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Within the covariant density functional theory of hypernuclear matter we build a series of equations
of state for hypernuclear compact stars, by calibrating the coupling constants of the Ξ-hyperon to
the experimental binding energy of the single-Ξ hypernuclei 15

Ξ−C and 12
Ξ−Be. Coupling constants of the Λ-

hyperon to nucleons have been calibrated on a vast collection of experimental data on single Λ
hypernuclei and we employ those values. Uncertainties on the couplings of the Σ-hyperon to nuclear
matter, due to lack of experimental data, are accounted for by allowing for a wide variation of the well
depth of Σ at rest in symmetric saturated nuclear matter. To account for uncertainties in the nucleonic
sector at densities much larger than n0, a rich collection of parametrizations is employed, some of them
in agreement with existing constraints from nuclear physics and astrophysics. Neutron star properties
are investigated with all these calibrated equations of state. The effects of the presence of hyperons on
the radius, on the tidal deformability, on the moment of inertia, and on the nucleonic direct Urca process
are discussed. The sensitivity of the hyperonic direct Urca processes to uncertainties in the nucleonic
and hyperonic sectors is also addressed. It is shown that the relative variations of the radius,
tidal deformability and moment of inertia from the values that characterize purely nucleonic stars are
linearly correlated with the strangeness fraction. The maximum radius deviation, obtained for most
massive neutron stars, is ≈10%. The reduction of the maximum mass, triggered by nucleation of
strangeness, is estimated at ≈15%–20%, out of which 5% comes from insufficient information on the Σ-
hyperon interactions. A total of 44 calibrated hyperonic equations of state are published as Supplemental
Material.

DOI: 10.1103/PhysRevD.101.034017

I. INTRODUCTION

The recent detection of gravitational waves emitted
during the inspiral phase of a neutron star-neutron star
merger GW170817 [1] together with the following up

electromagnetic signal opened a new door to the study of
neutron stars (NS) [2]. NSs have been acknowledged since
long ago to be perfect test grounds of cold and dense
baryonic matter, with thermodynamic conditions comple-
mentary to those produced in terrestrial laboratories. In the
innermost shells non-nucleonic degrees of freedom such as
hyperons and kaon or pion condensates or a quark gluon
plasma have been predicted to exist [3] in addition to or
instead of the nucleonic ones. Understanding the way
in which these “exotic” degrees of freedom affect the
structure and evolution of NS ultimately allows one to
confirm or, on the contrary, rule out their presence.
Information thus implicitly gained on the so far insuffi-
ciently constrained interaction potentials makes NSs a
promising research field for nuclear physics.
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The major source of uncertainties that affect NSs comes
from the nucleonic sector, which dominates in all but pure
quark stars and whose behavior at densities much larger
than the saturation density of symmetric nuclear matter
(n0) and high isospin asymmetry remains poorly known,
despite intense theoretical and experimental effort. To
account for this state of facts NS studies typically allow
for the widest collection of equations of state (EoS)
compatible with constraints from nuclear physics experi-
ments, ab initio calculations and astrophysical observa-
tions. In the present work we adopt the same strategy.
Additional sources of uncertainties are related to the
above-mentioned “exotic” species. They are less serious
than the ones in the first category, as only NSs with masses
exceeding the threshold value for nucleation of those
species are affected. Some of the first new degrees of
freedom that are expected to be populated are the hyper-
ons, which make the object of our present study. Another
possibility is the Δ resonance [3] which has recently been
investigated by several authors [4–7], but which is not
considered in the present study.
With the aim of building EoS as realistic as possible,

we continue the work started in Refs. [8–10], where the
Λ-nucleon and Λ − Λ interaction potentials have been
constrained based on a vast collection of experimental
data on single- and double-Λ nuclei, by constraining the
Ξ-nucleon potentials on experimental data on single-Ξ
nuclei. As in Refs. [8–10], we calculate the binding
energies of nuclei with a variable number of nucleons
and one hyperon by solving the Dirac equations of the
nucleons and the hyperon obtained from the assumed
Lagrangian density. The coupling constants between the Ξ
and the scalar σ meson are tuned on the binding energy
of 15

Ξ−C, measured by the KEK-E373 experiment [11].
The thus obtained EoS are called calibrated, as they
comply with the maximum available experimental infor-
mation. The third hyperonic species expected to nucleate
in NS cores is Σ. Experimental data on strong-interaction
level shifts, widths and yields collected from Σ− atoms
and inclusive ðπ−; KþÞ spectra on medium to heavy
targets indicate a repulsive ΣN potential. According to
Refs. [12–16], these data are compatible with a wide range
of the well depth of Σs at rest in saturated symmetric

nuclear matter, 10≲UðNÞ
Σ ≲ 50 MeV. Theoretical studies

performed within the chiral effective field theory support

the repulsive character of UðNÞ
Σ , though the magnitude is

estimated to lesser values ≈15 MeV [17]. Not being able
to constrain the couplings of the Σ-hyperon, we inves-

tigate how the uncertainties that affect UðNÞ
Σ impact the NS

properties. Special attention is given to the chemical
composition of NS, particularly sensitive to negatively
charged particles and susceptible to being indirectly
determined from NSs’ thermal evolution. Notable effects
are expected to occur for the less repulsive potentials,

which favor earlier onset of Σs. This expectation relies on
the fact that, as soon as they appear, any negatively
charged particles partially replace the electrons in the net
charge neutrality equation and, consequently, alter the
β-equilibrium conditions which determine the relative
abundances. In extreme scenarios, also the threshold of
nucleonic dUrca may be affected.
The first high-precision measurement of a massive pulsar

mass, corresponding to PSR J 1614–2230 [18,19] with
M ¼ 1.908� 0.016M⊙ (in the following masses are given
with a precision at the 1-σ level that is a 68.3% confidence
level), challenged the nuclear physics community on
whether two solar mass NSs can accommodate non-
nucleonic degrees of freedom [18,20]. The particular case
of the onset of hyperons, commonly known as the hyperon
(ization) puzzle, was addressed at length in Ref. [21], where
several scenarios that reconcile large masses and hyperonic
degrees of freedom have been identified. They include (i) a
sufficiently hard nucleonic EoS and (ii) going beyond the
simple SUð6Þ symmetry ansatz to fix the vector meson
couplings [22–28]. Other massive pulsars have been
detected in the meanwhile, in particular, the pulsars PSR
J0348þ 0432 [29], with a mass 2.01� 0.04M⊙, and the
millisecond pulsar MSP J0740þ 6620 [30], with a mass
2.14þ0.10

−0.09M⊙. It is worthwhile to note that massive NSs can
be theoretically obtained also by assuming a deconfinement
phase transition to quark matter [31–42]. In the present
paper we add some more information to the issue and study,
within a relativistic mean-field (RMF) approach with model
parameters fitted to experimental data, under which con-
ditions NS cores do accommodate hyperons and how these
extra particle degrees of freedom modify NSs’ geometric
and chemical properties. The extent to which one may learn
information on chemical composition from thermal evolu-
tion is addressed elsewhere.
The paper is organized as follows. Section II presents

the nucleonic EoSs on which our hyperonic EoSs
are built and the way in which Ξ-meson coupling
constants are determined from experimental Ξ-hyper-
nuclei data. Physical (maximum mass and radius, tidal
deformability, and moment of inertia versus gravitational
mass) and chemical properties of hypernuclear compact
stars built upon our set of calibrated EoSs are discussed
in Sec. III. Special attention is given to the uncertainties
related to the Σ potential. The conclusions are drawn
in Sec. IV.

II. EQUATIONS OF STATE

In the following we define the set of EoSs that we choose
to perform our study. The parametrizations employed to
describe the nucleonic sector are introduced in Sec. II A.
The way in which experimental data on hypernuclei are
used to calibrate the hyperon-meson coupling constants is
detailed in Sec. II B.
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A. Nucleonic EoS

The phenomenological EoS considered in our study
have been obtained in the framework of RMF. In this
category of models the nucleons interact among each others
by exchanging scalar-isoscalar (σ), vector-isoscalar (ω),
vector-isovector (ρ) and, in more sophisticated cases (not
considered here), also vector-isoscalar (δ) mesons. For a
general review of these types of models, see Ref. [43]. The
chosen models fall into two classes: (a) models with
constant couplings and nonlinear meson terms, generically
called NL models and (b) models with density dependent
couplings, generically called DD models. We recall that the
nonlinear meson terms have been introduced in order to
correctly describe the properties of symmetric saturated
nuclear matter, when the coupling constants do not depend
on density.
We presently consider the set of models discussed in

Ref. [10]. It consists of the NL models: FSU2 [44], FSU2H
and FSU2R [45,46], NL3 [47], NL3ωρ [48,49], TM1 [50],
TM1ωρ [48,51,52], TM1-2 and TM1-2ωρ [51], and the
DD models DD2 [53] and DDME2 [54].
From the astrophysical point of view, the common feature

of all these models is the ability to provide NS masses in
excess to 2 M⊙ stars. In regards to the incompressibility
parameter of symmetric nuclear matter at saturation, K∞,
they span values between 238MeV (FSU, FSU2R, FSU2H)
and 281.2 (TM1, TM1ωρ, TM1-2, TM1-2ωρ), with DD2,
DDME2 andNL3 andNL3ωρ having intermediate values as
follows: 242.7, 250.9 and, respectively, 271.5 MeV. As is
frequent for RMF models, these values are larger than the
generally accepted constraints coming from isoscalar giant
monopole and dipole resonances in nuclei, 240� 20 MeV
[55], or, the more recently, 211.9� 24.5 MeV [56]. In
regards to the isovector channel, they fall into two classes:
(i)modelswithmoderate values of the slope of the symmetry
energy at saturation, which thus comply with a compilation
of constraints coming from experimental nuclear physics,
ab initio calculations of pure neutron matter and astrophysi-
cal observations and are customarily expressed as 40≲ L≲
62 MeV [57] or 30≲ L≲ 86 MeV [58]. They are FSU2H,
FSU2R, NL3ωρ, TM1ωρ, TM1-2ωρ, DD2 and DDME2.
These models have L in the range 44–55 MeV; (ii) models
with high values of the slope of the symmetry energy at
saturation, L≳ 100 MeV. They are FSU2, NL3, TM1,
TM1-2 with values of L in the range 108–119 MeV. For
all these models a table with the corresponding slope values
and also other nuclear matter saturation properties can be
found in Ref. [10]. At this point we recall that large values of
L are still compatible with the Lead Radius Experiment
(“PREX”) [59], and recent analysis of elliptic flow in heavy
ion collisions [60]. The models in the second class are
mainly kept for the sake of completeness and because some
of the models in the first class have been derived from them
by introducing additional meson couplings. It should be
pointed out that although most of the models that we

consider predict well-accepted nuclear matter properties
at saturation density, they are not constrained at high
densities, except for the fact that they have to also predict
two solar mass stars. The same is true for the hyperonic
models which are constrained by properties defined at
saturation density. Besides, another source of uncertainty
is the density dependence of the hyperonic couplings in the
density dependent hyperonic models, which has been
considered to behave as the respective nucleonic couplings.

B. Hyperonic EoS with calibrated meson couplings

The starting point of the meson-exchange RMF model
for hypernuclei is the covariant Lagrangian density,

L ¼ LN þ LY þ LM;

where LN , LY , and LM respectively stand for the nucleonic,
hyperonic and purely mesonic components. In addition to
the couplings accounted for when describing infinite
nuclear matter—and listed in Sec. II A—, in the case of
(hyper)nuclei LN additionally contains couplings with the
photon field Aμ. For details, see Ref. [43]. The hyperonic
term of Lagrangian density is given by

LY ¼ Ψ̄Y

�
γμD

μ
Y −m�

Y þ fωY
2mY

σμν∂νωμ

�
ΨY; ð1Þ

with

Dμ
Y ¼ i∂μ − gωYωμ − gρYτY · ρμ − e

τY;3 − 1

2
Aμ; ð2Þ

wherem�
Y ¼ mY − gσYσ stands for the Dirac effective mass,

e is the elementary electric charge, τY is the isospin
operator, ωμ and ρμ are the fields associated to the ω
and ρ mesons and ΨY is the Y-hyperon field. gσY , gωY and
gρY correspond to the coupling constants of the various
meson fields with the Y-hyperon. The third term in Eq. (1),
proportional to fωY=2MY , represents the tensor coupling
between the Y hyperon with the ω field. It impacts the spin-
orbit splitting and, in principle, can be determined from
spectroscopic data. The last term in Eq. (2), proportional to
e, describes the interaction of the Y-hyperon with the
Coulomb field and is meaningful for charged hyperons
only.
Note that the σ� and ϕ-mesons were not included in

Eq. (2) since, for the case of Ξ-hyperon of interest here,
there are no experimental data that could be exploited in
order to fix them. We do, however, include the ϕ-meson in
the next section, devoted to the EoS of stellar matter. In that
case the coupling is determined based on SU(6) flavor
symmetry arguments: gϕΛ¼−

ffiffiffi
2

p
=3gωN , gϕΣ ¼−

ffiffiffi
2

p
=3gωN ,

gϕΞ ¼ −2
ffiffiffi
2

p
=3gωN and gϕN ¼ 0. This contribution

brings repulsion to the interaction and, given that we do
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not include the σ�-meson, this interaction might be
overestimated.
Once the coupling constants are given, the single particle

Dirac equations for baryons and the Klein-Gordon equa-
tions for mesons and photon are obtained in the mean-field
approximation by the variational method [61–63]. The
numerical procedure in order to solve the Dirac and Klein-
Gordon variational equations consists in expanding both
the meson fields and the baryon single-particle Dirac wave
functions in terms of a spherical harmonic oscillator basis.
Thus, one has to solve a self-consistent system of nonlinear
matrix equations. In the case of the electromagnetic field
the Poisson equation is solved directly by using the
associated Green’s function since the basis expansion
method is very slowly convergent. As the translational
symmetry is broken in the mean-field approximation, the
result has to be corrected for the center of mass motion.
The correction is more important for light systems. As
in Refs. [8,9], we adopt the microscopic expression
EC:M: ¼ −hP̂2i=2M, where M ¼ P

B MB is the total mass
of the hypernucleus and P̂ ¼ P

B P̂B is the total momentum
operator.
The binding energy of the hyperon Y in a nucleus with

An neutrons, Ap protons and AY hyperons is given by the
difference between the energies of that hypernucleus and
the hypernucleus with AY − 1 hyperons. Note that removal
of charged hyperons, as Ξ− of interest here, implies
modification of the number of protons.
Experimental data on hypernuclei binding energy may

be used in order to calibrate the interaction between the
hyperon and the scalar meson fields [61,64–67]. The issue
was most recently addressed by Fortin et al. [8,9], who
accounted for a vast collection of experimental data on
single-Λ hypernuclei in s and p shells and effective
nucleonic interactions. These authors have thus confirmed
that binding energies are directly related to the well depth
of the hyperon at rest in symmetric nuclear matter, as
customarily assumed in the literature merely based on
heuristic arguments, and that, once the flavor symmetry
model is fixed, the value of the hyperon coupling constant
represents a fixed fraction of the coupling gσN . In the
present work we use the gσΛ coupling constants obtained in
Refs. [8,9].
So far experimental data exist only for two light Ξ−-

hypernuclei: 12
Ξ−Be and 15

Ξ−C. The former was produced in
ðK−; KþÞ reactions on a 12C target [68]. The second, known
as the Kiso event [11], corresponds to an intermediate state
in the reaction Ξ− þ 14N → 15

Ξ−C → 10
ΛBeþ 5

ΛHe. Both sets
of data indicate an attractive NΞ interaction and bound Ξ-
hypernuclei. See also the recent results in Ref. [69].
Indeed, double differential cross section for 12

Ξ Be pro-
duction was found to be compatible with a Ξ-nucleus
potential well depth of about 14 MeV, within the Woods-
Saxon prescription [68]. In regards to the binding energy of
Ξ− in 12

Ξ−Be, estimations performed within the cluster model

[70] and the coupled-channels antisymmetrized molecular
dynamics approach [71] provide values between 3 and
5.5 MeV. As expected, these values depend on the NΞ
interaction. When this interaction is adjusted such as to give
a value consistent with the experimental spectrum in
Ref. [68], as has been done in Ref. [70], the binding
energy is of ≈5 MeV.
The interpretation of the Kiso event is more problematic,

for the final state of the daughter nucleus, 10
ΛBe, was not

unambiguously identified. Typically two scenarios are
assumed for dealing with data: (a) In the first case it is
assumed that 10

ΛBe is in its ground state. Then, 15
Ξ−C is

considered to be in the state 14Nðg:s:Þ þ Ξ−ð1sÞ. (b) In the
second scenario 10

ΛBe is assumed to be produced in an
excited state. If this is the case, 15

Ξ−C corresponds to the
state 14Nðg:s:Þ þ Ξ−ð1pÞ. The binding energy of Ξ−,
BΞ− ¼ Eð15Ξ CÞ − Eð14NÞ, has different values in cases (a)
and (b). The maximum value corresponds to the case (a)
and amounts to 4.38� 0.25 MeV. The lower limit, of
1.11� 0.25 MeV, corresponds to the second excited state
of 10

ΛBe with an excitation energy of 3.2 MeV, as calculated
by different models [72,73]. Note that the energy spectrum
of 10

ΛBe was recently investigated using ðe; e0KþÞ reactions
by Gogami et al. [74], who found that the first excited
state lies at ≈2.7 MeV. The two scenarios together with
their compatibility with the information obtained for
the binding energy of Ξ in 12

Ξ−Be have been investigated
in Ref. [63], within RMF and Skyrme-Hartree-Fock
approaches. The conclusion reached by Sun et al. [63] is
that the most plausible interpretation is the one correspond-
ing to 14Nðg:s:Þ þ Ξ−ð1pÞ.
In order to constrain the couplings of the σ meson

to Ξ-hyperon we employ the procedure described in
Refs. [8,9] and experimental data corresponding to 15

Ξ−C
[11]. We alternatively assume that 15

Ξ−C corresponds to the
14Nðg:s:Þ þ Ξ−ð1sÞ and, respectively, 14Nðg:s:Þ þ Ξ−ð1pÞ
states. In both cases we calculate also 12

Ξ−Be and compare
with data in Ref. [68].
Other coupling constants are fixed as follows. For the

coupling between the Ξ and the ω-meson, we use the SU(6)
value gωΞ ¼ 2=3gωN . For the coupling between the Ξ and
the ρ-meson, we assume gρΞ ¼ gρN . In DD models, we
suppose the same density dependence for hyperon- and
nucleon-meson couplings. Let us recall that other calibra-
tion constraints have been employed in older works,
as proposed in Ref. [75], or more recent works [26].
Finally, in order to get a weaker interaction between Ξ
and the nuclear spin orbit, the tensor coupling is included as
in Refs. [63,67], with fωΞ ¼ 0.4gωN .
Since 15

Ξ C is constituted by a symmetric nucleus 14
7 N,

with isospin 0, and a Ξ-hyperon, which has nonzero
isospin, the ρ-meson field is finite due to the self-
interaction of the Ξ with itself. To remove this spurious
contribution, we follow the procedure proposed in
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Refs. [63,67]. It consists in performing two calculations of
the hypernucleus energy. (1) In the first one, the coupling of
the ρ-meson to the nucleons is put to 0 while the coupling
of the ρ-meson to the Ξ-hyperon is kept fixed. The corre-
sponding energy is EðgρN ¼ 0; gρΞÞ. (2) In the second case,
the coupling constants of the ρ-meson to both nucleons and
Ξ-hyperon are put to 0. The corresponding energy is
EðgρN ¼ 0; gρΞ ¼ 0Þ. The spurious energy is given byEsp ¼
EðgρN ¼ 0; gρΞÞ − EðgρN ¼ 0; gρΞ ¼ 0Þ and can be straight-
forwardly removed from the full calculation. We employ this
procedure to correct the energies of both 15

ΞC and 12
ΞBe.

The values of the coupling constant gσΞ, expressed as
the fraction xsΞ ¼ gσΞ=gσN , obtained from the fit of the
binding energy of the Ξ-hyperon in the 15

Ξ C hypernucleus
are given in Table I. Different effective nucleon inter-
actions, introduced in Sec. II A, are considered. The two
scenarios which assume that Ξ− occupies the 1s or,
alternatively, the 1p state of 14N are considered separately.
They correspond to the binding energies BE ¼ 4.4 MeV
and, respectively, BE ¼ 1.1 MeV. Also given are the

values of UðNÞ
Ξ , the well depth of Ξ at rest in symmetric

saturated nuclear matter, and the binding energy of the Ξ-
hyperon in the hypernucleus 12

Ξ Be. Finally the last column
lists, for comparison, the binding energy of Ξ in the 1s
state of 15

Ξ−C obtained when the coupling constant given in
the fifth column is used. If we take into account that the
experimental data of 12

Ξ Be [68] have been interpreted as
compatible with UΞðn0Þ ∼ −14 MeV, our results confirm
the conclusion of Ref. [63], suggesting as the most
plausible scenario the one in which 15

Ξ C is produced in
an excited state. In regards to the binding energy of Ξ in
12
Ξ Be, the situation is less clear as the values provided by
Refs. [70,71], in the range 3–5.5 MeV, sit in between the

values we obtained for the two scenarios. We nevertheless
note that three interactions (FSU2R, TM1 and TM1ωρ)
provide, for the second scenario, values similar to those of
Refs. [70,71].
The binding energy of the Ξ-hyperon in the hyper-

nucleus 15
Ξ−C is plotted in Fig. 1 as a function of the UðNÞ

Ξ
potential (top panels) and, respectively, xsΞ (bottom
panels). Left (right) panels correspond to the assumptions
according to which Ξ occupies a 1s (1p) state. The
different nucleonic effective interactions presented in
Sec. II A are considered. A gray band identifies the
binding energy obtained in the Kiso event [11]. Some
conclusions are in order: (a) if 15

Ξ C is in the ground state,

i.e., Ξ occupies the 1s state, −12.5≲ UðNÞ
Ξ ≲ −8.7 MeV,

with the most attractive values corresponding to the two
DD models and FSU2R; this corresponds to
0.295 ≤ xsΞ ≤ 0.306; see Table I; (b) if 15Ξ C is in an excited

state, i.e., Ξ occupies the 1p state, UðNÞ
Ξ is more attractive,

−18.8≲ UðNÞ
Ξ ≲ −14.6 MeV; again, the most attractive

values correspond to the two DD models and FSU2R; the
coupling constants have larger values, 0.31 ≤ xsΞ ≤ 0.32.
The relative stability of xsΞ to the modification of the
nucleonic EoS, for each considered scenario, reflects the
relatively small dispersion among the considered EoS,
over the subsaturation density domain explored by a
hyperon bound in a nucleus. Note that a similar situation
corresponds, according to [8–10], also to xsΛ and the
explication is the same.
Contrary to what occurs for Λ and Ξ, there is no

hypernuclear data on which the ΣN interaction can be
tuned. As a consequence we treat gσΣ as a free parameter

and vary its values such as to explore −10≤UðNÞ
Σ ≤40MeV.

TABLE I. Coupling constant fraction xsΞ ¼ gσΞ=gσN , well depth of Ξ− at rest in symmetric matter at saturation density (UðNÞ
Ξ ) and,

respectively, binding energy of Ξ in 12
Ξ1sBe, as obtained from the fit of the binding energy of 15Ξ C. Results corresponding to the hypothesis

according to which 10
ΛBe is produced in the ground state or, alternatively, the first excited state are reported in columns 2-4 and,

respectively, 5–7. The binding energies of 15Ξ1sC and 15
Ξ1pC are BEΞ ¼ 4.4 MeV and BEΞ ¼ 1.1 MeV. For the second hypothesis, also the

energy of 15
Ξ1sC is provided, on the last column. Results correspond to different nucleon effective interactions.

15
Ξ1sC (BE ¼ 4.4 MeV) 15

Ξ1pC (BE ¼ 1.1 MeV)

Model (MeV) xsΞ UðNÞ
Ξ

12
Ξ1sBe (MeV) xsΞ UðNÞ

Ξ (MeV)
12
Ξ1sBe (MeV) 15

Ξ1sC (MeV)

DD2 0.304 −11.10 2.35 0.320 −17.50 6.48 9.02
DDME2 0.306 −12.49 2.38 0.321 −18.78 6.31 8.83
FSU2R 0.296 −11.80 2.51 0.316 −17.51 5.87 8.12
FSU2 0.296 −10.00 2.64 0.311 −15.69 6.15 8.19
FSU2H 0.296 −10.00 2.68 0.310 −15.47 6.47 7.91
TM1 0.295 −9.78 2.59 0.310 −14.93 5.48 7.69
TM1ωρ 0.295 −9.80 2.51 0.310 −14.94 5.34 7.68
TM1-2 0.292 −8.71 2.58 0.309 −14.62 6.62 8.79
TM1-2ωρ 0.292 −8.74 2.59 0.309 −14.63 6.56 8.77
NL3 0.296 −9.88 2.84 0.310 −15.36 7.31 7.93
NL3ωρ 0.296 −9.90 2.73 0.311 −15.39 7.17 7.93
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We recall that, according to Ref. [13], UðNÞ
Σ ðn0Þ≈

30� 20 MeV. As assumed for the couplings between Ξ
and ω and ρ mesons and for the same reasons, gωΣ ¼
2=3gωN and gρΣ ¼ gρN .

III. PROPERTIES OF HYPERNUCLEAR
COMPACT STARS

In the following we discuss the properties of hyper-
nuclear compact stars built upon the calibrated EoS dis-
cussed in Sec. II. In particular, we analyze the effect of the
different nucleon effective interactions and UðNÞ

Σ -potential
values on the onset and abundances of hyperons as well as
on the maximum mass, radii, tidal deformability and
moment of inertia.
In the following we use unified EoS for neutron star

matter for the 11 parametrizations in this work. We employ
crust models computed consistently with the core [10,27]
following the approach presented in the first reference. EoS
tables are available as Supplemental Material [76] to this
paper assuming that the Ξ− hyperon in 15

Ξ C of the Kiso event
is in a 1p state, for each of the 11 RMF models and four
values of the UΣ potential: −10, 10, 30 and 50 MeV.
For a spherical star in hydrostatic equilibrium we

determine the mass-radius relation by solving the Tolman-
Oppenheimer-Volkoff [77,78] equations. The radius of
some NSs has been determined, most recently by two

teams who modeled the pulsed x-ray emission of the
millisecond pulsar PSR J0030þ 0451 [79,80]. However
uncertainties in the derived constraints and in the modeling
of the source itself are still large and so far no strong
constraint on the radius of NS has been obtained (see e.g.,
[81,82]). However the determination of the radius of a few
NSs with a precision of a few percent is expected from the
currently operating NICER mission [83] and also from
future x-ray observatories like Athena x-ray telescope [84]
and eXTP [85].
The moments of inertia I and tidal deformabilities Λ are

calculated as following Refs. [86,87] and Ref. [88], respec-
tively. Some constraints on the deformabilities of the two
NS that composed the binary before they merge during the
GW170817 event have been obtained thanks to the multi-
messenger observations (see Refs. [89,90] for the latest
results), and many more are expected in the near future
from the current and future observational runs of the LVC
collaborations. As far as the moment of inertia is con-
cerned, no measurement has been obtained so far. However
it could be measured in a binary of two radio pulsars, such
as PSR J0737-3039. It could not be achieved for this system
so far as the radio beam of one of the NSs cannot be
observed anymore due to precession. With more observa-
tions with current radiotelescopes and future ones like the
SKA [91], the number of known pulsars is expected to
increase by orders of magnitude, including many thousands
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FIG. 1. Binding energy of 15Ξ−C as a function ofUðNÞ
Ξ (top panels) and xsΞ (bottom panels), under the assumptions that Ξ− occupies a 1s

state (left panels) or, alternatively, a 1p state (left panels). Note that the scales are not the same in the different panels. Gray band:
experimental binding energy of the Kiso event.
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of millisecond pulsars, and among them possibly binary
systems with two pulsars.
Figure 2 gives a general summary of the properties of the

NSs built upon the considered models. Regarding observa-
tional constraints on the maximummass we note that, thanks
to radio observations of the Shapiro delay, the mass of MSP
J0740þ 6620 has been determined to be 2.14þ0.20

−0.18M⊙ at a
2-σ level (equivalently 95.4% credibility interval), i.e.,
1.96 < M=M⊙ < 2.34 [30].We consider that the uncertainty
in this measurement is still too large to use this mass as a
strong constraint. Let us recall indeed that the mass of PSR
J1614 − 2230 inferred from Shapiro delay was initially
determined to be 1.97� 0.04M⊙ (1-σ level) [18]. After
more data were accumulated this number went down toM ¼
1.908� 0.016M⊙ (also 1-σ level), which is compatible with
the previous reported mass at more than 1 standard deviation.
Consequently in this workwe only consider and plot themass
constraints from PSR J1614 − 2230 and J0348þ 0432. We
note that among all themodels considered in this paper, DD2,
DDME2, FSU2H, NL3 and NL3ωρ are compatible with
the mass constraint from these objects. We also show in the
M − R plot the mass and radius constraints at the 1-σ level
obtained for PSR J0030þ 0451 by two teams analyzing
NICER data [79,80]. The stiffest EoS NL3, which is already
ruled out because of its too large slopeof the symmetry energy
at saturation, is not compatible with these measurements,
while TM1 and TM1-2 are marginally consistent.
In the middle panel of Fig. 2 we plot for indication the

limits imposed on Λ1.4 taken from Ref. [89]. These have
been deduced from the effective Λ̃ obtained within the
waveform model PhenomPNRT at a 90% confidence level.
None of the models we use satisfy this constraint. However,
in Ref. [90] the authors show the dependence of the
analysis of the GW170817 observation on the waveform
model, and, in particular, the TaylorF2 model predicts
effective tidal deformabilities larger by ∼100. New obser-
vations are needed to impose stricter constraints.
Figure 3 represents strangeness fractions NS=NB as a

function of the star mass. Baryonic and strangeness
numbers entering the definition of the strangeness fraction
are defined as

NB ¼ 4π

Z
dr

nir2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=rp ;

NS ¼
4π

3

Z
dr

qSinir2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=rp ;

where ni and qSi stand for particle number density and,
respectively, strangeness charge of particle i, and mðrÞ
denotes the gravitational mass corresponding to the radial
coordinate r. The dependence of NS properties and strange-
ness composition on the magnitude of the Σ-N interaction
potential is illustrated by using different colors and thick-
nesses, the thinner the line the more repulsive the potential.

FIG. 2. Mass-radius diagrams (top panels) and tidal deformabil-
ities (second middle panels) and moments of inertia (third bottom
panels) as a function of the star mass expressed in units of solar
masses, for hypernuclear stars with calibratedΛ and Ξ interactions.
The different nucleonic effective interactions discussed in Sec. II A
are considered. Predictions corresponding to different values of

UðNÞ
Σ are plotted with different colors: -10 (gold), 10 (blue), 30 (red)

and50MeV (green) and line thicknesses: the thiner the line themore
repulsive the potential. Predictions corresponding to purely nucle-
onic stars are illustrated by dotted curves. The horizontal bands on
M − R diagrams correspond to the mass measurements of PSR
J1614− 2230 and J0348þ 0432 with a 1-σ uncertainty. The
colored rectangles correspond to the mass and radius constraints
at the 1-σ level obtained for PSR J0030þ 0451 by two teams
analyzingNICER x-ray data [79,80]. For indication, the red vertical
bars on Λ −M correspond to limits obtained on the tidal deform-
ability of a 1.4M⊙ NS, 70 < Λ1.4 < 580, as derived from the
observation ofGW170817 by the LVC collaboration [89], using the
waveform model PhenomPNRT.
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It comes out that the most important role is played by the
nucleonic sector. The reason is that nucleons represent the
dominant component. Quite remarkably, also the modifica-
tions brought by nucleation ofΣ-hyperons and the associated
value ofUðNÞ

Σ show strong dependence on the nucleonic EoS.
For instance, models with large values of the slope of the
symmetry energy (e.g., TM1, TM1-2, NL3 and FSU2) show
very little sensitivity of geometric, deformability and chemi-

cal composition to the value of UðNÞ
Σ . At variance with them,

models with moderate L values lead to smaller NS radii and
masses, when attractive or less repulsive ΣN potentials are
assumed. From Fig. 3 one may see that the maximum
strangeness fraction reached in NS cores does not depend

onUðNÞ
Σ . The strangeness related quantity which does depend

on UðNÞ
Σ is the density and, implicitly, the NS mass where

strangeness sets in. As is easy to anticipate, attractive or less
repulsive potentials favor early nucleation of Σ.
In Table II, we have compiled, for each model and

each value of the UðNÞ
Σ potential the information covering

several properties of neutron stars: maximum mass and
respective central baryonic number density, onset density of
the three hyperonic species and threshold densities of
nucleonic and various hyperonic dUrca channels. Also
given are the NS masses with central densities equal to
these values.
In the following, we discuss these results.
(i) Some of the considered models, e.g., FSU2R, FSU2,

TM1, TM1ωρ, TM1-2 and TM1-2ωρ, are not able to
reach the 2 M⊙ lower bound of maximum NS mass,
when hyperons are introduced.

(ii) Irrespective of the nucleonic EoS, the only hyper-
onic species that are present are Λ, Σ− and Ξ−. The
explanation relies on the attractive character of ΛN-
and ΞN interactions and dominance of negatively
charged particles. Note that other models of hyper-
nuclear compact stars allow also for Ξ0 [27].

(iii) For most of the NL models studied here only two
species of hyperons nucleate in the core, the Λ and

Σ− hyperons. However for repulsive enough UðNÞ
Σ

potential the Ξ− nucleates either instead of the Σ− for
the TM1, TM1-2 and NL3 models or in addition to
it. For DD models the three hyperons Λ, Σ− and Ξ−

appear, the latter species the last except for all
models but one.

(iv) For models with a large L, e.g., TM1, TM1-2, NL3
and FSU2, the nucleonic dUrca is insensitive to the
onset of hyperons. The reason is that it becomes
active well before the onset of any hyperon species.
We recall that the nucleonic dUrca process corre-
sponds to the neutron β-decay followed by the
electron capture on the proton: n → pþ e− þ ν̄e
and pþ e− → nþ νe, which operates when the
Fermi momenta of involved baryons and charged
lepton verify the triangle inequality: pF;i þ pF;j ≥
pF;k [92]. This latter condition also applies to the
hyperonic dUrca processes [93].

(v) With the exception of the above cited models,
attractive UðNÞ

Σ potentials modify NS composition
such that the nucleonic dUrca threshold is shifted to
lower densities.

(vi) NL and DD models provide different results in
regard to the nucleonic dUrca process. More pre-
cisely, DD models either completely forbid this
process or allow for it at densities beyond the central
density of the maximum mass, which is equivalent
with saying that it never operates. All NL models
allow for nucleonic dUrca. Depending on the value
of the symmetry energy it starts to operate at
densities slightly above n0 or several times n0.

(vii) DD models only allow for hyperonic dUrca [93]. The
allowed processes are Λ → pþ eþ ν̃e, Σ− → Λþ
eþ ν̃e and, for repulsive values of UðNÞ

Σ , also Ξ− →
Λþ eþ ν̃e (not mentioned in Table II) For strongly

repulsive UðNÞ
Σ , Λ → pþ eþ ν̃e sets in much before

Σ− → Λþ eþ ν̃e. For less repulsive UðNÞ
Σ the two

processes have close density thresholds and, thus,

compete. ForUðNÞ
Σ ≥ 20 MeV,Ξ− → Λþ eþ ν̃e sets

in at densities of the order of 0.37 − 0.46 fm−3, which
corresponds to 1.46M⊙ ≤ M ≤ 1.66M⊙.

(viii) In NL models with L ∼ 50–60 MeV the hyperonic
dUrca starts operating before the nucleonic

dUrca. Repulsive UðNÞ
Σ values shift Λ → pþ eþ

ν̃e to lower densities.
(ix) UΣ defines the process that first operates: a less

repulsive potential favors Σ− → Λþ eþ ν̃e, which
is 20 times more efficient thanΛ → pþ eþ ν̃e [93].

(x) With the exception of NL3ωρ, under the assumption

that UðNÞ
Σ is repulsive, the Λ → pþ eþ ν̃e process

starts operating at n ≈ 2n0, which corresponds to

FIG. 3. Strangeness fraction as a function of the star mass
expressed in units of solar masses for the same models considered
in Fig. 2. The thick lines correspond toUðNÞ

Σ ¼ −10 MeV and the
thin ones to þ50 MeV.
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M=M⊙ ≈ 1.3–1.4M⊙. The relative stability of this
threshold is attributable to the constraints imposed to
nuclear matter around the n0 and ΛN potential.

Figures 4 and 5 illustrate the dependence of some
quantities reported in Table II on the nucleon effective
interaction and UðNÞ

Σ potential. These are the densities at

which the three hyperonic species nucleate in NS matter
and the corresponding NS masses (Fig. 4) and, respec-
tively, the density and corresponding NS masses where
nucleonic dUrca becomes active (Fig. 5). Figure 4 shows

that the onset density of Λs depends little on UðNÞ
Σ and the

nucleonic EoS. The explanation of the first feature is that,

with the exception of attractive UðNÞ
Σ values and FSU2H,

Λ onset before Σ. The explanation of the second one is
that, up to nΛ, the nucleonic EoS is relatively well
constrained. Despite small dispersion on nΛ, the mim-
imum NS mass that accommodates Λs varies over 0.4M⊙.
The size of this interval reflects the integrated variation
among the EoS, especially in the isovector channel, up to

nΛ. Nucleation of Σ depends much on both UðNÞ
Σ and

nucleon-nucleon effective interactions. In terms of den-
sity the domain of variation is ≈0.5 fm−3 wide, while in
terms of NS masses it is ≈1.2M⊙. Nucleation of Ξ, which
appear only in some models, is inversely correlated with
that of Σ−. Even larger uncertainties affect these latter
quantities and the explanation is obviously due to the
increased uncertainties that affect the EoSs as the density
increases. Figure 5 illustrates the already discussed huge
dispersion that concerns the onset density and mass of
the nucleonic dUrca process. The variation of this
quantity with the nucleon-nucleon effective interaction
stems from the isovector channel. The variation with

UðNÞ
Σ reflects the way in which negatively charged

particles affect the whole composition of matter and,
implicitly, the relative abundances of neutrons, protons
and electrons.

FIG. 4. UðNÞ
Σ dependence of the onset density (right panel) and

corresponding NS mass with this central density (left panel) of
the hyperonic species that nucleate in NS cores. The same models
as in Fig. 1 are considered. The horizontal gray strips on the left
panel correspond to the mass measurements of PSR J1614 −
2230 and J0348þ 0432 with a 1-σ uncertainty.

FIG. 5. Left: dependence on UðNÞ
Σ of the NS maximum mass

Mmax (thin lines) and of the minimum NS mass which allows
nucleonic dUrca to operate (thick lines). The horizontal gray
strips correspond to the mass measurements of PSR J1614 −
2230 and J0348þ 0432 with a 1-σ uncertainty. Right: depend-

ence on UðNÞ
Σ of the central density at the maximum mass (thin

dashed lines) and of the onset density of nucleonic dUrca (thick
solid lines).
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Modification of chemical composition is expected to
impact the thermal evolution of isolated and accreting
neutron stars. The extent to which one may constrain the
effective interactions from effective surface temperature
will be considered in a future work.
With the aim of understanding how UðNÞ

Σ affects NS
chemical composition and, consequently, the dUrca thresh-
old Fig. 6 illustrates, for the DDME2 parametrization, the
individual central particle number densities ni as a function
of the gravitational mass (in units of solar masses) for

different values of UðNÞ
Σ between -10 and 40 MeV. The

considered species are neutrons, protons, electrons, Λs, Σs
and Ξs. Attractive or less repulsive values of UðNÞ

Σ favor the
onset of Σ− at lower values of nB. By partially replacing the
electrons, which compensate the positive electric charge of
protons, Σ−s modify both neutron and proton densities, as
the first two panels confirm. Smaller values of nn together
with larger values of np act in the direction of allowing the
nucleonic dUrca to operate at lower densities. Chemical
equilibrium with unconserved strangeness asks that Λ
chemical potential is equal with the neutron one. As a
result, nΛ qualitatively follows the evolution of nn.

Quantitatively, the less abundant Λs are less affected than
the more abundant neutrons. Based on similar arguments
one could expect that nΞ− follows nΣ− . The bottom panel of

Fig. 6 shows the opposite; i.e., the more attractive UðNÞ
Σ is

the smaller the amount of Ξ-hyperons. The effect is
attributable to the net neutrality condition, where the role
of Ξs is overtaken by Σs.
The most important consequence of hyperon nucleation

in the NS core is the drastic reduction of the maximum
mass. Other quantities, like NS radius, tidal deformability
and moment of inertia are also affected though to a much
lesser extent, as illustrated in Fig. 2. The question raised is
which is the relation between the strangeness density or
fraction and the magnitude by which different parameters
that characterize hypernuclear stars deviate from those that
characterize purely nucleonic stars. Figure 7 shows, in log-
log scale, the relative deviations which affect the radii (top
panels), the tidal deformabilities (middle panels) and the
moments of inertia (bottom panels) for NSs with masses
equal to 1.6M⊙, 1.7M⊙ and 1.8M⊙. The predictions
corresponding to different nucleonic models are plotted
with different colors, while different symbols signal the

different values of UðNÞ
Σ ¼ −10, 10, 30 and 50 MeV.

It comes out that each of the three quantities is strongly
correlated with NS=NB. The Pearson correlation factor r,
indicated on each panel, is only slightly smaller than one
indicating the strong correlations between the quantities of
interest in each panel. Moreover, the relation between
log ðjFnucl − Fhypj=FnuclÞ and log ðNS=NBÞ, where F ¼ R;
Λ; I, is linear. The parameters of the linear fit are mentioned
on each panel. In all cases, the slopes of the lines are
slightly larger than 1.
These correlations can be understood by considering that

all the above quantities F ¼ R;Λ; I depend on R to a given
power n, (n ¼ 1, 5 and 2 for R, Λ and I). Assuming that R

gets modified by δR, δF ∼ nRðn−1Þ
nucl δR. In its turn, δR

depends linearly on δM,

δR ¼ −
�∂R
∂M

�
Mnucl

δM;

where δM stands for the reduction of NS mass due to the
onset of hyperons, δM ¼ Mnucl −Mhyp. Finally, for small
strangeness fractions, δM ∼ NS=NB.
According to Fig. 7, the modifications entailed by

hyperons on the radius, tidal deformability and moment
of inertia of NS are of the order of 5%, 30% and,
respectively, 10% for 1.6 M⊙. Larger values, of the order
of 10%, 60% and, respectively, 15% are obtained for more
massive NS.
Finally, Fig. 8 plots the ratio and relative reduction of the

maximum mass of hypernuclear stars with respect to the
maximum mass of purely nucleonic stars. Possible corre-
lations can be judged upon by considering the variety of
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FIG. 6. For the DDME2 model, from top to bottom, partial
densities of neutrons, protons, Λs, Σs and Ξs in the center of the
star as a function of the gravitational mass in units of solar
masses. The different curves correspond to different values of the

UðNÞ
Σ , as mentioned in the key legend (in MeV). Also plotted in

the second panel are the electron densities.
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nucleonic EoS introduced in Sec. II A and a range of UðNÞ
Σ

values. The first conclusion is that the inclusion of
strangeness reduces the maximum mass by ≈15%–20%,
out of which 5% comes from insufficient knowledge on the

interaction between Σ-hyperons and nucleons. This means
that, in order to produce hypernuclear stars with masses
≳2M⊙, the nucleonic EoS should be stiff enough to
provide for purely nucleonic stars maximum masses larger
than 2.35–2.5 M⊙. Contrary to what we have seen in Fig. 7,
only a loose correlation exists between Mhyp

max=Mnucl
max and

NS=NB and logð1 −Mhyp
max=Mnucl

maxÞ and logðNS=NBÞ. This
result is easy to understand considering that no constraint is
imposed on the high density behavior of the dominant
nucleonic component, as no data exist so far in that region.
As a consequence, properties of stars with quite different
masses are being compared.

IV. CONCLUSIONS

Starting from a set of nucleonic RMF models that
explore widely different behaviors in the isoscalar and
isovector channels and predict NS maximum masses in
excess to the astrophysical 2M⊙ constraint, we have studied
the effect of including hyperons on the properties of NS.
With the aim of constraining as much as possible the
hyperon-nucleon interaction, we employ σY coupling
constants calibrated on experimental data on hypernuclei.
The method relies on comparison between the values of the
binding energy of nuclei with a variable number of
nucleons and one or more hyperons, as obtained by solving
the Dirac equation, with corresponding experimental data.
More precisely, we employ the gσΛ values determined in
Refs. [8–10], based on a vast collection of data of single-Λ
hypernuclei, and further determine gσΞ from the binding
energy of Ξ− in the hypernucleus 15

Ξ C [68]. Experimental
uncertainties related to the final state of the daughter
nucleus 10

ΛBe are accounted for by considering the

FIG. 7. Correlations between relative deviations of quantities
that characterize hypernuclear stars from those that characterize
purely nucleonic stars, and the strangeness fraction. Considered
are the radius (top panels), the tidal deformability (middle panels)
and the moment of inertia (bottom panels). The results corre-
spond to various nucleonic EoS and UðNÞ

Σ values, as mentioned in
the key legend. Results are for 1.6M⊙, 1.7M⊙ and 1.8M⊙. The
correlation coefficient r and the parameters of the linear fit are
mentioned on each panel.

FIG. 8. Correlations between the strangeness fraction and the
ratio (left panel) and, respectively, relative deviation (right panel)
between maximum mass of hypernuclear stars and maximum
mass of purely nucleonic stars. The same nucleonic EoS and
values of UðNÞ

Σ as in Fig. 7 are considered. The correlation
coefficients r and the linear fit parameters are mentioned on
each panel.
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possibility that Ξ− occupies the 1s or, alternatively, the 1p
state of 14N, as previously done in Ref. [63]. Uncertainties
related to the ΣN interaction are dealt with by allowing the

UðNÞ
Σ potential to span a wide domain.
For all considered models and UðNÞ

Σ potentials, we have
investigated NS geometric, deformability and chemical
properties. Special attention was devoted to the density
at which various hyperonic species nucleate and their
sensitivity to the nucleonic EoS and ΣN interaction.
Dependence on these ingredients of the nucleonic and
hyperonic dUrca thresholds was discussed as well. In
regards to Σ− we noticed that (a) in most NL models only
two hyperon species are present: the Λ and Σ−. For the DD

models the Ξ− also appears. (b) The value of the UðNÞ
Σ

determines the hyperonic dUrca process that opens up first,
with a less (more) repulsive potential favoring the more
(less) efficient ΣΛ (Λp) process [93]; (c) for repulsive

values of UðNÞ
Σ potential, as customarily assumed in the

literature, the Λp dUrca process starts operating at n ≈ 2n0,
which corresponds to M=M⊙ ≈ 1.3–1.4M⊙. We have
obtained very strong linear correlations between the
strangeness fraction in the NS core and the relative
deviation of the radius, tidal deformability and moment
of inertia of hypernuclear compact stars from values
characterizing purely nucleonic stars. Quantitatively speak-
ing, for NS with masses in excess of 1.6M⊙ hyperonic

degrees of freedom are responsible for a reduction of radii,
tidal deformabilities and moments of inertia of the order of
∼10%, 60% and, respectively, 15%. In regards to the
maximum mass, the decrease is of 15% to 20%, with a

non-negligible role played by UðNÞ
Σ .

ACKNOWLEDGMENTS

This work was supported by Fundação para a Ciência e
Tecnologia, Portugal, under Grants No. UID/FIS/04564/
2019 and No. POCI-01-0145-FEDER-029912 with finan-
cial support from Science, Technology and Innovation, in
its FEDER component, and by the FCT/MCTES budget
through national funds (OE), and by the Polish National
Science Centre (NCN) under Grant No. 2017/26/D/ST9/
00591. A. R. R. acknowledges the support provided by
the European COST Action “PHAROS” (Grant
No. CA16214), through a STSM grant as well as the kind
hospitality of the Department of Physics, University of
Coimbra. C. P. acknowledges the support of THEIA net-
working activity of the Strong 2020 Project. This work was
partially supported by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) under
Grant No. 6484/2016-1 (S. S. A.), and as a part of the
project INCT-FNA (Instituto Nacional de Ciência e
Tecnologia—Física Nuclear e Aplicações) No. 464898/
2014-5 (S. S. A.).

[1] B. P. Abbott et al. (The Virgo, The LIGO Scientific
Collaborations), Phys. Rev. Lett. 119, 161101 (2017).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM,
INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride
Imager Team, IPN, Insight-Hxmt, ANTARES, Swift,
AGILE Team, 1M2H Team, Dark Energy Camera
GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA,
ASKAP, Las Cumbres Observatory Group, OzGrav,
DWF (Deeper Wider Faster Program), AST3, CAAS-
TRO, VINROUGE, MASTER, J-GEM, GROWTH,
JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-
STARRS, MAXI Team, TZAC Consortium, KU, Nordic
Optical Telescope, ePESSTO, GROND, Texas Tech
University, SALT Group, TOROS, BOOTES, MWA,
CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA,
HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of
Sky, Chandra Team at McGill University, DFN, ATLAS
Telescopes, High Time Resolution Universe Survey,
RIMAS, RATIR, SKA South Africa/MeerKAT), Astro-
phys. J. 848, L12 (2017).

[3] N. K. Glendenning, Compact stars: Nuclear Physics, Par-
ticle Physics, and General Relativity, 2nd ed. (Springer-
Verlag, New York, 2000).

[4] A. Drago, A. Lavagno, G. Pagliara, and D. Pigato, Phys.
Rev. C 90, 065809 (2014).

[5] B.-J. Cai, F. J. Fattoyev, B.-A. Li, and W. G. Newton, Phys.
Rev. C 92, 015802 (2015).

[6] P. Ribes, A. Ramos, L. Tolos, C. Gonzalez-Boquera, and
M. Centelles, Astrophys. J. 883, 168 (2019).

[7] J. J. Li and A. Sedrakian, Astrophys. J. 874, L22 (2019).
[8] M. Fortin, S. S. Avancini, C. Providência, and I. Vidaña,

Phys. Rev. C 95, 065803 (2017).
[9] M. Fortin, M. Oertel, and C. Providência, Pub. Astron. Soc.

Aust. 35, e044 (2018).
[10] C. Providência, M. Fortin, H. Pais, and A. Rabhi, Front.

Astron. Space Sci. 6, 13 (2019).
[11] K. Nakazawa, Y. Endo, S. Fukunaga, K. Hoshino, S. H.

Hwang, K. Imai, H. Ito, K. Itonaga, T. Kanda, M. Kawasaki
et al., Prog. Theor. Exp. Phys. 2015, 033D02 (2015).

[12] A. Gal, Prog. Theor. Phys. Suppl. 186, 270 (2010).
[13] A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod.

Phys. 88, 035004 (2016).
[14] H. Sugimura et al. (J-PARC E10 Collaboration), Phys. Lett.

B 729, 39 (2014).
[15] R. Honda, M. Agnello, J. K. Ahn, S. Ajimura, Y. Akazawa,

N. Amano, K. Aoki, H. C. Bhang, N. Chiga, M. Endo et al.

FORTIN, RADUTA, AVANCINI, and PROVIDÊNCIA PHYS. REV. D 101, 034017 (2020)

034017-14

https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevC.90.065809
https://doi.org/10.1103/PhysRevC.90.065809
https://doi.org/10.1103/PhysRevC.92.015802
https://doi.org/10.1103/PhysRevC.92.015802
https://doi.org/10.3847/1538-4357/ab3a93
https://doi.org/10.3847/2041-8213/ab1090
https://doi.org/10.1103/PhysRevC.95.065803
https://doi.org/10.1017/pasa.2018.32
https://doi.org/10.1017/pasa.2018.32
https://doi.org/10.3389/fspas.2019.00013
https://doi.org/10.3389/fspas.2019.00013
https://doi.org/10.1093/ptep/ptv008
https://doi.org/10.1143/PTPS.186.270
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1016/j.physletb.2013.12.062
https://doi.org/10.1016/j.physletb.2013.12.062


(J-PARC E10 Collaboration), Phys. Rev. C 96, 014005
(2017).

[16] T. Harada, R. Honda, and Y. Hirabayashi, Phys. Rev. C 97,
024601 (2018).

[17] J. Haidenbauer and U.-G. Meißner, Nucl. Phys. A936, 29
(2015).

[18] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.
Hessels, Nature (London) 467, 1081 (2010).

[19] Z. Arzoumanian et al. (NANOGrav Collaboration), As-
trophys. J. Suppl. Ser. 235, 37 (2018).

[20] I. Vidana, D. Logoteta, C. Providencia, A. Polls, and I.
Bombaci, Europhys. Lett. 94, 11002 (2011).

[21] D. Chatterjee and I. Vidaña, Eur. Phys. J. A 52, 29 (2016).
[22] I. Bednarek, P. Haensel, J. L. Zdunik, M. Bejger, and R.

Mánka, Astron. Astrophys. 543, A157 (2012).
[23] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich,

Phys. Rev. C 85, 065802 (2012); 90, 019904(E) (2014).
[24] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich,

Nucl. Phys. A914, 421 (2013).
[25] G. Colucci and A. Sedrakian, Phys. Rev. C 87, 055806

(2013).
[26] E. N. E. van Dalen, G. Colucci, and A. Sedrakian, Phys.

Lett. B 734, 383 (2014).
[27] M. Fortin, C. Providencia, A. R. Raduta, F. Gulminelli, J. L.

Zdunik, P. Haensel, and M. Bejger, Phys. Rev. C 94, 035804
(2016).

[28] T.-T. Sun, S.-S. Zhang, Q.-L. Zhang, and C.-J. Xia, Phys.
Rev. D 99, 023004 (2019).

[29] J. Antoniadis et al., Science 340, 1233232 (2013).
[30] H. T. Cromartie, E. Fonseca, S. M. Ransom et al., Nat.

Astron. 4, 72 (2020).
[31] M. Alford, D. Blaschke, A. Drago, T. Klahn, G. Pagliara,

and J. Schaffner-Bielich, Nature (London) 445, E7 (2007).
[32] S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, and J.

Schaffner-Bielich, Astrophys. J. Lett. 740, L14 (2011).
[33] L. Bonanno and A. Sedrakian, Astron. Astrophys. 539, A16

(2012).
[34] K. Masuda, T. Hatsuda, and T. Takatsuka, Astrophys. J. 764,

12 (2013).
[35] M. G. Alford, S. Han, and M. Prakash, Phys. Rev. D 88,

083013 (2013).
[36] T. Klähn, R. Łastowiecki, and D. B. Blaschke, Phys. Rev. D

88, 085001 (2013).
[37] J. L. Zdunik and P. Haensel, Astron. Astrophys. 551, A61

(2013).
[38] D. Logoteta, C. Providência, and I. Vidaña, Phys. Rev. C 88,

055802 (2013).
[39] A. Drago, A. Lavagno, G. Pagliara, and D. Pigato, Eur.

Phys. J. A 52, 40 (2016).
[40] R. C. Pereira, P. Costa, and C. Providência, Phys. Rev. D 94,

094001 (2016).
[41] K. Fukushima and T. Kojo, Astrophys. J. 817, 180 (2016).
[42] M. G. Alford and A. Sedrakian, Phys. Rev. Lett. 119,

161104 (2017).
[43] M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A.

Delfino, D. P. Menezes, C. Providência, S. Typel, and J. R.
Stone, Phys. Rev. C 90, 055203 (2014).

[44] W.-C. Chen and J. Piekarewicz, Phys. Rev. C 90, 044305
(2014).

[45] L. Tolos, M. Centelles, and A. Ramos, Pub. Astron. Soc.
Aust. 34, e065 (2017).

[46] R. Negreiros, L. Tolos, M. Centelles, A. Ramos, and V.
Dexheimer, Astrophys. J. 863, 104 (2018).

[47] G. A. Lalazissis, J. Konig, and P. Ring, Phys. Rev. C 55, 540
(1997).

[48] H. Pais and C. Providência, Phys. Rev. C 94, 015808
(2016).

[49] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647
(2001).

[50] Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994).
[51] C. Providencia and A. Rabhi, Phys. Rev. C 87, 055801

(2013).
[52] S. S. Bao and H. Shen, Phys. Rev. C 89, 045807 (2014).
[53] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. Wolter,

Phys. Rev. C 81, 015803 (2010).
[54] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys.

Rev. C 71, 024312 (2005).
[55] S. Shlomo, V. M. Kolomietz, and G. Colo, Eur. Phys. J. A

30, 23 (2006).
[56] J. N. De, S. K. Samaddar, and B. K. Agrawal, Phys. Rev. C

92, 014304 (2015).
[57] J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).
[58] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod.

Phys. 89, 015007 (2017).
[59] S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S.

Armstrong, W. Armstrong, T. Averett, B. Babineau, A.
Barbieri, V. Bellini et al. (PREX Collaboration), Phys. Rev.
Lett. 108, 112502 (2012).

[60] M. D. Cozma, Eur. Phys. J. A 54, 40 (2018).
[61] H. Shen, F. Yang, and H. Toki, Prog. Theor. Phys. 115, 325

(2006).
[62] S. S. Avancini, J. R. Marinelli, D. P. Menezes, M. M.W.

de Moraes, and C. Providencia, Phys. Rev. C 75, 055805
(2007).

[63] T. T. Sun, E. Hiyama, H. Sagawa, H. J. Schulze, and J.
Meng, Phys. Rev. C 94, 064319 (2016).

[64] J. Mares and J. Zofka, Z. Phys. A 333, 209 (1989).
[65] B. K. Jennings, Phys. Lett. B 246, 325 (1990).
[66] Y. Sugahara and H. Toki, Prog. Theor. Phys. 92, 803 (1994).
[67] J. Mareš and B. K. Jennings, Phys. Rev. C 49, 2472

(1994).
[68] P. Khaustov et al. (AGS E885 Collaboration), Phys. Rev. C

61, 054603 (2000).
[69] J. Yoshida et al., J. Phys. Soc. Jpn. Conf. Proc. 26, 023006

(2019).
[70] E. Hiyama, Y. Yamamoto, T. Motoba, T. A. Rijken, and M.

Kamimura, Phys. Rev. C 78, 054316 (2008).
[71] H. Matsumiya, K. Tsubakihara, M. Kimura, A. Dote, and A.

Ohnishi, Phys. Rev. C 83, 024312 (2011).
[72] E. Hiyama and Y. Yamamoto, Prog. Theor. Phys. 128, 105

(2012).
[73] D. Millener, Nucl. Phys. A881, 298 (2012).
[74] T. Gogami, C. Chen, D. Kawama, P. Achenbach, A.

Ahmidouch, I. Albayrak, D. Androic, A. Asaturyan, R.
Asaturyan, O. Ates et al. (HKS(JLab E05-115) Collabora-
tion), Phys. Rev. C 93, 034314 (2016).

[75] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett.
67, 2414 (1991).

RELATIVISTIC HYPERNUCLEAR COMPACT STARS WITH … PHYS. REV. D 101, 034017 (2020)

034017-15

https://doi.org/10.1103/PhysRevC.96.014005
https://doi.org/10.1103/PhysRevC.96.014005
https://doi.org/10.1103/PhysRevC.97.024601
https://doi.org/10.1103/PhysRevC.97.024601
https://doi.org/10.1016/j.nuclphysa.2015.01.005
https://doi.org/10.1016/j.nuclphysa.2015.01.005
https://doi.org/10.1038/nature09466
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.1209/0295-5075/94/11002
https://doi.org/10.1140/epja/i2016-16029-x
https://doi.org/10.1051/0004-6361/201118560
https://doi.org/10.1103/PhysRevC.85.065802
https://doi.org/10.1103/PhysRevC.90.019904
https://doi.org/10.1016/j.nuclphysa.2013.04.003
https://doi.org/10.1103/PhysRevC.87.055806
https://doi.org/10.1103/PhysRevC.87.055806
https://doi.org/10.1016/j.physletb.2014.06.002
https://doi.org/10.1016/j.physletb.2014.06.002
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1103/PhysRevD.99.023004
https://doi.org/10.1103/PhysRevD.99.023004
https://doi.org/10.1126/science.1233232
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.1038/nature05582
https://doi.org/10.1088/2041-8205/740/1/L14
https://doi.org/10.1051/0004-6361/201117832
https://doi.org/10.1051/0004-6361/201117832
https://doi.org/10.1088/0004-637X/764/1/12
https://doi.org/10.1088/0004-637X/764/1/12
https://doi.org/10.1103/PhysRevD.88.083013
https://doi.org/10.1103/PhysRevD.88.083013
https://doi.org/10.1103/PhysRevD.88.085001
https://doi.org/10.1103/PhysRevD.88.085001
https://doi.org/10.1051/0004-6361/201220697
https://doi.org/10.1051/0004-6361/201220697
https://doi.org/10.1103/PhysRevC.88.055802
https://doi.org/10.1103/PhysRevC.88.055802
https://doi.org/10.1140/epja/i2016-16040-3
https://doi.org/10.1140/epja/i2016-16040-3
https://doi.org/10.1103/PhysRevD.94.094001
https://doi.org/10.1103/PhysRevD.94.094001
https://doi.org/10.3847/0004-637X/817/2/180
https://doi.org/10.1103/PhysRevLett.119.161104
https://doi.org/10.1103/PhysRevLett.119.161104
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.90.044305
https://doi.org/10.1103/PhysRevC.90.044305
https://doi.org/10.1017/pasa.2017.60
https://doi.org/10.1017/pasa.2017.60
https://doi.org/10.3847/1538-4357/aad049
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.94.015808
https://doi.org/10.1103/PhysRevC.94.015808
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1103/PhysRevC.87.055801
https://doi.org/10.1103/PhysRevC.87.055801
https://doi.org/10.1103/PhysRevC.89.045807
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1140/epja/i2006-10100-3
https://doi.org/10.1140/epja/i2006-10100-3
https://doi.org/10.1103/PhysRevC.92.014304
https://doi.org/10.1103/PhysRevC.92.014304
https://doi.org/10.1088/0004-637X/771/1/51
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1140/epja/i2018-12470-1
https://doi.org/10.1143/PTP.115.325
https://doi.org/10.1143/PTP.115.325
https://doi.org/10.1103/PhysRevC.75.055805
https://doi.org/10.1103/PhysRevC.75.055805
https://doi.org/10.1103/PhysRevC.94.064319
https://doi.org/10.1007/BF01565152
https://doi.org/10.1016/0370-2693(90)90607-8
https://doi.org/10.1143/ptp/92.4.803
https://doi.org/10.1103/PhysRevC.49.2472
https://doi.org/10.1103/PhysRevC.49.2472
https://doi.org/10.1103/PhysRevC.61.054603
https://doi.org/10.1103/PhysRevC.61.054603
https://doi.org/10.7566/JPSCP.26.023006
https://doi.org/10.7566/JPSCP.26.023006
https://doi.org/10.1103/PhysRevC.78.054316
https://doi.org/10.1103/PhysRevC.83.024312
https://doi.org/10.1143/PTP.128.105
https://doi.org/10.1143/PTP.128.105
https://doi.org/10.1016/j.nuclphysa.2012.01.019
https://doi.org/10.1103/PhysRevC.93.034314
https://doi.org/10.1103/PhysRevLett.67.2414
https://doi.org/10.1103/PhysRevLett.67.2414


[76] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.101.034017, for tables
of all the unified equations of state used in this work:
FSU2, FSU2H, FSU2R, NL3, NL3ωρ, TM1, TM1ωρ,
TM1-2, TM1-2ωρ, DD2 [53], and DDME2 [54] with

UðNÞ
Σ ¼ −10, 10, 30, and 50 MeV.

[77] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[78] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374

(1939).
[79] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray, R. M.

Ludlam, S. Guillot, Z. Arzoumanian, C. L. Baker, A. V.
Bilous, D. Chakrabarty et al., Astrophys. J. 887, L21 (2019).

[80] M. C. Miller, F. K. Lamb, A. J. Dittmann, S. Bogdanov, Z.
Arzoumanian, K. C. Gendreau, S. Guillot, A. K. Harding,
W. C. G. Ho, J. M. Lattimer et al., Astrophys. J. 887, L24
(2019).

[81] M. C. Miller and F. K. Lamb, Eur. Phys. J. A 52, 63 (2016).
[82] P. Haensel, M. Bejger, M. Fortin, and L. Zdunik, Eur. Phys.

J. A 52, 59 (2016).
[83] Z. Arzoumanian, K. C. Gendreau, C. L. Baker, T. Cazeau,

P. Hestnes, J. W. Kellogg, S. J. Kenyon, R. P. Kozon,
K. C. Liu, S. S. Manthripragada et al., Proc. SPIE, 9144,
914420 (2014).

[84] C. Motch, J. Wilms, D. Barret, W. Becker, S. Bogdanov, L.
Boirin, S. Corbel, E. Cackett, S. Campana, D. de Martino
et al., arXiv:1306.2334.

[85] A. L. Watts, W. Yu, J. Poutanen, S. Zhang, S. Bhattacharyya,
S. Bogdanov, L. Ji, A. Patruno, T. E. Riley, P. Bakala et al.,
Sci. China Phys. Mech. Astron. 62, 29503 (2019).

[86] J. B. Hartle, Astrophys. J. 150, 1005 (1967).
[87] M. Bejger, T. Bulik, and P. Haensel, Mon. Not. R. Astron.

Soc. 364, 635 (2005).
[88] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[89] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese,

K. Ackley, C. Adams, T. Adams, P. Addesso, R. X.
Adhikari, V. B. Adya et al., Phys. Rev. Lett. 121, 161101
(2018).

[90] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K.
Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari,
V. B. Adya et al., Phys. Rev. X 9, 011001 (2019).

[91] A. Watts et al., Proc. Sci. AASKA14 (2015) 043
[arXiv:1501.00042].

[92] J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel,
Phys. Rev. Lett. 66, 2701 (1991).

[93] M. Prakash, M. Prakash, J. M. Lattimer, and C. J. Pethick,
Astrophys. J. Lett. 390, L77 (1992).

FORTIN, RADUTA, AVANCINI, and PROVIDÊNCIA PHYS. REV. D 101, 034017 (2020)

034017-16

http://link.aps.org/supplemental/10.1103/PhysRevD.101.034017
http://link.aps.org/supplemental/10.1103/PhysRevD.101.034017
http://link.aps.org/supplemental/10.1103/PhysRevD.101.034017
http://link.aps.org/supplemental/10.1103/PhysRevD.101.034017
http://link.aps.org/supplemental/10.1103/PhysRevD.101.034017
http://link.aps.org/supplemental/10.1103/PhysRevD.101.034017
http://link.aps.org/supplemental/10.1103/PhysRevD.101.034017
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.1140/epja/i2016-16063-8
https://doi.org/10.1140/epja/i2016-16059-4
https://doi.org/10.1140/epja/i2016-16059-4
https://doi.org/10.1117/12.2056811
https://doi.org/10.1117/12.2056811
https://arXiv.org/abs/1306.2334
https://doi.org/10.1007/s11433-017-9188-4
https://doi.org/10.1086/149400
https://doi.org/10.1111/j.1365-2966.2005.09575.x
https://doi.org/10.1111/j.1365-2966.2005.09575.x
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevX.9.011001
https://arXiv.org/abs/1501.00042
https://doi.org/10.1103/PhysRevLett.66.2701
https://doi.org/10.1086/186376

