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(Received 22 November 2019; accepted 24 January 2020; published 11 February 2020)

We analyze the decays τ− → K−ðηð0Þ; K0Þντ within an effective-field theory that includes the most
general interactions between Standard Model fields up to dimension six, assuming left-handed neutrinos. In
particular, we examine different interesting phenomenological observables, i.e., decay spectra and
branching ratio, Dalitz plot distributions, and the forward-backward asymmetry, to explore the sensitivity
of the corresponding decays to the effects of nonstandard interactions. A controlled theoretical input on the
Standard Model hadronic form factors, based on chiral symmetry, dispersion relations, data, and
asymptotic QCD properties, has allowed us to set bounds on the new physics scalar and tensor effective
couplings using the measured branching ratios. These are found to be in line with the findings of our series
of previous analyses of two-meson tau decays and less precise than the constraints obtained from
semileptonic kaon decays. In order to set stringent limits on these couplings, we will use all available
experimental data of all possible dimeson tau decays. This is our next step plan, that we hope to be of
interest for future experimental analyses of these decays.
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I. INTRODUCTION

Hadronic tau decays provide an important source of
experimental information about QCD at low and intermedi-
ate energies [1]. These decays have the advantage of
containing hadrons in the final state, thus avoiding the
complications arising from having them in the initial state as
well. At the exclusive level, they can be used to understand
specific properties of pions, kaons, η and η0 mesons, and the
interactions among them. So far, we have a good knowledge
over decays into a pair of pseudoscalar mesons, the Standard
Model (SM) input of which is encoded in terms of hadronic
form factors. An ideal road map to describe meson form
factors would require a model-independent approach
demanding a full knowledge of QCD in both its perturbative
and nonperturbative regimes, knowledge not yet unraveled.
An alternative to such an enterprise would pursue a synergy
between theoretical calculations and experimental data. In
this respect, dispersion relations are a powerful tool to direct

oneself toward a model-independent description of
meson form factors. For example, the analyses of the decays
π−π0 [2–5] and KSπ

− [6–10], carried out by exploiting the
synergy between resonance chiral theory [11] and dispersion
theory, are found to be in a nice agreement with the rich data
provided by the experiments. Accord with experimental
measurements is also found for the K−KS [5] and K−η
[10,12] decay modes, although higher-quality data on these
processes is required to constrain the corresponding theories
or models, while the predictions for the isospin-violating
π−ηð0Þ channels [13,14] respect the current experimental
upper bounds. The latter are very challenging processes for
Belle-II [15].
Several recent works [16–20] have put forward that

semileptonic tau decays offer also an interesting scenario to
set bounds on nonstandard weak charged current inter-
actions complementary to other low-energy semileptonic
probes considered before, such as nuclear beta decays,
purely leptonic lepton, pion, and kaon decays or hyperon
decays (see, e.g., Refs. [21–31]). The aim of this work is to
extent our previous analyses of the decays τ− → π−π0ντ
[17], τ− → ðKπÞ−ντ [18], and τ− → π−ηð0Þντ [16], which
we studied using the most general effective Lagrangian for
weak charge current interactions up to dimension six on a
number of phenomenological interesting observables, to
the τ− → K−ðηð0Þ; K0Þντ decays.
On the theory side, a controlled theoretical determina-

tion, with a robust error band, of the corresponding form
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factors within the SM is required in order to increase
the accuracy of the search for nonstandard interactions.
At present, we have such knowledge not only for the
vector and scalar form factors required to describe the
decays in question but also, to a great extent, for the tensor
form factors which will be built under theoretical
considerations.
On the experimental side, our study is presently limited

by the following facts: (i) For the decay τ− → K−K0ντ,
while the Particle Data Group (PDG) reports a branching
ratio of 1.486ð34Þ × 10−3 [32], no measurement of the
corresponding decay spectrum has been released by the B
factories; (ii) the associated errors of the brother process
τ− → K−KSντ BABAR data [33] are still relatively large;
(iii) unfolding detector effects has not been performed for
the τ− → K−ηντ Belle data [34]

1; and, finally, (iv) the decay
τ− → K−η0ντ has not been detected yet, although an upper
limit at the 90% confidence level was placed by BABAR
[37]. We will not thus attempt to extract new physics
bounds from the corresponding experimental data as
competitive as those coming from other low-energy probes,
like the ones mentioned before, but rather explore the
size of the deviations from the SM predictions that one
could expect in these decay channels. For these reasons, we
hope that our paper strengthens the case for a (re)analysis,
with a larger data sample, of the K−K0, K−KS, and K−η
decay spectra and encourage experimental groups to
measure the K−η0 decay mode. All this should be well
within the reach of Belle-II [15], and of other future Z,
tau-charm, and B factories where new measurements
should be possible.
Our paper is organized as follows. The theoretical

framework is given in Sec. II, where we briefly present
the effective Lagrangian and discuss the different effective
weak currents contributing to the decays. The hadronic
matrix element and the participant form factors are also
defined in this section. The latter are the matter subject of
Sec. III, where we pay special attention to the tensor form
factor. In Sec. IV, we first set bounds on the new physics
effective couplings from the measured branching ratios of
the decays in question, and then we study their effects on
different interesting phenomenological observables, i.e.,
decay spectra and branching ratio, Dalitz plot distributions,
and the forward-backward asymmetry. Finally, our con-
clusions are presented in Sec. V.

II. EFFECTIVE-FIELD THEORY ANALYSIS AND
DECAY AMPLITUDE OF τ − → ντ ūD ðD= d;sÞ
We start out writing the effective Lagrangian including

dimension-six operators that describes semileptonic τ− →
ντūD strangeness-conserving (D ¼ d) or changing (D ¼ s)

charged current transitions with left-handed neutrinos.
Such a Lagrangian reads [16–18]

LCC ¼ −
GFffiffiffi
2

p VuDð1þ εL þ εRÞ

× ½τ̄γμð1 − γ5Þντ · ū½γμ − ð1 − 2ε̂RÞγμγ5�D
þ τ̄ð1 − γ5Þντūðε̂S − ε̂Pγ

5ÞD
þ 2ε̂T τ̄σμνð1 − γ5ÞντūσμνD� þ H:c:; ð1Þ

whereGF is the tree-level definition of the Fermi constant. In
the previous Lagrangian, we have assumed that the new
physics (NP) effective couplings are blind to the D-quark
flavor and defined ε̂i¼εi=ð1þεLþεRÞ for i ¼ R; S; P; T,
with εL;R and εi being effective couplings characterizing NP
that can be taken real, since we are interested only in CP-
conserving quantities. Of course, if we set them to zero, i.e.,
εL;R ¼ ε̂R;S;P;T ¼ 0, we recover the SM Lagrangian. This
factorized form of Eq. (1) is useful as long as conveniently
normalized rates allow one to cancel the overall factor
ð1þ εL þ εRÞ. Note that, since εi ¼ ε̂i at linear order in ε̂0is,
we may use εi instead of ε̂i when comparing to works which
use the former instead of the latter [22]. A more detailed
derivation of the Lagrangian of Eq. (1) can be found in our
previous publications [16–18], and we therefore have
decided not to repeat it here once again.
The decay amplitude for τ−ðPÞ→K−ðpKÞηð0Þðpηð0Þ ÞντðP0Þ

that arises from the Lagrangian in Eq. (1) contains a vector
(V), a scalar (S), and a tensor (T) contribution. The resulting
amplitude can be expressed as2

M ¼ MV þMS þMT

¼ GFVus
ffiffiffiffiffiffiffiffiffi
SEW

p
ffiffiffi
2

p ð1þ εL þ εRÞ

× ½LμHμ þ ε̂SLH þ 2ε̂TLμνHμν�; ð2Þ

where the leptonic currents are defined by

Lμ ¼ ūðP0Þγμð1 − γ5ÞuðPÞ; ð3Þ

L ¼ ūðP0Þð1þ γ5ÞuðPÞ; ð4Þ

Lμν ¼ ūðP0Þσμνð1þ γ5ÞuðPÞ: ð5Þ

The scalarH, vector ðHμÞ, and tensor ðHμνÞ hadronic matrix
elements in Eq. (2) can be decomposed in terms of allowed
Lorentz structures and a number of form factors encoding
the hadronization procedure as

1This decay was also measured by BABAR [35]. Unfortunately,
the results of the corresponding Ph.D. thesis [36] have not been
published yet.

2The short-distance electroweak radiative corrections encoded
in SEW [38] do not affect the scalar and tensor contributions.
However, the error made by taking

ffiffiffiffiffiffiffiffiffi
SEW

p
as an overall factor in

Eq. (2) is negligible.
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H ¼ hK−ηð0Þjs̄uj0i≡ FK−ηð0Þ
S ðsÞ; ð6Þ

Hμ ¼hK−ηð0Þjs̄γμuj0i

¼CV
Kηð0ÞQ

μFK−ηð0Þ
þ ðsÞþCS

Kηð0Þ

�
ΔKπ

s

�
qμFK−ηð0Þ

0 ðsÞ; ð7Þ

Hμν ¼ hK−ηð0Þjs̄σμνuj0i ¼ iFK−ηð0Þ
T ðsÞðpμ

ηð0Þp
ν
K − pμ

Kp
ν
ηð0Þ Þ;

ð8Þ

where qμ¼ðpKþpηð0Þ Þμ, Qμ¼ðpηð0Þ−pKÞμþðΔKηð0Þ=sÞqμ,
s ¼ q2, and Δij ¼ m2

i −m2
j , and with the Clebsch-Gordan

coefficients: CV
Kηð0Þ

¼ −
ffiffi
3
2

q
, CS

Kη ¼ − 1ffiffi
6

p , and CS
Kη0 ¼ 2ffiffi

3
p .

The divergence of the vector current Eq. (7) relates the
form factors FSðsÞ and F0ðsÞ via

FSðsÞ ¼
CS
Kηð0ÞΔKπ

ms −mu
FKηð0Þ
0 ðsÞ: ð9Þ

As in Refs. [16–18], the scalar contribution can be
finally absorbed into the vector current amplitude by
replacing

CS
Kηð0Þ

ΔKπ

s
→ CS

Kηð0Þ
ΔKπ

s

�
1þ sε̂S

mτðms −muÞ
�
; ð10Þ

in the second term of Eq. (7). For the decay τ− → K−K0ντ,
the associated amplitude is that of Eq. (2) but replacing
pηð0Þ → pK0 , ΔK−ηð0Þ → ΔK−K0 , and ms → md along the
lines of the previous equations, and with the Clebsch-
Gordan coefficients CV

KK ¼ CS
KK ¼ −1.

The parametrization of the three independent form
factors, i.e., F0ðsÞ, FþðsÞ, and FTðsÞ, is the subject of
the next section.

III. HADRONIZATION OF THE SCALAR,
VECTOR, AND TENSOR CURRENTS

In this section, we provide a brief overview of the
description of the scalar, vector, and tensor form factors that
we need for our analysis. It is fundamental to have good
control over them, since they are used as SM inputs for
binding the nonstandard interactions. The setup approach to
describe theK−ηð0Þ vector form factor is the following. They
are calculated within the context of resonance chiral theory,
taking into account the effects of the K�ð892Þ and the
K�ð1410Þ vector resonances, and are connected to the Kπ

vector form factor throughFKηð0Þ
þ ðsÞ ¼ cos θPðsin θPÞFKπþ ðsÞ

[12], where θP is the η-η0 mixing angle in the octet-singlet
basis. We will thus discuss the illustrative case of the Kπ
vector form factor and take θP ¼ ð−13.3� 0.5Þ° [39]. For
our analysis, we follow the representation outlined in
Ref. [8], and briefly summarized below for the convenience

of the reader, and write a thrice-subtracted dispersion
relation:

FKπþ ðsÞ ¼ FKπþ ð0Þ exp
�
α1

s
m2

π
þ 1

2
α2

s2

m4
π

þ s3

π

Z
scut

sKπ

ds0
δKπþ ðs0Þ

ðs0Þ3ðs0 − s − i0Þ
�
; ð11Þ

where sKπ ¼ ðmK þmπÞ2 is the threshold of theKπ system,
while the value ofFKπþ ð0Þ is extracted from jVusFK−π0þ ð0Þj ¼
0.2165ð2Þ [32], and α1 and α2 are two subtraction constants
that are related to the low-energy expansion of the form factor.
The use of a three-times-subtracted dispersion relation
reduces the high-energy contribution of the integral where
the phase is less well known. InEq. (11), scut is a cutoff whose
value is fixed from the requirement that the fitted parameters
are compatible within errors with the case scut → ∞. In
Refs. [8,10], the value of scut ¼ 4 GeV2 was found to satisfy
this criterion, and variations of scut were used to estimate the
associated systematic error. For the input phase δKπþ ðsÞwe use

δKπþ ðsÞ ¼ tan−1
�
Imf̃Kπþ ðsÞ
Ref̃Kπþ ðsÞ

�
; ð12Þ

where f̃Kπþ ðsÞ is taken to be of the form [8]

f̃Kπþ ðsÞ ¼ m2
K⋆ − κK⋆H̃Kπð0Þ þ γs

DðmK⋆ ; γK⋆Þ −
γs

DðmK⋆0 ; γK⋆0 Þ ; ð13Þ

where we have included two resonances, the K� ¼ K�ð892Þ
and the K�0 ¼ K�ð1410Þ. The denominators in Eq. (13) are

Dðmn; γnÞ≡m2
n − s − κnRe½HKπðsÞ� − imnγnðsÞ; ð14Þ

where

κn ¼
192πFKFπ

σ3Kπðm2
nÞ

γn
mn

; γnðsÞ ¼ γn
s
m2

n

σ3KπðsÞ
σ3Kπðm2

nÞ
; ð15Þ

and with the two-body phase-space factor given by
σKπðsÞ ¼ 2qKπðsÞ=

ffiffiffi
s

p
, where

qKπðsÞ ¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmK þmπÞ2Þðs − ðmK −mπÞ2Þ

q

× θðs − ðmK þmπÞ2Þ: ð16Þ

The scalar one-loop integral functions HKπðsÞ is defined
below Eq. (3) of Ref. [6], however removing the factor 1=F2

π,
which cancels if κn is expressed in terms of the unphysical
width γn. For our analysis, we use the results of the reference
fit of Ref. [10] together with the systematic uncertainty
obtained as explained along the lines of the same reference.
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One disadvantage ofEq. (11) is that the 1=s asymptotic falloff
of the form factor [40] is not guaranteed, because the
subtraction constants are fixed from a fit to experimental
data. However, we have checked that our form factor para-
metrization is indeed a decreasing function of s [apart from
theK�ð892Þ andK�ð1410Þ peak structures] within the entire
range where we apply it.
Regarding the Kηð0Þ scalar form factors, we employ the

well-established results of Ref. [41] derived from a dis-
persive analysis with three channels ðKπ; Kη; Kη0Þ.3
The tensor form factor is one of the most difficult inputs

to be reliable estimated, since it shall be mostly built under
theoretical considerations only. The key observation is that
the tensor form admits an Omnès dispersive representation
[17,18,42]

FKηð0Þ
T ðsÞ¼FKηð0Þ

T ð0Þexp
�
s
π

Z
scut

sKπ

ds0
δKη

ð0Þ
T ðs0Þ

s0ðs0− s− i0Þ
�
; ð17Þ

where, in the elastic region, the phase of the tensor form
factor equals the P-wave phase of the Kπ vector form

factor, i.e., δKη
ð0Þ

T ðsÞ ¼ δKπþ ðsÞ, with δKπþ ðsÞ extracted from
Eq. (12). We will assume the previous relations also hold
above the onset of inelasticities until m2

τ , where we guide
smoothly the tensor phase to π as in Ref. [5] to ensure the
asymptotic 1=s behavior dictated by perturbative QCD
[40]. Lacking precise low-energy information, we do not
increase the number of subtractions in Eq. (17), which, in
turn, would reduce the importance of the higher-energy part
of the integral, but rather cut the integral at different values
of scut and take the differing results as an estimate of our
theoretical systematic uncertainty for the results presented
in Sec. IVA.4 In Fig. 1, we show the tensor form factor

phase δKη
ð0Þ

T ðsÞ (right panel) together with the (normalized)
absolute value of the tensor form factor (left panel) for the
cases scut ¼ 4; 9 GeV2 and scut → ∞, which is taken as the
baseline hypothesis. The value of the normalization

FKηð0Þ
T ð0Þ required in Eq. (17) can be estimated within

chiral perturbation theory (ChPT) as explained in the
following. The lowest-order ChPT Lagrangian with tensor
sources is of Oðp4Þ in the chiral counting and reads [43]

L ¼ Λ1htμνþ fþμνi − iΛ2htμνþ uμuνi þ Λ3htμνþ tþμνi þ Λ4hfμνþ i2;
ð18Þ

where tμνþ ¼ u†tμνu† þ utμν†u includes the tensor source
and its adjoint and h� � �i stands for a flavor space trace.
Only terms proportional to Λ2 contribute to the decays we
are considering. The chiral tensors entering Eq. (18) are
given by uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�, where lμ
and rμ are the left- and right-handed sources, respectively,
and fμνþ ¼ uFμν

L u† þ u†Fμν
R u, that includes the left- and

right-handed field-strength tensors for lμ and rμ, F
μν
L;R. The

nonlinear representation of the pseudo-Goldstone bosons is
given by u ¼ exp ½ iffiffi

2
p

F
ϕ� [44,45], where

ϕ ¼

0
BB@

π3þηqffiffi
2

p πþ Kþ

π−
−π3þηqffiffi

2
p K0

K− K̄0 ηs

1
CCA; ð19Þ

where ηq ¼ Cqηþ Cq0η
0 and ηs ¼ −Csηþ Cs0η

0 are the
light and strange quark components of the η and η0 mesons,
respectively. π3 coincides with the π0 when the isospin-
breaking terms are neglected (as done along this article).
The constants describing the mixing between ηq and ηs
states are given by [46,47]

FIG. 1. Normalized absolute value of the tensor form factor FKηð0Þ
T ðsÞ given in Eq. (17) (left), for scut ¼ 4 GeV2 (dotted line) and

9 GeV2 (dashed line) and scut → ∞ (solid line), and tensor form factor phase δKηð0Þ
T ðsÞ (right).

3We are very grateful to Matthias Jamin and Jose Antonio
Oller for providing us their solutions in tables.

4Had we estimated the systematic error as in Ref. [42], we
would have obtained very similar results.
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Cq ≡ Fπffiffiffi
3

p
cosðθ8 − θ0Þ

�
cos θ0
f8

−
ffiffiffi
2

p
sin θ8
f0

�
; ð20Þ

Cq0 ≡ Fπffiffiffi
3

p
cosðθ8 − θ0Þ

� ffiffiffi
2

p
cos θ8
f0

þ sin θ0
f8

�
; ð21Þ

Cs ≡ Fπffiffiffi
3

p
cosðθ8 − θ0Þ

� ffiffiffi
2

p
cos θ0
f8

þ sin θ8
f0

�
; ð22Þ

Cs0 ≡ Fπffiffiffi
3

p
cosðθ8 − θ0Þ

�
cos θ8
f0

−
ffiffiffi
2

p
sin θ0
f8

�
; ð23Þ

and for the corresponding mixing parameters we use [48,49]

θ8 ¼ ð−21.2� 1.9Þ°; θ0 ¼ ð−6.9� 2.4Þ°; ð24Þ

f8 ¼ ð1.27� 0.02ÞFπ; f0 ¼ ð1.14� 0.05ÞFπ; ð25Þ

with Fπ ¼ 92.2 MeV being the pion decay constant.
The tensor source (t̄μν) is related to its chiral projections

(tμν and tμν†) by [43]

tμν ¼ Pμνλρ
L t̄λρ;

4Pμνλρ
L ¼ ðgμλgνρ − gμρgνλ þ iεμνλρÞ; ð26Þ

where Ψ̄σμνt̄μνΨ is the tensor quark current. Taking the
functional derivative of Eq. (18) with respect to the tensor
source t̄μν, we get

hK−ηjδL
4
χPT

δt̄μν
j0i¼ i

�
Cqffiffiffi
2

p þCs

�
Λ2

F2
π
ðpμ

ηpν
K−pμ

Kp
ν
ηÞ;

hK−η0jδL
4
χPT

δt̄μν
j0i¼ i

�
Cq0ffiffiffi
2

p −Cs0

�
Λ2

F2
π
ðpμ

η0p
ν
K−pμ

Kp
ν
η0 Þ: ð27Þ

Reference [50] evaluated FKπ
T ð0Þ ¼ 2mπFTð0Þ on the

lattice. Their result FKπ
T ð0Þ ¼ 0.417� 0.015, together with

the fact that

FK−η
T ð0Þ ¼

�
Cqffiffiffi
2

p þ Cs

�
Λ2

F2
π
; ð28Þ

FK−η0
T ð0Þ ¼

�
C0
qffiffiffi
2

p − C0
s

�
Λ2

F2
π
; ð29Þ

yields Λ2 ¼ ð11.1� 0.4Þ MeV, that we will use for our
analysis. This value is consistent within one sigma with the
one employed for the ππ channel [17].
We turn next to describe the form factors required for

τ− → K−K0ντ. We will not discuss them at length here but
rather provide a compilation of the main formulas to make
this work self-contained. For the kaon vector form factor,
we follow Ref. [5], where a three-times dispersion relation
was formulated, and write

FKKþ ðsÞ¼ exp

�
α̃1sþ

α̃2
2
s2þ s3

π

Z
scut

4m2
π

ds0
δKKþ ðsÞ

ðs0Þ3ðs0− s− i0Þ
�
;

ð30Þ

where α̃1 and α̃2, are two subtraction constants related to
the slope and curvature appearing in the low-energy
expansion of the form factor of the kaon. To get a model
for the form factor phase, δKKþ ðsÞ in Eq. (30), we adopt the
so-called exponential Omnès representation of the form
factor [5]:

fKKþ ðsÞ¼M2
ρþ sðγ̃eiϕ̃1 þ δ̃eiϕ̃2Þ
M2

ρ− s− iMρΓρðsÞ
exp

�
Re

�
−

s
96π2F2

π

�
AπðsÞþ

1

2
AKðsÞ

���

−
γ̃seiϕ̃1

M2
ρ0 − s− iMρ0Γρ0 ðsÞ

exp

�
−

sΓρ0 ðM2
ρ0 Þ

πM3
ρ0σ

3
πðM2

ρ0 Þ
ReAπðsÞ

�
−

δ̃seiϕ̃2

M2
ρ00 − s− iMρ00Γρ00 ðsÞ

exp

�
−

sΓρ00 ðM2
ρ00 Þ

πM3
ρ00σ

3
πðM2

ρ00 Þ
ReAπðsÞ

�
:

ð31Þ

In Eq. (31), the mixing between resonances is taken
with respect to the ρ with relative strengths 1, γ̃, and δ̃.
These parameters are, in general, complex, thus carrying a
phase that it is denoted by ϕ̃1 and ϕ̃2, respectively. Taking γ̃
and δ̃ real would demand a perfect knowledge of the
amplitudes of the ρ0 and ρ00 contributions, and, as this is
not the case, we consider a more flexible scenario and
add a phase that can absorb part of the associated

shortcomings. The ρ-meson resonance width is accounted
for through [51]

ΓρðsÞ ¼ −
Mρs

96π2F2
π
Im

�
AπðsÞ þ

1

2
AKðsÞ

�

¼ Mρs

96πF2
π

�
σ3πðsÞθðs − 4m2

πÞ þ
1

2
σ3KðsÞθðs − 4m2

KÞ
�
;

ð32Þ
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while for the energy-dependent width of the ρ0 and ρ00 we
do not take intermediate states other than ππ:

Γρ0;ρ00 ðsÞ ¼ Γρ0;ρ00
s

M2
ρ0;ρ00

σ3πðsÞ
σ3πðM2

ρ0;ρ00 Þ
θðs − 4m2

πÞ: ð33Þ

From Eq. (31), we extract its phase through

tan δKKþ ðsÞ ¼ ImfKKþ ðsÞ
RefKKþ ðsÞ : ð34Þ

In fact, we use the phase thus extracted only to describe the
energy region that goes from 1 GeV2 to m2

τ . From 4m2
π to

1 GeV2, we employ the P-wave phase shift of the pion-
pion scattering solution of the Roy equations [52] that we
match to the phase in Eq. (34) at 1 GeV2, while for the
region m2

τ ≤ s we guide smoothly the phase to π such that
the correct 1=s high-energy behavior of the form factor is
ensured (see Ref. [5] for more details). For our analysis, we
employ the numerical values given under the label of fit (i)
of Table 7 of Ref. [5] for the corresponding parameters.
For the K−K0 scalar form factor, we use the results of

Refs. [53–55].5 These were obtained after the unitarization,
based on the method of N=D, of the complete one-loop
calculation of the strangeness-conserving scalar form
factors within Uð3Þ ChPT.
Finally, for the tensor form factor FK−K0

T ðsÞ we proceed
in a similar fashion as for the τ− → K−ηð0Þντ and write

FK−K0

T ðsÞ¼FK−K0

T ð0Þexp
�
s
π

Z
scut

4m2
π

ds0
δKKT ðs0Þ

s0ðs0− s− iεÞ
�
; ð35Þ

where we take δKKT ðsÞ ¼ δππþ ðsÞ in the elastic region, i.e.,
until 1 GeV2, with δππþ ðsÞ being the P-wave ππ scattering
phase [see the text below Eq. (34)]. As for the Kηð0Þ case,
we will assume this relation also holds above the onset of
inelasticities and guide smoothly the tensor phase to π at
1 GeV2 to fulfill the expected 1=s asymptotic behavior.
Similar to Eq. (27), the functional derivate

ihK−K0j δL
4
χPT

δt̄αβ
j0i ¼ Λ2

F2
π
ðpα

K0p
β
K− − pα

K−pβ
K0Þ ð36Þ

yields FK−K0

T ð0Þ ¼ Λ2

F2
π
, with Λ2 given under Eq. (29). In

Fig. 2, we show the tensor phase δKKT ðsÞ (right panel) and
the (normalized) absolute value jFKK

T ðsÞj for the cases
scut ¼ 4; 9 GeV2 and scut → ∞, which is taken as the
baseline hypothesis. As before, the variations due to scut
will be taken into account as a source of systematic
uncertainty in Sec. IVA.

IV. DECAY OBSERVABLES

In this section, we will first set bounds on the nonstand-
ard effective weak couplings ε̂S and ε̂T described in Sec. II
using the measured τ− → K−ðηð0Þ; K0Þντ branching ratios
(see Sec. IVA), and after that we will study their effects on
different decay observables including Dalitz plots, angular
and decay distributions, and the forward-backward asym-
metry (Secs. IV B–IV E). We start out with the doubly
differential decay width for τ− → K−ηð0Þντ, which, in the
rest frame of the tau lepton, reads

d2Γ
dsdt

¼ 1

32ð2πÞ3m3
τ
jMj2; ð37Þ

where jMj2 is the unpolarized spin-averaged squared
matrix element, s is the invariant mass of the K−ηð0Þ

system, limited in the interval ðmηð0Þ þmKÞ2 ≤ s ≤ m2
τ ,

FIG. 2. Normalized absolute value of the tensor form factor FKK
T ðsÞ given in Eq. (35) (left), for scut ¼ 4 GeV2 (dotted line) and

9 GeV2 (dashed line) and scut → ∞ GeV2 (solid line), and tensor form factor phase δKK
T ðsÞ (right).

5We thank very much Zhi-Hui Guo for providing us tables
with the unitarized πη, πη0, and K0K̄0 scalar form factors. We
translate the result of K0K̄0 to the K−K0 concerning us through
the relation FK−K0

0 ðsÞ ¼ −FK0K̄0

0 ðsÞ= ffiffiffi
2

p
.
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and t ¼ ðP0 þ pηð0Þ Þ2 ¼ ðP − pKÞ2 with kinematic bounda-
ries given by t−ðsÞ ≤ t ≤ tþðsÞ, with

t�ðsÞ ¼ 1

2s

h
2sm2

ηð0Þ þ ðm2
τ − sÞðsþm2

ηð0Þ −m2
KÞ

� ðm2
τ − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

ηð0Þ ; mK2Þ
q i

; ð38Þ

and where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz
is the usual Kallen function. The kinematic limits in
s and t for the decay τ− → K−K0ντ are obtained
by replacing mηð0Þ → mK0 above. Integrating Eq. (37)

upon the t variable, we obtain the Kηð0Þ invariant mass
distribution

dΓ
d

ffiffiffi
s

p ¼ G2
FjVusF

Kηð0Þ
þ ð0Þj2m3

τSEW
192π3

ffiffiffi
s

p ð1þ εL þ εRÞ2
�
1 −

s
m2

τ

�
2

λ1=2ðs;m2
ηð0Þ ; m

2
KÞ

× ½XVA þ ε̂SXS þ ε̂TXT þ ε̂2SXS2 þ ε̂2TXT2 �; ð39Þ

where

XVA ¼
ðCV

Kηð0Þ Þ2
2s2

�
3jF̃Kηð0Þ

0 ðsÞj2Δ2
Kηð0Þ þ jF̃Kηð0Þ

þ ðsÞj2
�
1þ 2s

m2
τ

�
λðs;m2

ηð0Þ ; m
2
KÞ
�
; ð40Þ

XS ¼
3

smτ
ðCV

Kηð0Þ Þ2jF̃
Kηð0Þ
0 ðsÞj2

Δ2
Kηð0Þ

ms −mu
; ð41Þ

XT ¼ −
6

smτ
CV
Kηð0Þ

Re½FKηð0Þ
T ðsÞF�Kηð0Þ

þ ðsÞ�
jfKηð0Þþ ð0Þj2

λðs;m2
ηð0Þ ; m

2
KÞ; ð42Þ

XS2 ¼
3

2m2
τ
ðCV

Kηð0Þ Þ2jF̃
Kηð0Þ
0 ðsÞj2

Δ2
Kηð0Þ

ðms −muÞ2
; ð43Þ

XT2 ¼ 4

s
jFKηð0Þ

T ðsÞj2
jFKηð0Þ

þ ð0Þj2
�
1þ s

2m2
τ

�
λðs;m2

ηð0Þ ; m
2
KÞ: ð44Þ

InEq. (39),weuse jVusF
K−η
þ ð0Þj ¼ jVusFK−π0þ ð0Þ cos θPj and

jVusF
K−η0
þ ð0Þj¼jVusFK−π0þ ð0ÞsinθPj, with jVusFK−π0þ ð0Þj ¼

0.2165ð2Þ [32]. Notice that, if one takes ε̂S ¼ ε̂T ¼ 0, we
recover the SM result from Eq. (2.8) of Ref. [12].

A. Limits on ε̂S and ε̂T
Integrating the invariant mass distribution Eq. (39) upon

the s variable, one obtains the total decay width, which, in
turn, depends on the NP effective couplings ε̂S;T . One can
therefore use the experimental branching ratio to set bounds
on ε̂S;T . For this purpose, we compare the decay width as
obtained by including non-SM interactions and that we
denote by Γ, with respect to the SM width Γ0, obtained by
neglecting NP interactions, i.e., setting ε̂S;T ¼ 0. The
relative shift produced by the NP contributions is better
accounted for through the following observable:

Δ≡ Γ − Γ0

Γ0
¼ αε̂S þ βε̂T þ γε̂2S þ δε̂2T: ð45Þ

The numerical values of the coefficients α, β, γ, and δ for
the processes under consideration are found to be α ¼
0.85þ0.05

−0.09 , β ¼ 3.7þ1.2
−1.3 , γ ¼ 4.3þ0.6

−0.9 , and δ ¼ 3.9þ3.0
−2.2 for the

K−η decay channel; α ¼ 24.2þ1.5
−2.7 , β ¼ −0.26þ0.17

−0.24 , γ ¼
175.9þ23.3

−36.6 , and δ ¼ 0.10þ0.28
−0.09 for the K−η0 mode; and

α ¼ 0.24� 0.01, β ¼ −3.66þ0.16
−1.74 , γ ¼ 34.4þ1.3

−1.4 , and δ ¼
9.2þ1.0

−5.2 for the K−K0 transition. The errors carried by
the previous coefficients come from the uncertainty asso-
ciated to the corresponding form factors (see Sec. III).
Equation (45) is a quadratic function of the effective scalar
and tensor couplings that can be used to explore the
sensitivity of the corresponding decays to the effects of
non-SM interactions. As in Refs. [16–18], we will do this in
two different ways. First, we set one of the couplings to
zero and obtain bounds for the other, and vice versa. The
result is shown in Figs. 3–5 for the three decays concerning
us, respectively. In these figures, the horizontal lines
represent the current experimental limits on Δ (at three
standard deviations), and the resulting bounds for the
effective couplings are found to be
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−0.38 ≤ ε̂S ≤ 0.16; ε̂T ¼ 0; ð46Þ

ε̂S ¼ 0; ε̂T ¼ ½−1.4;−0.7� ∪ ½−0.047; 0.085�; ð47Þ

from the decay τ− → K−ηντ [BRexp ¼ 1.55ð8Þ × 10−4

[32] ],

−0.20 ≤ ε̂S ≤ 0.05; ε̂T ¼ 0; ð48Þ

ε̂S ¼ 0; −7.6 ≤ ε̂T ≤ 14.9; ð49Þ

from the transition τ− → K−η0ντ [BRexp < 2.4 × 10−6 at
90% C.L. [32] ], and

FIG. 4. Δ as a function of ε̂S for ε̂T ¼ 0 (left plot) and ε̂T for ε̂S ¼ 0 (right plot) for the decay τ− → K−η0ντ. Horizontal lines represent
the values ofΔ according to the current measurement and theory errors (at three standard deviations) of the branching ratio (dashed line).

FIG. 5. Δ as a function of ε̂S for ε̂T ¼ 0 (left plot) and ε̂T for ε̂S ¼ 0 (right plot) for the decay τ− → K−K0ντ. Horizontal lines represent
the values ofΔ according to the current measurement and theory errors (at three standard deviations) of the branching ratio (dashed line).

FIG. 3. Δ as a function of ε̂S for ε̂T ¼ 0 (left) and ε̂T for ε̂S ¼ 0 (right) for the decay τ− → K−ηντ. Horizontal lines represent the values
of Δ according to the current measurement and theory errors (at three standard deviations) of the branching ratio (dashed line).
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ε̂S ¼ ½−0.12;−0.08� ∪ ½0.08; 0.12�; ε̂T ¼ 0; ð50Þ

ε̂S ¼ 0; ε̂T ¼ ½−0.12;−0.06� ∪ ½0.92; 0.99�; ð51Þ

from τ− → K−K0ντ [BRexp ¼ 1.486ð34Þ × 10−3 [32] ].
Had we used the BABAR measurement of τ− → K−KSντ
[BRexp ¼ 0.739ð11Þð20Þ × 10−3 [33] ], we would have
obtained instead

ε̂S ¼ ½−0.12;−0.09� ∪ ½0.08; 0.11�; ε̂T ¼ 0; ð52Þ

ε̂S ¼ 0; ε̂T ¼ ½−0.12;−0.06� ∪ ½0.93; 0.99�: ð53Þ

Second, we have also set constraints on these couplings
from the general case where both are nonvanishing using
Eq. (45) as before. These results are graphically represented
by ellipses in the ε̂S − ε̂T plane in Fig. 6 for the three decay
channels under consideration.
In all, our results for the bounds in the scalar and tensor

effective couplings ε̂S and ε̂T that can be obtained at three
standard deviations from the current experimental meas-
urement are gathered in Table I. The constraints on the
scalar coupling obtained from the K−η decay channel is
quite symmetric, while the tensor coupling has a mild
preference for ε̂T < 0. The allowed region has the same size

for both. Limits on the scalar coupling from the K−η0 mode
favor slightly ε̂S < 0, while the constraints on the tensor
one are much weaker in this case. Finally, from the K−K0

decay, the allowed region for ε̂S is symmetric and shows a
small preference over tensor interactions whose coupling
prefers to sit on the positive side, ε̂T > 0.
In this table, we also compare the results of this work

with the constraints we have obtained in previous analyses
from the π−π0 [17], ðKπÞ− [18], and π−ηð0Þ [16] decay
channels. The constraints for the scalar couplings are found
to be more precise than those obtained from the dipion
mode, competitive with the limits set from the ðKπÞ−
decays, and weaker than the bounds coming from the
decays π−ηð0Þ. For the tensor couplings, we notice that
the Kη0 channel gives a much looser limit than the decays
Kη andK−K0. The allowed region of the last two, in turn, is
similar to that obtained in our previous analyses but
for π−η0, which is not competitive restricting tensor
interactions.
We have also tried determining the effective couplings

from a χ2 function in the following way:

χ2¼
�
BRth

K−η−BRexp
K−η

σBRexp
K−η

�2

þ
�
BRth

K−K0 −BRexp
K−K0

σBRexp

K−K0

�2

; ð54Þ

FIG. 6. Constraints on the scalar and tensor couplings obtained from Δðτ− → K−ηντÞ (left plot), Δðτ− → K−η0ντÞ (central plot), and
Δðτ− → K−K0ντÞ (right plot) using theory and the PDG reported value for the corresponding branching ratios, with their uncertainties at
three standard deviations.

TABLE I. Constraints on the scalar and tensor couplings obtained (at three standard deviations) through the limits on the current
branching ratio measurements. Theory errors are included.

Decay channel ε̂Sðε̂T ¼ 0Þ ε̂Tðε̂S ¼ 0Þ ε̂S ε̂T

τ− → K−ηντ ½−0.38; 0.16� ½−1.4;−0.7� ∪ ½−4.7; 8.5� × 10−2 ½−0.7; 0.5� ½−1.5; 0.1�
τ− → K−η0ντ ½−0.20; 0.05� ½−7.6; 14.9� ½−0.21; 0.05� ½−10.4; 17.7�
τ− → K−K0ντ ½−0.12;−0.08� ∪ ½0.08; 0.12� ½−0.12;−0.06� ∪ ½0.92; 0.99� ½−0.2; 0.2� ½−0.12; 0.98�
τ− → π−π0ντ [17] ½−1.33; 1.31� ½−0.79;−0.57� ∪ ½−1.4; 1.3� × 10−2 ½−5.2; 5.2� ½−0.79; 0.013�
τ− → ðKπÞ−ντ [18] ½−0.57; 0.27� ½−0.059; 0.052� ∪ ½0.60; 0.72� ½−0.89; 0.58� ½−0.07; 0.72�
τ− → π−ηντ [16] ½−8.3; 3.9� × 10−3 ½−0.43; 0.39� ½−0.83; 0.37� × 10−2 ½−0.55; 0.50�
τ− → π−η0ντ [16] ½−1.13; 0.68� × 10−2 jε̂T j < 11.4 ½−1.13; 0.67� × 10−2 ½−11.9; 11.9�
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where BRexp
K−η and σBRexp

K−η
, and BRexp

K−K0 and σBRexp

K−K0
, are the

measured branching ratio and the corresponding uncertain-
ties of the K−η and K−K0 decay modes, respectively, and
BRth

K−η and BRth
K−K0 are the analog theoretical expressions

obtained upon integrating Eq. (39). The χ2 function defined
above depends solely on ε̂S and ε̂T . Using the experimental
values given below Eqs. (47) and (51), we obtain the
constraints:

ε̂S¼ð9.2�1.0Þ×10−2; ε̂T ¼ð−1.3�0.9Þ×10−2; ð55Þ

where we have added to the statistical fit error a theoretical
uncertainty due to the tensor form factor and have summed
these in quadrature. While the error associated to ε̂T makes
it compatible with zero (as expected), we note this is not the
case for ε̂S. However, given the large correlation between
both (ρ ¼ 0.859), we would not draw any statistically
significant conclusion concerning a nonvanishing ε̂S just
from Eq. (55). In fact, in our recent global fit to one- and
two-meson tau decays [56], the significance of a non-
vanishing ε̂S is reduced to ∼3σ, with small correlations in
this case.
Comparing our results with bounds obtained from other

low-energy probes, our previous limits are not competitive
with semileptonic kaon decays, ε̂S ¼ ð−3.9� 4.9Þ × 10−4

and ε̂T ¼ ð0.5� 5.2Þ × 10−3 [27], while they are similar to

those obtained from hyperon decays [25], where jε̂Sj <
4 × 10−2 and jε̂T j < 5 × 10−2 are found at a 90%C.L.6With
respect to the results of Ref. [19], obtained also from
hadronic tau decays (strangeness-conserving transitions
only), our corresponding limits are less precise. However,
the use of all available data of all possible dimeson tau
decays (see Table I) could allow us to improve the knowl-
edge in this respect. Such analysis has very recently been
carried out in Ref. [56], where more competitive bounds
have been obtained as a result of a global analysis to
exclusive hadronic tau decays.

B. Dalitz plot

The unpolarized spin-averaged squared amplitude
yields

jMj2¼G2
FjVusj2SEW

s2
ð1þεLþεRÞ2

× ½M00þMþþþM0þþMTþþMT0þMTT �; ð56Þ

where M00, Mþþ, and MTT are, respectively, the scalar,
vector, and tensor amplitudes, whereas M0þ, MTþ, and
MT0 are their corresponding interferences. Their expres-
sions are given by

M0þ ¼ −2CS
Kηð0Þ

CV
Kηð0Þ

m2
τRe½FKηð0Þ

þ ðsÞðFKηð0Þ
0 ðsÞÞ��ΔKπ

�
1þ sε̂S

mτðms −muÞ
�
ðsðm2

τ − s − 2tþ ΣKηð0Þ Þ −m2
τΔKηð0Þ Þ;

MTþ ¼ −4CV
Kηð0Þ ε̂Tm

3
τsRe½FKηð0Þ

T ðsÞðFKηð0Þ
þ ðsÞÞ��

�
1 −

s
m2

τ

�
λðs;m2

ηð0Þ ; m
2
KÞ;

MT0 ¼ 4CS
Kηð0Þ

ε̂TΔKπmτsRe½FKηð0Þ
T ðsÞðFKηð0Þ

0 ðsÞÞ��
�
1þ sε̂S

mτðms −muÞ
�
ðsðm2

τ − s − 2tþ ΣKηð0Þ Þ −m2
τΔKηð0Þ Þ;

M00 ¼ ðCS
Kηð0Þ Þ2Δ2

Kπm
4
τ

�
1 −

s
m2

τ

�
jFKηð0Þ

0 ðsÞj2
�
1þ sε̂S

mτðms −muÞ
�

2

;

Mþþ ¼ ðCV
Kηð0Þ Þ2jF

Kηð0Þ
þ ðsÞj2fm4

τðs − ΔKηð0Þ Þ2 þ 4m2
ks

2ðm2
ηð0Þ − tÞ þ 4s2tðsþ t −m2

ηð0Þ Þ
−m2

τsðsðsþ 4tÞ − 2ΔKηð0Þ ðsþ 2t − 2m2
ηð0Þ Þ þ Δ2

Kηð0Þ Þg;
MTT ¼ 4ε̂2T jFKηð0Þ

T ðsÞj2s2fm4
Kðm2

τ − sÞ −m4
ηð0Þ ð3m2

τ þ sÞ − sððsþ 2tÞ2 −m2
τðsþ 4tÞÞ

þ 2m2
ηð0Þ ððsþ 2tÞðsþm2

τÞ − 2m4
τÞ − 2m2

Kðm2
τ − sÞðsþ 2t −m2

ηð0Þ Þg; ð57Þ

where we have defined ΔPQ ¼ m2
P −m2

Q and ΣPQ ¼
m2

P þm2
Q. The corresponding expressions for τ− →

K−K0ντ are obtained by replacing Vus→Vud in Eq. (56)
and mηð0Þ → mK0 , ms → md, and CS;V

Kηð0Þ → CS;V
KK in Eq. (57).

For this latter case, we would like to notice that those
contributions involving the scalar form factor, i.e., M0þ,
MT0, and M00, are always suppressed, since they are

6For the comparison, we need to assume lepton universality,
because our study involves the tau lepton, while theirs involves
electrons and muons. Given the smallness of possible lepton
universality violations, this is enough for current precision. We
have also assumed that the corresponding Cabibbo-Kobayashi-
Maskawa matrix elements do not change under NP interactions,
which is the case if εðludÞ ¼ εðlusÞ [57].
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proportional to ΔK−K0 , an isospin-violating factor which is
tiny. This makes its effect negligible even for jε̂Sj ∼ 1 (low-
energy processes limit jε̂Sj ≤ 3.4 × 10−3 [31] under the
reasonable assumption of lepton flavor universality).
In order to study possible NP signatures in Dalitz plots

distributions, we introduce the following observable [17]:

Δ̃ðε̂S; ε̂TÞ ¼
jjMðε̂S; ε̂TÞj2 − jMð0; 0Þj2j

jMð0; 0Þj2
; ð58Þ

which measures deviations between non-SM (either ε̂S ≠ 0
or ε̂T ≠ 0, or both ε̂S;T ≠ 0) and SM (ε̂S;T ¼ 0) interactions.
First, in Fig. 7, we provide a graphical account of the

Dalitz plot distributions in the SM in the (s; t) variables for
the decays τ− → K−ηντ (upper-left plot) and τ− → K−η0ντ
(upper-right plot). As can be seen from these plots, there is
no evidence for a meson resonance production, and only
the K�ð892Þ—and to a lesser extent the K�ð1410Þ—and
K0ð1430Þ tails can be appreciated for the Kη and Kη0 decay
channels, respectively. Similarly, the SM plot for the decay
τ− → K−K0ντ is displayed in Fig. 8, where the tail of the
ρð1450Þ meson can be seen.
Second, we turn to analyze possible NP signatures by

allowing nonzero values of either ε̂S or ε̂T. In Fig. 9, first
row, we show the qualitative effect of NP on the observable

Δ̃ðε̂S; ε̂TÞ in Eq. (58) for the decay τ− → K−ηντ using two
sets of values of effective couplings ðε̂s; ε̂TÞ that we take
from our results in Sec. IVA. Although the use of these
values is rather unrealistic (they are ruled out, for example,
by kaon-based results [27]), they represent the information
that can be obtained from the (experimental) knowledge of
the decays studied in this work. For the left plots of the
figure, we use ðε̂S ¼ −0.38; ε̂T ¼ 0Þ, and, thus, the varia-
tions with respect to the SM occur due to M0þ and M00 in
Eq. (57), while for the right ones we employ ðε̂S ¼ 0; ε̂T ¼
0.085Þ with NP effects entering through MTþ, MT0, and
MTT in Eq. (57). As one can observe, the variations of
scalar nature are, in general, small and occur close to the s
minimum, i.e., near the Kη threshold and t=m2

τ ∼ 0.47, and
for s=m2

τ ∼ 0.66, while the tensor contributions yield a
sizable signal starting near the Kη threshold and populate
the diagonal of the Dalitz plot decreasingly. However, these
contributions arise in zones with very suppressed proba-
bility in the SM (see the upper-left plot in Fig. 7) and will,
thus, be very challenging to identify.
In the case of τ− → K−η0ντ, shown in Fig. 10, we use,

respectively, ðε̂S¼−0.20; ε̂T¼0Þ and ðε̂S ¼ 0; ε̂T ¼ 14.9Þ
for the left and right plots, and the corresponding variations
in the Dalitz plot distribution are seen in a reduced and
similar region close to s=m2

τ ∼ 0.85 and t=m2
τ ∼ 0.35.

FIG. 7. Dalitz plot distribution in the SM, jMð0; 0Þj2 in Eq. (56), for τ− → K−ηντ (left) and τ− → K−η0ντ (right) in the (s; t) variables.
The figures of the lower row show the differential decay distribution in the ðs; cos θÞ variables, Eq. (59). The s and t variables are
normalized to m2

τ .

EFFECTIVE-FIELD THEORY ANALYSIS OF THE … PHYS. REV. D 101, 034010 (2020)

034010-11



Again, compared to the SM (see the upper-right plot in
Fig. 7), these effects appear in a zone of small probability
density and will be, therefore, difficult to be measured.
Finally, for τ− → K−K0ντ, we use ðε̂S ¼ 0.10; ε̂T ¼ 0Þ

and ðε̂S ¼ 0; ε̂T ¼ 0.9Þ for the left and right plots in Fig. 11,

respectively. The effects due to the inclusion of new
contributions (see red shaded areas in Fig. 11) appear in
the region of the SM Dalitz plot less densely populated (see
the left plot in Fig. 8) and will again, thus, be difficult to
distinguish.

FIG. 9. Dalitz plot distribution of Δ̃ðε̂S; ε̂TÞ in Eq. (58) for τ− → K−ηντ with ðε̂S ¼ −0.38; ε̂T ¼ 0Þ (left panels) and ðε̂S ¼ 0; ε̂T ¼
0.085Þ (right panels). The lower row shows the differential decay distribution in the ðs; cos θÞ variables, Eq. (59). The s and t variables
are normalized to m2

τ .

FIG. 8. Dalitz plot distribution in the SM, jMð0; 0Þj2 in Eq. (56), for τ− → K−K0ντ in the (s; t) variables (left). The figure shown on
the right corresponds to the differential decay distribution in the ðs; cos θÞ variables, Eq. (59). The s and t variables are normalized tom2

τ .
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Had we used another set of values of effective couplings,
e.g., [27], we would have obtained qualitatively similar
results.

C. Angular distribution

The hadronic mass and angular distributions are
also modified by the inclusion of the NP interactions
that we are studying. It is convenient to work in the
rest frame of the hadronic Kηð0Þ system defined by
p⃗K þ p⃗ηð0Þ ¼ p⃗τ − p⃗ντ ¼ 0. In this frame, the tau lepton

and kaon energies are given by Eτ ¼ ðsþm2
τÞ=2

ffiffiffi
s

p
and EK ¼ ðsþm2

K −m2
ηð0Þ Þ=2

ffiffiffi
s

p
, respectively, and the

measurable angle θ between these two particles can be
obtained from the invariant t variable through t¼m2

τþ
m2

K−2EτEKþ2jp⃗Kjjp⃗τjcosθ, where jp⃗Kj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
K−m2

K

p
and jp⃗τj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
τ −m2

τ

p
.

The decay distribution in the (s; θ) variables in the
framework of the most general effective interactions is
given by

d2Γ
d

ffiffiffi
s

p
d cosθ

¼ G2
FjVusj2SEW
128π3mτ

ð1þ εL þ εRÞ2
�
m2

τ

s
− 1

�
2

jp⃗Kj
�
ðCS

Kηð0Þ Þ2ðΔKπÞ2jFKηð0Þ
0 ðsÞj2

�
1þ sε̂S

mτðms −muÞ
�

2

þ 16jp⃗Kj2s2
				
CV
Kηð0Þ

2mτ
FKηð0Þ
þ ðsÞ− ε̂TF

Kηð0Þ
T ðsÞ

				
2

þ 4jp⃗Kj2s
�
1−

s
m2

τ

�
cos2θ½ðCV

Kηð0Þ Þ2jF
Kηð0Þ
þ ðsÞj2 − 4sε̂2T jFKηð0Þ

T ðsÞj2�

þ 4CS
Kηð0ÞΔKπjp⃗Kj

ffiffiffi
s

p
cosθ

�
1þ sε̂S

mτðms −muÞ
��

CV
Kηð0ÞRe½F

Kηð0Þ
0 ðsÞF�Kηð0Þ

þ ðsÞ�− 2sε̂T
mτ

Re½FKηð0Þ
T ðsÞF�Kηð0Þ

0 ðsÞ�
��

;

ð59Þ

FIG. 10. Dalitz plot distribution of Δ̃ðε̂S; ε̂TÞ in Eq. (58) for τ− → K−η0ντ with ðε̂S ¼ −0.20; ε̂T ¼ 0Þ (left panels) and ðε̂S ¼ 0; ε̂T ¼
14.9Þ (right panels). The lower row shows the differential decay distribution in the ðs; cos θÞ variables, Eq. (59). The s and t variables are
normalized to m2

τ .
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which coincides with the SM result [12] when the effective
couplings of new interactions are set to zero.
The SM Dalitz plot distribution in the ðs; cos θÞ variables

is shown, for the same set of effective couplings discussed
previously, in the second row in Fig. 7 for theK−η (left) and
K−η0 (right) decay modes, and in the plot on the right in
Fig. 8 for the K−K0 channel.
The effects of non-SM interactions on the angular

distributions is displayed in the second row in Figs. 9–
11 for theK−η,K−η0, andK−K0 decay modes, respectively.
For the K−η channel, the enhanced region near the Kη
threshold in the (s; t) upper-left diagram (the one close to s
minimum) is slightly enhanced in a limited region
ðcos θ > 0Þ, as can be seen in the lower-left plot in
Fig. 9, while NP tensor contributions show that the
enhanced area for large t translates to nearly minimum
values of cos θ, as can be observed in the plots on the right.
For the K−η0 system, both NP scalar and tensor contribu-
tions have similar effects in the ðs; cos θÞ plot. These are
given in Fig. 10 by the red sunshine area centered at
s=m2

τ ∼ 0.85. Finally, for τ− → K−K0ντ, in Fig. 11 we

notice that the enhanced region close to the s minimum in
the (s; t) variables in the upper-left plot is washed away in
the ðs; cos θÞ variables in the lower-left plot. In all, we
conclude that possible deviations from the SM patterns in
near future data will be hard to disentangle in ðs; cos θÞ
Dalitz plot analyses.

D. Decay rate

The decay distribution in terms of the Kη and Kη0
invariant mass [cf. Eq. (39)] is given, respectively, in the
left and right plots in Fig. 12 for two sets of values of
effective couplings obtained in Sec. IVA. We remind
the reader here that these values correspond to the infor-
mation for the couplings that can be obtained from the
decays in question but that they are not allowed when
comparing with the bounds obtained from other low-energy
probes. For the decay τ− → K−ηντ, it can be observed
that the deviations with respect to the SM result (solid line)
are sizable in the entire energy region of the decay
spectrum. For the τ− → K−η0ντ decay spectrum, we predict
a SM branching ratio of BRSM ≃ 1.03 × 10−6. This value is

FIG. 11. Dalitz plot distribution of Δ̃ðε̂S; ε̂TÞ in Eq. (58) for τ− → K−K0ντ with ðε̂S ¼ 0.10; ε̂T ¼ 0Þ (left panels) and ðε̂S ¼ 0; ε̂T ¼
0.9Þ (right panels). The lower row shows the differential decay distribution in the ðs; cos θÞ variables, Eq. (59). The s and t variables are
normalized to m2

τ .
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found to be totally in line with Ref. [12] and respects the
current experimental upper bound BRexp < 2.4 × 10−6 at
90% C.L. [32]. In this respect, a measurement of this decay
mode will be very welcome to further constrain the SM
hadronic inputs, a requirement for searches of non-SM
interactions. This measurement should be feasible at
Belle-II [15].
Regarding the invariant mass distribution of the τ− →

K−K0ντ transition, it can be obtained after replacing
mηð0Þ → mK0 and Vus → Vud in Eq. (39) and using the
corresponding Clebsch-Gordan coefficients. In Fig. 13, we
plot the K−K0 invariant mass distribution for the SM case
(solid line) and for the corresponding effective couplings
used for illustration. In this case, while the (small) effects of
non-SM scalar interactions are mostly seen in the first half
of the decay spectrum, and in the interference region of the
ρð1450Þ and ρð1700Þ resonances to some extent, the
departure from the SM due to tensor interactions is seen
on the second half of the spectrum.

E. Forward-backward asymmetry

The forward-backward asymmetry for the hadronic
K−ηð0Þ system is defined in analogy to the previous dimeson
modes we have studied [16–18]:

AKηð0Þ ðsÞ ¼
R
1
0 d cos θ d2Γ

dsd cos θ −
R
0
−1 d cos θ

d2Γ
dsd cos θR

1
0 d cos θ

d2Γ
dsd cos θ þ

R
0
−1 d cos θ

d2Γ
dsd cos θ

: ð60Þ

Inserting Eq. (59) into the previous expression and
integrating upon the cos θ variable, we obtain its analytical
expression

AKηð0Þ ðsÞ ¼
3CS

Kηð0ÞΔKπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

ηð0Þ ; m
2
KÞ

q

2s2jFKηð0Þ
þ ð0Þj2½XVA þ ε̂SXS þ ε̂TXT þ ε̂2SXS2 þ ε̂2TXT2 �

�
1þ sε̂S

mτðms −muÞ
�

×

�
CV
Kηð0ÞRe½F

Kηð0Þ
0 ðsÞF�Kηð0Þ

þ ðsÞ� − 2sε̂T
mτ

Re½FKηð0Þ
T ðsÞF�Kηð0Þ

0 ðsÞ�
�
: ð61Þ

FIG. 12. Left: K−η invariant mass distribution in the SM (solid line) and for ε̂S ¼ −0.38, ε̂T ¼ 0 (dashed line), and ε̂S ¼ 0, ε̂T ¼ 0.085
(dotted line). Right: K−η0 invariant mass distribution in the SM (solid line) and for ε̂S ¼ −0.20, ε̂T ¼ 0 (dashed line), and ε̂S ¼ 0,
ε̂T ¼ 14.9 (dotted line). Units in axes are given in GeV powers, and the decay distributions are normalized to the tau decay width. Note
that the sizable differing results with respect the SM are due to the values of the couplings that correspond to the information that can be
obtained from the decays in question, that are far less competitive when comparing with the values obtained from other low-energy
probes, e.g., [27].

FIG. 13. Invariant mass distribution for the decay τ− →
K−K0ντ in the SM (solid line) and for ε̂S ¼ 0.1, ε̂T ¼ 0 (dashed
line) and ε̂S ¼ 0, ε̂T ¼ 0.9 (dotted line). The decay distribution is
normalized to the tau decay width.
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Again, replacing mηð0Þ → mK0 , ms → md, and ΔKπ → ΔKK
in Eq. (61), we find the corresponding result for the decay
τ− → K−K0ντ,AKKðsÞ. The forward-backward asymmetry
in the SM case, i.e., ε̂S;T ¼ 0, corresponds to the solid line in
Fig. 14 for the decays K−η (left plot) and K−η0 (right plot)
and in Fig. 15 for theK−K0 transition. For theK−ηmode, it
should not be difficult to measure a nonzero (negative) value
near theK−η threshold.AKη increases with s, crosses zero at
around 1.28 GeV, and reaches its maximum near 1.45 GeV,
when it decreases up to the upper kinematical limit. For the
Kη0 case, the forward-backward asymmetry is a positive
increasing observable from the Kη0 threshold until around
1.64 GeV, where it has a plateau and decreases afterwards.
Finally, for the K−K0 decay channel, the SM AKK is, in
general, small with a signature right before 1 GeVand small
bump at around 1.55 GeV.
In these figures, we also display the results arising from

considering non-SM scalar and tensor interactions. For the
K−η channel, one observes that the tensor case (dotted line)
overlaps with the SM prediction, thus being difficult to

unveil its possible effects from the SM contribution. On the
contrary, for non-SM scalar interactions (dashed line), AKη

flips sign with respect to the SM slightly before 1.3 GeV,
and it gets larger in magnitude as s increases. If it is
possible to measure this observable eventually, this would
ease the identification of NP contributions in AKη. The
nonstandard scalar contribution to the forward-backward
asymmetry of the Kη0 decay mode is negative and has, to a
great extent, the same size as the SM ones but with opposite
sign. The NP tensor contribution, also negative, has a clear
nonzero value near the threshold and then becomes a
decreasing function until the kinematical upper limit offfiffiffi
s

p
. It is clear then that noticeable differences with respect

to the SM contribution will be appreciated for quite large
values of the new effective couplings. Similarly, for the
K−K0 decay, clear nonzero values for the NP coupling of
the scalar contributions will unambiguously dominate over
the tensor ones. Therefore, the AKK would be a good
observable for searching nonstandard scalar interactions:
despite its numerator in Eq. (61) being suppressed by the
small value of ΔK−K0 ; its denominator is further suppressed
by the dependence of the XS2 on ΔK−K0 .

V. CONCLUSIONS

Hadronic tau lepton decays remain to be an advantageous
tool for the investigation of the hadronization of QCD
currents in the nonperturbative regime of the strong inter-
action. In this paper, we have studied the decays τ− →
K−ðηð0Þ; K0Þντ in the presence of non–Standard Model
scalar and tensor interactions. We have focused our analysis
on setting bounds on the corresponding new physics
couplings from the current experimental measurements of
these decays. This has been possible due to the satisfactory
knowledge we have on the necessary Standard Model
hadronic input, the form factors. For the description of
the participating vector and scalar form factors, we have
employed previous results based on constraints from chiral
perturbation theory supplemented by dispersion relations

FIG. 15. Forward-backward asymmetry for the decay τ− →
K−K0ντ in the SM (solid line) and for ε̂S ¼ 0.1, ε̂T ¼ 0 (dashed
line) and ε̂T ¼ 0.9, ε̂S ¼ 0 (dotted line).

FIG. 14. Left: Forward-backward asymmetry for the decay τ− → K−ηντ in the SM (solid line) and for ε̂S ¼ −0.38, ε̂T ¼ 0 (dashed
line) and ε̂T ¼ 0.085, ε̂S ¼ 0 (dotted line). Right: Forward-backward asymmetry for the decay τ− → K−η0ντ in the SM (solid line) and
for ε̂S ¼ −0.20, ε̂T ¼ 0 (dashed line) and ε̂T ¼ 14.9, ε̂S ¼ 0 (dotted line).
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and experimental data. On the contrary, there are no
experimental data to help us construct the required tensor
form factor, and, therefore, it has been described under
theoretical arguments solely. Within this framework, we
have set limits (see Table I) on the nonstandard scalar and
tensor couplings ε̂S and ε̂T , respectively, using the measured
branching ratios, and have studied their effects on different
phenomenological observables including Dalitz plot and
angular distributions, the decay rate, and the forward-
backward asymmetry. The present analysis completes our
series of dedicated studies of two-meson tau decays [16–18]
that have shown the complementary role that tau decays can
play in restricting nonstandard interactions. Despite our
bounds on the NP couplings not being as precise as those
placed, for example, from semileptonic kaon decays [27],7

and the corresponding effects being very challenging
to identify, we hope our works can serve as a motiva-
tion for the experimental tau physics groups at
Belle-II to measure the different observables we have
discussed.
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