2z5)q” ‘H’ 2(112) AR red oy
V. ua — . Ya 7/ v 234 Vi-
Ravaalle) = 7 2(1—zy>/zf,< PIB, + AW g, f00)  aLoi)) o T
1 3(1 1 (@ 1 /1 0%z, 1 (1))}
——|—-+zInl—=] ) +=zn In———"——+~In| —
{ < )( ( >> 4<e 2 <Q2>> <Zo>< 2,1 aom T2 g
! 1 /12)) 24%g < 2q > VaJ’,ﬂ/
—In 1+ - . E25
4 ( 2 (Q2 2(1 = z5)(1 = z,)q” 1-2z; [(11¢+VEO‘(2))2+AL0:(2)] (E25)

We will end this section by providing the expressions for the finite contributions from the loop diagram in Fig. 34 for the
case B: k= <[ < k™ + k,. We will write this as the sum of finite contributions obtained from terms proportional to the

constituent integrals Z\>") (VB AB), ) (VB AB) (also for i = j) and Z\*(VE, A). The terms proportional to

A 5;2’0)(Vlj, AB) are zero. With this in mind, we can write

i];;finite (kj" ky) — ig:(f]i;lite (kf7 ky) ZB hmte (kf 7 y) EB (f;{l]])te (kf’ ky) ’ (E26)

where fgﬁg';ite, izfg?;te and =5 (fﬁ‘l')te are respectively constituted of finite pieces from the terms proportional to the constituent

integrals 7 (pz’ijj)(Vﬁ, AB), T T2 (VB AB) (and for i = j) and I(pz’i>(Vlj, AB). The first contribution is obtained as

’Cp /on ki +k; 1 - k7 K K
smmie g ) = 019 { r ka—/f dl—/ daa(l— - _)[ L n,(—'f——f)r‘
m T R R D /o 0 k + k) 20 (k + k) ks &

14

] (o(5) 2 )

where V& and A® are expressed in terms of the gluon momentum /™ in Egs. (E23). In a similar manner the second term can
be obtained as

i lequzCF 1 /kf+ky 5 /1 (k‘ ) k, B
sBifinite . k dl dad | —L— "k :
‘o;(IT) ( f 7) 877,’ 2k;(k; + k_) - 0 o - fay +-= I~ (]/ ky}/a + kﬂ/ay )

2k —=17) . . kr +k; —17) k7k; B
—5;(7( = )k;+wky)r—2(k;+(f = )—f;_y)ya] (ln(A3)+(VAB)—1)

ki +k; =1 Ak +k;—17)
+ l— (rarly i (kes + )y + v ke v'var’y™) + — e kyr
Y
(k7 =17)(k7 +k, = 17) (k7 +k, —17)>
-1 lf_ - vy - fl—fr‘r‘m’y*}
2 B\i(1\/B\j
()

The third contribution can be written as
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5 ] 2C 1 ks +k; 1
25;(111)(kf,ky):lequ d A/ dl‘A daaks

8z° 2k (k; + k)

-\ 1 Alk; +h, =) (ko K\
(e )

+4(1<J: — )k +k; _l_)ya <kf—ky>y_> (k; k=1 k+>

I ki &y

k7 +k; —17)? :
+ My_ <kf - ky) yakny' <k)‘L -

kI ko k;

k-

ky 7

ks —1-
¥
Kk kﬂ)
Y

k

L (ky =)k +hy — 1) Kvar™ (f—f - f—i) 7L (kfi - Ekﬂ)
f

20k =) (kg + Ky =17) (kﬂ k,.

kj?—l_
Y1 ka_ = kyi
4

- al L\ 75—
[ kf k,
2(k‘-—H’<‘—l‘)2 k7 -1~
- fl—_yi’r (ka _fk_kyi)
¥
20k7 =17)(k7 +k, —17)
S k‘Jl“ ! Y_J/ai’L(ka—
7

kI k,

(ks + k= 17)? ks — 1
_MJ’L(kfi_ f kﬂ><

kI k,

- - 2

=0 N\ (ks o
kK, Tt k; k
2k +k; —17)? k7 —1" k k., Kk

- ( ! 4 ) Y1 <ka - ! k?i) YaV~ X < ol _H>

L

v

ko k

k;> Yo Ky

+ (k7 +k; = 17) K— e

4(k]7—l_)k 2<}'¢‘ka ik, kpik,
—L g, L _

k2L
- — =y + L 7‘)%)(% +7. k)
ky kfky (k}' )2 ’ ’

k k k Kk, ki k k2 P
—2{ vy e +h = L i o e r+ yLz v~ )Gy |
kp kg ky )

ky

Combining the finite contributions from the two cases we
can finally write the net finite contribution from the loop in
Fig. 34 as

ignite (kf7 ky) — ié;ﬁnite (kj" ky) + ig finite (kf, ky) ) (E30)

APPENDIX F: VIRTUAL GLUON
CONTRIBUTIONS TO THE y*qq
VERTEX IN A~ =0 GAUGE

We will derive here a generic expression, for the building
block shown below in Fig. 35, contributing to the ampli-
tudes (V13) and (V14) in Fig. 28. This can in general be
written as

So(q + 1L, (17 17)So(1h).
where the quantity of interest is
L7 07) = f(ig)t“y/’So(q + 1 = b)(—ieqy)

X }/ﬂSO(ll - lZ)(ig)tbyb X G/gv;ab(ZZ)' (Fl)

- = (E29)
kf kV (ky

The choice of arguments for I, will become clear as we
proceed with the calculation. We will first perform the
integration over /3 using complex contour integration.
Using the identity in Eq. (D3) and the fact that terms
proportional to y~y,y~ = 25,_y~ yield zero after contrac-
tion with the intermediate photon vertex in Eq. (17), we see
that the numerator is at most proportional to /;” whereas the
denominator is proportional to (/3). As such, the contour
integration can be performed without any additional com-
plications. The three /] poles are,

—
q
\

li— 1y I
FIG. 35. Building block for the processes (V13) and (V14) in

Fig. 28 (and their quark <> antiquark interchanged counterparts)
representing O(ag) contributions to the ggy vertex.
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I, = L, e +|b:l+_(1u_—lu_)2+ _i€ | =gl - (ll_J__l_ZJ_)Z_ A if_ (R
2Alr=) 2 =h) 2q~+i =) 2q +i-05)
where 5 |, and ] |, are located below and above the real [] axis respectively for any /5. The location of /3 |, however
depends on the sign of /5. In the following, we will obtain the generic expressions for I, for two cases

(i) Case A:For0 <[5 < g~ + I7 we have the poles at /5 |, and 5 |, located below the real I3 axis whereas /5 |.. is above.

We will therefore deform the contour anticlockwise to enclose the pole at /5 |,.. Using Cauchy’s residue theorem and

making the momentum redefinition I, —I;; — I, with I;; remaining unchanged we obtain the following
expression for I,

lZ
g+ -L)+y s=—=+7r.hb
(1T7l )__lequ CF// = i 12> V \2 Vv y/,t
5 Jn, 2‘] g +10)/(q +I7 = L)Ly +vi)” +A]]

25 205

(i =0L)+y (2q +m) +v1by U( +(12+ll)ﬁnu+ (L4 1y),ng > (F3)
X - = Y\ —9p - ’
QU =L) g +=15) . T
where
\% q_ + l 12 1 AV lg 1 lg lz 2 Iy QZ lJr
e th -5 _ _ F4
Vi, T+ 1Ls LT T a +i 1L+2(g +1) 2C] (F4)

The choice of /" and [ as the arguments of ', is now transparent from the above expressions. From the identity
derived in Eq. (D3), it is clear that the numerator in Eq. (F3) above has to be evaluated at l;r | which will have a
residual /] dependence. The value of this will depend on the choice of contour taken for the /; integration for the full
computation. The same is also true for the factor A} given by Eq. (F4).

(ii) Case B: For0 > [; > I] we have the poles at /5 |, and 5 |. above the real /5 axis while the pole at /5 |, is below. For
convenience we therefore choose to deform the contour clockwise. Performing the same momentum redefinition
l,, =1, -1, as above and applying Cauchy’s residue theorem we get

o e+ -L)+r (g +2(,7_, )+ v
Lalll 1) = ~fedrg” CF/ / G AT G

o B
y iy =05)+y ﬁ +rihy ) ( N (b +1)gn, + (L + 1), ) (F5)
X - V(- - X\ —Yp — ’
B - W e 5 i3,
where
v ll_ - 15 Vv 5 15 2 + 17—
= - L, A; :E I_E {tr —20707} (F6)

Once again the above expressions are to be evaluated at the /] pole enclosed by our contour of choice in the full
computation.

APPENDIX G: DIVERGENT CONTRIBUTIONS CONSTITUTING Ty, ()

In this section, we will discuss the strategy to compute the remaining divergent contributions (those not provided in the
main text) that constitute Tg, in the contributions to the amplitude from the six diagrams in Fig. 26. Recall that this
amplitude can be expressed as

MOV = 278(1 — 28,) (eq9) / dI1 a(k) {7, (1 )P O )07 (9,)) Upe(z1) — Crll}o(p),  (G1)
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where

Mo

TV/A(X lll Rﬂa llL (GZ)

=1

andeach RVVA, g =1, ...,6, can be decomposed as the sum
of a divergent and a finite part as

V,
Rfmﬁ) (l ) Rle /m(lll) + Rﬁlmte ﬂa(lll)

= Rd:/vﬂ;m(lu_) + {0 (L) + R% ,,a(lu)}

(G3)
In Sec. VC, we demonstrated that there are no UV
divergent contributions from these diagrams for our choice

of gauge. We are only left with singular pieces in rapidity
for four out of the six allowed processes in this category.

(v6) _ 1> / ihor, |
Ry (l;,)=In{— | x el Ty
aviall11) <Zo by (g7)*

-{rir

vilog vilog

(3,ii) 6 6 i )i 6
X {20019, oY) + BTOD (1), M}]

The integrals appearing above are given by Eqgs. (161). For
(V6) we obtain the following expressions for the arguments
¢, and c3 of these integrals,

c(l‘f) =l — Olz(lu - krl)’
CéV6) =a (1 - al)l%J_ +a(l—a)(l) L _k},J_)Z

+2may (L k1) by +:0%2,(1 -2,). (G7)
We will now present the results for (V4) which has a similar
structure to that of (V3). We will not provide expressions
for the divergent pieces of (V3) here because they are
similar to that of (V4) but more lengthy. The latter is due to
the fact that in the amplitude computation of (V3) the
contour for the integration over /] encloses two poles on
the same side of the real axis. There are therefore two
separate contributions which need to be added in order to
|

(V4) - / le / ily, r,, 1 (4,iijj) 1y, (V4)
Ry i) = e’ —2zq7/yayI v AY
w10 = [y o, T T g gl P e (VL

+{42,078ira?’r™ = 2077 V¥ Y™

For (V2) and (V5), we have purely finite contributions; we
can therefore write,

V2 R2

(Rfm >(m)) ( ()

V5 Vs

Rl<wl )(IIL) En)

The expressions for these finite pieces will be given in
Appendix [4.

We begin with the process (V6) which has a similar
structure to the process (V1). We can write

V6 49 Vo6
Ri (1) = R (1) + {00 (1) + Ry (B )}
(GS)

where the divergent contribution is obtained as

_ (3.ij V6 V6 3.i V6 V6
[{4qu S~ =24 1 HIG (@' ") + BTG (1, o)y

(I=zz)g —vohidrrfzgg +rodildr}

¥k
2pk Ya-

(Go)

14

|
obtain the final divergent piece. The divergent terms
computed for these processes contribute toward the leading
logarithmic evolution of the LO result and can be absorbed
in a redefinition of the weight functional W x-[p,] describ-
ing color sources as described in the introduction. This is
also explicitly shown in the IMWLK derivation discussed
at length in Sec. VII.
For (V4), we can write

RV (1) = () + Riga ()}

(G8)

d1v ,m(lu) + {(R

where the divergent pieces for (V4) are obtained from
terms in the amplitude that are proportional to 1/z;. These
specific terms can be written as

)+ lz 4lJJ (V(LV4>,A(V4))}

S A 4,ijkk 4.ijk
= 22,4771 vy HIS O (WD, AVH) 1 k(0 (p () AV
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+{r vy =z + v (b =k, )lralrTzga +vo iy

—r It zeg —vo (e =k, )y (1 =2z)q + v (i =k, D)lyvar'r™

— vt zeg v =k, )y velrtzaa + i iy —4zga (L — KDyurar™}
« {I(L%-ijj)(v(l‘/‘*)’ A(V4)) + léI(fm(V(M), A(V4))}

1
_ _ (0 -k, )?
+{y[wzﬂ —xbm¢—kﬁﬂmbﬁu—maq-—y(—f+~ii—%#— i —ky)
2q 22,9
xya[ﬁzqq-+n.mr} (v, Ay 4 BT (v Ay, (G9)

The finite expressions for the constituent integrals appearing in the above equation are as follows:

(k) - l-a~ %3 2V 3N\ Vi o1\
Ig / Vl, / dal/ daz/ {<A3 +A2 VV)‘I’ E+X oY s

ii - ——Q Lo 1 .. . . Lo
(v, A) :_E/o daIA da2/0 da3{—3V’V1V"+F(5’/V"+5/"V’+5k’V’)},

4 1 1 1—a; l-ay—a, 2 ; ;
Igz ])(VL,A)——/ dal/ daz/ d%{FV VJ+W5]}
. 1-a 1-a;—a
Igl’l)(vl, = —/ dal / ] d(lz/ t a3—V’
(4.0 1—a l—a;—a,
I VJ_, / dal/ a2/ (l3 A3 (GIO)

The remaining integrals can be obtained by equating two of the indices in the expressions provided above. The arguments
V| and A can always be expressed in terms of z; as shown in Eq. (154). The integration over z; can now be performed and
we can express the divergent piece proportional to logs in z, in terms of integrals over the Feynman parameters. These

integrals only depend on the coefficients ¢; | and c; appearing in Eq. (154) whose individual expressions in turn depend on
the process of interest.

The divergent term in (V4) can now be finally written as

1 ~ 1 (4iijj) (V4 (V4) (4,f]) (VA)  (V4)
ol — x / ity s 22 v (T g (1 08 ) + BTG (Y e
d allin) = <Z0> L (1—2,)/2,(q ) 22397 7var{ dog (€11 2 €3 ) BT 0 (€] c3 )}

{42,078V Y = 207V Yty = 2240771, rar HI i (e, ) + BZI (T, 7)y
+{rrrndrt (U =z)a +ro.(h =k, )lralrtzaq + v iy

1 lrtzeq — v =k )y (L =z)a” +yi(hi —k,)lrar'y”

1l zeq” — v =k D valr T zaq Fri iy = 4250 (1 = K)yrar™}

(4,ij V4 \ 4,i v4)  (V4) _
{Inlojgj( (u)’ ( >)+ZJI1()](){(;>( <IJ_ ’C3 )}+{ [7+qu _YL'(IIJ__kyJ_)]

Q> (Lhi—k,)?

Xy, lrt(1=z,)g” =7 < ) +yi(li— kyl):| Yalr 259~ + h-lu]y‘}

2q- 22,9~
(4.ii V4 i i V4 V4
) AZGD (A, )+ BT (1 )y (G11)

The expressions for some of the integrals appearing in the above equation are provided below. The rest of them can be
obtained by putting i = j in the expressions given.
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4, jkk N % i c (3 2
Ii;lojg >(CIJ_’C3 3 2/ d(ll/ (12/ d(l3{51< ]L> Clcjl (_2+ |3l>}7
3 a3

(4.ijk)
Iy;]og (CIL’ 63

l-a l-a~a 1 2ci ¢l ok
/ dal/ 1d(xz/ B 2dot3{ 5’Jc’1‘+61kc + 5kic )_2 Clczlcl}’
2¢35 3

i) o flace (81 2cld]
I“Og(cu’cg 8 2/ dal/ daz/ a3{263+ cg ’

4. - l—a—ay 26‘
.’Z-(U;]'O)g(CU_, C3) = ——2 dal/ daz/ da3 3] . (G12)
0 0 0 €3
Specifically, for (V4), the arguments of these integrals are,
Z_
05‘14) =a(k, —11) +a (1 _qz k,. - lu) +a3ly,,
v
VD — g (1 = 1, -k, )2 1- L, -— g ’ 1 —ay)B3
a3 a(l—a)(liL—k,1)* + (1l —ap)| iy 1 Z g ot +a3(l—a3)l3,
Y
2ol — k). (lu —]ijkﬂ) +2mas | 1 — iéz ku) by +2aa0l, (L — k1)
Y 14
_ 2 2q%g 2 Zq 2
+oyz,(1=2,)0° + 2kyl+ Q (G13)
z,(1-2z,)

APPENDIX H: DIVERGENT CONTRIBUTIONS
CONSTITUTING T\

In the main text, we explicitly computed the amplitude
for (V19) in Fig. 31. We will present here the divergent
pieces in the amplitude for (V21) in this figure (Note that
the contribution from (V20) is completely finite).
Following the discussion in Sec. VD, we can write this
amplitude as

Myt = 2n(eqz9)%5(1 = 2ly) / Ak Ry (11)

x [1°U(x 1)U (y )1, = Cpl]u(p), (HI)
where R(V2!) is obtained by summing the contributions for
the cases when 0 < [; <k~ and 0 > /5 > —p~ which we
will respectively denote by R(Y2D# and R(V2D:B As we
have shown in Sec. VD, there are no UV dlvergences
associated with these final state interaction processes owing
to our choice of gauge. So to isolate the rapidity singu-
larities, we isolate the terms in these pieces which are

proportional to 1/z;. The contributions from the remaining
terms are completely finite. With this in mind, we can write

Jmuuj—{Rvi,uu>+R82 (1)}

21); 21);
o () + R P (11)}
(V21

2
le Ua (lll_) + halti)/m(llj)

+ (R

(H2)

Above we have the terms proportional to 1/z; for the two

cases A and B denoted respectively by RE‘;M) and
Rggzl) . From these terms, we will get a logarithmically

divergent contribution and a finite remainder. We add this
remainder to the finite contributions from terms not

proportional to 1/z; which are denoted respectively for

(V21):B

the two cases by REK) D and R( m . This constitutes the

net finite contribution from these amplitudes. We can write
this as

Riyeya(hi) = {02V 1) + R

finite;pa y1es

(i)} +A—B,
(H3)

where the remainders are given by

B) = REZDAP ).

A (V21 V21
5)1;(4(1 4 (ll ) EI) /w)t diviua (H4)

With these definitions in mind, we will now write down
the expressions for the contributions proportional to 1/z;
for the two cases considered above. For (V21), the
expression for R for both cases is given in terms of
the constituent integrals as
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. 1 d il N N) 5 :
R<V,21)’A’B(lu) / 2 [R?f ) (V (V2IAB A (v21) JABY 4 RAB 11(4 Jkk)(v(lWl)sAsB’ A(V2D:AB)

(1) (q)? ) @2r)z
" RA"?”' Ig;t.ij,,)(v(lvzl ,AV2DABY RA B; zjk {4k (V(lm) , AV2D:AB)
n R? ;;WI@ ”)(VS_VZI);A,B’ A(V21)A, BY 4 R? Bﬂl({tz'(él U)(VS_VZI);A,B’ A(VZ]);A.B)
TR T (VAR Av2)A8Y] - (H3)

The finite expressions for these constituent integrals are given in Egs. (G10). It should also be noted that the limits of
integration over z; are different for the two cases we are considering.

For Case A, we have z; in the limit [z, z,] while for Case B, we have z; in the limit [-z,, —z;]. Any changes in sign
occurring due to change of the order of limits of integration have already been accounted for in writing Eq. (H5). The
coefficients multiplying the integrals in Eq. (H5) can be written as

A.B A.B ~A,B A,B;ij A,B ~AB;ij A, B i A.B ~A,B;i A,B;i ~AB
R (1)spa — = C C ’ R(z);ﬂ{]l = CZ C4 ]’ R Y (CZ CS + Cl C )’
A,B;ijk \B;i X s A,B;i \B;i ~AB;j R N
Rt = CoBiep?t R = cPey?, Rl =ciPeg™, mEE = oMPicg®. (He)

The explicit expressions for these are

Ol = T (ggp' —ggk), OB = T (gpi k), Ch=s o =
! (1 _Zy>2 ! ! ! (I—Z},)z 1 1 : 2(1 _Z)/) : 2(1 _Z)’)
Ch=C8 =22,q7vay,.  CV =C0" =202 var’v, — (1 = 2)V'vart? = 2gvar'var’)a

CY' =C¥ =yyr lr (I —z)a =y i ilrdrzga +ri i +rlrtzeg —vi- (b =k, )lrer'
Xyulrtzga v i) =420 Bvay, = v Yz — v =k, )lrelr T (1 —z5)g™ =y iy,
Co=C8 =y lr'zeq —vi(hi =k )lradr (1 —z9)a =y~ (B +230%) /2259~ =y L rlr zaa” +ridi).
(H7)
We can now express the arguments V| and A of the constituent integrals appearing in Eq. (HS) in an expansion in z;, just as
in Eq. (154). It is then straightforward to isolate the logarithmically divergent pieces in Eq. (H5). As expected, we will only

require the expressions for the coefficients ¢;; and c; that appear in Eq. (154) for the two cases A and B. The rapidity
divergent contribution from (V21) can now be finally written as

RG (L) = R (lu)‘f'R(Vz] (L), (H8)

div;ua div;ua div;ua

where

1 1
RV21): (lu) - )21n<—> [RA,B. XI(‘.LHU)(CEKZU’ FVZl )_’_RAB” XI(4 z/kk)( <1‘fl) C(VZl))

dlvlm 20 (1)sua vilog (2) v;log » &3
A, 4, V21 V21) A,B;ijk 4,ijk V21 V21
+ R % Toton (€165 )+ Rt < o (7. e87)

);pa vilog vslog

+RAB 2411)( (1\121 (3 )+RABUXI(41/)(CE\J/_21)’C2V21))
. (H9)

RAB,Z-M)( (v21) c

);ua™ vilog

As discussed throughout this paper, the upper limits of integration over z; governed by the large momentum ¢~ have been
absorbed in redefining z,. The resulting mismatch between the divergent pieces in this redefinition is logarithmic and can be
neglected when working to logarithmic accuracy. The expressions for the integrals appearing above are given in Eq. (G12).
The arguments of these integrals for the process (V21) are respectively obtained as
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(var) _ _ I - (quL - qui) <g ko —1
€L b —m - +as =g, ot
21 (zgk1 = z4p1) Z;
Cgv ):al(l—al)l%l-l-az(l—az) i (12 +a3<1—a3)<—qk7l—lu_)2
(1-z,) 1-gz,
U (z:k| — _ .
- 2(11&2 = (Zq = quL) + 2&2 3 (Zq L qul) . Zq k},J_ - lu_ + 2a3allu_. Z—qk}d_ - lu_
1-gz -z, -z, -z,
2z 2435
+az5(1 = 25) Q> —ap — 15 (2p k) + a3 — 15 (k7| +z,(1 — 2,) Q7). (H10)
(1-z,) z,(1-2z,)
Note that these terms are the same for both A and B.
|
APPENDIX I: COMPUTATION OF THE MSE(I) — 275(1 2 E(1) ()
FINITE PIECES IN AMPLITUDES FOR finiteyua = 270(1 = 2io0) (e 7) R (1
VIRTUAL GRAPHS a
X [("U(x 1)U (y 1)) Upalz) = Cpl]u(p),
In this section, we will present the generic forms of the (11)
finite pieces in the amplitudes for virtual gluon contribu-
tions. To facilitate their eventual numerical computation, where

we will express these explicitly as functions of the gluon
momentum fraction z; in the loop and the Feynman
parameters «;. The resulting expressions can then be easily
computed using Mathematica [119].

The idea here is to present the techniques that we have
developed to simplify this tedious computation by present-
ing a few examples. We will not give the explicit expres-
sions for all the finite pieces in this section since first, this
will add significantly to the length of the paper, and second,
because these have to evaluated numerically with some
choice of kinematics to gain a sense of the magnitude of
such finite contributions. This will therefore be the subject
of future quantitative studies in this framework.

SE(1)
finite

1. Computation of M

The finite pieces of the amplitude contributed by the six
processes in Fig. 22 are contained in

mlsil)(lll_> | lu_)
N (41) | =72 [ ot
21

RS (1) m)

) fo ol

6
SE S, Sp
Romoyali) = > (R (1) +RY) (1)), (12)
p=1

Recall that what we call the “remainder” 3(*?) is comprised

(Sh)

of terms in the divergent part R/ (pa of the amplitude which

do not contain UV and In(1/z,) singularities.

Since the divergent pieces are zero for the processes (S2)
and (S3) so are the remainder terms for them. We therefore
have

R (1,,) =0, for p=2.3. (13)

For the processes (S1), (S4) and (S6), the remainder has a
generic structure that can be written as

Sp
S (B v
2A5P) ASP)

n a1 (V(fﬂ) 4 0
Z(Cl(sﬁ))z a(lsﬁ) A(SB) Al

1

(SB)

We can always express V" and A? in terms of z; as

VO e s A

2 1
Sﬁ))) +2a(lsﬁ)}’ p=146 (14)

(SP)

P4z Cy +z,cgsﬂ), p=1,...6. (15)

For the processes (S1), (S4) and (S6) these coefficients are respectively given by
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(i) For (S1):

(S1) sy _ (ky +k, )—alk, +k, —1) S _
U =

a(ISI) =1-2z, ¢y =aby, G = 1—z, ’ (1-a)l3,.
]
| 2 1+ ALO:(1)
cf;Sl) = a(l—a)2by, .(ky +k, —1i) +a Lt - (1 -a)(2k.k,) o
1-— Z,‘1 Zq
1 2 4 ALO:(1)
L {a(l —a)ky thy —1 )P —a TR —a)(2k.ky)}. (16)
(1 - Z{]) ZZ]
(i) For (S4):
ally, -k, —k,\)
0554) ~z, cﬁ) —aly,, C(zsf) _ ot ; ) 6(354) —a(l-a)B,.
q
se) 1 2 o Lago 2
C4 :Z_ —a(l—a)ZIZJ_.(lu—kL—k},J_)—i—a[(lu—k},J_) . lll+ kL-f—ZqQ s
q q %
1
ch4> -2 {“(1 —a)(ly—ki —k, ) —a|(li—k,)*+ lﬂ_ + qkzl + Zqu} } (I7)
7 g
(iii) For (S6):
56 54 56 54 56 54 56 54
a(l )= a(l g "(u) :C(u)’ ";L) :"gL)’ Cg )= Cg g
1 I —k. )2 4 ALO:(B)
o =— {—a(l - 2~k — )+ o) }
Zq -z
1 1. —k )2 ALO:(3)
e’ :—z{a(l —a)(llj__kj_—kyl)z—a( k) F } (I8)
75 I-z,

In the above equations, we have AMO:(D) = 75(1 = z5) —ie and its quark-antiquark interchanged counterpart
ALO:G) =z (1 -z,) — ie.
Finally for (S5), the contour integration over [ encloses two poles; we can write the remainder in terms of these
contributions as

1 , Yizgqa —vi i~k ) YTzga” vy
gh a (lll_) / ellu.r”y_ E }" Y (C - D)ya q—_y_v Where )
g 4n 42 1 (llJ_ + Z?]/Zykyl)z — e g Z}/(q )2

v (1 =z29)q” +r (G2, + K, 25) /225297 + v (L =K,y )

C= : .
(1- zn/z@[au + [0 @2 4 AL )]
B\ LV
x / dz’/ [ { S <2A<S4)> “am !
(54)\2 2
<] (VJ_ ) (0 1
" <2(a(1S4))2 B a§S4>> ( ABY i as)) " 2a"]° n
b (1=29)q” +77 (I =k1)*/2(1 = 2)q” +70.(h —kyu)

1/(1 - Zq)[(lu —k,1)? + ALO:3)]

S6
dz 2+1 B\ _huVi >—1
! 2A(50) A(56)

(56)\2 2
; 1)(“> (5%)) 2
+ - +In + : (I9)
<2 (a§S6))2 ai‘%) A(56) A(56) 246

1

The coefficients needed for the evaluation of the above terms are given in Eqs. (I7) and (I8).
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We will now present the expressions for the pieces RéISIﬁ ) in the finite part of the amplitude given by Eqgs. (102) and (103).
These are comprised of integrations over the transverse gfuon loop momentum, /5 |, which are finite in two dimensions. We
will first write down these contributions for (S1), (S4), (S5) and (S6) which share a similar structure. This will be followed
by the corresponding expressions for processes (S2) and (S3) which are considerably more tedious albeit similar to one
another.

For (S1) we can write the finite piece as

ROD () = / eli ey K+ k}/( (S1) (s1)> (1 =z)g =y (G + Q%25)/2254” — vl y Y zgq tridin .
() \*1L s a 2k.k}, a b I%L + ALO:(1) H 4(q—)2(1 _ ZEI)Z

(110)
The terms appearing above within the parentheses have generic structures for f = 1, 4, 6 and are given by
d i
pfﬂ) _ /%(dgsﬁ)zf+d§sﬁ)zl+ng/}))Iiz’>(Vfﬂ),A<Sﬁ>), B =146,

dz; 1 _ _ _ X
pésﬂ) _ / 2_7[1 q__ dgsﬁ) ( dgsﬂ) _ désﬁ) 29°) dgsﬁ) ( désﬁ) _ désﬂ) 2q7)( d%ﬂ) uq — dgslﬂ))ﬁ? 0)(V<fﬁ>, A(Sﬂ))' (111)

The constituent integrals that appear here have simple (finite) expressions in d = 2 dimensions:

. Vv (SB)yi 1 /1 1
(2.0) (y/(SB) A (SP)Y — _ Lo ( ) (2.0) (y/(SB) A (SB)Y —
(VYL ABP)) = 17 Jo da TR (ViYL A )—47[ | da Tk (112)

The decomposition of the V(fﬂ ) and AGP’s in terms of z; and a and the accompanying coefficients is clearly shown in
Eqgs. (16)—(18). The expressions for the coefficients dgsﬂ ) (i=1,...,11) for (S1) are as follows:

disl) =4y'(q7)% dés” =-27,.Ly'yq —8(1- Zz;)(q_)z}’i —4lby g,
ngI) =4(1=z5)*(q7)r' +8(1 —z5)q lyy™ =2(1 —zg)g {r'y (ks +k, )y + 7. (L =20, )Yy},

&V =y, &V =p+p,. =y &V = @ =y -z —7 (L~ D).
=yt dy =y dY) = b (113)

Correspondingly, for (S4), (S5) and (S6), we can respectively write
rzeq” =1 (Q%2z, + quﬁ +2,071)/22,259” —v1-(Li —Ky1) N
(. +viO5(2))2+ALO:(2) r

" (1 —zg)qg =7 (L + 2509 /2259” — v hio , vrzgqm oy -
I%J_ 4 ALO:(]) ﬂ4(q—)zzgi(1 _ Z;,)/Zz]

54 S4 54
Rh;ﬂl(llﬁ = (@z(z ) + @2 ))

(114)

rtzaq” v
4(q ) 7zl + 24/2k,1 )" — ie
v 209" =1 (@242, + 25k}, + 2,07,)/22,2597 —v1-(i — k1)
(1= 2,)/25[(h + v )? 4 ALO:®)]
X rulr T (U= 20)q” + 77 (501, + 2gk71) /2252, + 71.(i —k,1)],  and
v 20q” = (e =k )* + (1=2.)0%)/2(1 = z,)qg” —y..(li — k1)
1/(1=2,)[(l11 —k, 1 )? + ALO:O)]
Xyt (L =zg)g~ +r (L =k, )?/2(0 = 2)q +y1-(L =k, 1)) (I15)

R(SS()I(IU_) = (E - F)ya

e ] y~, Wwhere,

S4 S4
E= (o + o)

S6 S6
F=—(p 4 %)
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RED (1, ) = —(o) + 59 vz =y ((h =k, )+ 0* (1 —2))/2(1 —25)g™ — 71 (L — k1)
a\“1 — T \§a b

T (lu_ _kyj_)z + ALO:(3) Yu
(1 = "4y, (L -k +
}, ( Zq)q _J;Lz( 1L }’l) ]/_ﬁ k}’ }’a (116)
4(q7)%z; 2p.k,
The coefficients dgsﬁ) (i=1,...,11) are identical for processes (S4) and (S6),
A d i, (117)
and are given by
(54) i b -\2 (54) Q= -2 i koo i =
di’ =4y ——=r (@), dy ==2y1.byyyq —8z(q )\ vV ——=r | —4brq.
749 749
(54) 20,-\2( i koo —Ji,— - in-
dy =Aaz,(q7 )\ 7'~ <) 82,97 Ly™ = 224q7y (L =2y —ky =k, )y'y™,
q
) K
4 — (y’ B _y‘), dgs4) . 4~y 4~ )
249
4 4 4 ki _ 4 -
dz(;s) :k—h-(lu—lu—’ﬂ—kﬂ)’ dés) :7+7dgf)> = (?’i—z q_}’ ) d(lf) = bLyy™. (HS)
q

We will now provide expressions for the finite pieces of the amplitudes for the remaining two processes (S2) and (S3). As
mentioned in the previous paragraphs, the remainder terms for these processes are zero. We therefore have only the finite
terms Ry for (S2) and (S3). Because there is a real photon nested inside the gluon loop for these graphs, we have two
different contributions depending on the magnitude of the momentum of the gluon in the loop, /5 = /5 relative to k™.
Accordingly, we have to sum the results for the cases 0 < I3 <k~ and k= <[5 < k™ + k, to obtain the net finite
contributions for these two diagrams. For each case, these can be written in terms of constituent integrals with coefficients
which depend on the process of interest. For (52), we have

(82) _ p(82):A (52);B
R(u);,m(lll) - R(ﬂ);,m(lu) + R(u);,m(lu_)» (H9)

where A and B denote respectively the contributions to the amplitude for 0 < /3 < k™ and k™ < I3 < k™ + k. For each
case p = A, B, we can write

52); il r dz 82):p+(3.0 $2): . 82)ipy i+ (3. $2): .
REH)Z)MZ(IU-) = j PR o / 27; {CEI);LPI(U )(V(J_ )P’A(SZ)J’) + (CEZ);LP) I(L )(Vﬂ_ )I” A(SZ),p)
21

CERPTEN VT, A) 4 (CEPITEN (VI A 4 (YT (VT A}

_ _ P +7,0°
v (-2 -y = —ruhy

X .
Az,(1 = 24)*(q7 (I + AL W)

Yulr Tz + vy, (120)

where the expressions for the various constituent integrals appearing in the above equation are given in Eq. (152). The
arguments V| and A appearing in these integrals can always be expressed in terms of the momentum fraction z; of the
gluon, as shown in Eq. (I5).

For (S52), we obtain the following expressions for the coefficients ¢; (i = 1, ..., 5) that appear in this decomposition for
the two cases A and B mentioned above.
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Case A: 0 <[5 <k~

. k, k +k k l
et =mh . S = < o u) +a; <ZL— = )

Zg 11—z ¢ 11—z

Cgszm =a(l-m)h,,

. k l k, k, +k 2k.k B, + AN
CA(‘SZ),A = 2&2(1 —az)lzL.<—L— 1L ) —ZaIaZIZL.<—l— = YL> — Qg ! +a2 1L i ’

z, l-z 7z, l-z -2z 75(1 = z5)

: k, k, +k, \2 k 1 2 k l k, k +k

N T— -a1)<i- Lt u) tar(l— ) (_l_L) _2a1a2<_l_L>,<_L_g)
Zq I-z g -2z g -1 Zq I-z
2k.k, B+ A0

fa (121)

a
(1 —Zq)z Zq(l —Zq)z
Case B: k™ < I3 <k™ +k;

(52):B 2q (52);B Zq k| kyL I, >
c o+ k, ——k + als c = —L—k,, ——= |+ L————),
i = (a 2)( 1L Z, u) 2ba1 21 l(zy(l _Zq) 7L Zq) 2<Zy -2,

: z 2 z 2 z z
CgSZ),B_al(l—al)<kj_—z—qk},l> +0{2(1—a2)<lu +kJ__Z_qkyJ_> —2a1a2<k1_—z—qkﬂ_>.<lu +kJ_—Z—qk},J_>,
Y

7 7 14

. 4 k k l 4
a(;S2>’B =2a(1 — ) (kl - —ku> (z—qku L) + 2 (1 = az)( - L) . <ki - Z_qku + l2l>
zZ, 7, (1 —2z5) 2 z, 1-z z

14

k l k
—26‘!1(12{(]( k}/J.) ( 7J__—1J_ )‘F(kj_—z—qkyl‘*'lzj_).(izq k},J_——J_>}
z, l-z z, 7, (1= 2z5) 24

k, Zl%l+AL0~<>
I—Z(—{ Z(}(I_Z(}) ’
(52):B Zg ki \? ko L \?
c =a1(1—al)(7kl——> +o(l-a)|———7——
> L(1—2z5) "™ 2z, z, l-z
z k k 1 2k.k 2, 4+ ALO:(1)
_2a1“2<z (lzz)kyl_zl)(zﬂ_lié) ta (1—;)2_0’2 lzL—(l—z—)z '
4 q q 14 q q q q

The terms proportional to these constituent integrals in Eq. (120) can be written in terms of coefficients, some of which are
also functions of the gluon loop momentum fraction z;. The exact expressions of these are lengthy and will be provided in
Mathematica scripts upon request.

In a similar manner, the finite piece Ry for (S3) can be written as

(122)

REISS)W(lu) ROVAW )+ R (1) (123)

(I)spex (I0)spex

where for each case p = A, B, we can express

$3) i, ., [ 92 3.0) (y/(83): : ~(83):p i (3.0) (v (S3): .
REH ;m(llJ-) [ ethirx / 5 {CE )) Pz’( )(VS_ )P’A(S3),p) 4 (ng);)ap) IS} )(VS_ )p’ A(S3)’/’)
21

~(83); 3.ii S3); ; ~(S3)spNij (30 S3); : ~(S3)spN\i(3.i)) S3); 3);
+ CE3>;LPI§] )(V(L )P’ A(SB),p) + (C§4);)ap) /Ig‘ J)(V<L )P’ A(SS),p) T (CES);)ap> Ig ]J)(V(L )p’A(sz),p)}

_ _ P +z,0°
J’+(1—Zq)q -7 léz;qq— vy

4z5(1 = 29)(q (17 + AL )

Yulr zga” + vy, (124)

with the arguments V(fS);p and A7 of the constituent integrals for both cases again expressed in terms of the gluon
momentum fraction, as in Eq. (I5). The terms that multiply these constituent integrals in Eq. (123) are polynomials in z; with
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coefficients constituted of gamma matrices. We will see this behavior in all the finite contributions that we are going to
discuss in the upcoming sections.

2. Computation of M?flsfl

The finite pieces of the contributions to the amplitudes from the quark-antiquark interchanged counterparts of the six
processes in Fig. 22 are contained in

M2 = 215(1 — i) (egqy)? / AT (k) R (L DO )T (9)) Up(21) = Cpllo(p), (125

where

12
Rom o) =Y N (1) + R (111)). (126)

finite;pa ()spax
p=1
These are obtained by employing the replacements in Eq. (66) in the terms constituting the finite piece in Eq. (103).

3. Computation of MSE

The finite pieces of the contributions to the amplitude from the 24 processes (S13) — (5§36) are contained in

fm1te

MY = 2m8(1 = 20y) (eq9)? / dIT;Ca( {ZR ) +q«>q}<cF< x )0 (yy) =)o),  (127)
p=13

where ¢ <> g in the above equation refers to the expressions for the quark-antiquark interchanged processes (S25) — (536).

(813) (524)
— RV~

finite finite

The latter are obtained by using Eq. (66) in R
in Eq. (118). For (S14) — (S16) we obtain,

. The expression for the finite contribution from (S13) was given

2 2
(514) I o f7 3 0%z n

Rﬁni H a(lll) = R a {—+—1]’1< B . - ) (128)
tesu 272 8§ 8 (1 —Zy)[(luﬂLVIio'(z))z+ALO'(2)] 12

2 2

(s15) I o7 3 07z m 3 - a

R l Ria =4+ =1 ——r+—=A,, )In{—], 129
i F1) = 272 {8 8 n<(1 —Zy)[(lu+VEO:(2))2+ALO:(2)] 12f 16z 1) 10 b 2%

where

vzgq —v i —k,) rT(1-z,)q +r (L _kyl)2/2(1 -2,)q" +ryi(li—k,.)

Awliy) = ~y
S (hi+zg/3k)* —ie ™ (e =k, )* + Q%24(1 = 24) —
rizgq +rohe
X Yan— . (130)
2(q )zzy/(l - Zq)
and
1. -k 2 ALO (3) 1-z2 .
_ (e —kyu)” + ’ h—_— % (I, + V0 2)2 4 ALO:@)], (I31)
l - Zq q
For (S16) we have,
2 2
(516) 1 1037 3 0*(1-z,) T
R l — R < +=1 -0 132
ﬁl’llteﬂa( IJ-) 2z {8 + 8 n((lu —ku)z + ALO:(3) 12 ( )
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In the above equations, inO: ) and ALO: @) are givenby Eq. (31) and A0 () = z4(1 = z,). As shown in detail in Appendix D,
the contributions from the diagrams labeled (S17) — (S20) is zero in case of massless quarks. We therefore have

RO (1) = RS (1) = RSy (1) = Riga (11) = 0. (133)

finite;ua finite;ua finite;ua finite;ua

The finite pieces for (S21) and (S23) can be obtained in a similar way:

2 1 1o 5 3 [(0*(1-z) 7
i) =R 00 {§-n(S5) + 1) (134
Y

l
R(523 (l ) —y- 7+qu_ —'J/J_.(lu_ —k},J_) v, +(1 - Zq)q +r 2(1—-z;)q~ ) —71 llly ]/JFZ(—{q_ +’J/J_.lu_ v
inite;ua \" 1L - - —~
e (e +V]lo'(2>)2 + AMO:() I + Ao "2(1-2,)/24(q7)?

L7 3, qu i

Y Ya¥u 749" 1 {1 1 szfl }
) : 315ty —dom (- (135)
2(1-2))/25(q7 (L + -2 D)2+ AL0:2)2(1=25) 202 |2 27 B + ALO:D)

Finally, the computation of the finite pieces (522) and (S$24) where the photon is emitted from the quark self-energy loop) is
considerably tedious. We will express the finite contributions from these amplitudes in terms of the finite piece of the self-
energy contribution that we derived in Eq. (E30) of Appendix E. These can now be written as

j oy + tT(1—z5)g —y.d

inite;ua ; Tz:q" + A -, 136
finite;u equZCF v Zkk}, 4 2<q_)2(l%l+ALo(1)>7ﬂ[7 qq Y1 u]}’ ( )

where %(k; = k. k,)| e is Obtained by putting k; = k in Eq. (E30). The expressions can further be simplified by using the
Dirac equation i(k)¥ = 0. Similarly we can write

R(fS2-4)_ 1) = i 1 - v zgq —vi- (il —k,1) Shnie
e equchZ(q_)z (Zq+2q)/zq(lﬁ ALO())

v zgq +ridis .
(lll+v302(2>)z+ALo:(2)

(kf =dq + ll k},, ky)[ (1 - Zé)q_

—r ((Q*5 +13)/2z597) — v 1 i1y, - (137)

where kf = (—sz_—#_—k#i,k_,lll _kyl)'

Vert (1)
finite

4. Computation of M

The finite pieces for the 6 diagrams in Fig. 14 are contained in

M,Y;’T&ie = 2”(‘3%9)25(1 ~ Ziot) / dIt a (k)RZrirt[e W(lu)[(fbﬁ(xL)faUTO’L))Uba(ZL) - Crl]v(p), (I38)

where

o)}

V V
ﬁx?:tte /wc Z l“l llJ_ Eﬂ)ﬁ;im(llj_))~ <I39)
p=1

In the above equation, for a particular process f3, as previously for the self-energy contributions, %("#) is defined as the

remainder between terms in the amplitude which are proportional to 1/z; and those proportional to logarithms in z,. The

second term R%}) is comprised of finite terms that are not proportional to 1/z;. We will represent the latter in terms of

constituent integrals described in Appendix B. For the computation of this second finite piece, it will be useful to express the
amplitude for each process (see below)
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MEP = 27(eqp9)25(1 — 28y / dIt a(k) R (1))

< (PO )T (y1))Upa(z1) = Cr1]o(p),

p=1,...6 (140)

in terms of some generic forms which will be identical for
processes with similar topology. We will demonstrate this
in detail for a few graphs in the upcoming discussion. The
finite pieces for the other graphs can be obtained following
similar techniques. These expressions are lengthy and are
necessary only in the context of a numerical computation.
Mathematica scripts are available that allow for an algo-
rithmic evaluation of these.

We begin our discussion with the processes (V1) and
(V6) which have similar structures with respect to the
emission vertex of the outgoing photon, which also extends
to their amplitudes. This is exhibited in the similar
forms for the rapidity divergent structures in Eqgs. (160)
and (G6).

To compute the first component, %(”) (5 = 1, 6) of the

finite pieces we need to subtract the divergent part Rgvﬂ )

from the terms in the amplitude proportional to 1/z; which

(vp)

is represented by R(I> .

V1 V1 V1
R REI);,,)a(lu) - R;aa;d)ev(llJ_)’

(141)
For (V1), these are given respectively by Egs. (160) and

(151). While performing the integration over z; in the term

V1)

REI) we will encounter the coefficients cy, ..., ¢5 in terms

of which the arguments V| and A of the constituent
integrals are expressed as polynomials of z; [see Eq. (154)].

(vh)

Vivﬂ) :c(‘iﬂ) + 2165,

1

A=V 4 VP 4

For (V1), ¢;, and c3 were given in Egs. (162). Here we
provide expressions for the remaining coefficients:

1) _ k +kyJ__IIJ__l2J_+a ki +k,,
2L ! 1 —Zq 1 _Zq '
1
Ci‘“) — 1 . {26{1(1 _al)IZL-(kL ‘|‘er _llL _IZL) —2(12(1 _a2)lll'(kl +kyL)
7
2l (ky +k, =1 —b ) =20l .(k +k,)
Ly +5 ) +25(1-25)07
+al(1J. 2J_) - l]( t])Q +C¥2(l—ZI?)(I—ZZ[])QZ_(I_QI_aZ)(Zk‘k}/)}’
7
1
cgw) T (1-z,)? {al (I=a) i+l —k k) +ar(1—ay)(ky +k, 1 )* +2aay(ky +k,)).(Ly +hy —k) k1)
7
Ly +0))+25(1-25)0?
—061( 1L+h) vZqu( Y Ca(1-2)20 4 (1-a —az)(Zk.k},)}. (143)
q

In case of (V6), the terms in the amplitude proportional to 1/z; are contained in

V6 dz P | i e 3.0jj) (v, (V6 i (3.if) 4 (V6
R == [ [ etrs {20y = 2,078} x (TP (V0. A9) 4 BTV, a09))
(27)z; Ju,, (a7)

+rlrizeq — v =k )y (1 =z9)g” +vo-(he =k, )]y~

v+
2p.k

) AT WO AV ¢ BT (VIO Ao Yar (144)

14

where the finite expressions for the constituent integrals are given in Egs. (152). For (V6) the coefficients ¢; (i = 2, 4, 5)
required for the computation of the above term in Eq. (144) are given below. The expressions for ¢; | and c; are in Egs. (G7).

034028-87



KAUSHIK ROY and RAJU VENUGOPALAN PHYS. REV. D 101, 034028 (2020)

ey ki +k}/J__llJ__IZJ_+a k|

4 — )
21 ay Z 2 %
1
cgv@ = {—2(11(1 —a)h (L + b~k —k, )20l -a)k, (L, —k,)
q

- Zalaz(lu +1h —k, _k/J_) (lu —k ) —2a1aly, k.

Li+bh -k, ) +z,(1 —z,) 0
ta (u 21 yliz 2(1-24)Q azzq(l—ZZq)Qz},
g
1
CgVG) f{al(l —a)(li by —ky —k,)? +ao(l - )k + 200k, (i + 1y —ky —k,))
q
l L, -k 1- 2
—a (Lo +bhy yliz Z+Zq( 29)Q _azngz}_ (I45)
q

An interesting and important check of these coefficients presented in Eqgs. (I43) and (I45) is that they are identical in the soft
photon k, — 0 limit.

The remainder R(V®) is now obtained from

M’ (1) = Ry 1) = Rl (111, (146)

where the divergent term is given by Eq. (G6).

We will now compute the second finite piece for these processes. We can express the R(Y”) (8 = 1, 6) appearing in
Eq. (155) in terms of Rﬂ which can be expressed solely in terms of z; and I3 albeit with coefficients that differ with the
diagram of interest. For f = 1, 6, we obtain

R (21.1) = (072 = 0P B {057+ 057 8) = 05z b P05+ 0 1) = 05 2 iy

(vp) _ V/i > (V/; P (VB) o (VB) » wp) b(V/i) Jrb(v/i)l,
<A Bi-b l)+(b +b I3)z1 = big i} bz +Z—1 . (147)

In terms of this generic structure, the R-functions for (V1) and (V6) can be respectively written as
(V1) i, ., dz; K+ k}/ 1) vrzgg +r (i +hy)
R ) == [ et [ S SR ) 2y
! I, I k.k 42,?(1 - Zq)(‘l )2

x TN Vi PRI (148)
(L +vi ) + A H(lu‘f“’u) +A ][lu"'A ]

and

ibir, de V6 r*(=z))g +ri(h+by —k,) p+ k}/
R (1)) = (2 1713J_) — a
by lu 4Zq(1 - Zq)(q ) 2p. k

x . (149)
(5 + v(l‘i6>)2 + AEV ][(lu + Vgl ))2 + AQVG)W%L — ie]

The advantage of this method is that it offers a transparent way to collect terms proportional to a certain power of /5, and
then organize them in terms of constituent integrals. Moreover, the finite pieces appear as polynomials in z;; with the
arguments of the integrals expressed in the form given by Eq. (154), one can straightforwardly perform the integration
over z;.
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For the diagrams (V1) and (V6) we finally obtain the finite terms Ry, as

V1 ily le k+ k V1 3,0 V1 V1),i+(3,i V1
REII);im(llJ_) = —/l e b, . Z,\'/ Ya 2*k. k}/{ El),/)zz.g )(VS_ >9 A(Vl)) + FEZ);;)t Ig’ )(VS_ >v A(Vl))
20

+F< ))I(’% zz)(V(LVl)’A(Vl)) + FEX)I;I);UIE)E.’U)(V(LVI)’A< >) +FE )) I(3 z;])(v(lVl)’A(Vl))}

rtzq” oy +hy)
= 7 150
453(1=27)(q ) (150)

and

ily) r., V6) (3,0 V6 3.0 V6
Rl (l10) / b / LFGOTEO WO AV + PRI (VO A
+

V6) +(3.ii) 14, (V6 V6).ij(3.ij) /v, (V6 V6).ir(3.ijj) v (V6
F§3) ,)41” )(V( ) A(Vé)) + FE4);/)4 JI(U ./)(V(L )’A(vs)) + FES);Z I(y JJ)(V(l )’ A(VG))}
r"(=zg)g +ri.(h+by—k,.) p+Fk,

- 4
4Zq(1 - Zq)<q )2 2p.k},

(I51)

The terms F;)., (j = 1,...,5) can be expressed in terms of the coefficients b; (i =1, ..., 19) appearing in Eq. (I47). The
individual expressions for these process dependent coefficients are provided below for (V1) and (V6). For (V1) we have:

Ry & - .
v _ i Y- vy _ Y (vi) _ (vi) _
by =y =77, by ' =—, by " =k+¥k, by "=y,
1 (1 _ Zzl)q 2 q 3 14 4
b = fffy b = B =t m e —yih, B = B =,
q
pVD o G0 e Q_2+ L, il pVD _ '
10 yﬂ’ 11 Y l]q Y 2q_ 2(1 —_ Zq)q_ Yi-bi1s 12 2(1 _ Z;])q_ ’
Ly (kytk,)
PV — yp i — BVl — 7t =2+ (2q +W) Y
" =z’ " -4 |
(kl+ky )
pVD — : <7W _ Kk _> pvVh _ r-z)a +r 2(1-7 )L —71(ky k)
15 1-z (1-z9)g " )’ 16 (1—25)? '
ki + ki Vi 1 vy ¥
b(Vl) =y - i vi v, b( ) _ _27/—’ b( ) _ L 152
17 U=2)q PRV 18 p= 19 p= (152)
For (V6) we have:
. k'
L e T e e A A
244 q
6 K 6 _ 6 _ 6 6
bév )= 2’ bt(',v F= by = v zgq” =yl —k,1), by® = -, bév ) = =y,
2 2 _
(v6) (vVe) _ (0 (Li-k,) ey ¥
biy" =7y by (l—zq)q -7 (Zq?—i_quiqz +h'(lu_ku)’ by, —quTv
S0, (u—k)k
b0y WK e (=22 - GE+ )y — ke k)
13 s ) 14 % )
ve) _ 1 ( K _> wve) _ K (ve) _ ki _ wve) _ 1 _ (ve) _ 7~
bis' =—\r'-—=r), b ==, by =vi——=yv, by =-—=y, by =-=. (I53)
15 % 24 16 z 17 204 18 p 19 p
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We can obtain the expressions for the terms multiplying the
constituent integrals in the finite pieces [see Eqs. (I50) and
(I51)] in terms of these coefficients. Because of the
particularly lengthy nature of these expressions, we will
not provide these here. Mathematica scripts for these are
available upon request.

Similarly, (V3) and (V4) in Fig. 26 have a similar
topology with respect to the emission vertex of the final
state photon and hence exhibit a similar structure for the
divergent pieces. We will present the structures for (V4)
here; the corresponding expressions for (V3) are lengthy
and will be made available on request as supplementary
material. One also needs to include the contribution from
the gluon momentum /3 in the range k= < [5 < k™ + k; to
obtain the net finite contribution from (V3).

dz
;m )(lu) / ety / 1/
by 15, 4z4(1

X

For (V4), the remainder term can be written as

R (11) = Rggi)a(lu) - RL‘;4dev (i), (I54)

where the term proportional to 1/z; is given by Eq. (G9)
and the divergent piece is contained in Eq. (G11). For the
computation of the second finite piece Ry we can express

R in the expression for the amplitude in Eq. (I40) in
terms of a generic structure written as a polynomial in z;
and /3, with coefficients which depend on the process of
interest.

For (V4), we can write

(-2 @) Rgila(zz, L)l zeq +ro-(hie +hy)lr”

RVA) (B

(b);ﬂa(zl’ l3J_> =

1
(I55)
(By = ie) (e A+t + AN +950)7 + A0 + 40+ a8
The term R ;) appearing in the above expression is generic for the processes (V3) and (V4) and is given by
V) i v V) i vp vp vp vp (vp)
2= P E B + BB = B 2 b P (B + b ) = b2 )l
1% v, % 1% % v, % 1% (V) V) 1y
< {(b1” = 0By = 01 1) =201 - 011) - Zbﬁf’}bi#”{(bﬁgﬂ) - 018, - by 1)
b(V/}) + b Vﬁ) lz
+ (b + b5 1) - 26573 <b§Zﬁ> e ) p=3,4. (156)

Expanding the above expression, and organizing the nonzero terms in powers of I3 |, we can write the finite pieces Ry for
(V3) and (V4) in terms of constituent integrals with coefficients which can be written explicitly in terms of the various b;’s

(i=1,...,26).

In terms of the constituent integrals given in Eq. (G10) we can now write the finite pieces contained in REH) as

2

)

(V4) — ityr, [ 920 5 (4) 40) (V) f(VA)ir(4i) (y,(V4)
R(ll);lla(lll) = _/uelu ? /_{F(l);ﬂazv (Vi ’A(V4))+F(2);ﬂa1l‘ (Vi vA(V4))

=(VA),ij(4,if V4 4 (V4 411 V4),ijk4(4.ijk V4 4

FE )‘) ]I(y J)(‘z( ),A(V )) FE );L (‘7 , )) FE )) J I(_ J )(V( )’ AV ))
4, V4 V4 ~(V4).i 4,ijkk) (v4) 4.iijj V4 V4

FE )) I( ]J)(V( )’ ﬁ( )) FE7);) Jz'g J (V , ( )) FE ))aIS} JJ)(‘/( )’ A( ))}

rzgq +rhe +hy)
4z5(1-2,)(q7)?

The expressions for the F’s can be obtained in terms of

the coefficients bgvﬂ ) (i =1,...,26) for the processes (V3)
and (V4). In a similar fashion, one can obtain the finite
pieces for (V2) and (V5) in Fig. 26. For these, we need
to compute only Ry which also contain the same
constituent integrals as in Eq. (I57). Similarly to the
(V3) case, we need to include the contribution from /5

(157)

|
in the range k= < I3 < k™ + k; in addition to 0 < [3 < k™
to obtain the net finite contribution.

5. Computation of szlrlttiz)
The finite pieces of the contribution from the quark-
antiquark interchanged counterparts of the six processes in

Fig. 26 are contained in
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MO or(eq,g)?5(1 - ) / arm a( RV 1)

finite;pa finite;ua
X (U )1 (y1)1")Upalzr)

— Crl]o(p),
(I58)

where

12
Ver (vp Vp
Rismn(li) = > (0 (1) + R (011)).
p=T

(159)

We can obtain the net finite contribution from these
diagrams by using Eq. (66) along with a change of sign
on the various terms constituting the finite piece given
by Eq. (139).

6. Computation of MXfflttS)

The finite contributions to the amplitudes from the
processes (V13) — (V15) in Fig. 28 and their g <> g
counterparts are expressed as

MY aas(1 - zfm)(eqrfg)2

finite;ua
LO
/ H E : Rﬁmte /m(llJ_

x [Cp(U(x 1)U (.YJ_) = Do) (I60)

pieces in the loop contribution described by the graph in
Fig. 35 for the cases [; > 0 (denoted by Case A in the
discussion of Sec. V D) and /; < 0 (Case B) and add them
up. The computation of the finite contribution from (V15)
is considerably tedious and explicit expressions will only
be provided for numerical studies in future. Here we sketch
the structure of these pieces for the graph (V13) in terms of
the constituent integrals that appear in virtual graph
computations as we have done in the previous sections.
The contributions for (V14) have a similar structure to that
of (V13) and can be obtained following the same methods.

For (V13), we discussed the computation of the diver-
gent piece in detail in Sec. V D. From the expressions for
the gluon loop contribution obtained separately for the two
cases in Eqs. (174) and (175), we can isolate the pieces

proportional to the constituent integrals I (V 1,A) and

U )(V 1,A) which will yield finite results in d =2
dimensions. A straightforward application of the identity
in Eq. (D3) in these equations tells us that there are a lot of
such contributions proportional to these integrals each with
different gamma matrix structures. We can however collect
all these pieces and express them as polynomials in z;
which will assist in the numerical evaluation of such
contributions. With this strategy in mind, we can write
the finite contribution to (V13) as

V13) V13) v13)
Rﬁlnlte /m(llL) Rgnlte ya(llL) + Rémte ya(llL) (161)
In order to obtain these pieces for (V13) and (V14) and
their ¢ <> g counterparts, we need to compute the finite  where
|
VB = dy K+ K, _ y (1 - Zq)q_ S ARL (VI3):AN j(2.0) 1y AV13):A .
I Fl M (v a4 A(V13),A
asatt) = [ S S T S e (PO T )
+ (F2) AT (VA A1) (162)
and
(V13) ~ady KK, r(1- Zq)q_ S ARSI (V13):BNi7(2.0) (y,(VI3SB A (V13):B
R l — Gl (Vv LAV
flmteya( 1J-> A o Ya Zkky 4 (C]_)Z[li_ + ALO:“)] {(( )M ) ( L )
+ (G2 L (VT AV (163)

The finite expressions for these integrals are given in Eqs. (I12). The arguments V| and A of these are in general different
for the two cases. As described in Eq. (154) we can always express these in terms of z;. The coefficients ¢, and c3 are

identical for the two cases and are obtained as

(V13);A

_ VB _ _
C =y =aty, C3 =C3

(V13);A (V13);B

=a(l —a)lf, + (164)

(1 =a)z5(1 = z5), 0.

The expressions for the remaining coefficients are different for the two cases and are provided below separately:

034028-91



KAUSHIK ROY and RAJU VENUGOPALAN

PHYS. REV. D 101, 034028 (2020)

(i) Case A: 0 <z, <1—z

_ 1 2. 4+ ALO:(D)
A — o A = el -, R g - a1 - 501 -2
-2 1- < <g
. 1 B2 4+ ALO:(D)
c(5V13)’A =TTy {a(l —a)l, - at——— — Q¥ (1 -a)(l - Zq)2}- (I65)
(1-25) g
(i) Case A: 0>z > —z4
. _ 1 B2 4+ ALO:(D)
o= a2 Lo, A 0 g2 |
2z 2g - g
z 1 B+ A0
chB),B == {a(l — )l —at — -0 (1 - a)zé} (I66)
7 I-z4

The terms (Fi), and (Gi), (i = 1, 2) that multiply these
constituent integrals can also be expressed in terms of z;.
This allows for® a straightforward numerical evaluation of
these finite pieces.

The structure of the finite pieces in (V14) is exactly
similar to that of (V13) with the only difference being the
expressions for the terms that multiply the constituent
integrals. This is because this process has a different Dirac
structure that governs the nature of such terms. Finally, for
(V15) we have two contributions for the case z; > 0
depending on the magnitude of z; relative to z,. These
two, when added with the contribution for the case
0 > z; < —z4, gives the net finite contribution from this
graph. For each case, we will encounter a subset of the
constituent integrals defined in Eq. (152) which are finite in
d =2 dimensions. As in the previous cases considered,
Eq. (66) allows us to obtain the corresponding expressions
for the finite contributions of the g <> g interchanged
processes (V16) — (V18).

Vert (4)
finite

7. Computation of M

The finite pieces for the diagrams in Fig. 31 and their
q < g counterparts are contained in

M. = 2a(eqs(1 = ) [ AMCRRIRYL (1)
x [tO(x )T (1)1, — Crl]u(p), (167)
where
24
RZIT::Eﬂ(l(lll) /3219( R (1) 1) + REI‘g}L(l(lu)) (I63)
Again, in the notation used elsewhere, R(Y/) is the

remainder between terms in the amplitude proportional
to 1/z; and those proportional to logarithms in zy. The

(vp)

second term R(H) is comprised of finite terms that are not

proportional to 1/z;. In addition for these virtual graphs, we
can have two possible cases depending on the sign of /5,
the loop momentum carried by the virtual gluon. We
therefore have to add the contributions from the two cases
in order to obtain the final finite result.

We will now sketch the computation of the finite pieces
by considering the process (V19) in Fig. 31 as an example.
For this process, the rapidity divergent pieces were com-
puted for both signs of /5 in Sec. V D. The corresponding
expressions are given by Egs. (203) and (207). These were

obtained from the contributions that are proportional to

(V19):A.B

1/z; which are denoted by R() respectively for the

cases of /; > 0 and /5 < 0. The remainder term constitut-
ing the finite contribution of (V19) can therefore be
written as

R(v19

R (1) = (R VA (11 1) = Ry (111))

+(RYE @) = RSP (1)),

(Dya (169)

(V19):A.B
where R )

are given by Egs. (201) and (205)
respectively.

The computation of the second term Ry contributing to
the finite piece is very tedious for these processes. For each
case, there are several finite pieces in the amplitude that are
proportional to the different constituent integrals that
appear in virtual graph computations. We can collect all
these pieces and express them as polynomials in the gluon
loop momentum fraction z; with coefficients that depend on
the gamma matrix structure of the various processes. The
resulting expressions are lengthy we will not provide them
here but are too available as Mathematica scripts.

Because we express the arguments of our constituent
integrals also in terms of z;, one only needs to perform the

Feynman parameter integrations in these integral definitions
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which will give the final expressions for these as a function
of z;. The remaining integration over z; can then be per-

addition, for the process (V20) there are two contributions
forthe case [; > Onamely from0 < [5 < k”andk™ <[5 <

formed easily as there are no singularities left over. With this
in mind, we can write down the generic expressions for Ry

k™ + k; that add to the finite terms.
For (V19) we can write

for (V19) — (V21) as
(VB) (VB);:A (VB):B
R . (lll):R (lll)_l_R (llL) ﬂ:19,,21,
1) ia (I):ua 1) ia 1 19):4 19);
e a e ) Ripor (i) = R (1) + Ry 2 (1,). (171)

where A and B denote respectively for each process the
contributions from the cases where /; > 0 and /; < 0. In

where

(V19):A =% dzl k+k7 1 i34k (Y (VIO)A A (V19):A i 73300 (Y(VIO)A A (V19):A
R l F1)YLy7(V ACA ; F2)' Ty VIERA A ;
) == [ e e T R )+ (P2 T8 )
(F3>,]I (3.if) (V<V19>’A,A(V19)’ ) <F4) I(% ll)(V(VIQ);A’A(Vw);A)
(FS) (V(VIQ)A A(V19) ) (F6)MI7;' (V(V19);A’A(V19);A)}’ (I72)
and
vios gy [wda Kk 1 k37 ; ; i 7(.iji) ; ;
R(H);/m (I,,) = _A > Va o k?’m{(Gl)ﬂjkIv J (V(V19)B’A(V19)B) + (GZ)”L) JJ (V(V19)B’A(V19)B)
+ (G3)L’IS/,3‘”)(V(V19)’ ,A(V19);B) + (G4)ﬂI(U3’ii)(V<V19);B, A(VIQ);B) + (GS)LI?'O(V(W%B, A(Vl9);B)
+ (G6)M_'Z'g)3s0)(v(v19 V19 B)} (173)

In the above expressions, the (Fi) and (Gi)’s (i = 1, ..., 6) can always be expressed as polynomials in z; with coefficients
that are basically products of gamma matrices. The finite expressions for the constituent integrals appearing above are given
by Eq. (152). As usual we will express the arguments of these integrals in terms of z; as in Eq. (154). The coefficients ¢ |
and c; for both cases are identical and are given for (V19) by Egs. (204). The remaining coefficients for cases A and B are
given below for the process (V19),

e = o lelles + ) —an{(1 = zg)ps = zalhy +hu )},
CA(‘V19);A — 2ay(1 - al)lu-(;‘ii‘qkﬂ) ~20y(1 — ) {(1- ZQ)pll__Zqukl +k, )} (= —a) lzli/;yq
- Zalaz%.{(l —zp1 —zg(ky + k1) + o (1 —225)0% —an(1 — 22,)(2p.k + 2k.k, + 2p.k,).
q
VIO _ g (1~ ) (k(l1 J_FZ)L) +ay(l —ay) {1 - Zq)P(l _Z;,q(;fj +h, )} (0 —a —a) (lsz)z
+ 2012 (ks + k)0 zlzj)lzu)z_ Zalky Thy)} —a10% + ay(2p.k + 2k.k, + 2p.k,). (174)
q
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ey = —i[m +a{(1=z5)p1 = z5(ki +k,1)}),
CELVIQ);B =2a;(1 —a,) lu;pj‘ =20 (1 —ay) I =z)p, _qu(kl hi kyl)}z +ay(1 = 2z5)(2p.k + 2k.k, +2p.k,)
q q
<2 (12, = sl ) - (1= 2)0%
Cgv19);B — (1 - al)%"’ (1 —ay) {(I=2z5)p. —Zzzfz(kl +k,0)} — O + ay(2p.k + 2k.k, + 2p k)
3 3
B 2a1a2pl'{(1 - 75)P1 ; 75k +k, )} ‘ (175)

23

The same logic holds for the process (V21) whose divergent pieces for the two signs of /5 are provided in Appendix H by
Eq. (H9). The remainder term constituting the finite contribution of (V21) can be written as

Rhe (1) = (R (1) = R (1) + (R (0 ) = RGAEE (1)), (176)
where the pieces proportional to 1/z; denoted b R(VZU # are given by Eq. (HS). The constituent integrals that enter the
p prop Y Ky g y Eq g

calculation of this process are given in Eq. (G10) and involve three Feynman parameters. Nevertheless the arguments V |
and A can always be expressed as functions of these parameters and the gluon loop momentum fraction z, to facilitate the
numerical computation. Similarly to (V19), we can also write down the generic expressions for the second finite piece Ry
for the two cases in terms of some functions which are polynomials in z; in the following manner,

v2l) v2l); v2l);
REII ﬂa(llL) REII) ua (lli) REII) ua (lli) (177)
where
V2l % dz; 1 ~ 40i)) A (V21):A i (4,0 jkK) v (V21):A .
REH)u)a (l,) = /0 Py (ETALCRE [(Fl)lmjg JJ)(V(L ) NLE )+ (F2),](,I J )(V(l ) ’A(Vzl)sA)
q v
( 3) 4”])(‘/1‘/2]);‘4 A(vzl) ) (F4),’,j(fI§4”k)(V(LV21>;A A(vzl) ) (FS) (4”)<V(LV21);A A(VZI);A)
+ (FO)LI (VA A2 4 (F7); T8 (V204 A20)], (178)
and
V21):B —2 dg; 1 51y Ui (p V21 ‘ s ij o (d.0jKK) o (V21):B ‘
Rl (1) = A i T =g (WD W VIV A8 & (GO (VI a2
g %

(63)1 z‘(f"ijj)(vivzl);B’ A(VZI);B) + (64);;];51'5)4’171‘)(VS_VZI);B, A(V21); ) (GS) 1(4”)(‘/1‘/21);3’ A(VZI);B)
(G6),lljaz' 4”)(VLV21);B, A(VZl);B) + (67)La154’i)(V1V21);B’ A<V21>93)]. (179)
The arguments of the above integrals can always be expressed in the form given by Eq. (154). The finite pieces for (V20)

can be expressed in an exactly similar manner as for (V21); we encounter the same constituent integrals in the latter albeit
with different expressions for the arguments.

APPENDIX J: PROOF OF THE SUBDOMINANCE OF NONCOLLINEARLY DIVERGENT
CONTRIBUTIONS IN THE SCA

In this section, we will repeat a short proof given in [120] for the power suppression (in powers of jet cone radius R) of the
noncollinearly divergent contributions. If partons i and j form the first jet J and parton k forms the second jet K then we
introduce new variables such that the differential measure of the final particle phase space transforms as
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dz;dz dekddPilddP jJ_ddka_
- dziddcij,J_dZJdZKddpu_ddeJ_7 (1)

where the jet variables are
(z7.Ps1 2K PK L Cij,J_)

i Zj
= (Zi +Z;PiL TPjLs Pkl T PjL — —]Pu) (J2)
2y 2y

The integration over C;; | is restricted by the small cone
condition given by Eq. (217). We can therefore write the
amplitude squared in general as

e
Qi<

C2 | <R?p? min| 4>
e [5G e, ey o

The function F(C;; | ) can be expanded around the collinear
limit C;; | = 0 by writing

[F(Cij,L)]collinear
Clzj,J_

+0(Cjj1)- (J4)

F(Cij.)= + [F(Cij, 1)) coltinear=0

The contributions without collinear divergences are
denoted by [F(C;; 1 )]colinear—o- We can now perform the
integration over the collinearity variable in d dimensions to
obtain the following result

|M|2 o 27Td/2 [F(cij,L)]collinear
1(d/2) d—2
[F(Cij 1) cottinear—0 ) (z2 z
+ ’ R’p?, min( % 2
d p]J_ Z% 23
2 Zz. 41
X <Rzp3l min <%Z—;>>Z : (Is)
Y

It is clear from the above expression that contributions
without collinear divergences have a relative suppression of
R? and are therefore subdominant in the SCA.

[1] L. V. Gribov, E.M. Levin, and M. G. Ryskin, Semihard
processes in QCD, Phys. Rep. 100, 1 (1983).

[2] A.H. Mueller and J.-w. Qiu, Gluon recombination and
shadowing at small values of x, Nucl. Phys. B268, 427 (1986).

[3] L.D. McLerran and R. Venugopalan, Computing quark
and gluon distribution functions for very large nuclei,
Phys. Rev. D 49, 2233 (1994).

[4] L.D. McLerran and R. Venugopalan, Gluon distribution
functions for very large nuclei at small transverse mo-
mentum, Phys. Rev. D 49, 3352 (1994).

[5] L. D. McLerran and R. Venugopalan, Green’s functions in
the color field of a large nucleus, Phys. Rev. D 50, 2225
(1994).

[6] E. Iancu and R. Venugopalan, The color glass condensate
and high-energy scattering in QCD, in Quark Gluon
Plasma, edited by R. C. Hwa et al. (2003), pp. 249-3363.

[7] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,
The color glass condensate, Annu. Rev. Nucl. Part. Sci. 60,
463 (2010).

[8] Y. V. Kovchegov and E. Levin, Quantum Chromodynamics
at High Energy (Cambridge University Press, Cambridge,
England, 2012), Vol. 33.

[9] J.-P. Blaizot, High gluon densities in heavy ion collisions,
Rep. Prog. Phys. 80, 032301 (2017).

[10] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H.
Weigert, The Wilson renormalization group for low x
physics: Towards the high density regime, Phys. Rev. D 59,
014014 (1998).

[11] J. Jalilian-Marian, A. Kovner, and H. Weigert, The
Wilson renormalization group for low x physics: Gluon

evolution at finite parton density, Phys. Rev. D 59, 014015
(1998).

[12] E. Iancu, A. Leonidov, and L.D. McLerran, Nonlinear
gluon evolution in the color glass condensate. 1. Nucl.
Phys. A692, 583 (2001).

[13] E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran,
Nonlinear gluon evolution in the color glass condensate. 2,
Nucl. Phys. A703, 489 (2002).

[14] H. Weigert, Unitarity at small Bjorken x, Nucl. Phys.
A703, 823 (2002).

[15] I. Balitsky, Operator expansion for high-energy scattering,
Nucl. Phys. B463, 99 (1996).

[16] Y. V. Kovchegov, Small x F(2) structure function of a
nucleus including multiple Pomeron exchanges, Phys.
Rev. D 60, 034008 (1999).

[17] E.A. Kuraev, L.N. Lipatov, and V.S. Fadin, The
Pomeranchuk singularity in nonabelian gauge theories,
Sov. Phys. JETP 45, 199 (1977) [Zh. Eksp. Teor. Fiz. 72,
377 (1977)].

[18] I.I. Balitsky and L. N. Lipatov, The Pomeranchuk singu-
larity in quantum chromodynamics, Sov. J. Nucl. Phys. 28,
822 (1978) [Yad. Fiz. 28, 1597 (1978)].

[19] K. Dusling, M. Mace, and R. Venugopalan, What does the
matter created in high multiplicity proton-nucleus colli-
sions teach us about the 3-D structure of the proton?, Proc.
Sci., QCDEV2017 (2018) 039 [arXiv:1801.09704].

[20] A. Accardi et al., Electron ion collider: The next QCD
frontier, Eur. Phys. J. A 52, 268 (2016).

[21] J.L. A. Fernandez et al. (LHeC Study Group), A large
hadron electron collider at CERN: Report on the physics

034028-95


https://doi.org/10.1016/0370-1573(83)90022-4
https://doi.org/10.1016/0550-3213(86)90164-1
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.3352
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1088/1361-6633/aa5435
https://doi.org/10.1103/PhysRevD.59.014014
https://doi.org/10.1103/PhysRevD.59.014014
https://doi.org/10.1103/PhysRevD.59.014015
https://doi.org/10.1103/PhysRevD.59.014015
https://doi.org/10.1016/S0375-9474(01)00642-X
https://doi.org/10.1016/S0375-9474(01)00642-X
https://doi.org/10.1016/S0375-9474(01)01329-X
https://doi.org/10.1016/S0375-9474(01)01668-2
https://doi.org/10.1016/S0375-9474(01)01668-2
https://doi.org/10.1016/0550-3213(95)00638-9
https://doi.org/10.1103/PhysRevD.60.034008
https://doi.org/10.1103/PhysRevD.60.034008
https://arXiv.org/abs/1801.09704
https://doi.org/10.1140/epja/i2016-16268-9

KAUSHIK ROY and RAJU VENUGOPALAN

PHYS. REV. D 101, 034028 (2020)

and design concepts for machine and detector, J. Phys. G
39, 075001 (2012).

[22] E. C. Aschenauer, S. Fazio, J. H. Lee, H. Mantysaari, B. S.
Page, B. Schenke, T. Ullrich, R. Venugopalan, and P.
Zurita, The electron-ion collider: Assessing the energy
dependence of key measurements, Rep. Prog. Phys. 82,
024301 (2019).

[23] V.S. Fadin and L. N. Lipatov, BFKL pomeron in the next-
to-leading approximation, Phys. Lett. B 429, 127 (1998).

[24] M. Ciafaloni and G. Camici, Energy scale(s) and next-to-
leading BFKL equation, Phys. Lett. B 430, 349 (1998).

[25] G.P. Salam, A Resummation of large subleading correc-
tions at small x, J. High Energy Phys. 07 (1998) 019.

[26] M. Ciafaloni, D. Colferai, and G. P. Salam, Renormaliza-
tion group improved small x equation, Phys. Rev. D 60,
114036 (1999).

[27] B. Ducloué, E. Iancu, A. H. Mueller, G. Soyez, and D. N.
Triantafyllopoulos, Non-linear evolution in QCD at high-
energy beyond leading order, J. High Energy Phys. 04
(2019) 081.

[28] I. Balitsky and G.A. Chirilli, Next-to-leading order
evolution of color dipoles, Phys. Rev. D 77, 014019
(2008).

[29] Y. V. Kovchegov and H. Weigert, Triumvirate of running
couplings in small-x evolution, Nucl. Phys. A784, 188
(2007).

[30] M. A. Braun, Pomeron with a running coupling in the
nucleus, Eur. Phys. J. C 51, 625 (2007).

[31] J. L. Albacete and Y. V. Kovchegov, Solving high energy
evolution equation including running coupling corrections,
Phys. Rev. D 75, 125021 (2007).

[32] I. Balitsky and G. A. Chirilli, Rapidity evolution of Wilson
lines at the next-to-leading order, Phys. Rev. D 88, 111501
(2013).

[33] A. Kovner, M. Lublinsky, and Y. Mulian, Jalilian-Marian,
Tancu, McLerran, Weigert, Leonidov, Kovner evolution at
next to leading order, Phys. Rev. D 89, 061704 (2014).

[34] 1. Balitsky and A. V. Grabovsky, NLO evolution of 3-quark
Wilson loop operator, J. High Energy Phys. 01 (2015) 009.

[35] M. Lublinsky and Y. Mulian, High energy QCD at NLO:
From light-cone wave function to JIMWLK evolution,
J. High Energy Phys. 05 (2017) 097.

[36] S. Caron-Huot, When does the gluon Reggeize?, J. High
Energy Phys. 05 (2015) 093.

[37] S. Caron-Huot and M. Herranen, High-energy evolution to
three loops, J. High Energy Phys. 02 (2018) 058.

[38] S. Caron-Huot, E. Gardi, and L. Vernazza, Two-parton
scattering in the high-energy limit, J. High Energy Phys. 06
(2017) 016.

[39] F. Gelis and J. Jalilian-Marian, Photon production in high-
energy proton nucleus collisions, Phys. Rev. D 66, 014021
(2002).

[40] S. Beni¢ and K. Fukushima, Photon from the annihilation
process with CGC in the pA collision, Nucl. Phys. A958, 1
(2017).

[41] S. Benié, K. Fukushima, O. Garcia-Montero, and R.
Venugopalan, Probing gluon saturation with next-to-
leading order photon production at central rapidities in
proton-nucleus collisions, J. High Energy Phys. 01 (2017)
115.

[42] S. Beni¢, K. Fukushima, O. Garcia-Montero, and R.
Venugopalan, Constraining unintegrated gluon distribu-
tions from inclusive photon production in proton-proton
collisions at the LHC, Phys. Lett. B 791, 11 (2019).

[43] T. Altinoluk, N. Armesto, A. Kovner, M. Lublinsky, and E.
Petreska, Soft photon and two hard jets forward production
in proton-nucleus collisions, J. High Energy Phys. 04
(2018) 063.

[44] K. Roy and R. Venugopalan, Inclusive prompt photon
production in electron-nucleus scattering at small x, J. High
Energy Phys. 05 (2018) 013.

[45] J. Bartels, S. Gieseke, and C.F. Qiao, The (y* — ¢qg)
Reggeon vertex in next-to-leading order QCD, Phys. Rev.
D 63, 056014 (2001); Erratum, Phys. Rev. D 65, 079902
(2002).

[46] J. Bartels, D. Colferai, S. Gieseke, and A. Kyrieleis, NLO
corrections to the photon impact factor: Combining real
and virtual corrections, Phys. Rev. D 66, 094017 (2002).

[47] J. Bartels, S. Gieseke, and A. Kyrieleis, The process
y*(L) + g — (9gqg) + g: Real corrections to the virtual
photon impact factor, Phys. Rev. D 65, 014006 (2001).

[48] 1. Balitsky and G. A. Chirilli, Photon impact factor in the
next-to-leading order, Phys. Rev. D 83, 031502 (2011).

[49] 1. Balitsky and G. A. Chirilli, Photon impact factor and
kr-factorization for DIS in the next-to-leading order, Phys.
Rev. D 87, 014013 (2013).

[50] G. Beuf, NLO corrections for the dipole factorization of
DIS structure functions at low x, Phys. Rev. D 85, 034039
(2012).

[51] G. Beuf, Dipole factorization for DIS at NLO: Loop
correction to the y7,; — qg light-front wave functions,
Phys. Rev. D 94, 054016 (2016).

[52] G. Beuf, Dipole factorization for DIS at NLO: Combining
the ¢qg and ggg contributions, Phys. Rev. D 96, 074033
(2017).

[53] H. Hanninen, T. Lappi, and R. Paatelainen, One-loop
corrections to light cone wave functions: The dipole
picture DIS cross section, Ann. Phys. (Amsterdam) 393,
358 (2018).

[54] R. Boussarie, A.V. Grabovsky, L. Szymanowski, and S.
Wallon, Impact factor for high-energy two and three jets
diffractive production, J. High Energy Phys. 09 (2014)
026.

[55] R. Boussarie, A. V. Grabovsky, L. Szymanowski, and S.
Wallon, On the one loop y*) — ¢g impact factor and the
exclusive diffractive cross sections for the production of
two or three jets, J. High Energy Phys. 11 (2016) 149.

[56] R. Boussarie, A.V. Grabovsky, D. Yu. Ivanov, L.
Szymanowski, and S. Wallon, Next-to-Leading Order
Computation of Exclusive Diffractive Light Vector Meson
Production in a Saturation Framework, Phys. Rev. Lett.
119, 072002 (2017).

[57] F.E. Low, Bremsstrahlung of very low-energy quanta
in elementary particle collisions, Phys. Rev. 110, 974
(1958).

[58] T. H. Burnett and N. M. Kroll, Extension of the Low Soft
Photon Theorem, Phys. Rev. Lett. 20, 86 (1968).

[59] J.S. Bell and R. Van Royen, On the low-burnett-kroll
theorem for soft-photon emission, Nuovo Cimento A 60,
62 (1969).

034028-96


https://doi.org/10.1088/0954-3899/39/7/075001
https://doi.org/10.1088/0954-3899/39/7/075001
https://doi.org/10.1088/1361-6633/aaf216
https://doi.org/10.1088/1361-6633/aaf216
https://doi.org/10.1016/S0370-2693(98)00473-0
https://doi.org/10.1016/S0370-2693(98)00551-6
https://doi.org/10.1088/1126-6708/1998/07/019
https://doi.org/10.1103/PhysRevD.60.114036
https://doi.org/10.1103/PhysRevD.60.114036
https://doi.org/10.1007/JHEP04(2019)081
https://doi.org/10.1007/JHEP04(2019)081
https://doi.org/10.1103/PhysRevD.77.014019
https://doi.org/10.1103/PhysRevD.77.014019
https://doi.org/10.1016/j.nuclphysa.2006.10.075
https://doi.org/10.1016/j.nuclphysa.2006.10.075
https://doi.org/10.1140/epjc/s10052-007-0314-7
https://doi.org/10.1103/PhysRevD.75.125021
https://doi.org/10.1103/PhysRevD.88.111501
https://doi.org/10.1103/PhysRevD.88.111501
https://doi.org/10.1103/PhysRevD.89.061704
https://doi.org/10.1007/JHEP01(2015)009
https://doi.org/10.1007/JHEP05(2017)097
https://doi.org/10.1007/JHEP05(2015)093
https://doi.org/10.1007/JHEP05(2015)093
https://doi.org/10.1007/JHEP02(2018)058
https://doi.org/10.1007/JHEP06(2017)016
https://doi.org/10.1007/JHEP06(2017)016
https://doi.org/10.1103/PhysRevD.66.014021
https://doi.org/10.1103/PhysRevD.66.014021
https://doi.org/10.1016/j.nuclphysa.2016.11.003
https://doi.org/10.1016/j.nuclphysa.2016.11.003
https://doi.org/10.1007/JHEP01(2017)115
https://doi.org/10.1007/JHEP01(2017)115
https://doi.org/10.1016/j.physletb.2019.02.007
https://doi.org/10.1007/JHEP04(2018)063
https://doi.org/10.1007/JHEP04(2018)063
https://doi.org/10.1007/JHEP05(2018)013
https://doi.org/10.1007/JHEP05(2018)013
https://doi.org/10.1103/PhysRevD.63.056014
https://doi.org/10.1103/PhysRevD.63.056014
https://doi.org/10.1103/PhysRevD.65.079902
https://doi.org/10.1103/PhysRevD.65.079902
https://doi.org/10.1103/PhysRevD.66.094017
https://doi.org/10.1103/PhysRevD.65.014006
https://doi.org/10.1103/PhysRevD.83.031502
https://doi.org/10.1103/PhysRevD.87.014013
https://doi.org/10.1103/PhysRevD.87.014013
https://doi.org/10.1103/PhysRevD.85.034039
https://doi.org/10.1103/PhysRevD.85.034039
https://doi.org/10.1103/PhysRevD.94.054016
https://doi.org/10.1103/PhysRevD.96.074033
https://doi.org/10.1103/PhysRevD.96.074033
https://doi.org/10.1016/j.aop.2018.04.015
https://doi.org/10.1016/j.aop.2018.04.015
https://doi.org/10.1007/JHEP09(2014)026
https://doi.org/10.1007/JHEP09(2014)026
https://doi.org/10.1007/JHEP11(2016)149
https://doi.org/10.1103/PhysRevLett.119.072002
https://doi.org/10.1103/PhysRevLett.119.072002
https://doi.org/10.1103/PhysRev.110.974
https://doi.org/10.1103/PhysRev.110.974
https://doi.org/10.1103/PhysRevLett.20.86
https://doi.org/10.1007/BF02823297
https://doi.org/10.1007/BF02823297

NLO IMPACT FACTOR FOR INCLUSIVE PHOTON + DIJET ...

PHYS. REV. D 101, 034028 (2020)

[60] F. Dominguez, C. Marquet, B.-W. Xiao, and F. Yuan,
Universality of unintegrated gluon distributions at small x,
Phys. Rev. D 83, 105005 (2011).

[61] A. Strominger, Lectures on the infrared structure of gravity
and gauge theory, arXiv:1703.05448.

[62] A. Ayala, M. Hentschinski, J. Jalilian-Marian, and M. E.
Tejeda-Yeomans, Polarized 3 parton production in inclu-
sive DIS at small x, Phys. Lett. B 761, 229 (2016).

[63] F. Gelis and R. Venugopalan, Particle production in field
theories coupled to strong external sources, Nucl. Phys.
A776, 135 (2006).

[64] F. Gelis and R. Venugopalan, Particle production in field
theories coupled to strong external sources. II. Generating
functions, Nucl. Phys. A779, 177 (2006).

[65] F. Gelis, T. Lappi, and R. Venugopalan, High energy
scattering in quantum chromodynamics, Int. J. Mod. Phys.
E 16, 2595 (2007).

[66] F. Gelis, T. Lappi, and R. Venugopalan, High energy
factorization in nucleus-nucleus collisions, Phys. Rev. D
78, 054019 (2008).

[67] S. Jeon, Color glass condensate in Schwinger-Keldysh
QCD, Ann. Phys. (Amsterdam) 340, 119 (2014).

[68] A. Ayala, J. Jalilian-Marian, L.D. McLerran, and R.
Venugopalan, Quantum corrections to the Weizsacker-
Williams gluon distribution function at small x, Phys.
Rev. D 53, 458 (1996).

[69] A. Ayala, J. Jalilian-Marian, L.D. McLerran, and R.
Venugopalan, The gluon propagator in nonAbelian
Weizsacker-Williams fields, Phys. Rev. D 52,2935 (1995).

[70] L. D. McLerran and R. Venugopalan, Fock space distri-
butions, structure functions, higher twists and small x,
Phys. Rev. D 59, 094002 (1999).

[71] L. 1. Balitsky and A. V. Belitsky, Nonlinear evolution in
high density QCD, Nucl. Phys. B629, 290 (2002).

[72] S. Bondarenko, L. Lipatov, S. Pozdnyakov, and A.
Prygarin, One loop light-cone QCD, effective action for
reggeized gluons and QCD RFT calculus, Eur. Phys. J. C
77, 630 (2017).

[73] A. Ayala, M. Hentschinski, J. Jalilian-Marian, and M. E.
Tejeda-Yeomans, Spinor helicity methods in high-energy
factorization: Efficient momentum-space calculations in
the Color Glass Condensate formalism, Nucl. Phys. B920,
232 (2017).

[74] M. Hentschinski, The color glass condensate formalism,
Balitsky-JIMWLK evolution and Lipatov’s high energy
effective action, Phys. Rev. D 97, 114027 (2018).

[75] S. Bondarenko and S. Pozdnyakov, S-matrix and produc-
tions amplitudes in high energy QCD, Phys. Lett. B 783,
207 (2018).

[76] S. Bondarenko and S. Pozdnyakov, On correlators of
Reggeon fields and operators of Wilson lines in high
energy QCD, Int. J. Mod. Phys. A 33, 1850204 (2018).

[77] L. N. Lipatov, Small x physics in perturbative QCD, Phys.
Rep. 286, 131 (1997).

[78] N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, and
V. Skokov, The color glass condensate density matrix:
Lindblad evolution, entanglement entropy and Wigner
functional, J. High Energy Phys. 05 (2019) 025.

[79] H.-Yu. Liu, Y.-Q. Ma, and K.-T. Chao, Improvement
for color glass condensate factorization: Single hadron

production in pA collisions at next-to-leading order, Phys.
Rev. D 100, 071503 (2019).

[80] G.F. Sterman and S. Weinberg, Jets from Quantum
Chromodynamics, Phys. Rev. Lett. 39, 1436 (1977).

[81] M. Furman, Study of a nonleading QCD correction to
hadron calorimeter reactions, Nucl. Phys. B197, 413
(1982).

[82] D. Yu. Ivanov and A. Papa, The next-to-leading order
forward jet vertex in the small-cone approximation, J. High
Energy Phys. 05 (2012) 086.

[83] F. Aversa, P. Chiappetta, M. Greco, and J. P. Guillet, QCD
Corrections to parton-parton scattering processes, Nucl.
Phys. B327, 105 (1989).

[84] F. Aversa, M. Greco, P. Chiappetta, and J. P. Guillet, Jet
production in hadronic collisions to O (a~s?), Z. Phys. C
46, 253 (1990).

[85] B. Jager, M. Stratmann, and W. Vogelsang, Single in-
clusive jet production in polarized pp collisions at
O(alpha?), Phys. Rev. D 70, 034010 (2004).

[86] A. Kovner, M. Lublinsky, and Y. Mulian, NLO JIMWLK
evolution unabridged, J. High Energy Phys. 08 (2014) 114.

[87] A. V. Grabovsky, Connected contribution to the kernel of
the evolution equation for 3-quark Wilson loop operator,
J. High Energy Phys. 09 (2013) 141.

[88] K. Roy and R. Venugopalan, Extracting many-body corre-
lators of saturated gluons with precision from inclusive
photon + dijet final states in deeply inelastic scattering,
arXiv:1911.04519.

[89] J.P. Blaizot, F. Gelis, and R. Venugopalan, High-energy
pA collisions in the color glass condensate approach. 2.
Quark production, Nucl. Phys. A743, 57 (2004).

[90] F. Dominguez, C. Marquet, A. M. Stasto, and B.-W. Xiao,
Universality of multiparticle production in QCD at high
energies, Phys. Rev. D 87, 034007 (2013).

[91] V.N. Gribov and L.N. Lipatov, Deep inelastic e p
scattering in perturbation theory, Sov. J. Nucl. Phys. 15,
438 (1972) [Yad. Fiz. 15, 781 (1972)].

[92] L. N. Lipatov, The parton model and perturbation theory,
Sov. J. Nucl. Phys. 20, 94 (1975) [Yad. Fiz. 20, 181
(1974)].

[93] G. Altarelli and G. Parisi, Asymptotic freedom in parton
language, Nucl. Phys. B126, 298 (1977).

[94] Y. L. Dokshitzer, Calculation of the structure functions for
deep inelastic scattering and e e~ annihilation by pertur-
bation theory in quantum chromodynamics, Sov. Phys.
JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)].

[95] Z.-B. Kang, F. Ringer, and W.J. Waalewijn, The energy
distribution of subjets and the jet shape, J. High Energy
Phys. 07 (2017) 064.

[96] A.H. Mueller, Conformal spacelike-timelike correspon-
dence in QCD, J. High Energy Phys. 08 (2018) 139.

[97] A. H. Mueller, B.-W. Xiao, and F. Yuan, Sudakov double
logarithms resummation in hard processes in the small-x
saturation formalism, Phys. Rev. D 88, 114010 (2013).

[98] T. He, P. Mitra, and A. Strominger, 2D Kac-Moody
symmetry of 4D Yang-Mills theory, J. High Energy Phys.
10 (2016) 137.

[99] M. Pate, A.-M. Raclariu, and A. Strominger, Color
Memory: A Yang-Mills Analog of Gravitational Wave
Memory, Phys. Rev. Lett. 119, 261602 (2017).

034028-97


https://doi.org/10.1103/PhysRevD.83.105005
https://arXiv.org/abs/1703.05448
https://doi.org/10.1016/j.physletb.2016.08.035
https://doi.org/10.1016/j.nuclphysa.2006.07.020
https://doi.org/10.1016/j.nuclphysa.2006.07.020
https://doi.org/10.1016/j.nuclphysa.2006.08.015
https://doi.org/10.1142/S0218301307008331
https://doi.org/10.1142/S0218301307008331
https://doi.org/10.1103/PhysRevD.78.054019
https://doi.org/10.1103/PhysRevD.78.054019
https://doi.org/10.1016/j.aop.2013.09.019
https://doi.org/10.1103/PhysRevD.53.458
https://doi.org/10.1103/PhysRevD.53.458
https://doi.org/10.1103/PhysRevD.52.2935
https://doi.org/10.1103/PhysRevD.59.094002
https://doi.org/10.1016/S0550-3213(02)00149-9
https://doi.org/10.1140/epjc/s10052-017-5208-8
https://doi.org/10.1140/epjc/s10052-017-5208-8
https://doi.org/10.1016/j.nuclphysb.2017.03.028
https://doi.org/10.1016/j.nuclphysb.2017.03.028
https://doi.org/10.1103/PhysRevD.97.114027
https://doi.org/10.1016/j.physletb.2018.06.054
https://doi.org/10.1016/j.physletb.2018.06.054
https://doi.org/10.1142/S0217751X18502044
https://doi.org/10.1016/S0370-1573(96)00045-2
https://doi.org/10.1016/S0370-1573(96)00045-2
https://doi.org/10.1007/JHEP05(2019)025
https://doi.org/10.1103/PhysRevD.100.071503
https://doi.org/10.1103/PhysRevD.100.071503
https://doi.org/10.1103/PhysRevLett.39.1436
https://doi.org/10.1016/0550-3213(82)90452-7
https://doi.org/10.1016/0550-3213(82)90452-7
https://doi.org/10.1007/JHEP05(2012)086
https://doi.org/10.1007/JHEP05(2012)086
https://doi.org/10.1016/0550-3213(89)90288-5
https://doi.org/10.1016/0550-3213(89)90288-5
https://doi.org/10.1007/BF01556000
https://doi.org/10.1007/BF01556000
https://doi.org/10.1103/PhysRevD.70.034010
https://doi.org/10.1007/JHEP08(2014)114
https://doi.org/10.1007/JHEP09(2013)141
https://arXiv.org/abs/1911.04519
https://doi.org/10.1016/j.nuclphysa.2004.07.006
https://doi.org/10.1103/PhysRevD.87.034007
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1007/JHEP07(2017)064
https://doi.org/10.1007/JHEP07(2017)064
https://doi.org/10.1007/JHEP08(2018)139
https://doi.org/10.1103/PhysRevD.88.114010
https://doi.org/10.1007/JHEP10(2016)137
https://doi.org/10.1007/JHEP10(2016)137
https://doi.org/10.1103/PhysRevLett.119.261602

KAUSHIK ROY and RAJU VENUGOPALAN

PHYS. REV. D 101, 034028 (2020)

[100] A. Ball, M. Pate, A.-M. Raclariu, A. Strominger, and
R. Venugopalan, Measuring color memory in a color
glass condensate at electron ion colliders, Ann. Phys.
(Amsterdam) 407, 15 (2019).

[101] K. Dusling, M. Mace, and R. Venugopalan, Parton model
description of multiparticle azimuthal correlations in pA
collisions, Phys. Rev. D 97, 016014 (2018).

[102] F. Dominguez, A. H. Mueller, S. Munier, and B.-W. Xiao,
On the small-x evolution of the color quadrupole and the
Weizsicker-Williams gluon distribution, Phys. Lett. B 705,
106 (2011).

[103] A.H. Mueller, A simple derivation of the JIMWLK
equation, Phys. Lett. B 523, 243 (2001).

[104] A. Banfi, G. Marchesini, and G. Smye, Away from jet
energy flow, J. High Energy Phys. 08 (2002) 006.

[105] G. Marchesini and A. H. Mueller, BFKL dynamics in jet
evolution, Phys. Lett. B 5§75, 37 (2003).

[106] H. Weigert, Nonglobal jet evolution at finite N(c), Nucl.
Phys. B685, 321 (2004).

[107] Y. Hatta, Relating e+ e- annihilation to high energy
scattering at weak and strong coupling, J. High Energy
Phys. 11 (2008) 057.

[108] E. Avsar, Y. Hatta, and T. Matsuo, Soft gluons away from
jets: Distribution and correlation, J. High Energy Phys. 06
(2009) O11.

[109] Y. Hatta and T. Ueda, Resummation of non-global loga-
rithms at finite N, Nucl. Phys. B874, 808 (2013).

[110] Y. Hatta, E. Iancu, A.H. Mueller, and D.N.
Triantafyllopoulos, Resumming double non-global
logarithms in the evolution of a jet, J. High Energy Phys.
02 (2018) 075.

[111] D. Neill, The asymptotic form of non-Global logarithms,
black disc saturation, and gluonic deserts, J. High Energy
Phys. 01 (2017) 109.

[112] D.-X. Zheng and J. Zhou, Sudakov suppression of the
Balitsky-Kovchegov kernel, J. High Energy Phys. 11
(2019) 177.

[113] DLMEF, NIST Digital Library of Mathematical Functions,
edited by f. W.J. Olver, A. B. O. Daalhuis, D. W. Lozier,
B. 1. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
and B. V. Saunders, http://dlmf.nist.gov/.

[114] G. Leibbrandt, Introduction to the Technique of
Dimensional Regularization, Rev. Mod. Phys. 47, 849
(1975).

[115] J. C. Collins, Renormalization, Cambridge Monographs on
Mathematical Physics Vol. 26 (Cambridge University
Press, Cambridge, England, 1986).

[116] D.M. Capper and G. Leibbrandt, On a conjecture
by ’t hooft and veltman, J. Math. Phys. (N.Y.) 15, 86
(1974).

[117] D.M. Capper and G. Leibbrandt, Dimensional regulari-
zation for zero-mass particles in quantum field theory,
J. Math. Phys. (N.Y.) 15, 82 (1974).

[118] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014).

[119] Wolfram Research, Inc., Mathematica, Version 11.3,
Champaign, IL, 2018.

[120] R. Boussarie, Perturbative study of selected exclusive qcd
processes at high and moderate energies (2017), https://tel
.archives-ouvertes.fr/tel-01468540.

034028-98


https://doi.org/10.1016/j.aop.2019.04.010
https://doi.org/10.1016/j.aop.2019.04.010
https://doi.org/10.1103/PhysRevD.97.016014
https://doi.org/10.1016/j.physletb.2011.09.104
https://doi.org/10.1016/j.physletb.2011.09.104
https://doi.org/10.1016/S0370-2693(01)01343-0
https://doi.org/10.1088/1126-6708/2002/08/006
https://doi.org/10.1016/j.physletb.2003.09.041
https://doi.org/10.1016/j.nuclphysb.2004.03.002
https://doi.org/10.1016/j.nuclphysb.2004.03.002
https://doi.org/10.1088/1126-6708/2008/11/057
https://doi.org/10.1088/1126-6708/2008/11/057
https://doi.org/10.1088/1126-6708/2009/06/011
https://doi.org/10.1088/1126-6708/2009/06/011
https://doi.org/10.1016/j.nuclphysb.2013.06.021
https://doi.org/10.1007/JHEP02(2018)075
https://doi.org/10.1007/JHEP02(2018)075
https://doi.org/10.1007/JHEP01(2017)109
https://doi.org/10.1007/JHEP01(2017)109
https://doi.org/10.1007/JHEP11(2019)177
https://doi.org/10.1007/JHEP11(2019)177
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://doi.org/10.1103/RevModPhys.47.849
https://doi.org/10.1103/RevModPhys.47.849
https://doi.org/10.1063/1.1666512
https://doi.org/10.1063/1.1666512
https://doi.org/10.1063/1.1666511
https://tel.archives-ouvertes.fr/tel-01468540
https://tel.archives-ouvertes.fr/tel-01468540
https://tel.archives-ouvertes.fr/tel-01468540

